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Abstract

We employ theoretical and computational techniques to construct new weighing matri-
ces constructed from two circulants. In particular, we construct W (148, 144), W (152, 144),
W (156, 144) which are listed as open in the second edition of the Handbook of Combi-
natorial Designs. We also fill a missing entry in Strassler’s table with answer ”YES”, by
constructing a circulant weighing matrix of order 142 with weight 100.

1 Introduction

A weighing matrix W = W (n, k) of order n and weight k is a square matrix of order n with
entries from {0, − 1, + 1} such that

WW T = k · In

where In is the n× n identity matrix and W T is the transpose of W .

A circulant weighing matrix, W = CW (n, k), is a weighing matrix of order n and weight k
in which each row (except the first row) is obtained from its preceding row by a right cyclic
shift. We label the columns of W by a cyclic group G of order n, say generated by g.

∗Research partially supported by grants from NSF and AFOSR.
†The author thanks the Centre for Computer and Information Security Research, Univ of Wollongong for

its hospitality during the time of this sabbatical research.
‡Supported by grants from NSERC and SHARCnet
§Supported by an ARC grant.
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For any circulant weighing matrix W = CW (n, k) define

A = { gi | W (1, gi) = 1 , i = 0, 1, . . . , n− 1}
and B = { gi | W (1, gi) = − 1 , i = 0, 1, . . . , n− 1} (1)

It is easy to see that | A | + | B |= k.

For a circulant weighing matrix, W = CW (n, k) it is well known that k must be a perfect
square, (see [7], for instance), write k = s2 for some integer s.

For more on weighing designs, weighing matrices and related topics refer to [5].

It is known [5, 8] that:

Theorem 1 A CW (n, k) can only exist if (i) k = s2, (ii) | A |= s2+s
2 and | B |= s2−s

2 , (iii)
(n − k)2 − (n − k) ≥ n − 1 and (iv) if (n − k)2 − (n − k) = n − 1 then M = J −W ∗W is
the incidence matrix of a finite projective plane, (here J is the n× n matrix of all 1’s and ∗
denotes the Kronecker product).

For a multiplicatively written group G, we let ZG denote the group ring of G over Z. We will
consider only abelian (in fact, only cyclic) groups. For S ⊆ G, we let S denote the element∑

x∈S x of ZG. For A =
∑

g agg and t ∈ Z, we define A(t) =
∑

g agg
t.

It is easy to see (see [1], [2] or [3] for details):

Theorem 2 A CW = W (n, s2) exists if and only if there exist disjoint subsets A and B of
Zn satisfying

(A − B)(A − B)(−1) = s2. (2)

We shall identify a W = CW (n, k) with its first row of the group ring element
∑

i W (1, gi)gi

in ZG.

Definition 1 The support of a circulant matrix C of order n is defined as the set

support C = {i |C(1, i) 6= 0, 1 ≤ i ≤ n}

In this paper we use the following notations:

1. a W (n, k) denotes a weighing matrix of order n and weight k;

2. a CW (n, k) denotes a circulant weighing matrix of order n and weight k;

3. DC(n, k) denotes two {0,±1} sequences of order n each and (total) weight k, that have
PAF zero; (see [7] for the definition of PAF)

4. a 2 − CW (2n, k) denotes a W (2n, k) constructed from two circulants whose first rows
are given by DC(n, k).
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2 New Results

We obtain an extension of the following theorem of Arasu and Dillon [1].

Theorem 3 If there exists a CW (n, k) with n odd, then there exists a CW (2tn, 4k) for each
positive integer t > 1.

An extension of Theorem 3 is Theorem 2.3 in Arasu, Leung, Ma, Nabavi, Ray-Chaudhuri [2]

Theorem 4 Let G be a group such that the center of G contains an element α of order
2. Let B be a W (G, k) and let C ∈ Z[G] such that C has coefficients 0,±1 and η(C) is a
W (G/ < α >, k) where η : G −→ G/ < α > is the natural epimorphism. If B, αB, C, αC
are pairwise disjoint, then

A = (1− α)B + (1 + α)C (3)

is a W (G, 4k).

Remark The notation W (G, k) used in theorem 4 above refers to a weighing matrix that is
developed using the group G; we avoid giving its definition for the sake of brevity and refer
the interested reader to [2] for further details. We only wish to stress that if G is a cyclic
group, then the W (G, k) is indeed a CW (n, k) where n is the order of G.

For convenience we provide an extension of Theorem 3 to cover the case t = 1; although a
more general version is contained in Theorem 4.

Definition 2 Two circulant matrices A and B of the same order are said to have disjoint
support, if (support A) ∩ (support B) = ∅.

Theorem 5 Let n be an odd positive integer. If there exist two CW (n, k) with disjoint
supports then there exists a CW (2n, 4k).

Proof. Let A and B be two CW (n, k) with (support A) ∩ (support B) = ∅. Then AA(−1) =
BB(−1) = k in Z[G], where G is “the” unique multiplicatively written group of order n. Let
< t >= Z2 where t2 = 1. Then H = G× < t > is a cyclic group of order 2n.

We define
W = (1 + t)A + (1− t)B.

Then

WW (−1) = 2(1 + t)AA(−1) + 2(1− t)BB(−1) = 2(1 + t)k + 2(1− t)k = 4k.

Since A and B have disjoint supports with coefficients 0,±1, it follows that W has coefficients
0,±1. Hence, W defines the required CW (2n, 4k). 2

Definition 3 Two matrices A and B of the same order are said to have disjoint support, if
A?B = 0, where ? denotes the Hadamard product (element-wise product) of the two matrices.
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The above definition of disjoint support for arbitrary matrices (i.e. not necessarily circulant)
boils down to the definition 2 of disjoint support for circulant matrices.

Theorem 6 If A and B are two W (n, k) with disjoint support then, since AAT = BBT = kI

[
A + B A−B
A−B A + B

]

is a W (2n, 4k).

Note that theorem 6 is important since it does not require any structural assumptions (like
circulant on A or B) - any random weighing matrices with disjoint support will work.

2.1 Applications

Let G =< x > where x71 = 1. Then

A(x) = x7 + x35 + x33 + x23 + x44 + x9 + x45 + x12 + x60 + x16 + x22 + x39 + x53 + x52 + x47

−x− x5 − x25 − x54 − x57 − x6 − x30 − x8 − x40 − x58

and

B(x) = x11 + x55 + x62 + x26 + x59 + x18 + x19 + x24 + x49 + x32 + x27 + x64 + x36 + x38 + x48

−x13 − x65 − x41 − x63 − x31 − x14 − x70 − x66 − x46 − x17

define two CW (71, 25) with disjoint supports. Following the construction of Theorem 5, we
define W = (1 + x71)A(x2) + (1− x71)B(x2) where we reduce modulo 2 · 71 the exponents of
the polynomial W . Therefore, according to Theorem 5, W defines a CW (142, 100). In order
to provide an independent verification of this result, we give explicitly the first row of this
CW (142, 100) constructed using Theorem 5:

- - 0 0 - 0 + 0 - - + - 0 + 0 - + + + 0 + + + + - - - - 0 0 0 + + - +
+ - + - 0 0 0 - + - + - + + - 0 + - + + 0 - 0 + - + - 0 + 0 + 0 0 + +
0 + - 0 0 + 0 + 0 - - - - 0 + 0 - + + + 0 - - + + + + + + 0 0 0 + + +
+ - - - + 0 0 0 - + - + + - + - 0 - + - - 0 + 0 - - - + 0 - 0 + 0 0 -
+ 0

Remark 1 The existence of a CW (142, 100) was previously open, see Strassler [10].

Remark 2 The first example of a CW (71, 25) was given by Strassler [9].

3 Two-Circulants or Double Circulant Constructions

We now extend the ideas of Section 2 to the “two-circulants” case.
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Definition 4 Two elements A and B of the group ring ZG, where G is a cyclic group of order
n, are said to define two-circulants, or double-circulants, of order n with weight k, written
DC(n, k), if (i) the coefficients of A and B are in {0, 1,−1} and (ii) AA(−1) + BB(−1) = k.

The following theorem is taken from [7].

Theorem 7 Let A and B define a DC(n, k). Let circ(A) and circ(B) be the circulant

matrices whose first rows are A and B respectively. Then

[
circ(A) circ(B)
circ(B)T −circ(A)T

]
gives a

2− CW (2n, k) = W (2n, k).

For a double circulant weighing matrix, 2−CW (2n, k) it is well known that k must be a sum
of two squares.

Theorem 8 Let G be a cyclic group of order n. Let A and B be DC(n, k).

Suppose that A and B have “disjoint” supports and |G| is odd. Let < t >= Z2 where t2 = 1.
Define H = G× < t > and

C = (1 + t)A + (1− t)B and D = (1− t)A + (1 + t)B.

Then C and D define a DC(2n, 4k).

Proof. Note the coefficients of C and D are 0,±1. Now

CC(−1) = 2(1 + t)AA(−1) + 2(1− t)BB(−1) and DD(−1) = 2(1− t)AA(−1) + 2(1 + t)BB(−1).

Hence CC(−1) + DD(−1) = 4(AA(−1) + BB(−1)) = 4k, as desired. 2

3.1 Applications

We now apply theorem 8 to construct three new double circulant weighing matrices DC(74, 144),
DC(76, 144), DC(78, 144). We note that the existence of the corresponding W (148, 144),
W (152, 144) was previously open, see Craigen’s table [4]. We also note that there exist sym-
metric and skew-symmetric W (156, 144). We are also grateful to R. Craigen for pointing out
that W (156, 144) can be constructed by the method of weaving. However the existence of a
DC(78, 144), hence a W (156, 144) constructed from two circulants, was open.

Proposition 1 There exists a

1. DC(37, 36) hence a DC(74, 144) and hence a W (148, 144);

2. DC(38, 36) hence a DC(76, 144) and hence a W (152, 144);

3. DC(39, 36) hence a DC(78, 144) and hence a W (156, 144);

4. DC(19, 18) hence a DC(38, 72) and hence a W (76, 72);

5. DC(31, 18) hence a DC(62, 72) and hence a W (124, 72).
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Proof.

1. Consider the following DC(37, 36) taken from [7]:

A = + + - - 0 - 0 - + + 0 + 0 0 + + 0 + 0 + 0 0 - + 0 + 0 0 0 - 0 + 0 0 0 0 0
B = 0 0 0 0 - 0 + 0 0 0 + 0 - - 0 0 - 0 - 0 + - 0 0 + 0 + + - 0 - 0 + + - + 0

Since A and B have disjoint supports, C and D as defined in theorem 8 define a
DC(74, 144). Now we apply theorem 7 to this double-circulant pair (C,D), thereby
obtaining a weighing matrix of order 148 and weight 144 from two-circulants.

2. Consider the following DC(38, 36) with disjoint support, computed via string sorting
[6]

A = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 + 0 - - + - + - - 0 - + + + + + - 0 + 0 -
B = + - + - - - + 0 - - + - - - - 0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - 0

Since A and B have disjoint supports, C and D as defined in Theorem 8 define a
DC(76, 144). Now we apply theorem 7 to this double-circulant pair (C,D), thereby
obtaining a weighing matrix of order 152 and weight 144 from two-circulants.

3. Consider the following DC(39, 36) with disjoint support, computed via string sorting
[6]

A = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - + - + - - - - + 0 + + 0 0 + 0 - 0 + 0 - 0 + +
B = - - 0 + + + - - + - - + - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + - 0 - 0 - 0 - 0 - 0 0

Since A and B have disjoint supports, C and D as defined in Theorem 8 define a
DC(78, 144). Now we apply theorem 7 to this double-circulant pair (C,D), thereby
obtaining a weighing matrix of order 156 and weight 144 from two-circulants.

Remark. We also note that there exist known but unpublished W (156, 144).

4. Consider the following DC(19, 18) taken from [7]:

A = 0 0 - 0 0 0 + + - 0 0 0 0 + + + 0 - +
B = 0 0 - 0 0 0 - - - 0 0 0 0 + - + 0 - +

If we reverse the second sequence we see that the resulting sequences have disjoint
supports. The corresponding polynomials are:

A(x) = x19 − x18 + x16 + x15 + x14 − x9 + x8 + x7 − x3,

B(x) = −x17 − x13 − x12 − x11 + x6 − x5 + x4 − x2 + x.

Following the construction of Theorem 8, we define C = (1+x19)A(x2)+(1−x19)B(x2),
D = (1−x19)A(x2)+(1+x19)B(x2) where we reduce modulo 2 ·19 the exponents of the
polynomials C, D. Therefore, according to Theorem 8, C,D define a DC(38, 72), i.e.
a 2−CW (76, 72) constructed from two circulants. In order to provide an independent
verification of this result, we give explicitly the first rows of C,D (note that they have
identical supports)
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0 + + - + - + + + - + + + + + + - - + 0 - - + - - - - + + + - + + - + - - +
0 + - - - - - + - - - + - + - + + - - 0 + - - - + - + + - + + + - - - - + +

5. Consider the following DC(31, 18)

A = 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 - 0 + + 0 0 0 0 + 0 0 0 - 0 - -
B = 0 - - + 0 0 0 0 - 0 0 0 - + 0 0 0 0 0 - 0 0 0 0 - + 0 0 0 0 0

and use it as in 4. to obtain a DC(62, 36) and hence a 2− CW (124, 72)

Note that the first rows of the circulant matrices C and D have identical supports. 2

Remark. We note that circulant and double circulant weighing matrices have structure that
is amenable to Signal Processing [11] for wireless communications.
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