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Abstract

We employ theoretical and computational techniques to construct new weighing matri-
ces constructed from two circulants. In particular, we construct W (148, 144), W (152, 144),
W (156, 144) which are listed as open in the second edition of the Handbook of Combi-
natorial Designs. We also fill a missing entry in Strassler’s table with answer ”YES”, by
constructing a circulant weighing matrix of order 142 with weight 100.

1 Introduction

A weighing matrix W = W (n, k) of order n and weight k is a square matrix of order n with
entries from {0, — 1, + 1} such that

ww’T = k.1,

where I, is the n x n identity matrix and W7 is the transpose of W.

A circulant weighing matriz, W = CW (n, k), is a weighing matrix of order n and weight k
in which each row (except the first row) is obtained from its preceding row by a right cyclic
shift. We label the columns of W by a cyclic group G of order n, say generated by g.
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For any circulant weighing matrix W = CW (n, k) define

A = {g | Wl4) =1,i=0,1,...,n—1} (1)
and B = {¢'" | W(,¢") = -1,i=0,1,....,n—1}
It is easy to see that | A |+ | B |= k.

For a circulant weighing matrix, W = CW (n, k) it is well known that k& must be a perfect
square, (see [7], for instance), write k = s? for some integer s.

For more on weighing designs, weighing matrices and related topics refer to [5].

It is known [5, 8] that:

Theorem 1 A CW(n, k) can only exist if (i) k = s%, (ii) | A |= 52;5 and | B |= 822_5, )

n—k?—-m-k)>n—1and (w) if n—k)?>—-(n—k)=n—1then M =J - W xW is
the incidence matriz of a finite projective plane, (here J is the n X n matriz of all 1’s and *
denotes the Kronecker product).

For a multiplicatively written group G, we let ZG denote the group ring of G over Z. We will
consider only abelian (in fact, only cyclic) groups. For S C G, we let S denote the element
Yzes® of ZG. For A = 3’ agg and t € Z, we define AW = g agg'.

It is easy to see (see [1], [2] or [3] for details):

Theorem 2 A CW = W(n, s?) exists if and only if there exist disjoint subsets A and B of
Zy, satisfying
(A — B)Y(A — B = &2 (2)

We shall identify a W = CW (n, k) with its first row of the group ring element >, W (1, g*)g"*
in ZG.

Definition 1 The support of a circulant matriz C of order n is defined as the set

support C = {i|C(1,1) # 0,1 < i <mn}
In this paper we use the following notations:

1. a W(n, k) denotes a weighing matrix of order n and weight k;
2. a CW(n, k) denotes a circulant weighing matrix of order n and weight k;

3. DC(n, k) denotes two {0,+1} sequences of order n each and (total) weight k, that have
PAF zero; (see [7] for the definition of PAF)

4. a2 — CW(2n, k) denotes a W (2n, k) constructed from two circulants whose first rows
are given by DC(n, k).



2 New Results

We obtain an extension of the following theorem of Arasu and Dillon [1].

Theorem 3 If there exists a CW (n, k) with n odd, then there exists a CW (2tn,4k) for each
positive integer t > 1.

An extension of Theorem 3 is Theorem 2.3 in Arasu, Leung, Ma, Nabavi, Ray-Chaudhuri [2]

Theorem 4 Let G be a group such that the center of G contains an element o of order
2. Let B be a W(G,k) and let C € Z|G| such that C has coefficients 0,+1 and n(C) is a
W(G/ < a>,k) wheren: G — G/ < «a > is the natural epimorphism. If B, aB, C, aC
are pairwise disjoint, then

A=(1-a)B+(1+a)C (3)

is a W(G, 4k).

Remark The notation W (G, k) used in theorem 4 above refers to a weighing matrix that is
developed using the group G; we avoid giving its definition for the sake of brevity and refer
the interested reader to [2] for further details. We only wish to stress that if G is a cyclic
group, then the W (G, k) is indeed a CW (n, k) where n is the order of G.

For convenience we provide an extension of Theorem 3 to cover the case t = 1; although a
more general version is contained in Theorem 4.

Definition 2 Two circulant matrices A and B of the same order are said to have disjoint
support, if (support A) N (support B) = 0.

Theorem 5 Let n be an odd positive integer. If there exist two CW (n,k) with disjoint
supports then there exists a CW (2n,4k).

Proof. Let A and B be two CW (n, k) with (support A) N (support B) = (). Then AAD =

BBY =k in Z[G], where G is “the” unique multiplicatively written group of order n. Let
<t >=Zy where t> = 1. Then H = Gx <t > is a cyclic group of order 2n.

We define
W=(01+t)A+(1-1t)B.

Then
WWwED =201 + ) AACY 121 —)BBEY = 2(1 + t)k + 2(1 — t)k = 4k.

Since A and B have disjoint supports with coefficients 0, +1, it follows that W has coefficients
0,+1. Hence, W defines the required CW (2n, 4k). 0

Definition 3 Two matrices A and B of the same order are said to have disjoint support, if
AxB = 0, where x denotes the Hadamard product (element-wise product) of the two matrices.



The above definition of disjoint support for arbitrary matrices (i.e. not necessarily circulant)
boils down to the definition 2 of disjoint support for circulant matrices.

Theorem 6 If A and B are two W (n, k) with disjoint support then, since AAT = BBT = kI

A+B A-B
A-B A+B

is a W (2n,4k).

Note that theorem 6 is important since it does not require any structural assumptions (like
circulant on A or B) - any random weighing matrices with disjoint support will work.

2.1 Applications

Let G =< x > where 2’1 = 1. Then

Al)=2"+ 2% + 2% + 2% + 2" + 2% + 2% + 22 + 290 + 210 + 222 4 239 4+ 25 4 252 4 2?7

P _ 25 P4 5T 6 30 8 40 _ 58

and
B(z) = 2" + 2% + 2% + 220 4 27 + 218 4 219 4 22 4 2% 4 237 4 2% 4 2% 4 230 4 238 4 28

13 65 _ o4l 63 31 14 70 66 _ 46 _ 17
define two CW (71, 25) with disjoint supports. Following the construction of Theorem 5, we
define W = (1 +2™)A(2?) + (1 — 2™) B(x?) where we reduce modulo 2 - 71 the exponents of
the polynomial W. Therefore, according to Theorem 5, W defines a CTW(142,100). In order
to provide an independent verification of this result, we give explicitly the first row of this
CW (142,100) constructed using Theorem 5:

- -00-0+0--+-0+0-+++0++++----000++ -+
+-+-000-+-+-++-0+-++0-0+-+-0+0+00+ +
0+-00+0+0----0+0-+++0--++++++000+ + +
+---+000-+-++-+-0-+--0+0---+0-0+00 -
+ 0

Remark 1 The existence of a CTW (142, 100) was previously open, see Strassler [10].

Remark 2 The first example of a CW(71,25) was given by Strassler [9].

3 Two-Circulants or Double Circulant Constructions

We now extend the ideas of Section 2 to the “two-circulants” case.



Definition 4 Two elements A and B of the group ring ZG, where G is a cyclic group of order
n, are said to define two-circulants, or double-circulants, of order n with weight k, written
DC(n, k), if (i) the coefficients of A and B are in {0,1, -1} and (ii) AACY + BB(-1) =,

The following theorem is taken from [7].

Theorem 7 Let A and B define a DC(n,k). Let circ(A) and circ(B) be the circulant
circ(A) cire(B)

cire(B)T  —circ(A)T grves a

matrices whose first rows are A and B respectively. Then

2—-CW(2n,k) =W(2n,k).

For a double circulant weighing matrix, 2— CW (2n, k) it is well known that £ must be a sum
of two squares.

Theorem 8 Let G be a cyclic group of order n. Let A and B be DC(n, k).

Suppose that A and B have “disjoint” supports and |G| is odd. Let < t >= Zi where t> = 1.
Define H=Gx <t> and

C=0+4t)A+(1—t)Band D= (1—-t)A+ (1+1)B.

Then C and D define a DC(2n,4k).

Proof. Note the coefficients of C' and D are 0,4+1. Now
cCtY =201 +1)AATY 421 —)BBEY and DDV = 2(1 — 1) AATY 4+ 2(1 + ) BBV,

Hence CCY + DD = 4(AACY + BB(-D) = 4k, as desired. O

3.1 Applications

We now apply theorem 8 to construct three new double circulant weighing matrices DC(74,144),
DC(76,144), DC(78,144). We note that the existence of the corresponding W (148, 144),
W (152, 144) was previously open, see Craigen’s table [4]. We also note that there exist sym-
metric and skew-symmetric W (156, 144). We are also grateful to R. Craigen for pointing out
that W (156, 144) can be constructed by the method of weaving. However the existence of a
DC(78,144), hence a W (156, 144) constructed from two circulants, was open.

Proposition 1 There exists a

1. DC(37,36) hence a DC(74,144) and hence a W (148,144);

) (
C(38,36) hence a DC(76,144) and hence a W (152, 144);
C(39,36) hence a DC(78,144) and hence a W (156,144);
) (
) (

D
D
DC(19,18) hence a DC(38,72) and hence a W(76,72);
D

A N

C(31,18) hence a DC(62,72) and hence a W (124,72).



Proof.

1. Consider the following DC(37,36) taken from [7]:

++--0-0-++0+00++0+0+00-+0+000-0+00000
0000-0+000+0--00-0-0+-00+0++-0-0++-+0

A
B

Since A and B have disjoint supports, C and D as defined in theorem 8 define a
D(C(74,144). Now we apply theorem 7 to this double-circulant pair (C, D), thereby
obtaining a weighing matrix of order 148 and weight 144 from two-circulants.

2. Consider the following DC(38,36) with disjoint support, computed via string sorting

(6]
A=0000000O0O0OO00O0OOO0CO0-0+0--"+-+--0-+++++-0+0 -
B=+-4+4---+0--+----0+0+000000000000000-0-0

Since A and B have disjoint supports, C' and D as defined in Theorem 8 define a
D(C(76,144). Now we apply theorem 7 to this double-circulant pair (C, D), thereby
obtaining a weighing matrix of order 152 and weight 144 from two-circulants.

3. Consider the following DC(39,36) with disjoint support, computed via string sorting

[6]
A=00000000O00000OO0--+-4+----40++00+0-0+0-0++
B=--0+++--+--+-00000000000000+-0-0-0-0-00

Since A and B have disjoint supports, C' and D as defined in Theorem 8 define a
DC(78,144). Now we apply theorem 7 to this double-circulant pair (C, D), thereby
obtaining a weighing matrix of order 156 and weight 144 from two-circulants.

Remark. We also note that there exist known but unpublished W (156, 144).

4. Consider the following DC(19, 18) taken from [7]:
A= + + -

00-000
B=00-000---

If we reverse the second sequence we see that the resulting sequences have disjoint
supports. The corresponding polynomials are:

Alz) =210 — 218 4 216 4 215 4 p10 09 4 08 10T 43

B(x):—x17—x13—x12—$11+x6—x5+x4—x2+x.

Following the construction of Theorem 8, we define C' = (14+z'%)A(2?)+ (1 —2'9)B(2?),
D = (1—2'9)A(2?) + (14 2') B(2?) where we reduce modulo 2-19 the exponents of the
polynomials C, D. Therefore, according to Theorem 8, C, D define a DC(38,72), i.e.
a2 — CW(76,72) constructed from two circulants. In order to provide an independent
verification of this result, we give explicitly the first rows of C, D (note that they have
identical supports)



O++ -+ -+ ++-++++++--+0--+---—+++-—++-+- -+
0+----- + - - —+ -+ -+t - -0+ - - -+ -+t -+t - - - -+ 4
5. Consider the following DC(31,18)
A=0000000-0-00000-0++0000+000-0--
B=0--+0000-000-+4+00000-0000-+00000

and use it as in 4. to obtain a DC(62,36) and hence a 2 — CW (124, 72)

Note that the first rows of the circulant matrices C' and D have identical supports. O

Remark. We note that circulant and double circulant weighing matrices have structure that
is amenable to Signal Processing [11] for wireless communications.
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