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A New Approach to Sparse Image

Representation Using MMV and K-SVD

Jie Yang, Abdesselam Bouzerdoum, and Son Lam Phung

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong, Wollongong, NSW 2522, Australia

Abstract. This paper addresses the problem of image representation
based on a sparse decomposition over a learned dictionary. We propose
an improved matching pursuit algorithm for Multiple Measurement Vec-
tors (MMV) and an adaptive algorithm for dictionary learning based on
multi-Singular Value Decomposition (SVD), and combine them for im-
age representation. Compared with the traditional K-SVD and orthogo-
nal matching pursuit MMV (OMPMMV) methods, the proposed method
runs faster and achieves a higher overall reconstruction accuracy.

1 Introduction

Signal representation is important for efficient signal processing, data compres-
sion, pattern recognition and machine learning. The problem of how to select a
set of basis vectors for efficient representation of signals in a given dataset has
been extensively investigated in the past [1, 2]. This problem can be described
mathematically as follows: given an original signal y in an n-dimensional space
and a set of basis vectors, find, within a preset tolerance, a compact represen-
tation of y using the subspace spanned by the basis vectors. The development
of pursuit algorithms such as orthogonal matching pursuit [5] from compressed
sensing [3,4], with the capability to find a sparse representation, has offered new
approaches for tackling the aforementioned problem. Using an over-complete
dictionary D consisting of k basis vectors or atoms, the original signal can be
decomposed by solving the following system of linear equations:

y = Dx (1)

In the past, the K-SVD approach has been proposed for dictionary-based learn-
ing for a sparse representation [6, 7, 8]. However, this approach has a number of
problems in dealing with high-dimensional signals. First, K-SVD depends heav-
ily on a pursuit algorithm to calculate the sparse coefficients. Second, it updates
the dictionary atom-by-atom during each iteration. Furthermore, the K-SVD re-
quires large storage because the computed non-zero coefficients reside in different
locations.

To overcome the K-SVD disadvantages, we propose a new approach to signal
representation that is based on the concept of Multiple Measurement Vectors
(MMV) [9], [10]. MMV aims to find a solution where most nonzero elements
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are clustered in a few rows. The proposed method requires significantly less
storage compared to K-SVD. Furthermore, it allows the simultaneous update
of several atoms, which leads to faster convergence and better reconstruction
accuracy. Here, the new method is applied to a simulated data and the problem
of image representation and its performance is assessed in terms of reconstruction
accuracy and convergence speed.

The paper is organized as follows. Section 2 provides background information
on compressed sensing and K-SVD algorithm. Section 3 presents the proposed
approach based on Multiple Measurement Vectors. Section 4 gives an analysis
of the proposed approach in an image representation task. Section 5 presents
concluding remarks.

2 Background

This section reviews the basic concepts of compressed sensing and discusses two
existing algorithms, namely orthogonal matching pursuit(OMP) and K-SVD.

2.1 Compressed Sensing

Compressed sensing (CS) aims to find a sparse solution to the problem in (1),
where most of the elements of the solution vector x are zero [3, 4]. Compressed
sensing algorithms can be divided into two broad categories: (i) Single Measure-
ment Vector (SMV) [5], [11] where the solution is a vector; and (ii) Multiple
Measurement Vectors (MMV) [9], [10] where the solution is a two-dimensional
array, or matrix.

In SMV, the problem can be formulated as:

minimize ‖x‖0 , subject to y = Dx (2)

where y ∈ R
n is an observable (measurement) vector, D ∈ R

n×k is a known
dictionary containing k basis vectors or atoms, and ‖x‖0 denotes the number
of nonzero elements in x. This problem can be solved by several approaches,
including greedy algorithms such as Orthogonal Matching Pursuit [5], and non-
convex local optimization such as FOCUSS algorithm [11].

On the other hand, the aim in MMV is to

minimize ‖X‖0 , subject to Y = DX (3)

where Y ∈ R
n×m is a matrix comprising multiple measurement vectors, X is the

solution matrix (X ∈ R
k×m), and ‖X‖0 denotes the number of non-empty rows

in X . A non-empty row has at least one non-zero entry. The OMP technique
and its variants developed for SMV have been extended to tackle MMV [9].

In this paper, we focus on the Orthogonal Matching Pursuit for MMV algo-
rithm (OMPMMV) proposed in [10]. The steps of this iterative algorithm are
summarized in Table 1. In this algorithm, St denotes the set of selected atoms
after the t-th iteration, and Rt represents the residual error, obtained by using
St for signal reconstruction.
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Table 1. OMPMMV algorithm [10]

1. Initialize S0 = ∅ (empty set) and R0 = Y .
2. Repeat steps 3 to 6 until convergence.
3. Compute A = DT Rt−1.
4. Select from D the column (or atom) dt

i, which
corresponds to the row Ai with the largest magnitude in A.

5. Update the set of selected atoms: St = St−1

⋃
dt

i.
6. Update the residual Rt = Y − StXt,

where Xt = [ST
t St]

−1ST
t Y .

2.2 K-SVD Method

Consider an n×m matrix Y , comprising m measurement vectors, and a known
fixed dictionary D ∈ R

n×k. The problem of finding a compact signal represen-
tation can be expressed as

minimize Sm (X) , subject to Y = DX (4)

where Sm (X) is a sparsity measure of X . In [6, 7, 8], S (X) is defined in terms
of the l0-norm for columns xi of X . In K-SVD method, each column yi of Y
is extracted and the traditional SMV method is applied on the pair (yi, D) to
obtain a solution in the form of

x̂i = argmin
xi

||xi||0, subject to yi = Dxi (5)

Note that K-SVD assumes that the dictionary D is unknown so it calculates D
as well. Hence, the optimization problem in (5) becomes

(
D̂, X̂

)
= argmin

D,X
{Sm(X) + ‖Y − DX‖2

F }, (6)

where ‖.‖2
F denotes the Frobenius norm.

The main advantage of K-SVD is that it not only finds a sparse solution for
each column of X , but also updates simultaneously the dictionary D via SVD.
The reader is referred to [6, 7, 8] for a wide range of applications of K-SVD.

3 MMV-Based Signal Representation

To describe the proposed MMV-based approach to signal representation, we first
give some definitions:

Definition 1. Given a matrix X , its sparse I rank S1(X) is the largest number
of non-zero entries in any column of X .

Definition 2. Given a matrix X , its sparse II rank S2(X) is the number of
non-empty rows in X . A non-empty row must have at least one non-zero entry.
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It is clear that the K-SVD method uses sparse I rank as its optimization criterion.
In this paper, we propose a new approach to address the problem in (6), using
the sparse II rank S2(X). The problem is now formulated as

(
D̂, X̂

)
= argmin

D,X
{S2(X) + ‖Y − DX‖2

F } (7)

The K-SVD method treats the columns of Y independently. By contrast, our
approach considers all columns simultaneously; therefore, it is able to update
multiple columns in the dictionary at each iteration. To solve the MMV prob-
lem, we propose a new MMV pursuit algorithm, called Enhanced Orthogonal
Matching Pursuit or EOMP. This algorithm improves upon the the traditional
OMPMMV shown in Table 1 in two ways: (i) it selects more than one atom at
each iteration; (ii) it keeps a compact solution by discarding irrelevant atoms.
The steps of the EOMP algorithm are summarized in Table 2 below.

Table 2. Enhanced Orthogonal Matching Pursuit Algorithm

Input
matrix Y ∈ R

n×m,
matrix D ∈ R

n×k,
maximum number of selected atoms Kmax,
thresholds λ and γ.

Ouput

matrix X ∈ R
k×m

Procedure
1. Initialization

residual error: R0 = Y ,
set of selected atoms: S = ∅.

2. Subset Selection

Find atom di in D so that ‖ci‖q ≥ λ
k

sup
j=1,j �=i

‖cj‖q, where ci = (Rt−1)
T di and q > 1.

Add selected atoms to S : S = S
⋃

di.
3. Atom Extraction

3.1 Discard di if its coherence satisfies |〈di,dk〉| ≤ γ, for all dk ∈ S , where i 	= k.
3.2 If |S| > Kmax, delete (|S| − Kmax) atoms with the lowest scores ‖ci‖q .

4. Solution Update

Find X that minimizes ‖SX − Y ‖2
F .

Update the residual error Rt = Y − SX.
5. Stopping Criterion

If the number of columns in S is equal to Kmax, stop.
Otherwise, go to Step 2.

Remark 1. The thresholds λ and γ control the size of S for the orthogonal projec-
tion, and they play an important role in EOMP. Our method does not recycle the
same atoms like OMPMMV does. A larger λ means more atoms will be selected
at each iteration. When λ = 1, EOMP behaves like the traditional OMPMMV.
Furthermore, EOMP eliminates similar atoms; the threshold γ determines how
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many atoms should be discarded. In contrast, OMPMMV keeps all the atoms
found, even if they are highly correlated; this tends to slow down convergence
of OMPMMV. In this paper, we use λ = 0.8 and γ = 0.45.

Remark 2. Suppose that at the t-th iteration, EOMP selects m1 atoms, but
only m2 of them are kept for the update Step, where m1 ≥ m2. The complexity
of EOMP is

O(kp1 + m1(m1 − 1)/2 + m2p2) (8)

where p1 is the cost of multiplying Rt−1 and an atom, and p2 is the cost of Solu-
tion Update step. The three terms in (8) correspond to the three steps of Subset
Selection, Atoms Extraction, and Solution Update. Subset Selection step involves
k atoms in D. Atoms Extraction step needs to compare m1 selected atoms. So-
lution Update step requires solving a linear equation with m2 coefficients. By
comparison, OMPMMV has, at the t-th iteration, a complexity of O(kp1+m2p2).
However, OMPMMV needs m2 iterations to find m2 atoms whereas EOMP may
require only one or two iterations to locate the possible candidates.

Remark 3. For comparison purposes, we select the parameters of EOMP so
that it uses the same amount of storage as the K-SVD method. The maximum
number of selected atoms Kmax can then be calculated as

Kmax =
⌊

c × a × Ns + b × a × Ns

c × Ns + b

⌋

(9)

where c is number of bits required to store a coefficient, a is the maximum
number of selected atoms in K-SVD, Ns is the number of columns in the target
image, and b is the number of bits required to store a coefficient index.

Generally the nonzero elements in the solution obtained by EOMP are clustered
in a few rows; therefore, we can update more than one atom in D at each
iteration. To aid the explanation, we next define an operator called svds. By the
singular value decomposition, a matrix A ∈ R

m×n can be written as

A = UΣV T (10)

where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices. Given a positive
integer k, we define the svds operator as

svds(A, k) = {Uk, Σk, V T
k } (11)

where Uk is the first k columns in U , Σk is a diagonal matrix of size k × k, and
V T

k is the first k columns in V T .
The EOMP strategy for updating the dictionary D and the coefficients matrix

is shown in Table 3.
Next we propose an improved K-SVD algorithm that combines the Enhanced

OMP, presented in Table 2, and the Dictionary Update Strategy, presented in
Table 3. This algorithm, called IK-SVD, is shown in Table 4.
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Table 3. Dictionary Update Strategy

At iteration t, perform Steps 1 to 4:
1. Select N atoms from Dt−1 that correspond to non-empty rows {Xt−1

s } in Xt−1:
Dt−1

s = {dt−1
i ∈ Dt−1 | column xt−1

i 	= 0}.
where N is a predefined integer and xt−1

i is the i-th row in Xt−1.
2. Calculate the error due to Dt−1

s :
Et−1

s = Y − ∑

dt−1
i ∈Dt−1

s

dt−1
i xt−1

i .

3. Apply the svds operator to Et−1
s to compute Xt

s and Dt
s:

{UN , ΣN , V T
N } = svds(Et−1

s , N), and Dt
s = UN , Xt

s = ΣV T
N .

4. Repeat Steps 1 to 3 until all non-empty rows in Xt−1 have been processed.

Table 4. Improved K-SVD algorithm for signal representation (IK-SVD)

Input:
matrix Y in R

n×m,
maximum number of selected atoms Kmax,
thresholds λ and γ, and
maximum number of iterations Tmax.

Output:
coefficient matrix X of size k × m,
dictionary D of size n × k.

Procedure:
1. Initialize a random dictionary D0 and coefficient matrix Xa.
2. Repeat Steps 3 and 5 for t = 1, 2, ..., Tmax.
3. Apply EOMP algorithm (Table 2) on {Y, Dt−1} to obtain Xb.
4. Set Xt−1 = Xa or Xt−1 = Xb, to give the smallest reconstruction error:

‖Y − Dt−1Xt−1‖
5. Apply Dictionary Update Strategy (Table 3)

on {Y, Dt−1, Xt−1} to obtain Dt and Xa.

Remark 4. The main difference between the proposed IK-SVD algorithm and
the traditional K-SVD algorithm is that a more optimal coefficient matrix is
selected from the two outputs produced by the EOMP step (Step 3) and the
Dictionary Update step (Step 5). This leads to better convergence for the
IK-SVD.

4 Experiments and Analysis

In this section, we analyze the performance of the proposed algorithm, and
compare it with the traditional K-SVD algorithm. First, we test the convergence
of the proposed method using a simulated data set. Second, we evaluate the
proposed algorithm and the K-SVD on an image representation task. To measure



206 J. Yang, A. Bouzerdoum, and S.L. Phung

the error between the original signal and the reconstructed signal, we use the
Peak Signal-to-Noise Ratio (PSNR):

PSNR = 20 log10(255/RMSE), (12)

where RMSE denotes the root-mean-square error between columns of Y and Y ∗.

4.1 Convergence Analysis

A signal Y is created in the range of [−1, 1]. It has a dimension of 50. White
Gaussian noise is added; the signal-to-noise ratio (SNR) has values of 10dB,
20dB, and 30dB. The dictionary D has initially 50 atoms, each of which is
normalized to a unit l2-norm. The total number of training iterations is set
to 30.

In this experiment, we examine the effects of three factors on the K-SVD and
the proposed method: (i) the number of selected atoms Kmax, (ii) the size of
dictionary k, and (iii) the number of samples m in Y . We vary one factor while
keeping the rest the same. For the K-SVD, we apply OMP algorithm to find the
sparse coefficients in each column of the solution X . The number of coefficients
ranges from 8 to 12. For the proposed IK-SVD, we use λ = 0.8 and γ = 0.45.

Table 5. Comparison of K-SVD and IK-SVD on simulated signals with white Gaussian
noise

(Kmax, k, m) Execution Time (s) PSNR (db)
(8, 50,1000) SNR=10 SNR=20 SNR=30 SNR=10 SNR=20 SNR=30

K-SVD 46.54 46.70 47.80 66.68 69.25 70.66

IK-SVD (proposed) 10.52 10.72 10.98 68.78 71.90 72.28

(12, 50,1000) SNR=10 SNR=20 SNR=30 SNR=10 SNR=20 SNR=30

K-SVD 85.96 86.48 89.09 64.11 65.47 65.74

IK-SVD (proposed) 12.35 12.24 13.11 67.16 69.60 70.36

(12, 70,1000) SNR=10 SNR=20 SNR=30 SNR=10 SNR=20 SNR=30

K-SVD 92.42 92.46 92.46 64.17 65.27 65.56

IK-SVD (proposed) 15.71 16.89 17.37 64.92 65.96 66.88

(12, 70,2000) SNR=10 SNR=20 SNR=30 SNR=10 SNR=20 SNR=30

K-SVD 174.52 174.64 174.76 63.69 64.91 65.25

IK-SVD (proposed) 28.03 28.43 28.79 65.18 66.36 66.91

Table 5 shows the execution time and the reconstruction error for both K-
SVD and IK-SVD methods, at different noise levels. In terms of execution time,
IK-SVD method runs between 3.6 and 6.9 times faster than the K-SVD. The
improvement is most significant when the number of selected atoms (Kmax)and
the number of signal samples (m) are high. An explanation for this result is
that, at each iteration, the proposed method can update multiple atoms in D.
In addition, the IK-SVD takes less time to find an S2(X) solution compared to
the traditional OMP method used in K-SVD. In terms of reconstruction error,
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Fig. 1. Comparison of K-SVD, OMPMMV, and IK-SVD in image representation task:
PSNR of reconstructed images

the IK-SVD method has higher PSNRs compared to the K-SVD in all cases. In
summary, incorporation of MMV into K-SVD method improves significantly the
performance of signal representation.

4.2 Application to Imaging Representation

In this experiment, we apply the IK-SVD algorithm on two images: Barbara and
Lena. The size of these images is 512×512 pixels. First, each image is partitioned
into non-overlapping blocks of size M × N pixels, where M = N = 8. A matrix
Y is formed for training, by randomly selecting among these blocks; each block
forms one column in Y . We apply both the K-SVD and IK-SVD methods on Y
to extract two dictionaries. The dictionary size is set to 8 × M × N . We also
implement the OMPMMV method for comparison.

For K-SVD, we set the maximum number of atoms (Kmax) in the range from
7 to 20. For IK-SVD and OMPMMV, the maximum number of atoms (Kmax)
is adaptively computed as in (9), so that the same amount of storage is used by
EOMP and K-SVD. We run the test 20 times. The PSNR and execution time
are shown in Fig. 1 and Fig. 2, respectively.

Fig. 1 and Fig. 2 show that even OMPMMV is better than that of K-SVD.
The only difference between them is that OMPMMV uses S2(X), whereas K-
SVD uses S1(X). This demonstrates the advantage of the MMV-based scheme.
Compared to the proposed algorithm IK-SVD, OMPMMV algorithm needs more
computation time to converge. This is because IK-SVD can select several atoms
from D at each step. Also, the result shows that when the maximum number of
atoms Kmax increases, the accuracy of all algorithms is enhanced. However, the
IK-SVD method has a lower reconstruction error than the K-SVD and OMP-
MMV. When Kmax increases from 10 to 20, K-SVD execution time increases
sharply, whereas IK-SVD appears more stable and robust.
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Fig. 2. Comparison of K-SVD, OMPMMV, and IK-SVD in image representation task:
Execution time

5 Conclusion

This paper addresses the problem of sparse decomposition for signal representa-
tion. To date, K-SVD is the state-of-the-art method for solving this problem. We
have proposed here a new method that is based on Multiple Measurement Vec-
tors (MMV), which offer a better trade-off between computational accuracy and
storage requirement. The proposed method uses an enhanced MMV pursuit al-
gorithm (EOMP) to find a minimal-S2(X) solution and the multi-singular value
decomposition to accelerate processing. Experimental results indicated that the
new method runs 3.6 to 6.9 times faster, and has lower reconstruction error,
compared to the existing K-SVD algorithm.
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