Classification of the Deletion Correcting Capabilities of Reed-Solomon Codes of Dimension Over Prime Fields

L. McAven
University of Wollongong, lukemc@uow.edu.au
R. Safavi-Naini
University of Wollongong, rei@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

McAven, L. and Safavi-Naini, R.: Classification of the Deletion Correcting Capabilities of Reed-Solomon Codes of Dimension Over Prime Fields 2007.
https://ro.uow.edu.au/infopapers/717

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Classification of the Deletion Correcting Capabilities of Reed-Solomon Codes of Dimension Over Prime Fields

Abstract

Deletion correction codes have been used for transmission synchronization and, more recently, tracing pirated media. A generalized Reed-Solomon (GRS) code, denoted by GRSk(l,q,alpha,v), is a code of length I over GF(q) with qk codewords. These codes have an efficient decoding algorithm and have been widely used for error correction and detection. It was recently demonstrated that GRS codes are also capable of correcting deletions. We consider a subclass of GRS codes with dimension $\mathrm{k}=2$ and q prime, and study them with respect to deletion correcting capability. We give transformations that either preserve the code or maintain its deletion correction capability. We use this to define equivalent codes; and then use exhaustive and selective computer searches to find inequivalent codes with the highest deletion correcting capabilities. We show that, for the class under consideration, up to l-3 deletions may be corrected. We also show that for lles36 there exist codes with q2 codewords such that receiving only 3 out of t transmitted symbols of a codeword is enough to recover the codeword, thus meeting the bound specified above. We also specify some "nice" codes which are associated with the smallest field possible for codes of a given length and deletion correcting capability. Some of the identified codes are unique, with respect to the defined equivalence.

Keywords

Codes, deletion correction, Reed-Solomon.

Disciplines

Physical Sciences and Mathematics

Publication Details

This article was originally published as McAven, L \& Safavi-Naini, R, Classification of the Deletion Correcting Capabilities of Reed-Solomon Codes of Dimension Over Prime Fields, IEEE Transactions on Information Theory, 53(6), 2007, 2280-2294. Copyright Institute of Electronics and Electrical Engineers 2007. Original article available here

As a consequence of Lemma 2 and Lemma 3 we have the following.
Corollary 1: G has a vertex cover of size t if and only if $G^{\prime \prime}$ has a stopping set of size $t(m+1)+m, 1 \leq t \leq n-1$. Hence $(G, t) \in \operatorname{VERTEX} \operatorname{COVER}(=)$ if and only if $\left(G^{\prime \prime}, t(m+1)+m\right) \in$ STOPPING DISTANCE.

Corollary 2: G has a vertex cover of size at most t if and only if $G^{\prime \prime}$ has a stopping set of size at $\operatorname{most} t(m+1)+m, t \in\{1,2, \ldots, n-1\}$. Hence $(G, t) \in$ VERTEX COVER if and only if $\left(G^{\prime \prime}, t(m+1)+m\right) \in$ STOPPING DISTANCE.

We are now ready to prove.
Theorem 1: STOPPING DISTANCE and STOPPING SET are NP-complete

Proof: Since $G^{\prime \prime}$ can be constructed from G in polynomial time ($O(m n)$ time suffices), it follows that VERTEX COVER $(=) \preceq_{p}$ STOPPING SET and VERTEX COVER \preceq_{p} STOPPING DISTANCE from Corollary 1 and Corollary 2 respectively. It is easy to verify whether a given set of left vertices of a bipartite graph forms a stopping set in time linear in the size of the graph. Hence both STOPPING DISTANCE and STOPPING SET belong to the class NP.

As a consequence, we have the following corollary.
Corollary 3: There is no polynomial time algorithm for computing the stopping distance of a Tanner graph unless $\mathrm{P}=\mathrm{NP}$.

AcKnowledgment

The authors would like to thank Dr. L. Sunil Chandran for useful discussions, and the anonymous referees for their helpful comments. K. Murali Krishnan acknowledges sponsorship for the Ph.D. degree from the National Institute of Technology, Calicut under the QIP scheme.

References

[1] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, "Finite length analysis of low-density parity-check codes on the binary erasure channel," IEEE Trans. Inf. Theory., vol. 48, pp. 1570-1579, Jun. 2002.
[2] C. Di, A. Montanari, and R. Urbanke, "Weight distribution of LDPC code ensembles: Combinatorics meets statistical physics," in Proc. IEEE Int. Symp. Inf. Theory, Chicago, IL, Jul. 2004, p. 102.
[3] A. Orlitsky, K. Viswanathan, and J. Zhang, "Stopping set distribution of LDPC code ensembles," IEEE Trans. Inf. Theory, vol. 51, pp. 929-953, Mar. 2005.
[4] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, "Construction of irregular LDPC codes with low error floors," in Proc. IEEE Int. Conf. Commun., Seattle, WA, May 2003, pp. 3125-3129.
[5] A. Ramamoorthy and R. Wesel, "Construction of short block length irregular LDPC codes," in Proc. IEEE Int. Conf. Commun., Paris, France, Jun. 2004, pp. 410-414.
[6] A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, "Stopping sets and girth of Tanner graphs," in Proc. IEEE Int. Symp. Inf. Theory, Lausanne, Jun. 2002, p. 2.
[7] M. Schwartz and A. Vardy, "On the stopping distance and the stopping redundancy of codes," IEEE Trans. Inf. Theory, vol. 52, pp. 922-932, Mar. 2006.
[8] R. M. Tanner, "A recursive approach to low-complexity codes," IEEE Trans. Inf. Theory, vol. 27, pp. 533-547, Sep. 1981.
[9] T. H. Cormen, C. E. Leicerson, and R. L. Rivest, Introduction to Algorithms. Cambridge, MA: MIT Press, 1990.
[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman, 1979.
[11] S. Cook, "The complexity of theorem proving procedures," in Proc. Third ACM Ann. Symp. Theory Comput., Shaker Heights, OH, May 1971, pp. 151-158.
[12] H. Pishro-Nik and F. Fekri, "On decoding of low-density parity-check codes over the binary erasure channel," IEEE Trans. Inf. Theory, vol. 50, pp. 439-454, Mar. 2004.
[13] J. Han and P. Siegel, Improved Upper Bounds on Stopping Redundancy [Online]. Available: http://www.arXiv.org, cs.IT/0511056, to be published
[14] A. Vardy, "The intractability of computing the minimum distance of a code," IEEE Trans. Inf. Theory, vol. 46, pp. 1757-1766, Nov. 1997.
[15] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, "On the inherent intractability of certain coding problems," IEEE Trans. Inf. Theory, vol. IT-24, pp. 384-386, May 1978.

Classification of the Deletion Correcting Capabilities of Reed-Solomon Codes of Dimension 2 Over Prime Fields

Luke McAven and Reihaneh Safavi-Naini, Member, IEEE

Abstract

Deletion correction codes have been used for transmission synchronization and, more recently, tracing pirated media. A Generalized Reed-Solomon (GRS) code, denoted by $G R S_{k}(\ell, q, \boldsymbol{\alpha}, \mathbf{v})$, is a code of length ℓ over $G F(q)$ with q^{k} codewords. These codes have an efficient decoding algorithm and have been widely used for error correction and detection. It was recently demonstrated that GRS codes are also capable of correcting deletions. We consider a subclass of GRS codes with dimension $k=2$ and q prime, and study them with respect to deletion correcting capability. We give transformations that either preserve the code or maintain its deletion correction capability. We use this to define equivalent codes; and then use exhaustive and selective computer searches to find inequivalent codes with the highest deletion correcting capabilities. We show that, for the class under consideration, up to $\ell-3$ deletions may be corrected. We also show that for $\ell \leq 36$ there exist codes with q^{2} codewords such that receiving only 3 out of ℓ transmitted symbols of a codeword is enough to recover the codeword, thus meeting the bound specified above. We also specify some "nice" codes which are associated with the smallest field possible for codes of a given length and deletion correcting capability. Some of the identified codes are unique, with respect to the defined equivalence.

Index Terms-Codes, deletion correction, Reed-Solomon.

I. INTRODUCTION

Error-correcting codes are widely used to correct substitution and erasure errors. A different, less studied, class of codes are the deletion correcting (DC) codes, introduced by Levenshtein [6] to correct synchronisation errors. The applications of DC codes include packet loss in Internet transmission [13] and, more recently, tracing pirate media [11]. Various studies of DC codes have been made [1], [2], [5]-[8], [12]-[14], [17]. These studies generally consider a small number of deletions, or a specific class of combinatorial based codes, or bounds of various sorts. Perfect deletion correcting codes are codes for which every possible word of some length over the associated alphabet is a subword of exactly one codeword. It is known that perfect codes exist. For example, there are many length 6 codes (over different alphabets) capable of correcting four deletions [12]. In that case any word of length 2 is a subword of exactly one codeword.

[^0]Sloane [13] surveys single deletion correcting codes. He primarily focuses on binary codes and discusses difficulties of constructing and analysing deletion correcting codes. Sloane reports on exhaustive searches to find the largest single deletion correcting binary codes of a given length, which showed that the Varshamov-Tenengolts codes [15] are of optimal size for length up to 9. Lenveshtein [6] had shown that these codes are capable of correcting one deletion.

It was recently observed [11] that Generalized Reed-Solomon (GRS) codes, extensively studied for their error correction capability, are also capable of deletion correction. A subsequent study [16] detailed a method for obtaining length 5 codes capable of correcting one deletion. That work also gave the results of numerical experiments to investigate the deletion correction capabilities of GRS codes.

An important advantage of using GRS codes, initially noted in [11], is the existence of an efficient deletion correcting algorithm. The decoding algorithm for GRS codes can be formulated as a polynomial reconstruction problem, to which the efficient list decoding algorithm of Guruswami and Sudan [3] applies.
$\mathrm{A} \operatorname{GRS}_{k}(\ell, q, \alpha, \mathbf{v})$ code is specified by the parameters $\boldsymbol{\alpha}, \mathbf{v}, k, \ell$ and q. We call $\boldsymbol{\alpha}$ and \mathbf{v} the selector and multiplier, respectively. GRS codes for which $\mathbf{v}=\mathbf{1}$ is a vector of all ones, are the widely studied Reed-Solomon (RS) codes [10]. We focus on RS codes that are defined over a prime field $\mathrm{GF}(q)$ that have dimension $k=2$ and so $q^{k}=q^{2}$ codewords. The choice of unit multiplier codes is because our previous computer searches [16], both exhaustive and selective, suggest that these codes appear likely to correct more deletions then nonunit multiplier codes. We also believe RS codes merit special attention because of their importance and wide application. Restricting ourselves to codes with dimension $k=2$ allows us to exploit the linear relationship between codewords to analyze them.

We first prove an upper bound on the deletion correcting capability of the codes in this class. A follow-on question is; "When can the bound be achieved with equality?", which translates into; "What is the smallest field for which there exists a code that achieves the bound?" We use structured computer searches to obtain insight into the above questions and provide interesting results. We use properties of code classes to aid the search, hence being able to obtain insight into the above questions and produce results for larger (and so more interesting) fields. We also find codes that are the 'best', in ways that we will define.

In our computer searches we restrict our attention to finite fields of prime order to simplify our search and classification. Classification of codes over non-prime fields introduces other factors, such as the choice of primitive polynomial, that complicate the task of obtaining experimental results (some experimental results for fields of prime power size are given in [16]). The theoretical results in this correspondence, or slightly modified versions of them, are applicable to nonprime fields. In particular, we show the bound on deletion capacity is for dimension $k=2$ RS codes, over prime and nonprime fields.

For RS codes, we show that distinct α can result in the same code (the same set of codewords). Indeed, an affine transformation applied to the vector α results in α^{\prime}, which generates the same code in this sense. This allows us to associate each unit multiplier code with a code having a selector of the form ($01 \alpha_{3} \ldots \alpha_{\ell}$), and hence reduce exhaustive searches of $k=2$ unit multiplier codes to a small proportion $\left(1 /\left(q^{2}-\right.\right.$ q)) of all codes in the class.

We define equivalent codes as codes that are obtained through applying a deletion correcting distance preserving transformation, preserving at the level of codeword to codeword with a map across the entire codebook.

We define equivalent codes as codes related through the application of a distance preserving (deletion correcting distance) transformation. We refer to such a transformation as a isomorphism in Section II-B, and note that the codes have the same deletion correcting capability. We
seek transformations on selectors that result in equivalent codes. Unlike error correcting codes, for which column permutations leave the codes invariant from a distance distribution view point, a general column permutation changes the deletion correcting capability of codes. We show, however, that there is a nontrivial permutation for which the deletion correcting capability will remain the same.

We enumerate inequivalent RS codes (over prime field) parameterized by q, ℓ and r, where r is the number of deletions that a code can correct. We prove that $r=\ell-3$ is an upper bound on the deletion correcting capability, that is $r \leq \ell-3$. We have identified examples of codes with $r=\ell-3$ for $\ell \leq 36$. For $\ell \leq 8$ we have identified, and proven by exhaustive search, the smallest q for which such codes exist. When the number of such inequivalent codes is known and is small, we have listed the complete set in Appendix. In some cases there are very few codes with these parameters. For example, there is only one code for $q=23, \ell=6$ and $r=3$, and there is no code with $\ell=6$, $r=3$ for any $q<23$. We give explicit examples of such codes with complete codebooks.

The rest of the correspondence is structured as follows. In Section II we introduce the basics of deletion correcting codes, GRS codes and RS codes. We define the notion of equivalence of codes in this context.

In Section III, we define and discuss the affine and reversal transformations. In Section IV, we give bounds on the deletion correcting capability and enumerate the distinct codes with the same deletion correcting capabilities. Finally, Section V contains a summary of, and discussion on, our results. An Appendix contains lists of small sets of inequivalent codes for particular prime RS codes parameterized by (q, ℓ, r).

II. Preliminaries

A. Deletion Correcting

Let a and b be strings over a q-ary alphabet A. We denote the length of a, that is the number of elements (letters) in it, by $|a|$. We say a string a is a subword of b if a can be obtained from b by only removing elements of b. For example, 2234 is a subword of 142254364 , while 452 is not (since reordering is required).

A q-ary code is a collection of q-ary words. A linear code of dimension k is a subspace of dimension k of $\mathrm{GF}(q)$.

A code can correct r deletions if any string of length $\ell-r$ is a subword of at most one codeword. We say such a code has a deletion correcting capacity of r. For a particular code Γ we use the notation $r(\Gamma)$ to denote the deletion correcting capability.

To find the deletion correcting capability of a code we need to find the length of the longest common subwords of any pair of codewords, across all pairs of codewords in the code. Let u and v be two codewords of a code Γ and let $\rho(u, v)$ denote a longest common subword of u and v, of length $|\rho(u, v)|$. There may be many common subwords with this same length. We define $\mathcal{R}(\Gamma)=\max _{u, v \in \Gamma, u \neq v}|\rho(u, v)|$ and let $s=\mathcal{R}(\Gamma)+1$. Then s is the unique subword length, that is; the length of the shortest subword that uniquely identifies a codeword. It follows that Γ is an r-deletion correcting code, where $r=(\ell-s)$.

B. Reed-Solomon (GRS) Codes

Let F_{q}, q prime, be a field of q elements. Let k be an integer and

$$
F_{q}[x]_{k}=\left\{f(x): f(x) \text { is a polynomial over } F_{q}: \operatorname{deg}(f)<k\right\} .
$$

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell} \in F_{q}, \ell \leq q$ be distinct. Let $v_{1}, v_{2}, \ldots, v_{\ell} \in F_{q}$ be non-zero. Write $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{\ell}\right)$. A k-dimensional prime Generalized Reed-Solomon (GRS) code of length ℓ is the set of all vectors

$$
\left(v_{1} f\left(\alpha_{1}\right), v_{2} f\left(\alpha_{2}\right), \ldots, v_{\ell} f\left(\alpha_{\ell}\right)\right), \quad \forall f \in F_{q}[x]_{k}
$$

This code is denoted by $\operatorname{GRS}_{k}(\ell, q, \boldsymbol{\alpha}, \mathbf{v})$. We refer to α as the selector and \mathbf{v} as the multiplier. We note that $\operatorname{GRS}_{k}(\ell, q, \alpha, \mathbf{v})$ has q^{k} codewords. We say a particular vector, or codeword, in the code/set is associated with the polynomial $f(x)$ used to generate it.

We identify two particular sets of GRS codes (over prime field).
Definition 1 (GRS Classes): For fixed ℓ, q, k, let $G(\ell, q, k)$ be the collection of codes obtained by taking all $\operatorname{GRS}_{k}(\ell, q, \alpha, \mathbf{v})$ codes with all possible α and \mathbf{v}.

For a particular code in $G(\ell, q, k)$, say $\operatorname{GRS}_{k}(\ell, q, \alpha, \mathbf{v})$, we define $s(\ell, q, k, \boldsymbol{\alpha}, \mathbf{v})=\mathcal{R}+1$, where \mathcal{R} was defined in the previous section. We then define

$$
\begin{equation*}
\sigma(\ell, q, k)=\min _{\boldsymbol{\alpha}} \min _{\mathbf{v}} s(\ell, q, k, \boldsymbol{\alpha}, \mathbf{v}) \tag{1}
\end{equation*}
$$

to be the minimum $s(\ell, q, k, \alpha, \mathbf{v})$ for $G(\ell, q, k)$. This gives the highest deletion correcting capability for given parameters ℓ, q, k.

We are interested in a subclass where the multiplier values are all one. Such codes are Reed-Solomon codes over prime fields.

Definition 2 (RS Classes): For fixed ℓ, q, k, the subset of codes in $\operatorname{GRS}_{k}(\ell, q, \boldsymbol{\alpha}, \mathbf{v})$ for which $v_{i}=1,1 \leq i \leq \ell-1$ are called RS codes and are denoted by $\tilde{G}(\ell, q, k)$.

We use $\tilde{G}(\ell, q, 2)$ to denote the subset of $\tilde{G}(\ell, q, k)$ class with $k=2$.
We note that, as specified, not all elements of $G(\ell, q, k)$ are distinct. That is two distinct α may result in the same set of codewords. Also two codes Γ and Γ^{\prime} may have equivalent deletion correcting properties. Two codes are isomorphic if there is a one-to-one mapping T between Γ and Γ^{\prime} such that for any pair of codewords $u, v \in \Gamma$ with $|\rho(u, v)|=t$, we have $|\rho(T(u), T(v))|=t$, and T is referred to as an isomorphism. Two codes are called equivalent if there is an isomorphism between them. We are interested in the enumeration of inequivalent codes and give, in Section IV, lists and counts of codes identified as inequivalent under the classes of isomorphism defined in Section III.

C. RS Codes and Deletion Correcting

The statements in this section regarding the subwords hold for nonprime RS codes also.

Let us use an example of a $\tilde{G}(\ell, q, 2)$ code, for $q=7$ and $\ell=4$, to illustrate RS codes and deletion correcting capability. We choose the selector $\boldsymbol{\alpha}=\left(\begin{array}{lll}1 & 3 & 0\end{array}\right)$. The codebook for this code is shown in the expression at the bottom of the page. Each codeword is of length $\ell=4$ and is associated with a polynomial of the form $f(x)=a_{1} x+a_{0}$. The
i th letter in a codeword is $f\left(\alpha_{i}\right)$. This code is capable of correcting up to one deletion. This means there are no length three words which are subwords of two distinct codewords, but that there are words of length two which are subwords of two distinct codewords.

For any code with unit multipliers, the first q codewords, those associated with the polynomials of degree 0 , are constant codewords. Thus, for any given length, there is a single subword only for each of those codewords. For example, any subword of the codeword associated with the polynomial $0 x+2$ will always be a string of 2 's, of whatever length the subword is.
Each codeword is associated with a polynomial of degree 1 and so has distinct components, that is each letter in the codeword differs from each other letter. Thus two subwords, of any length, taken from different columns of a codeword are always distinct. ${ }^{1}$ Furthermore, the length of the longest common subword between, a codeword associated with a polynomial of degree 0 and any codeword associated with a polynomial of degree 1 , is at most 1 . Using this property effectively means that; to find the deletion correcting capability of a code we can restrict our attention to finding the length of subwords common to two codewords, both of which are associated with polynomials of degree 1.2

III. Equivalent Codes in $\tilde{G}(\ell, q, 2)$

In this section we present two transformations of selector vectors that result in equivalent codes. The first transformation results in a selector vector which generates the same code; that is, a code with the same set of codewords. The second transformation results in a different code (different set of vectors) that has the same deletion correcting capabilities through the isomorphism.
For a scalar s and a vector \mathbf{v} with the i th component $v_{i}, i=1, \ldots, n$, we adopt the convention that $\mathbf{v}+s$, denotes a vector \mathbf{r} with components $r_{i}=v_{i}+s, i=1, \ldots, n$.

A. Affine Transformations of the Selector

Theorem 1: If two codes Γ and Γ^{\prime} in $\tilde{G}(\ell, q, 2)$ have respective selectors $\boldsymbol{\alpha}=\left(\alpha_{1} \ldots \alpha_{\ell}\right)$ and $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}^{\prime} \ldots \alpha_{\ell}^{\prime}\right)$ and there is an affine transformation T such that $\alpha_{i}^{\prime}=T\left(\alpha_{i}\right), i=1, \ldots \ell$, then the two
${ }^{1}$ This allows us to identify both the deleted elements and the locations from which they have been deleted.
${ }^{2}$ Note that in the above case the longest common subword may be longer if the multipliers differ from 1, supporting the observation that unit multiplier codes (i.e., RS codes) would have higher deletion correcting capabilities. This property probably becomes less significant for larger $q s$, since the proportion of codewords associated with degree 0 polynomials becomes insignificant.

$0 x+0$	0000	$0 x+1$	1111	$0 x+2$	2222	$0 x+3$	3333
$0 x+4$	4444	$0 x+5$	5555	$0 x+6$	6666	$1 x+0$	1304
$1 x+1$	2415	$1 x+2$	3526	$1 x+3$	4630	$1 x+4$	5041
$1 x+5$	6152	$1 x+6$	0263	$2 x+0$	2601	$2 x+1$	3012
$2 x+2$	4123	$2 x+3$	5234	$2 x+4$	6345	$2 x+5$	0456
$2 x+6$	1560	$3 x+0$	3205	$3 x+1$	4316	$3 x+2$	5420
$3 x+3$	6531	$3 x+4$	0642	$3 x+5$	1053	$3 x+6$	2164
$4 x+0$	4502	$4 x+1$	5613	$4 x+2$	6024	$4 x+3$	0135
$4 x+4$	1246	$4 x+5$	2350	$4 x+6$	3461	$5 x+0$	5106
$5 x+1$	6210	$5 x+2$	0321	$5 x+3$	1432	$5 x+4$	2543
$5 x+5$	3654	$5 x+6$	4065	$6 x+0$	6403	$6 x+1$	0514
$6 x+2$	1625	$6 x+3$	2036	$6 x+4$	3140	$6 x+5$	4251
$6 x+6$	5362						

codes have the same set of codewords and therefore the same deletion correcting capability.

Proof: Let Γ and Γ^{\prime} have deletion correcting capabilities r and r^{\prime}, respectively. Let $T=a X+b$ be the affine transformation relating the selectors of Γ and Γ^{\prime}, that is $\boldsymbol{\alpha}=a \boldsymbol{\alpha}^{\prime}+b, a \neq 0, a, b \in F_{q}$. For any $a_{0}, a_{1} \in F_{q}$, that is any codeword $a_{1} \mathbf{x}+a_{0}$ in Γ, the codeword is $a_{1}(\boldsymbol{\alpha})+a_{0}$. Applying the affine transformation we see the same codeword in Γ^{\prime} is of the form $\left(a_{0}+b a_{1}\right)+a_{1} a\left(\boldsymbol{\alpha}^{\prime}\right)$. This is a codeword in Γ^{\prime} since the selector is $\boldsymbol{\alpha}^{\prime}$, the polynomial degree is at most 1 and both $\left(a_{0}+b a_{1}\right)$ and $a_{1} a$ are in F_{q}. Thus any codeword in Γ is also a codeword in Γ^{\prime} (although there are different polynomials associated with the codeword in the different codes). Since the number of codewords in Γ and Γ^{\prime} is equal they contain the same codewords, and thus have equal deletion correcting capabilities.

Let us consider an example of this correspondence through an affine transformation. In the previous section we considered a code with selector $\alpha=\left(\begin{array}{lll}1 & 3 & 0\end{array}\right)$. Let us consider the code with selector related by the affine transformation $\boldsymbol{\alpha}^{\prime}=2 \boldsymbol{\alpha}+3=\left(\begin{array}{llll}5 & 2 & 3 & 4\end{array}\right)$. For each polynomial in Γ, we give the codeword and the polynomial in Γ^{\prime} which has the same codeword.

Γ		Γ^{\prime}	Γ		Γ^{\prime}
$0 x+0$	0000	$0 x+0$	$0 x+1$	1111	$0 x+1$
$0 x+2$	2222	$0 x+2$	$0 x+3$	3333	$0 x+3$
$0 x+4$	4444	$0 x+4$	$0 x+5$	5555	$0 x+5$
$0 x+6$	6666	$0 x+6$	$1 x+0$	1304	$4 x+2$
$1 x+1$	2415	$4 x+3$	$1 x+2$	3526	$4 x+4$
$1 x+3$	4630	$4 x+5$	$1 x+4$	5041	$4 x+6$
$1 x+5$	6152	$4 x+0$	$1 x+6$	0263	$4 x+1$
$2 x+0$	2601	$1 x+4$	$2 x+1$	3012	$1 x+5$
$2 x+2$	4123	$1 x+6$	$2 x+3$	5234	$1 x+0$
$2 x+4$	6345	$1 x+1$	$2 x+5$	0456	$1 x+2$
$2 x+6$	1560	$1 x+3$	$3 x+0$	3205	$5 x+6$
$3 x+1$	4316	$5 x+0$	$3 x+2$	5420	$5 x+1$
$3 x+3$	6531	$5 x+2$	$3 x+4$	0642	$5 x+3$
$3 x+5$	1053	$5 x+4$	$3 x+6$	2164	$5 x+5$
$4 x+0$	4502	$2 x+1$	$4 x+1$	5613	$2 x+2$
$4 x+2$	6024	$2 x+3$	$4 x+3$	0135	$2 x+4$
$4 x+4$	1246	$2 x+5$	$4 x+5$	2350	$2 x+6$
$4 x+6$	3461	$2 x+0$	$5 x+0$	5106	$6 x+3$
$5 x+1$	6210	$6 x+4$	$5 x+2$	0321	$6 x+5$
$5 x+3$	1432	$6 x+6$	$5 x+4$	2543	$6 x+0$
$5 x+5$	3654	$6 x+1$	$5 x+6$	4065	$6 x+2$
$6 x+0$	6403	$3 x+5$	$6 x+1$	0514	$3 x+6$
$6 x+2$	1625	$3 x+0$	$6 x+3$	2036	$3 x+1$
$6 x+4$	3140	$3 x+2$	$6 x+5$	4251	$3 x+3$
$6 x+6$	5362	$3 x+4$			
$2 x+1$					

We want to count inequivalent codes. We define a standard representation for codes and use that to distinguish inequivalent codes.

Corollary 1: A code Γ represented by $\alpha_{1}>0$ and/or $\alpha_{2}>1$ can also be represented by a unique selector vector with $\alpha_{1}^{\prime}=0, \alpha_{2}^{\prime}=1$. We call this the standard representation or standard form of the code.

Proof: Let the code Γ have a selector $\boldsymbol{\alpha}$. Consider the selector $\alpha^{\prime}=\frac{\alpha-\alpha_{1}}{\alpha_{2}-\alpha_{1}}$, where $\alpha_{i}^{\prime}=\frac{\alpha_{i}-\alpha_{1}}{\alpha_{2}-\alpha_{1}}$ for all $i=1, \ldots, \ell$ and α_{i}^{\prime} and α_{i} denote the i th component of $\boldsymbol{\alpha}^{\prime}$ and $\boldsymbol{\alpha}$, respectively. Since $\alpha_{2} \neq \alpha_{1}$, by definition, an inverse $A=\left(\alpha_{2}-\alpha_{1}\right)^{-1}$ exists we have $\alpha_{i}^{\prime}=$ $A \alpha_{i}-\alpha_{1} A$ and since $\alpha_{1}>0$ the relationship between α and $\boldsymbol{\alpha}^{\prime}$ is an affine transformation. Using Theorem 1, we conclude that α^{\prime} generates
the same code as $\boldsymbol{\alpha}$. Evaluating the first two elements of $\boldsymbol{\alpha}^{\prime}$ we find $\alpha_{1}^{\prime}=0$ and $\alpha_{2}^{\prime}=1$.

The two parameters of the affine transformation are fixed by the need to fix the 0 and 1 in the first two components of the selector in standard form and so the transformation and the standard form representation of the vector are unique.

These results are especially useful for codes in $\tilde{G}(\ell, q, 2)$ classes. There we only need to consider codes in the standard representation, that is with $\alpha_{1}=0$ and $\alpha_{2}=1$. This reduces the search space by a factor of $1 /\left(q^{2}-q\right)$.

B. Selector Reversal

Here we show that the deletion correcting capabilities of $\tilde{G}(\ell, q, k)$ codes is invariant under reversal of the selector, for arbitrary $k .{ }^{3}$

For error correcting codes the error correcting capability is invariant under any permutation of the columns of the code. This is not the case for deletion correcting capability, as the following example illustrates. Consider two codewords $c_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$ and $c_{2}=\left(\begin{array}{llll}5 & 2 & 4 & 6\end{array}\right)$. The cyclic permutation of columns (15432) gives the codewords $c_{1}^{\prime}=(23451)$ and $c_{2}^{\prime}=(24675)$. While c_{1} and c_{2} have a longest common subword (24) of length $2, c_{1}^{\prime}$ and c_{2}^{\prime} have a longest common subword (245) of length 3 .

We define \bar{x} for a word x where $\bar{x}_{i}=x_{|x|+1-i}$. That is, \bar{x} is x written backwards.

Lemma 1: If a is a subword of b, than \bar{a} is a subword of \bar{b}.
Proof: Let a_{i}, a_{i+1} be a subword of a. Then by definition \bar{b} contains a_{i+1}, a_{i}. The result follows for any length subword $a_{i}, a_{i+1} \ldots a_{i+u}$ by noting that the subword can be written as $\left(\left(\left(a_{i}, a_{i+1}\right), a_{i+2}\right) \ldots a_{i+u}\right)$, and using recursion.

Lemma 2: For any two words c_{1} and $c_{2}, \rho\left(\overline{c_{1}}, \overline{c_{2}}\right)=\overline{\rho\left(c_{1}, c_{2}\right)}$.
Proof: Since $\rho\left(c_{1}, c_{2}\right)$ is a subword of c_{1} and c_{2}, Lemma 1 tells us that $\overline{\rho\left(c_{1}, c_{2}\right)}$ is a subword of $\overline{c_{1}}$ and $\overline{c_{2}}$. Assume $\rho\left(\overline{c_{1}}, \overline{c_{2}}\right)=p$ where $|p|>\left|\overline{\rho\left(c_{1}, c_{2}\right)}\right|$, i.e., that there exists a subword common to $\overline{c_{1}}$ and $\overline{c_{2}}$ which is longer than $\overline{\rho\left(c_{1}, c_{2}\right)}$. By Lemma $1, \bar{p}$ is a subword of both c_{1} and c_{2}, implying $\left|\rho\left(c_{1}, c_{2}\right)\right| \geq|\bar{p}|=|p|$. But since p was defined to satisfy $|p|>\left|\overline{\rho\left(c_{1}, c_{2}\right)}\right|=\left|\rho\left(c_{1}, c_{2}\right)\right|$, such a p cannot exist and therefore the longest subword common to $\overline{c_{1}}$ and $\overline{c_{2}}$ is $\overline{\rho\left(c_{1}, c_{2}\right)}$, as required.

Theorem 2: If a length ℓ code Γ with selector $\boldsymbol{\alpha}$ has a deletion correcting capability of r, then the code specified by the selector $\boldsymbol{\alpha}^{\prime}: \alpha_{i}^{\prime}=$ $\alpha_{\ell+1-i}$, that is $\boldsymbol{\alpha}^{\prime}=\overline{\boldsymbol{\alpha}}$, also has a deletion correcting capability of r.

Proof: Since $r(\Gamma)=\ell-\mathcal{R}(\Gamma)-1$ and $r\left(\Gamma^{\prime}\right)=\ell-\mathcal{R}\left(\Gamma^{\prime}\right)-1$, we may equivalently demonstrate that $\mathcal{R}\left(\Gamma^{\prime}\right)=\mathcal{R}(\Gamma)$

$$
\begin{aligned}
\mathcal{R}(\Gamma) & =\max _{c_{1}, c_{2} \in \Gamma, c_{1} \neq c_{2}}\left|\rho\left(c_{1}, c_{2}\right)\right| \\
& =\max _{c_{1}, c_{2} \in \Gamma, c_{1} \neq c_{2}}\left|\overline{\rho\left(c_{1}, c_{2}\right)}\right| \\
& =\max _{c_{1}, c_{2} \in \Gamma, c_{1} \neq c_{2}}\left|\rho\left(\overline{c_{1}}, \overline{c_{2}}\right)\right| \text { by Lemma } 2 \\
& =\max _{\overline{c_{1}}, \overline{c_{2}} \in \Gamma^{\prime}, \overline{c_{1}} \neq \overline{c_{2}}}\left|\rho\left(\overline{c_{1}}, \overline{c_{2}}\right)\right| \\
& =\mathcal{R}\left(\Gamma^{\prime}\right)
\end{aligned}
$$

The above theorem shows that the code with selector $\boldsymbol{\alpha}^{\prime}$, generated by the reversal transformation, is isomorphic to $\boldsymbol{\alpha}$ and so they are equivalent. Consider, for example, the selectors of codes in $\tilde{G}(\ell, q, 2)$ with $q=13, \ell=5$, that have deletion correcting capability of 2 ; that is $r=2$. There are only two such codes, $\alpha=\left(\begin{array}{llll}0 & 1 & 7 & 6\end{array}\right)$ and $\boldsymbol{\alpha}^{\prime}=\left(\begin{array}{lll}0 & 1 & 11 \\ 3 & 6\end{array}\right)$ in the standard representation. Now consider the reversal selector obtained from $\boldsymbol{\alpha}$; that is $\bar{\alpha}=\left(\begin{array}{ll}26710\end{array}\right)$. We see that

[^1]$\overline{\boldsymbol{\alpha}}=4 \boldsymbol{\alpha}^{\prime}+2$, that is $\overline{\boldsymbol{\alpha}}$ and $\boldsymbol{\alpha}^{\prime}$ are related by an affine transformation. Thus the reversal transformation on one code gives the other code and so there is only one inequivalent code in the standard representation. Thus using either $\boldsymbol{\alpha}$ or α^{\prime} we can generate, using the affine and reversal transformations, any other selector corresponding to a $\tilde{G}(\ell, q, 2)$ code with $q=13, \ell=5$ and $r=2$.

Corollary 2: Using the reversal transformation, a code in the standard representation is isomorphic to at most one other code in the standard representation.

Proof: Consider a code with selector α in standard form $\alpha_{1}=0$ and $\alpha_{2}=1$. The reversal of $\boldsymbol{\alpha}$ gives the selector $\overline{\boldsymbol{\alpha}}=\left(\begin{array}{llll}\alpha_{\ell} & \alpha_{\ell-1} & \ldots & \alpha_{3}\end{array} 10\right)$. By Corollary 1 , there is only one affine transformation which can be applied to $\bar{\alpha}$ to obtain a selector $\boldsymbol{\alpha}^{\prime}$ satisfying $\alpha_{1}^{\prime}=0$ and $\alpha_{2}^{\prime}=1$. The transformation (and thus selector) is specified by $\boldsymbol{\alpha}^{\prime}=\frac{\frac{\bar{\alpha}-(\bar{\alpha})_{1}}{(\bar{\alpha})_{2}-(\bar{\alpha})_{1}}=\frac{\bar{\alpha}-\alpha_{\ell}}{\alpha_{\ell-1}-\alpha_{\ell}} \text {, where }(\bar{\alpha})_{i} \text { means the }{ }^{2} \text {. }{ }^{2} \text {. }}{}$ i th element of $\bar{\alpha}$. It is possible for $\boldsymbol{\alpha}$ to equal $\boldsymbol{\alpha}^{\prime}$. It is however possible for selector reversal to result in the same code, that is, a code with the same standard representation.

C. Codes That are Invariant Under Selector Reversal

Consider a selector $\alpha=\left(\begin{array}{llll}0 & 1 & \alpha_{3} & \ldots\end{array} \alpha_{\ell-1} \alpha_{\ell}\right)$. The reversal is $\overline{\boldsymbol{\alpha}}=\left(\begin{array}{llll}\alpha_{\ell} & \alpha_{\ell-1} & \ldots & \alpha_{3} \\ 10\end{array}\right)$. Following Theorem 1 we apply the affine transformation to obtain the selector of the new code in standard form, $\boldsymbol{\alpha}^{\prime}=\frac{\bar{\alpha}-\alpha_{\ell}}{\alpha_{\ell-1}-\alpha_{\ell}}$.

For the two codes to be the equivalent through the reversal transformation and affine transformation, we must have $\boldsymbol{\alpha}^{\prime}=\alpha$, and so

$$
\begin{equation*}
\alpha_{i}=\frac{\alpha_{\ell+1-i}-\alpha_{\ell}}{\alpha_{\ell-1}-\alpha_{\ell}} \tag{2}
\end{equation*}
$$

${ }^{\text {for }}$ The all $i i \equiv 1$, and ${ }_{i}{ }_{i}=2$ conditions imply $\alpha_{1}=\frac{\alpha_{\ell}-\alpha_{\ell}}{\alpha_{\ell-1}-\alpha_{\ell}}=0$ and $\alpha_{2}=\frac{\alpha_{\ell-1}-\alpha_{\ell}}{\alpha_{\ell-1}-\alpha_{\ell}}=1$. These simply represent the transformation to the standard representation. When $\ell=2$ we only have those conditions and there is only a single selector in standard form (01), and it satisfies this condition.

The conditions for $i=\ell$ and $i=\ell-1$ reduce to the same condition for $\boldsymbol{\alpha}^{\prime}$ and $\boldsymbol{\alpha}$ to be equal, that is

$$
\begin{equation*}
\alpha_{\ell}-\alpha_{\ell-1}=1 \tag{3}
\end{equation*}
$$

Substituting this back into (2) gives the reduced condition

$$
\begin{equation*}
\alpha_{i}=\alpha_{\ell}-\alpha_{\ell+1-i} . \tag{4}
\end{equation*}
$$

The simplicity of this reduction means we can count the number of codes with the specified invariance. In the case $\ell=3$ the only selector with such reversal invariance is (012), since (3) becomes $\alpha_{3}-\alpha_{2}=1$, or $\alpha_{3}=2$.

Theorem 3: The number of length $\ell \geq 4$ selectors $\alpha=$ $\left(\begin{array}{llllll}0 & 1 & \alpha_{3} & \ldots & \alpha_{\ell-1} & \alpha_{\ell}\end{array}\right)$, over a prime field $F_{q}, q \geq \ell$, which specify a code with the same standard form before and after reversal is given by the expression

$$
\begin{equation*}
\frac{(q-3)!!}{\left(q-\left(2\left\lfloor\frac{\ell}{2}\right\rfloor+1\right)\right)!!} \tag{5}
\end{equation*}
$$

where $x!!=x(x-2)(x-4) \ldots(x \bmod 2+2)$.
Proof: We proceed by identifying the number of relations which restrict the values of the selector elements. From (3), we obtain the relation $\alpha_{\ell}-\alpha_{\ell-1}=1$. The value of α_{ℓ} cannot be equal to 0 or 1 as these values already appear in the selector vector. Furthermore, setting $\alpha_{\ell}=2$ gives $\alpha_{\ell-1}=1$, which has already appeared in the selector. This relation thus allows $(q-3)$ values to be chosen for α_{ℓ}, with no freedom in the subsequent choice of $\alpha_{\ell-1}$. For $\ell=4$ we obtain only this enumeration and so we have $(q-3)$ such selectors.

If $\ell \geq 6$ is even we obtain from (4) a list of $\ell / 2-2$ equations $\alpha_{3}+\alpha_{\ell-2}=\alpha_{\ell}, \alpha_{4}+\alpha_{\ell-3}=\alpha_{\ell}, \ldots \alpha_{\ell / 2}+\alpha_{\ell / 2+1}=\alpha_{\ell}$. Each
equation implies we can choose one of the components other than α_{ℓ} independently, and obtain the other relative to α_{ℓ} and that choice. In making the choice we must avoid all the values already used in the selector. For the first of those equations we need to avoid $0,1, \alpha_{\ell-1}$ and α_{ℓ}. In addition we must avoid making α_{3} and $\alpha_{\ell-2}$ equal to each other, that is avoid $\alpha_{3}=\alpha_{\ell-2}=2^{-1} \alpha_{\ell}$. We thus have $(q-5)$ possibilities for α_{3}, which then fixes $\alpha_{\ell-2}$ also. Each subsequent equation is used to choose one selector component and derive a second one. The chosen selector should avoid the previous values chosen and derived for the selector values, as well as $2^{-1} \alpha_{\ell}$. For the j th equation then we have $q-(2 j+3)$ possible values. Each of these equations results in additional possibilities independent of the $(q-3)$ factor from the freedom described in the first paragraph of the proof. The total number of equations is therefore

$$
(q-3) \Pi_{1}^{\ell / 2-2} q-(2 j+3)=\frac{(q-3)!!}{(q-(\ell+1))!!} .
$$

If ℓ is odd the selector component for $i=(\ell+1) / 2$ is evaluated through (4) as $2 \alpha_{(\ell+1) / 2}=\alpha_{\ell}$. For any of the $(q-3)$ valid α_{ℓ} there is always a $\alpha_{(\ell+1) / 2}$ not equal to $0,1, \alpha_{\ell-1}$ or α_{ℓ}. This is also the very value avoided in the "odd" counting to ensure α_{i} and $\alpha_{\ell+1-i}$ are not equal, so we avoid all previously specifed selector values also. Thus the number of reversal invariant selectors for odd ℓ is equal to the number of reversal invariant selectors for the even number $\ell-1$. This is represented by the use of the floor function in (5).

IV. Deletion Correcting Capability Bounds and the Enumeration of Inequivalent Codes for $\tilde{G}(\ell, q, 2)$

In this section we give a bound on the deletion correcting capability of codes and enumerate, and in some cases list, the inequivalent $\tilde{G}(\ell, q, 2)$ codes.

Theorem 4: For an RS code with $k=2$ and $\ell \geq 3$, the largest deletion correcting capability possible is $\ell-3$.

Proof: Recall from Section II-C that the RS codewords associated with polynomials of degree 0 have constant components and so have one subword of constant component of any length t. Furthermore, codewords associated with polynomials of degree exactly 1 have all subwords distinct. For a codeword associated with a polynomial of degree 1 , there are $\frac{\ell!}{(\ell-t)!t!}$ subwords of length $\ell-t$. To be able to correct t deletions these must be distinct from the subwords of every other codeword associated with a polynomial of degree 1 . Thus, we need $\left(q^{2}-q\right) \frac{\ell!}{(\ell-t)!t!}$ distinct words of length $\ell-t$. For a given field F_{q} there are $q^{\ell-t}$ words of length $\ell-t$.

Thus there can only be enough subwords to correct deletions if

$$
\left(q^{2}-q\right) \frac{\ell!}{(\ell-t)!t!} \leq q^{\ell-t}
$$

Let $t=\ell-2$. The equation reduces to $(q-1) \ell(\ell-1) / 2 \leq q$. But this cannot be satisfied for $\ell \geq 3$ and so no RS code of dimension $k=2$ is capable of correcting $(\ell-2)$ deletions.

Let $t=(\ell-3)$. For this case the condition above reduces to $(q-$ 1) $\ell(\ell-1)(\ell-2) / 6 \leq q^{2}$, which can be satisfied by large enough q

A. Experimental Results

We have performed extensive computer searches to find inequivalent codes that have the best performance, in one of two senses which we will describe. We are also interested in determining the number of codes with such properties.

We firstly consider codes that satisfy the bound in Theorem 4. In Table I we give the current state of our computer search to find codes with the highest deletion correcting capability for $\ell \leq 25$. These results are significant improvements over previously reported results [16]. We

TABLE I
A Tabulation of Experimental Upper Bounds on the Value of the $\sigma(\ell, q, 2)$ for Prime q. The Highest Deletion Correcting Capability Is Given by $\ell-\sigma(\ell, q, 2)$. We Emphasize These Exhaustive and Selective Results Are for Codes With Unit Multipliers (i.e., for RS Codes). The ($\ell, q)$ Classes Marked With a * Have Been Exhaustively Surveyed. The Rows and Columns Label the Prime Value q and Code Length ℓ, Respectively

$q \backslash \ell$	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	q
5	4*	4*																					5
7	3*	4*	4*	5*																			7
11	3*	4*	4*	4*	5*	5*	6*	7*															11
13	3*	3*	4*	4*	5*	5*	6*	6*	7*	7													13
17	3*	3*	4*	4*	4*	5*	5	6	6	7	7	8	8	9									17
19	3*	3*	4*	4*	4*	5*	5	6	6	7	7	8	8	8	9	9							19
23	3*	3*	3*	4*	4*	5	5	5	6	6	7	7	7	8	8	9	9	10	10	11			23
29	3*	3*	3*	4*	4	4	5	5	5	6	6	7	7	8	8	8	9	9	10	10			29
31	3*	3*	3*	4*	4	4	5	5	5	6	6	7	7	7	8	8	9	9	9	10	10		31
37	3*	3*	3*	4*	4	4	5	5	5	6	6	6	7	7	7	8	8	8	9	9	10		37
41	3*	3*	3*	4*	4	4	4	5	5	5	6	6	6	7	7	7	8	8	9	9	9		41
43	3*	3*	3*	4*	4	4	4	5	5	5	6	6	6	7	7	7	8	8	8	9	9		43
47	3*	3*	3*	3*	4	4	4	5	5	5	6	6	6	7	7	7	7	8	8	9	9	9	47
53	3*	3*	3*	3	4	4	4	5	5	5	5	6	6	6	7	7	7	7	8	9	9	9	53
59	3*	3*	3*	3	4	4	4	4	5	5	5	6	6	6	7	7	7	7	8	8	9	9	59
61	3*	3*	3*	3	4	4	4	4	5	5	5	6	6	6	7	7	7	7	8	8	8	9	61
67	3*	3*	3*	3	4	4	4	4	5	5	5	6	6	6	6	7	7	7	8	8	8	9	67
71	3*	3*	3*	3	3	4	4	4	5	5	5	6	6	6	6	7	7	7	8	8	8	8	71
73	3*	3*	3*	3	3	4	4	4	5	5	5	5	6	6	6	7	7	7	7	8	8	8	73
79	3*	3*	3*	3	3	4	4	4	5	5	5	5	6	6	6	6	7	7	7	8	8	8	79
83	3*	3*	3*	3	3	4	4	4	5	5	5	5	6	6	6	6	7	7	7	7	8	8	83
89	3*	3*	3*	3	3	4	4	4	5	5	5	5	5	6	6	6	7	7	7	7	8	8	89
97	3*	3*	3*	3	3	4	4	4	4	5	5	5	5	6	6	6	6	7	7	7	8	8	97
101	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	7	7	7	8	8	101
103	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	7	7	7	7	8	103
107	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	6	7	7	7	8	107
109	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	6	7	7	7	8	109
113	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	6	6	7	7	8	113
127	3*	3*	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	7	127
131	3*	3*	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	7	131
137	3*	3*	3	3	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	7	7	7	137
139	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	7	7	7	139
149	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	7	7	7	149
151	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	151
157	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	157
163	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	163
167	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	167
173	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	173
179	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	179
181	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	7	7	181
191	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	191
193	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	193
197	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	197
199	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	199
211	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	211
223	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	223
227	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	227
229	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	229
233	3*	3*	3	3	3	3	3	4	4	4	4	5	5	5	5	5	5	6	6	6	6	6	233
389	3*	3	3	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	5	6	6	6	389
683	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	5	5	5	5	5	5	5	683
1093	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	5	5	5	5	5	1093
1747	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	5	5	5	1747
2477	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	2477
3499	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	3499
4877	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4877
6619	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	6619
8849	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	8849
11987	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	11987
15227	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	15227
18979	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	18979
23993	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	23993
29959	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	29959
36997	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	36997
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	

also list, in Table II, examples of codes with the highest deletion correcting capability. We note that the results in Table I are obtained by a mix of exhaustive and non-exhaustive searches. The former cases are marked by ${ }^{*}{ }^{*}$. The entries in the table are of $\sigma(\ell, q, 2)$, which is the
length of the shortest subword that uniquely identifies codewords of codes in $\tilde{G}(\ell, q, 2)$ and so $\sigma(\ell, q, 2)=3$ means that the deletion correcting capability is $\ell-3$, and thus the highest possible according to Theorem 4. We observe that for any ℓ in the table, the bound in The-

TABLE II
Some Examples of the Best Codes Found, in the Sense of Smallest q for Given ℓ and r. The Codes in the First Section of the Table Are Not Optimal, in the Sense $r<\ell-3$, but Are Significant Improvements on the Results of [16]. The Codes in the Second Section of the Table Are Optimal, in the Sense $r=\ell-3$

q	ℓ	r	$\boldsymbol{\alpha}$
11	9	4	(0121046589)
13	13	6	(0178311421296510)
17	12	6	(0 1 8 10671615 512 3 13)
23	11	6	(0 1 20 4 14163158219)
23	13	7	$\left(\begin{array}{lllllllll}0 & 1 & 8 & 1217 & 21 & 10 & 131119467)\end{array}\right.$
29	9	5	(0 1 1 1311126 2741810)
41	10	6	(0 1 3775123930291124)
59	11	7	
71	8	5	(0 1 64 427048 40 41)
139	9	6	(0151595129 787988113)
233	10	7	(0 1 2191352276820217414)
389	11	8	(0 1 2571203601899281378$)$
683	12	9	(0 1 2 5 71846434437534177 409)
1093	13	10	(0 1 2 5 7 18 246110088077071019 931)
1747	14	11	$\left(\begin{array}{lllllllllll}0 & 1 & 5 & 78 & 24 & 44 & 59 & 608 & 1518 & 692 & 1478 \\ \hline\end{array}\right.$
2477	15	12	(0 1 2 5 7 18 244459679031839220924651617$)$
3499	16	13	(0 1 2 5 7 18 24445967152127231923312143 2227)
4877	17	14	(0 1 2 5 7 18 244459671012181931483520924494495$)$
6619	18	15	
8849	19	16	(012 5 018244459671012182253584815515783933040 5265)
11987	20	17	(0 1 2 5 7 1824 44 59 67 101 22525035742219759561117806675 6744)
15227	21	18	
18979	22	19	
23993	23	20	
29959	24	21	
36997	25	22	
45497	26	23	
56999	27	24	
67499	28	25	
86993	29	26	$\begin{aligned} & (01257182444596710121822527935842247157058064311711196136319427146302877608879401 \ldots \\ & \ldots 73323) \end{aligned}$
99991	30	27	```(0 12 5 7 18 24 44 59 67 101 218 225 279 358422467 471 570 637 688 921 1356 1590 3544 7015 38270 65856 }81477\mathrm{ 12911)```
120691	31	28	$\begin{aligned} & (0125718244459671012182252793584224674715705801084118613371750270344606877119243 \ldots \\ & \ldots 580519070492833) \end{aligned}$
144983	32	29	$\begin{aligned} & (01257182444596710121822527935842246747158078680890811191319175320124206679455281 \ldots \\ & \ldots 781513401979376) \end{aligned}$
169991	33	30	```(0 1 2 5 7 1824 44 59 67 101 218 225 279 358422467471570637 805 921 1048 1366 1972 2452 3450 4421 9944... ... 108285 16209474880 109191)```
189997	34	31	
239999	35	32	
274973	36	33	```(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358422467471570 580 736 825 1084 1223 1281 1763 2131 2730 2854 \ldots.. ...4634 695410480 37213 73629165748 132173)```

orem 4 can be achieved with equality if q is sufficiently large (in each column there is a row with an entry equal to 3).

Second, we consider codes that satisfy a property, for example the highest deletion correction capability, over the smallest size prime field. Of particular value are the smallest fields for which codes with $r=$ $\ell-3$ have been found. For nonexhaustive searches the smallest field provides an upper bound on the value. In Table II we give examples of such codes, specified by the selector, for $\ell \leq 36$.

Let $\mathcal{Q}(\ell, r)$ denote the smallest prime q for which we have a code in $\tilde{G}(\ell, q, 2)$ with a deletion correcting capability r. Then $\mathcal{Q}(\ell, \ell-3)$ gives the smallest q, for a given ℓ, for which $\sigma(\ell, q, 2)=3$, that is for which the code meets the deletion correcting bound. Using Table I we can see that $\mathcal{Q}(4,1)=7$ and so there is no single deletion correcting code of length 4 for $q=3$ or $q=5$.

Using Table I we have $\mathcal{Q}(4,1)=7, \mathcal{Q}(5,2)=13, \mathcal{Q}(6,3)=23$, $\mathcal{Q}(7,4)=47$ and $\mathcal{Q}(8,5)=71$, all as exhaustively tested minimums. These values suggest the smallest prime field, with the best deletion correcting capability possible, grows quickly as we increase the length. We see this is supported by the current experimental evidence in Fig. 1.

The value of the upper bound on $\mathcal{Q}(\ell, r)$ for $4 \leq \ell \leq 36$ is given in the array below and in Fig. 1. Note again that the ${ }^{* * "}$ entries are proven, by exhaustive searches, to be minimums.

ℓ	$Q(\ell, \ell-3)$	ℓ	$Q(\ell, \ell-3)$	ℓ	$Q(\ell, \ell-3)$
4	$7 *$	15	2477	26	45497
5	$13 *$	16	3499	27	56999
6	$23 *$	17	4877	28	67499
7	$47 *$	18	6619	29	86933
8	$71 *$	19	8849	30	99991
9	139	20	11987	31	120691
10	233	21	15227	32	144983
11	389	22	18979	33	169991
12	683	23	23993	34	189997
13	1093	24	29959	35	239999
14	1747	25	36997	36	274973

Fig. 1. This figure illustrates the currently determined values of $\mathcal{Q}(\ell, \ell-3)$ for ℓ from 4 to 36 . We see that the size of q increases rapidly, approximately as a constant multiple of $\ell^{5.25}$.

Table II has two parts. The first part of the table gives selective examples of the best codes, in the sense of smallest q for a give (ℓ, r) pair. For example, for $\ell=9$ and $r=4$, the smallest $q=11$. Some examples for smaller ℓ and r appear in Section IV-B, in the inequivalence sets given in Appendix, and in Tables IV-VII.

In the second part of Table II, examples of codes with $\sigma(\ell, q, 2)=3$, the best deletion correcting capability possible, are given for $8 \leq \ell$ ≤ 36.

B. Tabulations of Inequivalence Set Cardinalities

In Section III, we considered two isomorphisms of selector vectors, that result in codes equivalent to the original one. We would like to enumerate inequivalent $\tilde{G}(\ell, q, 2)$ codes for a given set of parameters. Let $\mathbb{P}[q, \ell]_{r}$ denote the set of inequivalent codes (in standard form) of length ℓ over a field of size q and with deletion correcting capability of r.

Note that $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_{r}$ denotes the set of codes with length ℓ, deletion correcting capability r, and the smallest known q with that length and deletion correcting capability. In Table III we tabulate the cardinalities of the various inequivalent code sets, for primes from 5 to 97 and for various lengths. For $q=5,7$ and 11 we have completed exhaustive enumerations for lengths up to and including $\ell=q$. As the value of the field q increases, the exhaustive enumerations become increasingly time consuming; thus for $q>11$ we do not have enumerations for all lengths up to q.
In cases where there are only a small number of distinct codes for given small q and small ℓ, we explicitly give the codes, in terms of the selectors, in Section IV-D and in Tables IV-VII. The $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_{r}$ of small cardinality are listed in Appendix.

An interesting result of our search is the explicit construction of a code whose parameters achieve a bound, proposed elsewhere, with
equality. In particular, for $q=7, \ell=7$, it has been proven in [4], [9] that codes with deletion correcting capability greater than two cannot exist. We have found a code with $q=7, \ell=7$ and $r=2$, thus providing an explicit construction for that bound.

C. The Distribution of Deletion Correcting Capabilities

In cases where we have undertaken exhaustive enumerations the pro-portion of codes with particular deletion correcting capabilities is of interest. We can compare this with results in [16, Table 1]. For example, in [16] it was noted that 1% of all $\operatorname{GRS}_{k}(\ell, q, \alpha, \mathbf{v})$ codes with $k=2, q=7, \ell=4$ are capable of correcting 1 deletion. We have found that 45% of all $\tilde{G}(\ell, q, 2)$ codes with $q=7$ and $\ell=4$ are capable of correcting 1 deletion. The relative proportion of codes with higher deletion correcting capabilities supports the emphasis placed on RS codes. Similarly with $k=2, q=7, \ell=560 \%{ }^{4}$ of $\operatorname{GRS}_{k}(\ell, q, \boldsymbol{\alpha}, \mathbf{v})$ codes can correct one deletion, against 88% of $\tilde{G}(\ell, q, k)$ codes.

D. Some "Nice" Codes

In this section, and in Appendix, we give the explicit codebooks for some of the smaller RS codes capable of correcting deletions, that is some of the $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_{r}$ codes (see Section IV-B). The codes are labelled in terms of q, ℓ, r and the selector α. In Appendix we use capitalized Latin letters to denote the numbers from $10(A)$ to $22(M)$, allowing us to more compactly represent the codewords for $q \geq 11$.

[^2]We note that the codes of interest over $\mathrm{GF}(q)$ have q^{2} codewords. The first two examples are listed in the text below, the remaining examples can be found in Tables IV-VII.

000000	111111	222222	333333
444444	555555	666666	016534
120645	231056	342160	453201
564312	605423	025361	136402
240513	351624	462035	503146
614250	034125	145236	256340
360451	401562	512603	623014
043652	154063	265104	306215
410326	521430	632541	052416
163520	204631	315042	426153
530264	641305	061243	102354
213465	324506	435610	546021
650132			

There is a single code in $\mathbb{P}[\mathcal{Q}(5,1)=5,5]_{1}$. It is specified by the selector $\boldsymbol{\alpha}=(01423)$ as shown in the first table at the bottom of the page.

There is a single code in $\mathbb{P}[\mathcal{Q}(6,2)=7,6]_{2}$. It is specified by the selector $\boldsymbol{\alpha}=(016534)$ as shown in the second table at the bottom of the page.

Another nice code, worthy of mention here, is the lone member of $\mathbb{P}[\mathcal{Q}(8,5)=71,8]_{5}$, specified by the selector $\alpha=$ (01644270484041). Not only is this the only code in this equivalence set, there exist no GRS codes of this length with the same deletion correcting capability and a shorter length.

V. Summary and Discussion

We have presented an investigation into the classification of the deletion correcting capabilities of prime RS codes with dimension $k=2$.

We have proven that the deletion correcting capability is invariant under affine transformations and reversal of the selector. Using these isomorphisms we have focused on inequivalent codes and enumerated $\tilde{G}(\ell, q, 2)$ classes with small parameter values. We have listed the inequivalent codes in cases where the sets are themselves small, and in some cases given the codebooks too.

We have proven that for $\tilde{G}(\ell, q, 2)$ codes $r \leq \ell-3$. We have identified examples of codes meeting this bound for $\ell \leq 36$. For example, in Table II we give a length $\ell=36$ code capable of correcting 33 deletions. This code is over a F_{274973}, with about 7.55×10^{10} codewords.

Let us conclude with some open questions for consideration. Firstly, How do we design codes with a particular deletion correcting capability? For the class of codes considered in this correspondence, the code is defined by a selector, and the question becomes; How do we choose a selector to provide a particular deletion correcting capability? Another related question is; Given a selector, how can we determine the deletion correcting capability of the code generated by the selector?

We note that the question; What is the deletion correcting capability of a code with specified q, ℓ and selector α ?; can be closely related to the problem of decoding. This will be discussed in future work.

Closer to the direction of our work here, we would like to be able to answer, for a given $\tilde{G}(\ell, q, 2)$ class, Does there exist a selector specifying a code capable of correcting r deletions? Thus we want to more precisely determine the values of $\mathcal{Q}(\ell, r)$, that is the smallest q for which we have a code of length ℓ capable of correcting r deletions. This question is somewhat complicated by an unresolved proposition [16];

00000	11111	22222	33333	44444
01423	12034	23140	34201	40312
02341	13402	24013	30124	41230
03214	14320	20431	31042	42103
04132	10243	21304	32410	43021

000000	111111	222222	333333
444444	555555	666666	016534
120645	231056	342160	453201
564312	605423	025361	136402
240513	351624	462035	503146
614250	034125	145236	256340
360451	401562	512603	623014
043652	154063	265104	306215
410326	521430	632541	052416
163520	204631	315042	426153
530264	641305	061243	102354
213465	324506	435610	546021
650132			

TABLE III
The Cardinalities of Inequivalence Sets, for Primes From 5 to 97 and for Various Lengths

$q=5$			$q=7$					$q=11$								
								$r \backslash \ell$	4	5	6	7	8	9	10	11
$r \backslash \ell$	4	5	$r \backslash \ell$	4	5	6	7	0	13	13	11	7	7	7	7	5
0	4	3	0	6	4	4	3	1	27	243	883	1235	1270	1094	793	363
1		1	1		28	59	49	2			642	6340	22938	32414	25478	10491
1		1	2			1	12	3				2	6121	57298	145440	106689
								4						3	9914	64084

$r \backslash \ell$	4	5	6	7	8	9	10	11	12
0	15	12	10	9	7	7	7	7	7
1	45	487	1488	1773	1813	1732	1544	1307	934
2		1	2502	25465	81044	110215	109713	89581	56822
3				513	83696	708752	2056085	2458946	1692824
4						11136	1160012	7375726	14179669
5								54593	4030064

$r \backslash \ell$	4	5	6	7	8	9
0	24	22	22	21	19	19
1	120	1834	4717	6210	7535	8668
2		192	23933	269117	656491	993236
3				96044	3788517	29200726
4					4142	18807655

$r \backslash \ell$	4	5	6	7	8
0	31	31	31	31	31
1	189	3280	8191	11374	14508
2		689	63777	693327	1611112
3			1	516388	17613045
4					299224

$r \backslash \ell$	4	5	6	7
0	40	39	37	37
1	324	6298	14346	19599
2		2451	196480	1885334
3			67	2939142

$q=31$					$q=37$					$q=41$				
$r \backslash \ell$	4	5	6	7	$r \backslash \ell$	4	5	6	7	$r \backslash \ell$	4	5	6	7
0	42	40	38	33	0	51	48	46	45	0	58	57	53	49
1	378	7430	16380	22050	1	561	11836	24606	33228	1	702	15302	31989	43932
2		3506	268715	2431981	2		7768	601467	4791257	2		12077	946172	7094296
3			243	4671600	3			2746	14653934	3			9482	27407827

$r \backslash \ell$	4	5	6	7
0	60	58	58	57
1	780	17065	34879	48323
2		14877	1164889	8322899
3			16174	36593361

$r \backslash \ell$	4	5	6	7
0	67	67	67	67
1	945	21298	43641	61519
2		21227	1706722	11583603
3			38434	61661271
4				4

$r \backslash \ell$	4	5	6
0	76	75	73
1	1224	28445	56550
2		33980	2831202
3			112175

$r \backslash \ell$	4	5	6
0	85	85	85
1	1539	36509	71647
2		51214	4398356
3			271544

$r \backslash \ell$	4	5	6
0	87	84	80
1	1653	39151	75387
2		58321	5030813
3			356856

$r \backslash \ell$	4	5	6
0	96	94	94
1	2016	48350	92751
2		82528	7314081
3			719538

$r \backslash \ell$	4	5	6
0	103	103	101
1	2277	55389	106688
2		101724	9192352
3			1077115

$r \backslash \ell$	4	5	6
0	114	112	112
1	2850	70051	131978
2		149325	13884981
3			2225041

$r \backslash \ell$	4	5	6
0	121	121	121
1	3159	78751	148602
2		177128	16789206
3			3030071

$r \backslash \ell$	4	5	6
0	130	129	127
1	3654	91811	171674
2		226088	21846501
3			4696050

$r \backslash \ell$	4	5	6
0	141	138	136
1	4371	110529	203372
2		304625	30051926
3			7951430

If $q_{1}<q_{2}$ are prime powers then $\sigma\left(\ell, q_{1}, k\right) \geq \sigma\left(\ell, q_{2}, k\right)$.
That is, the deletion correction capability of codes does not decrease as q increases with fixed ℓ and k. In generating Table I we have not
assumed this proposition to be true, we have explicitly identified codes in every case. The identification of codes in $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_{r}$ is also important.

TABLE IV
There Are Two Codes in $\mathbb{P}[\mathcal{Q}(7,3)=11,7]_{3}$. One is Specified by the Selector $\boldsymbol{\alpha}=\left(\begin{array}{ll}0 & 1\end{array} 2\right.$ A 3 5)

0000000	1111111	2222222	3333333	4444444	5555555	6666666	7777777
8888888	9999999	A A A A A A	0128 A 35	1239046	234 A 157	3450268	4561379
567248 A	6783590	78946 A 1	89 A 5702	9 A 06813	A 017924	024596 A	1356 A 70
2467081	3578192	46892 A 3	579 A 304	68 A 0415	7901526	8 A 12637	9023748
A 134859	0362894	14739 A 5	2584 A 06	3695017	47 A 6128	5807239	691834 A
7 A 29450	803 A 561	9140672	A 251783	048 A 719	159082 A	26 A 1930	3702 A 41
4813052	5924163	6 A 35274	7046385	8157496	92685 A 7	A 379608	05 A 7643
1608754	2719865	382 A 976	4930 A 87	5 A 41098	60521 A 9	716320 A	8274310
9385421	A 496532	0614578	1725689	283679 A	39478 A 0	4 A 58901	5069 A 12
617 A 023	7280134	8391245	94 A 2356	A 503467	07314 A 2	1842503	2953614
3 A 64725	4075836	5186947	6297 A 58	73 A 8069	840917 A	951 A 280	A 620391
0859327	196 A438	2 A 70549	308165 A	4192760	52 A 3871	6304982	7415 A 93
85260 A 4	9637105	A 748216	0976251	1 A 87362	2098473	31 A 9584	420 A 695
53107 A 6	6421807	7532918	8643 A 29	975403 A	A 865140	0 A 93186	10 A 4297
21053 A 8	3216409	432751 A	5438620	6549731	765 A 842	8760953	9871 A 64
A 982075							

TABLE V
There are Three Codes in $\mathbb{P}[\mathcal{Q}(9,4)=11,9]_{4}$. One is Specified by the Selector $\boldsymbol{\alpha}=\left(\begin{array}{l}012 A 46589\end{array}\right)$

000000000	111111111	222222222	333333333	444444444	555555555
666666666	777777777	8 88888888	999999999	A A A A A A A	012 A46589
12305769 A	2341687 A 0	345279801	45638 A 912	567490 A 23	6785 A 1034
789602145	89 A 713256	9 A 0824367	A 01935478	024981 A57	135 A92068
2460 A 3179	35710428 A	468215390	5793264 A 1	68 A437502	790548613
8 A 1659724	90276 A 835	A 13870946	036817425	147928536	258 A 39647
36904 A 758	47 A 150869	58026197 A	691372 A 80	7 A 2483091	8035941 A 2
9146 A 5203	A 25706314	0487529 A 3	159863 A 04	26 A974015	370 A 85126
481096237	5921 A 7348	6 A 3208459	70431956 A	81542 A 670	926530781
A 37641892	05 A698371	1607 A9482	27180 A593	3829106 A 4	493 A 21705
5 A 4032816	605143927	716254 A 38	827365049	93847615 A	A 49587260
06152384 A	172634950	283745 A 61	394856072	4 A 5967183	506 A 78294
6170893 A 5	72819 A406	8392 A 0517	94 A 301628	A 50412739	073469218
18457 A 329	29568043 A	3 A 6791540	4078 A 2651	518903762	629 A14873
73 A 025984	840136 A95	9512470 A 6	A 62358107	0853 A 4796	1964058 A 7
2 A 7516908	308627 A 19	41973802 A	52 A 849130	63095 A 241	741 A60352
852071463	963182574	A 74293685	09723 A 164	1 A 8340275	209451386
31 A562497	4206735 A 8	531784609	64289571 A	7539 A 6820	864 A 07931
975018 A 42	A 86129053	0 A 9175632	10 A 286743	210397854	3214 A 8965
432509 A 76	54361 A087	654720198	7658312 A 9	87694230 A	987 A 53410
A 98064521					

TABLE VI
There is One Code in $\mathbb{P}[\mathcal{Q}(5,2)=13,5]_{2}$. It Is Specified by the Selector $\boldsymbol{\alpha}=(01762)$. A Deletion Correcting Capability of Two Is the Maximum Achievable by $\tilde{G}(\ell, q, 2)$ Codes of Length 5 (SEe Theorem 4)

00000	11111	22222	33333	44444	55555	66666	77777	88888	99999
A A A A	B B B B B	C C C C C	01762	12873	23984	34 A 95	45 B A 6	56 C B 7	670 C 8
78109	8921 A	9 A 32 B	A B 43 C	B C 540	C0651	021 C 4	13205	24316	35427
46538	57649	6875 A	7986 B	8 A 97 C	9 B A 80	A C B 91	B 0 C A 2	C 10 B 3	03856
14967	25 A 78	36 B 89	47 C 9 A	580 AB	691 BC	7 A 2 C 0	8 B 301	9 C 412	A 0523
B 1634	C 2745	042 B 8	153 C 9	2640 A	3751 B	4862 C	59730	6 A 841	7 B 952
8 C A 63	90 B 74	A 1 C 85	B 2096	C 31 A 7	0594 A	16 A 5 B	27 B 6 C	38 C 70	49081
5 A 192	6 B 2 A 3	7 C 3 B 4	804 C 5	91506	A 2617	B 3728	C4839	063 A C	174 B 0
285 C 1	39602	4 A 713	5 B 824	6 C 935	70 A 46	81 B 57	92 C 68	A 3079	B418A
C 529 B	07 A 31	18 B 42	29 C 53	3 A 064	4 B 175	5 C 286	60397	714 A 8	825 B 9
936 CA	A 470 B	B 581 C	C6920	08493	195 A 4	2 A 6 B 5	3 B 7 C 6	4 C 807	50918
61 A 29	72 B 3 A	83 C 4 B	9405 C	A 5160	B6271	C 7382	09 B 25	1 A C 36	2 B 047
3 C 158	40269	5137 A	6248 B	7359 C	846 A 0	957 B 1	A 68 C 2	B 7903	C 8 A 14
0 A 587	1 B 698	2 C 7 A 9	308 BA	419 C B	52 A 0 C	63 B 10	74 C 21	85032	96143
A 7254	B 8365	C 9476	0 B C 19	1 C 02 A	2013 B	3124 C	42350	53461	64572
75683	86794	978 A 5	A 89 B 6	B 9 A C 7	C A B 08	0 C 67 B	1078 C	21890	329 A 1
43 A B 2	54 B C 3	65 C 04	76015	87126	98237	A 9348	B A 459	CB56A	

A further question requiring resolution is; Can arbitrary multiplier (GRS) codes provide better deletion correcting capabilities than unit multiplier (RS) codes?

In this correspondence, we have only considered $k=2$, higher dimension codes need to be considered also. Some experimental results were given in [16]. It was also proven therein that the shortest subword

TABLE VII
There Is One Code in $\mathbb{P}[\mathcal{Q}(6,3)=23,6]_{3}$. It Is Specified by the Selector $\boldsymbol{\alpha}=(01 G C 45)$. A Deletion Correcting Capability of Three Is the Maximum Achievable by $\tilde{G}(\ell, q, 2)$ Codes of Length 6 (See Theorem 4)

000000	111111	222222	333333	444444	555555	666666	777777
888888	999999	A A A A A	B B B B B B	C C C C C C	D D D D D D	E EEEEE	FFFFFF
G G G G G G	H H H H H H	IIIIII	J J J J J J	K K K K K	L L L L L	M M M M M M	01 GC45
12 HD 56	23 IE 67	34 J F 78	$45 \mathrm{KGG8} 9$	56 LH 9 A	67 MIAB	780 J B C	891 KCD
9 A 2 L D E	A B 3 MEF	B C 40 FG	CD51GH	DE62HI	EF73IJ	F G 84 JK	G H 95 KL
H I A 6 L M	I J B 7 M 0	J K C 801	K L D 912	L M E A 23	M 0 F B 34	02918 A	13 A 29 B
24 B 3 AC	35 C 4 BD	46 D 5 CE	57 E 6 DF	68 F 7 EG	79 G 8 FH	8 A H 9 GI	9 B I A H J
A C J B I K	B D K C J L	CELDKM	D F M EL 0	E G 0 F M 1	FH1 G 02	GI2 H 13	H J 3 I 24
I K 4 J 35	J L 5 K 46	K M 6 L 57	L 07 M 68	M 18079	032 DCF	143 E D G	254 FE H
365 GFI	476 HGGJ	587 IHK	698 JIL	7 A 9 KJM	8 B A L K 0	9 C B M L 1	A D C 0 M 2
B E D 103	CFE214	D GF325	E H G 436	FIH 547	G J I 658	H K J 769	ILK 87 A
J M L 988	K 0 M A 9 C	L 10 B A D	M 21 CBE	04 I 2 G K	15 J 3 HL	26 K 4 IM	37 L 5 J 0
48 M 6 K 1	5907 L 2	6 A 18 M 3	7 B 2904	8 C 3 A 15	9 D 4 B 26	A E 5 C 37	B F 6 D 48
C G 7 E 59	D H 8 F 6 A	EI9G7B	F J A H 8 C	G K B I 9 D	HLCJAE	I M D K B F	J 0 E L C G
K 1 F M D H	L2 G 0 EI	M 3 H 1 FJ	05 B EK 2	16 CFL 3	27 DGM 4	38 EH 05	49 FI 16
5 A G J 27	6 BHK 38	7 CIL 49	8 D J M 5 A	9 EK 06 B	A F L 17 C	B G M 28 D	CH039E
DI14 AF	E J 25 BG	F K 36 CH	GL47 D I	H M 58 EJ	I 069 FK	J 17 A GL	K 288 BHM
L 39 CI 0	M 4 A D J 1	064317	175428	286539	39764 A	4 A 875 B	5 B 986 C
6 CA 97 D	7 DBA 8 E	8 E C B 9 F	9 F D C A G	A GEDBH	B H F E C I	C I G F D J	D J H GEK
E K I H F L	F L J I G M	G M K J H 0	H 0 L K I 1	I 1 M L J 2	J 20 MK 3	K 310 L 4	L 421 M 5
M 53206	07 KF 5 C	18 L G 6 D	$29 \mathrm{MH7E}$	3 A 0 I 8 F	4 B 1 J 9 G	5 C 2 KAH	6 D 3 LB I
7 E 4 MC J	8 F 50 D K	9 G 61 EL	A H 72 F M	BI 83 G 0	C J 94 H 1	D K A 5 I 2	ELB6J3
F M C 7 K 4	G 0 D 8 L 5	H1E9M6	I 2 FA 07	J 3 G B 18	K 4 H C 29	L 5 I D 3 A	M 6 JE4 B
08 D 49 H	19 E 5 Al	2 A F 6 B J	3 B G 7 C K	4 CH 8 D L	5 DI 9 EM	6 E J A F 0	7 F K B G 1
8 G L C H 2	9 H M D I 3	AI 0 E J 4	B J 1 F K 5	CK2 GL 6	DL3 H M 7	EM4I08	F 05 J 19
G 16 K 2 A	H 27 L 3 B	I 38 M 4 C	J 4905 D	K 5 A 16 E	L 6 B 27 F	M 7 C 38 G	096 GD M
1 A 7 HE 0	2 B 8 IF 1	3 C 9 J G 2	4 D A K H 3	5 E B L I 4	6 F C M J 5	7 GD 0 K 6	8 H E 1 L 7
9 IF 2 M 8	A J G 309	B K H 41 A	CLI52B	D M J 63 C	E 0 K 74 D	F1L85E	G 2 M 96 F
H 30 A 7 G	I 41 B 8 H	J 52 C 9 I	K 63 DA J	L 74 EBB	M 85 FCCL	0 A M 5 H 4	1 B 06 I 5
2 C 17 J 6	3 D 28 K 7	4 E 39 L 8	5 F 4 A M 9	6 G 5 B 0 A	7 H 6 C 1 B	8 I 7 D 2 C	9 J 8 E 3 D
AK 9 F 4 E	B L A G 5 F	C M B H 6 G	D 0 CI 7 H	E1 D J 8 I	F 2 E K 9 J	G 3 FLAK	H 4 G M B L
I 5 H 0 CM	J 6 I 1 D 0	K 7 J 2 E 1	L 8 K 3 F 2	M 9 L 4 G 3	0 B F H L 9	1 C GIM A	2 DHJ 0 B
3 EIK 1 C	4 F J L 2 D	5 GK M 3 E	6 HL 04 F	$7 \mathrm{IM15G}$	8 J 026 H	9 K 137 I	AL248J
B M 359 K	C 046 AL	D 157 BM	E268C0	F 379 D 1	G48 AE 2	H59 B F 3	I 6 A C G 4
J 7 B D H 5	K 8 CEI 6	L 9 D F J 7	M A EGK 8	0 C 862 E	1 D 973 F	2 EA 84 G	3 FB 95 H
4 G C A 6 I	5 H D B 7 J	6 I E C 8 K	7 J F D 9 L	8 K G E A M	9 L H F B 0	A M I G C 1	B 0 J H D 2
C1KIE 3	D 2 L J F 4	E 3 M K G 5	F 40 L H 6	G 51 MI 7	H620J8	I 731 K 9	J 842 LA
K 953 MB	LA 640 C	M B 751 D	0 D 1 I 6 J	1 E 2 J 7 K	2 F 3 K 8 L	3 G 4 L 9 M	4 H 5 MA 0
5 I 60 B 1	6 J 71 C 2	7 K 82 D 3	8 L 93 E 4	9 MA 4 F 5	A 0 B 5 G 6	B 1 C 6 H 7	C 2 D 7 I 8
D 3 E 8 J 9	E 4 F 9 KA	F 5 G A L B	G 6 H B M C	H 7 I C 0 D	I 8 JD 1 E	J 9 K E 2 F	K A L F 3 G
L B M G 4 H	M C 0 H 5 I	0 E H 7 A 1	1 F I 8 B 2	2 GJ 9 C 3	3 HK A D 4	4 I L B E 5	5 J M C F 6
6 K 0 DG 7	7 L 1 E H 8	8 M 2 FI 9	903 GJA	A 14 HK B	B 25 I L C	C 36 JMD	D 47 K 0 E
E 58 L 1 F	F 69 M 2 G	G 7 A 03 H	H 8 B14I	I 9 C 25 J	J A D 36 K	K B E 47 L	LCF58M
M D G 690	0 F A J E 6	1 G B K F 7	2 HCL L 8	3 I D H 9	4 JE 0 I A	5 K F 1 J B	6 L G 2 K C
7 MH 3 L D	80 I 4 ME	91 J 50 F	A 2 K 61 G	B 3 L 72 H	C 4 M 83 I	D 5094 J	E61A5K
F 72 B6L	G 83 C 7 M	H 94 D 80	I A 5 E 91	J B 6 F A 2	K C 7 G B 3	LD 8 H C 4	M E9ID 5
0 G 38 I B	1 H 49 JC	2 I 5 AK D	3 J 6 BLE	4 K 7 CMF	5 L 8 D 0 G	6 M 9 E 1 H	70 A F 2 I
81 B G 3 J	92 CH 4 K	A 3 DI 5 L	B 4 EJ 6 M	C 5 F K 70	D 6 G L 81	E 7 H M 92	F 8 I 0 A 3
G 9 J 1 B 4	H A K 2 C 5	I B L 3 D 6	J C M 4 E 7	K D 05 F 8	LE16G9	M F 27 HA	0 H J K M G
1 I K L 0 H	2 J L M 1 I	3 KM 02 J	4 L 013 K	5 M 124 L	60235 M	713460	824571
935682	A 46793	B 578 A 4	C689B5	D 79 A C 6	E 8 A B D 7	F9 B CE 8	G A C D F 9
H B D E G A	I C EF H B	J D F G I C	K E G H J D	L F HIKE	M GIJ L F	0 I C 93 L	1 J D A 4 M
2 K E B 50	3 LFC 61	4 M G D 72	50 HE 83	61 IF94	72 J G A 5	83 K H B 6	94 L I C 7
A 5 M J D 8	B60 K E 9	C 71 LFA	D 82 MGGB	E930 H C	F A 41 I D	GB52 JE	H C 63 KF
I D 74 L G	J E 85 MH	KF960I	L G A 71 J	M H B 82 K	0 J 5 L 73	1 K 6 M 84	2 L 7095
3 M 81 A 6	4092 B 7	51 A 3 C 8	62 B 4 D 9	73 C 5 EA	84 D 6 F B	95 E 7 GC	A 6 F 8 HD
B 7 G 9 I E	C 8 H A J F	D 9 I B K G	E A J C L H	F B K D M I	G C L E 0 J	H D MF1K	IE 0 G 2 L
JF1 H 3 M	K G 2 I 40	L H 3 J 51	M I 4 K 62	0 K L A B 8	1 L M B C 9	2 M 0 CD A	301 DEB
412 EFC	523 FGB	634 GHE	745 HIF	856 I J G	967 J K H	A 78 KLI	B 89 L M J
C 9 A M 0 K	D A B 01 L	E B C 12 M	F CD 230	G DE341	HEF452	IF G 563	J G H 674
K H I 785	LIJ 896	M J K 9 A 7	0 L E M F D	1 MF 0 GE	20 G 1 HF	31 H 2 IG	42 I 3 J H
53 J 4 KI	64 K 5 LJ	75 L 6 MK	86 M 70 L	97081 M	A 81920	B92 A 31	C A 3 B 42
D B 4 C 53	E C 5 D 64	F D 6 E 75	GE7F86	HF8G97	I G 9 H A 8	J H A I B 9	K I B J C A
L J C K D B	M K D L E C	0 M 7 B J I	108 CK J	219 DLK	32 A EML	43 BF 0 M	54 CG 10
65 D H 21	76 EI 32	87 F J 43	98 G K 54	A 9 HL 65	B A I M 76	C B J 087	D CK198
$\text { EDL2A } 9$	F EM3 B A	GF04CB	H G 15 D C	I H 26 ED	JI3 7 FE	K J 4 8 GF	LK 59 HG

length cannot become smaller if k is increased for fixed q and ℓ. Having identified optimal $k=2$ codes it will be useful to check the deletion correcting capability of those codes obtained with the same parameters other than higher values of k.

It would also be useful to extend the results of [16] for RS codes fields of prime characteristic, in particular with prime characteristic 2 . Codes over such fields have been previously found to have more practical application than those over prime fields.

VI. A Note on the Experimental Results

The tables in this correspondence do not present all our selective and exhaustive results. Experimental results will occasionally be updated at http://www.uow.edu.au/~lukemc/expt.html.

APPENDIX

Listings of Inequivalence Sets

In this Appendix, we list the inequivalence sets of Section IV-B with cardinalities of length than about 40 . The codes are identified by the standard form selectors, which are listed without the first two elements since they are always 0 and 1 .

In general a selector $\boldsymbol{\alpha}$ is related to a selector $\boldsymbol{\alpha}^{\prime}$ under the combined reversal and affine transformation. If $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}^{\prime}$ are equal, we mark the selector with a $*$. Otherwise, we list only the smaller of $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}^{\prime}$, in the sense of $\boldsymbol{\alpha}$ being smaller than $\boldsymbol{\alpha}^{\prime}$ if $\alpha_{j}<\alpha_{j}^{\prime}$ for some j such that $\alpha_{i}=\alpha_{i}^{\prime}, \forall i<j$.

$$
\begin{aligned}
& \mathbb{P}[5,4]_{0}=\{(23) *,(24),(32),(34) *\} \text {. } \\
& \mathbb{P}[5,5]_{0}=\{(234) *,(243),(324)\} \text {. } \\
& \mathbb{P}[5,5]_{1}=\left\{\left(\begin{array}{ll}
4 & 3
\end{array}\right) *\right\} \text {. } \\
& \mathbb{P}[7,4]_{0}=\{(23) *,(24),(32),(36),(43),(46)\} \text {. } \\
& \mathbb{P}[7,4]_{1}=\{(25),(26),(34) *,(45) *,(53),(56) *\} \text {. } \\
& \mathbb{P}[7,5]_{0}=\{(234) *,(326),(463),(465)\} . \\
& \mathbb{P}[7,5]_{1}=\{(235),(236),(243),(245),(246),(253) \\
& \text { (254), (256), (264), (265), (324), (325) } \\
& \text { (342), (346), (352), (354), (356)*, (365) } \\
& \text { (423), (425), (426), (453), (523)*, (534) } \\
& \text { (536), (562), (624), (645)*\}. } \\
& \mathbb{P}[7,6]_{0}=\{(2345) *,(3264),(4652),(4653)\} . \\
& \mathbb{P}[7,6]_{2}=\left\{\left(\begin{array}{llll}
6 & 5 & 3 & 4
\end{array}\right) *\right\} \text {. } \\
& \mathbb{P}[7,7]_{0}=\{(23456) *,(32645),(46523)\} . \\
& \mathbb{P}[7,7]_{2}=\{(23564),(25463),(25634),(26534) \\
& \text { (34562), (35624), (43265), (43562) } \\
& \text { (45236), (45326), (53624), (62534)*\}. } \\
& \mathbb{P}[11,4]_{0}=\{(23) *,(24),(37),(39),(310),(42),(45) * \\
& \text { (53), (6 8), (69), (75), (82), (89)*\}. } \\
& \mathbb{P}[11,4]_{1}=\{(25),(26),(27),(28),(29),(210),(32) \\
& \text { (34)*, (36), (38), (43), (46), (48), (49) } \\
& \text { (410), (52), (54), (56)*, (58), (62), (65) } \\
& (67) *,(74),(78) *,(810),(95),(910) *\} . \\
& \mathbb{P}[11,5]_{0}=\{(234) *,(248),(374),(3710),(395) \\
& \text { (425), (427), (534), (692), (698) } \\
& \text { (752), (824), (829) \}. } \\
& \mathbb{P}[11,6]_{0}=\{(2345) *,(2485),(3749),(37410) \\
& \text { (3954), (4275), (5349), (6928) } \\
& \text { (7523), (8247), (8249)\}. }
\end{aligned}
$$

(374910).(752310), (82476) (82479) \}.
$\mathbb{P}[11,7]_{3}=\{(281035),(78439)\}$.
$\mathbb{P}[11,8]_{0}=\{(234567) *,(2485109),(374986)$
(3749810), (7523104), (824769) (8247610) \}.

$$
\begin{aligned}
\mathbb{P}[11,9]_{0}=\{ & (2345678) *,(24851097),(3749862) \\
& (37498610),(75231046),(82476105) \\
& (82476109)\} .
\end{aligned}
$$

$\mathbb{P}[11,9]_{4}=\{(21046589),(21085649),(6732895)\}$.

$$
\mathbb{P}[11,10]_{0}=\{(23456789) *,(248510973)
$$

(37498625), (374986210)
(752310469), (824761053)
(824761059) \}.

$$
\begin{aligned}
\mathbb{P}[11,11]_{0}= & \{(2345678910) *,(2485109736) \\
& (3749862510),(7523104698) \\
& (8247610539)\} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}[13,4]_{0}=\{(23) *,(24),(37),(39),(312),(43),(46),(54) \\
&(58),(512),(63),(65),(610),(74),(75)\} . \\
& \mathbb{P}[13,5]_{0}=\{(234) *,(248),(372),(3712),(4312) \\
&(584),(587),(5128),(653),(6108) \\
&(745),(7412)\} . \\
& \mathbb{P}[13,5]_{2}=\{(762)\} . \\
& \mathbb{P}[13,6]_{0}=\{(2345) *,(2483),(3725),(37212) \\
&(43129),(5873),(5874),(61089) \\
&(74125),(74128)\} . \\
& \mathbb{P}[13,7]_{0}=\{(23456) *,(24836),(372511) \\
&(372512),(4312910),(58734) \\
&(610892),(741285),(7412810)\} . \\
& \mathbb{P}[13,8]_{0}=\{ (234567) *,(2483612),(37251110) \\
&(37251112),(61089212),(74128105) \\
&(74128109)\} .
\end{aligned}
$$

$\mathbb{P}[13,9]_{0}=\{(2345678) *,(248361211)$ (372511108), (3725111012) (610892127), (741281093) (741281095) \}.
$\mathbb{P}[17,4]_{0}=\{(23) *,(24),(37),(39),(316),(48),(413)$ (416), (54), (58), (511), (64), (614), (813)
$(95),(912),(1015),(112),(119),(1115)$ $(125),(1214)\}$.
$\mathbb{P}[17,5]_{0}=\{(234) *,(248),(3715),(3716),(3910)$ $(4136),(4138),(41613),(5411),(586)$ $(6143),(6144),(8132),(957),(9512)$ $(101514),(1125),(1196),(11915),(12142)$ $(12145)\}$.
$\mathbb{P}[17,6]_{0}=\{(2345) *,(24816),(371514),(371516)$ $(391013),(41362),(41368),(58613)$ $(61434),(614316),(813216),(9576)$ $(95712),(1015144),(11254),(119610)$ $(119615),(121425),(121426)\}$.
$\mathbb{P}[17,7]_{0}=\{(23456) *,(2481615),(37151412)$ $(37151416),(3910135),(413627)$ $(413628),(5861314),(6143164)$ $(61431613),(8132169),(957612)$ $(957615),(10151446),(1125410)$ $(11961015),(11961016),(1214265)$ $(12142616)\}$.
$\mathbb{P}[19,4]_{0}=\{(23) *,(24),(37),(39),(318),(49),(413)$ $(416),(52),(56) *,(617),(75),(711),(715)$ $(83),(87),(95),(98),(916),(107),(1015)$ $(146),(152),(1516) *\}$.
$\mathbb{P}[19,5]_{0}=\{(234) *,(248),(3715),(3718),(398)$ $(4132),(4139),(4167),(526),(529)$ $(6177),(7512),(7515),(8718),(957)$ $(9168),(91615),(10153),(10157),(1468)$ $(15210),(15216)\}$.
$\mathbb{P}[19,7]_{0}=\{(23456) *,(2481613),(3715126)$
$(37151218),(398515),(413273)$ $(413279),(4167917),(529186)$ $(5291816),(617745),(7512162)$ $(75121615),(87181112),(957616)$ $(9161578),(1015396),(1015397)$ $(14681710),(15210816),(15210818)\}$.
$\mathbb{P}[23,4]_{0}=\{(23) *,(24),(37),(39),(322),(411),(413)$ $(416),(52),(515),(521),(68),(617),(73)$ $(811),(819),(912),(1020),(1022),(116)$ $(1216),(1218),(138),(1421),(1422),(1518)$ $(1611),(1618),(1713),(188),(1810)\}$.
$\mathbb{P}[23,5]_{0}=\{(234) *,(248),(3715),(3722),(394)$ $(41311),(41317),(41618),(5210),(52115)$
$(52116),(6817),(6818),(7321),(8119)$ (81119), (91216), (102215), (1022 20) $(11620),(121815),(121816),(13812)$ $(142211),(142221),(151817),(16115)$ $(161118),(171314),(18810),(18822)\}$.
$\mathbb{P}[23,6]_{0}=\{(2345) *,(24816),(37158),(371522)$ $(39412),(413176),(4131711),(416183)$ $(52104),(5211615),(5211619),(681817)$ $(681822),(73219),(811918),(811919)$ $(912166),(10221520),(10221521)$ $(1162013),(1218155),(12181516)$ (1381218), (1422116), (14221121) $(1518172),(161157),(1611518)$ $(1713148),(188227),(1882210)\}$.
$\mathbb{P}[23,6]_{3}=\{(161245) *\}$.
$\mathbb{P}[23,7]_{0}=\{(23456) *,(248169),(3715817)$
$(3715822),(3941213),(41317611)$ $(41317619),(41618312),(5210420)$ $(52116198),(521161915),(68182217)$ $(68182219),(7321917),(81191812)$ $(81191819),(9121668),(102215216)$ $(1022152120),(11620135),(121815510)$ $(121815516),(13812184),(142211610)$ $(142211621),(15181727),(16115714)$ $(16115718),(171314821),(1882275)$ (18822 710) \}.
$\mathbb{P}[29,4]_{0}=\{(23) *,(24),(37),(39),(328),(413),(414)$ $(416),(519),(521),(525),(62),(67) *,(720)$ $(86),(824),(828),(94),(915),(923),(104)$ (1018), (12 28), (1312), (13 21), (14 22), (158) $(1520),(1624),(1712),(1727),(185),(1913)$ $(1917),(1924),(204),(208),(237),(242)$ $(2425) *\}$.
$\mathbb{P}[29,5]_{0}=\{(234) *,(248),(3715),(3728),(3927)$ $(41311),(41314),(4166),(52119),(52127)$ $(5259),(627),(6211),(72024),(8619)$ $(82823),(82824),(9154),(9155),(9234)$ $(1048),(10418),(122817),(131221)$ $(142218),(15820),(15826),(16247)$ (171219), (171227), (1853), (191315) (192417), (192427), (2048), (20419) $(23716),(24218),(24225)\}$.
$\mathbb{P}[29,6]_{0}=\{(2345) *,(24816),(37152),(371528)$ $(392723),(413115),(4131114),(416624)$ $(5212719),(5212722),(525916),(62117)$ $(621127),(7202423),(86197),(8282317)$ $(8282324),(91554),(915512),(92347)$
$(104815),(104818),(14221820)$
(1582617), (1582620), (1624725)
$(17121915),(17121927),(185325)$
(19131524), (19242717), (19242723)
(204198), (2041914), (2371620)
$(242189),(2421825)\}$.

$$
\begin{aligned}
\mathbb{P}[47,7]_{4}=\{ & (823421618),(1546281441) \\
& (1627422629),(272402235)\}
\end{aligned}
$$

ACKNOWLEDGMENT

The authors appreciate the valuable comments of the thorough reviewers. They have helped us to significantly improve the readability and consistency of this correspondence.

REFERENCES

[1] P. A. H. Bours, "On the construction of perfect deletion-Correcting codes using design theory," Designs, Codes, Cryptogr., vol. 6, pp. 5-20, 1995.
[2] L. Calabi and W. E. Hartnett, "Some general results of coding theory with applications to the study of codes for the correction of synchronisation errors," Inf. Contr., vol. 15, pp. 235-249, 1969.
[3] V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon and algebraic-Geometry codes," IEEE Trans. Inf. Theory, vol. 45, pp. 1757-1767, 1999.
[4] A. Klein, "On perfect deletion-correcting codes," J. Comb. Des., vol. 12, no. 1, pp. 72-77, 2004.
[5] T. Kløve, "Codes correcting a single insertion/deletion of a zero or a single peak-shift," IEEE Trans. Inf. Theory, vol. 41, pp. 279-283, 1995.
[6] V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and reversals," Soviet Phys.-Doklady, vol. 10, no. 8, pp. 707-710, 1966.
[7] V. I. Levenshtein, "One method of constructing quasilinear codes providing synchronisation in the presence of errors," Probl. Inf. Transm., vol. 7, no. 3, pp. 215-222, 1971.
[8] A. Mahmoodi, "Existence of perfect 3-Deletion-correcting codes," Designs, Codes, Cryptogr., vol. 14, pp. 81-87, 1998.
[9] R. Mathon and T. van Trung, "Directed t-Packings and directed t-Steiner systems," Designs, Codes, Cryptogr., vol. 18, pp. 187-198, 1999.
[10] I. Reed and G. Solomon, "Polynomial codes over certain finite fields," SIAM J. Appl. Math., vol. 8, no. 2, pp. 300-304, 1960.
[11] R. Safavi-Naini and Y. Wang, "Traitor tracing for shortened and corrupted fingerprints," in Proc. ACM-DRM'02, LNCS, 2003, vol. 2696, pp. 81-100.
[12] N. Shalaby, J. Wang, and J. Yin, "Existence of perfect 4-DeletionCorrecting codes with length six," Designs, Codes, Cryptogr., vol. 27, pp. 145-156, 2002.
[13] N. J. A. Sloane, On Single-Deletion-Correcting Codes' in Codes and Designs. Columbus, OH: Math. Res. Inst. Publications, Ohio Univ., 2002, vol. 10, pp. 273-291.
[14] E. Tanaka and T. Kasai, "Synchronisation and substitution error correcting codes for the Levenshtein metric," IEEE Trans. Inf. Theory, vol. 22, pp. 156-162, 1976.
[15] R. R. Varshamov and G. M. Tenengolts, "Codes which correct single asymmetric errors (in Russian)," (in Russian) Avtomatika i Telemekhanika, vol. 26, no. 2, pp. 288-292, 1965.
[16] Y. Wang, L. McAven, and R. Safavi-Naini, Deletion Correcting Using Generalised Reed-Solomon Codes.' t Coding, Cryptography and Combinatorics, K. Q. Feng, H. Niederreiter, and C. Xing, Eds. Basel: Birkhäuser, 2004.
[17] J. Yin, "A combinatorial construction for perfect deletion-correcting codes," Designs, Codes and Cryptogr., vol. 23, pp. 99-110, 2001.

Bounds on Key Appearance Equivocation for Substitution Ciphers

Yuri L. Borissov and Moon Ho Lee, Senior Member, IEEE

Abstract

The average conditional entropy of the key given the message and its corresponding cryptogram, $H(\mathbf{K} \mid \mathbf{M}, \mathbf{C})$, which is refer as a key appearance equivocation, was proposed as a theoretical measure of the strength of the cipher system under a known plaintext attack by Dunham in 1980. In the same work (among other things), lower and upper bounds for $H\left(\mathcal{S}_{\mathcal{M}} \mid \mathbf{M}^{L} \mathbf{C}^{L}\right)$ are found and its asymptotic behavior as a function of cryptogram length L is described for simple substitution ciphers, i.e., when the key space $\mathcal{S}_{\mathcal{M}}$ is the symmetric group acting on a discrete alphabet \mathcal{M}. In the present paper we consider the same problem when the key space is an arbitrary subgroup $\mathcal{K} \triangleleft \mathcal{S}_{\mathcal{M}}$ and generalize Dunham's result.

Index Terms-Key equivocation, known plaintext attack, memoryless message source, message equivocation, simple substitution ciphers.

I. INTRODUCTION

Shannon, in his seminal paper [2], showed that the conditional entropies of the key and message given the cryptogram can be used as a theoretical measure of strength of the cipher system when assuming unlimited cryptanalytic computational capabilities. These conditional entropies are called the key and message equivocation, respectively.

In general it is difficult to calculate these equivocations explicitly. For that Shannon established in [2] a general lower bound and introduced a random cipher model which would approximate the behavior of complex practical ciphers. Afterward, Hellman [3] reviewed and extended Shannon's information-theoretic approach and showed that random cipher model is conservative in that a randomly chosen cipher is essentially the worst possible. Later on Blom [5] obtained exponentially tight bounds on the key equivocation for simple substitution ciphers. In [1] to derive bounds for simple substitution ciphers on the message equivocation in terms of the key equivocation, Dunham derived such bounds for so-called key appearance equivocation. This author pointed out also, that it can be considered as a theoretical measure of the strength of the cipher system under known plaintext attack. Another contribution of this subject is the Sgarro's work [7].

In this paper we consider a situation where the key space is confined to a subgroup \mathcal{K} of the group $\mathcal{S}_{\mathcal{M}}$ of all permutations acting on a discrete alphabet \mathcal{M}. Apart from simple substitution ciphers, some other classical cipher systems (e.g., transposition cipher with fixed period, matrix system from [2, Example 4.6, p. 667], etc.) can be studied in this model. Other examples are given in [4] and [6].

The paper is organized as follows. In Section II, we present the assumptions and background of substitution ciphers and key appearance equivocation. In Section III, we state a theorem which gives the

[^3]
[^0]: Manuscript received June 2, 2004; revised February 19, 2007.
 L. McAven is with the Centre for Computer and Information Security Research, School of Computer Science and Software Engineering University of Wollongong, Australia (e-mail: lukemc@uow.edu.au).
 R. Safavi-Naini is with the iCore Information Security Lab, Department of Computer Science, University of Calgary, Canada (e-mail: rei@epsc.ucalgary. ca).

 Communicated by \emptyset. Ytrehus, Associate Editor for Coding Techniques.
 Digital Object Identifier 10.1109/TIT.2007.896889

[^1]: ${ }^{3}$ A similar isomorphism exists for general GRS codes if one reverses both the multiplier and the selector.

[^2]: ${ }^{4}$ The 60% and 40% in the second to last column of Table I of [16] should each be one row higher. That is for $q=7, \ell=5$, we have 60% with $s=4(r=1)$ and 40% with $s=5(r=0)$.

[^3]: Manuscript received December 11, 2006; revised February 19, 2007. This work was supported in part by Ministry of Information and Communication (MIC) Korea under the IT Foreign Specialist Inviting Program (ITFSIP), ITSOC, ITRC, International Cooperative Research by the Ministry of Science and Technology, KOTEF, and 2nd stage Brain Korea 21.
 Y. L. Borissov is with the Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (e-mail: yborisov@moi.math.bas. $\mathrm{bg})$.
 M. H. Lee is with the Institute of Information and Communication, Chonbuk National University, Jeonju 561-756, Republic of Korea (e-mail: moonho@ chonbuk.ac.kr).

 Communicated by E. Okamoto, Associate Editor for Complexity and Cryptography.

 Digital Object Identifier 10.1109/TIT.2007.896865

