

University of Wollongong Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

Fall 2007

Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension Over Prime Fields

L. McAven University of Wollongong, lukemc@uow.edu.au

R. Safavi-Naini University of Wollongong, rei@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

McAven, L. and Safavi-Naini, R.: Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension Over Prime Fields 2007. https://ro.uow.edu.au/infopapers/717

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension Over Prime Fields

Abstract

Deletion correction codes have been used for transmission synchronization and, more recently, tracing pirated media. A generalized Reed-Solomon (GRS) code, denoted by GRSk(l,q,alpha,v), is a code of length I over GF(q) with qk codewords. These codes have an efficient decoding algorithm and have been widely used for error correction and detection. It was recently demonstrated that GRS codes are also capable of correcting deletions. We consider a subclass of GRS codes with dimension k=2 and q prime, and study them with respect to deletion correcting capability. We give transformations that either preserve the code or maintain its deletion correction capability. We use this to define equivalent codes; and then use exhaustive and selective computer searches to find inequivalent codes with the highest deletion correcting capabilities. We show that, for the class under consideration, up to I-3 deletions may be corrected. We also show that for lles36 there exist codes with q2 codewords such that receiving only 3 out of t transmitted symbols of a codeword is enough to recover the codeword, thus meeting the bound specified above. We also specify some "nice" codes which are associated with the smallest field possible for codes of a given length and deletion correcting capability. Some of the identified codes are unique, with respect to the defined equivalence.

Keywords

Codes, deletion correction, Reed-Solomon.

Disciplines

Physical Sciences and Mathematics

Publication Details

This article was originally published as McAven, L & Safavi-Naini, R, Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension Over Prime Fields, IEEE Transactions on Information Theory, 53(6), 2007, 2280-2294. Copyright Institute of Electronics and Electrical Engineers 2007. Original article available here As a consequence of Lemma 2 and Lemma 3 we have the following.

Corollary 1: G has a vertex cover of size t if and only if G'' has a stopping set of size $t(m + 1) + m, 1 \le t \le n - 1$. Hence $(G, t) \in \text{VERTEX COVER}(=)$ if and only if $(G'', t(m + 1) + m) \in \text{STOPPING DISTANCE}.$

Corollary 2: G has a vertex cover of size at most t if and only if G'' has a stopping set of size at most $t(m + 1) + m, t \in \{1, 2, ..., n - 1\}$. Hence $(G, t) \in VERTEX$ COVER if and only if $(G'', t(m+1)+m) \in$ STOPPING DISTANCE.

We are now ready to prove.

Theorem 1: STOPPING DISTANCE and STOPPING SET are NP-complete

Proof: Since G'' can be constructed from G in polynomial time (O(mn)) time suffices), it follows that VERTEX COVER(=) \leq_p STOP-PING SET and VERTEX COVER \leq_p STOPPING DISTANCE from Corollary 1 and Corollary 2 respectively. It is easy to verify whether a given set of left vertices of a bipartite graph forms a stopping set in time linear in the size of the graph. Hence both STOPPING DISTANCE and STOPPING SET belong to the class NP.

As a consequence, we have the following corollary.

Corollary 3: There is no polynomial time algorithm for computing the stopping distance of a Tanner graph unless P = NP.

ACKNOWLEDGMENT

The authors would like to thank Dr. L. Sunil Chandran for useful discussions, and the anonymous referees for their helpful comments. K. Murali Krishnan acknowledges sponsorship for the Ph.D. degree from the National Institute of Technology, Calicut under the QIP scheme.

REFERENCES

- C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, "Finite length analysis of low-density parity-check codes on the binary erasure channel," *IEEE Trans. Inf. Theory.*, vol. 48, pp. 1570–1579, Jun. 2002.
- [2] C. Di, A. Montanari, and R. Urbanke, "Weight distribution of LDPC code ensembles: Combinatorics meets statistical physics," in *Proc. IEEE Int. Symp. Inf. Theory*, Chicago, IL, Jul. 2004, p. 102.
- [3] A. Orlitsky, K. Viswanathan, and J. Zhang, "Stopping set distribution of LDPC code ensembles," *IEEE Trans. Inf. Theory*, vol. 51, pp. 929–953, Mar. 2005.
- [4] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, "Construction of irregular LDPC codes with low error floors," in *Proc. IEEE Int. Conf. Commun.*, Seattle, WA, May 2003, pp. 3125–3129.
- [5] A. Ramamoorthy and R. Wesel, "Construction of short block length irregular LDPC codes," in *Proc. IEEE Int. Conf. Commun.*, Paris, France, Jun. 2004, pp. 410–414.
- [6] A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, "Stopping sets and girth of Tanner graphs," in *Proc. IEEE Int. Symp. Inf. Theory*, Lausanne, Jun. 2002, p. 2.
- [7] M. Schwartz and A. Vardy, "On the stopping distance and the stopping redundancy of codes," *IEEE Trans. Inf. Theory*, vol. 52, pp. 922–932, Mar. 2006.
- [8] R. M. Tanner, "A recursive approach to low-complexity codes," *IEEE Trans. Inf. Theory*, vol. 27, pp. 533–547, Sep. 1981.
- [9] T. H. Cormen, C. E. Leicerson, and R. L. Rivest, *Introduction to Algorithms*. Cambridge, MA: MIT Press, 1990.
- [10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman, 1979.
- [11] S. Cook, "The complexity of theorem proving procedures," in *Proc. Third ACM Ann. Symp. Theory Comput.*, Shaker Heights, OH, May 1971, pp. 151–158.
- [12] H. Pishro-Nik and F. Fekri, "On decoding of low-density parity-check codes over the binary erasure channel," *IEEE Trans. Inf. Theory*, vol. 50, pp. 439–454, Mar. 2004.

- [13] J. Han and P. Siegel, Improved Upper Bounds on Stopping Redundancy [Online]. Available: http://www.arXiv.org, cs.IT/0511056, to be published
- [14] A. Vardy, "The intractability of computing the minimum distance of a code," *IEEE Trans. Inf. Theory*, vol. 46, pp. 1757–1766, Nov. 1997.
- [15] E. R. Berlekamp, R. J. McElicce, and H. C. A. van Tilborg, "On the inherent intractability of certain coding problems," *IEEE Trans. Inf. Theory*, vol. IT-24, pp. 384–386, May 1978.

Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension 2 Over Prime Fields

Luke McAven and Reihaneh Safavi-Naini, Member, IEEE

Abstract-Deletion correction codes have been used for transmission synchronization and, more recently, tracing pirated media. A Generalized **Reed–Solomon (GRS) code, denoted by** $GRS_k(\ell, q, \alpha, \mathbf{v})$, is a code of length ℓ over $\mathit{GF}(q)$ with q^k codewords. These codes have an efficient decoding algorithm and have been widely used for error correction and detection. It was recently demonstrated that GRS codes are also capable of correcting deletions. We consider a subclass of GRS codes with dimension k = 2 and q prime, and study them with respect to deletion correcting capability. We give transformations that either preserve the code or maintain its deletion correction capability. We use this to define equivalent codes; and then use exhaustive and selective computer searches to find inequivalent codes with the highest deletion correcting capabilities. We show that, for the class under consideration, up to $\ell - 3$ deletions may be corrected. We also show that for $\ell \leq 36$ there exist codes with q^2 codewords such that receiving only 3 out of ℓ transmitted symbols of a codeword is enough to recover the codeword, thus meeting the bound specified above. We also specify some "nice" codes which are associated with the smallest field possible for codes of a given length and deletion correcting capability. Some of the identified codes are unique, with respect to the defined equivalence.

Index Terms-Codes, deletion correction, Reed-Solomon.

I. INTRODUCTION

Error-correcting codes are widely used to correct substitution and erasure errors. A different, less studied, class of codes are the deletion correcting (DC) codes, introduced by Levenshtein [6] to correct synchronisation errors. The applications of DC codes include packet loss in Internet transmission [13] and, more recently, tracing pirate media [11]. Various studies of DC codes have been made [1], [2], [5]–[8], [12]–[14], [17]. These studies generally consider a small number of deletions, or a specific class of combinatorial based codes, or bounds of various sorts. Perfect deletion correcting codes are codes for which every possible word of some length over the associated alphabet is a subword of exactly one codeword. It is known that perfect codes exist. For example, there are many length 6 codes (over different alphabets) capable of correcting four deletions [12]. In that case any word of length 2 is a subword of exactly one codeword.

Manuscript received June 2, 2004; revised February 19, 2007.

L. McAven is with the Centre for Computer and Information Security Research, School of Computer Science and Software Engineering University of Wollongong, Australia (e-mail: lukemc@uow.edu.au).

R. Safavi-Naini is with the iCore Information Security Lab, Department of Computer Science, University of Calgary, Canada (e-mail: rei@epsc.ucalgary. ca).

Communicated by Ø. Ytrehus, Associate Editor for Coding Techniques. Digital Object Identifier 10.1109/TIT.2007.896889 Sloane [13] surveys single deletion correcting codes. He primarily focuses on binary codes and discusses difficulties of constructing and analysing deletion correcting codes. Sloane reports on exhaustive searches to find the largest single deletion correcting binary codes of a given length, which showed that the Varshamov–Tenengolts codes [15] are of optimal size for length up to 9. Lenveshtein [6] had shown that these codes are capable of correcting one deletion.

It was recently observed [11] that Generalized Reed–Solomon (GRS) codes, extensively studied for their error correction capability, are also capable of deletion correction. A subsequent study [16] detailed a method for obtaining length 5 codes capable of correcting one deletion. That work also gave the results of numerical experiments to investigate the deletion correction capabilities of GRS codes.

An important advantage of using GRS codes, initially noted in [11], is the existence of an efficient deletion correcting algorithm. The decoding algorithm for GRS codes can be formulated as a polynomial reconstruction problem, to which the efficient list decoding algorithm of Guruswami and Sudan [3] applies.

A GRS_k($\ell, q, \alpha, \mathbf{v}$) code is specified by the parameters α , \mathbf{v}, k, ℓ and q. We call α and \mathbf{v} the *selector* and *multiplier*, respectively. GRS codes for which $\mathbf{v} = \mathbf{1}$ is a vector of all ones, are the widely studied Reed–Solomon (RS) codes [10]. We focus on RS codes that are defined over a prime field GF(q) that have dimension k = 2 and so $q^k = q^2$ codewords. The choice of unit multiplier codes is because our previous computer searches [16], both exhaustive and selective, suggest that these codes appear likely to correct more deletions then nonunit multiplier codes. We also believe RS codes merit special attention because of their importance and wide application. Restricting ourselves to codes with dimension k = 2 allows us to exploit the linear relationship between codewords to analyze them.

We first prove an upper bound on the deletion correcting capability of the codes in this class. A follow-on question is; "When can the bound be achieved with equality?", which translates into; "What is the smallest field for which there exists a code that achieves the bound?" We use structured computer searches to obtain insight into the above questions and provide interesting results. We use properties of code classes to aid the search, hence being able to obtain insight into the above questions and produce results for larger (and so more interesting) fields. We also find codes that are the 'best', in ways that we will define.

In our computer searches we restrict our attention to finite fields of prime order to simplify our search and classification. Classification of codes over non-prime fields introduces other factors, such as the choice of primitive polynomial, that complicate the task of obtaining experimental results (some experimental results for fields of prime power size are given in [16]). The theoretical results in this correspondence, or slightly modified versions of them, are applicable to nonprime fields. In particular, we show the bound on deletion capacity is for dimension k = 2 RS codes, over prime and nonprime fields.

For RS codes, we show that distinct $\boldsymbol{\alpha}$ can result in the same code (the same set of codewords). Indeed, an affine transformation applied to the vector $\boldsymbol{\alpha}$ results in $\boldsymbol{\alpha}'$, which generates the same code in this sense. This allows us to associate each unit multiplier code with a code having a selector of the form $(0 \ 1 \ \alpha_3 \ \dots \ \alpha_\ell)$, and hence reduce exhaustive searches of k = 2 unit multiplier codes to a small proportion $(1/(q^2 - q))$ of all codes in the class.

We define equivalent codes as codes that are obtained through applying a deletion correcting distance preserving transformation, preserving at the level of codeword to codeword with a map across the entire codebook.

We define equivalent codes as codes related through the application of a distance preserving (deletion correcting distance) transformation. We refer to such a transformation as a isomorphism in Section II-B, and note that the codes have the same deletion correcting capability. We seek transformations on selectors that result in equivalent codes. Unlike error correcting codes, for which column permutations leave the codes invariant from a distance distribution view point, a general column permutation changes the deletion correcting capability of codes. We show, however, that there is a nontrivial permutation for which the deletion correcting capability will remain the same.

We enumerate inequivalent RS codes (over prime field) parameterized by q, ℓ and r, where r is the number of deletions that a code can correct. We prove that $r = \ell - 3$ is an upper bound on the deletion correcting capability, that is $r \leq \ell - 3$. We have identified examples of codes with $r = \ell - 3$ for $\ell \leq 36$. For $\ell \leq 8$ we have identified, and proven by exhaustive search, the smallest q for which such codes exist. When the number of such inequivalent codes is known and is small, we have listed the complete set in Appendix. In some cases there are very few codes with these parameters. For example, there is only one code for q = 23, $\ell = 6$ and r = 3, and there is no code with $\ell = 6$, r = 3 for any q < 23. We give explicit examples of such codes with complete codebooks.

The rest of the correspondence is structured as follows. In Section II we introduce the basics of deletion correcting codes, GRS codes and RS codes. We define the notion of equivalence of codes in this context.

In Section III, we define and discuss the affine and reversal transformations. In Section IV, we give bounds on the deletion correcting capability and enumerate the distinct codes with the same deletion correcting capabilities. Finally, Section V contains a summary of, and discussion on, our results. An Appendix contains lists of small sets of inequivalent codes for particular prime RS codes parameterized by (q, l, r).

II. PRELIMINARIES

A. Deletion Correcting

Let *a* and *b* be strings over a q—ary alphabet *A*. We denote the length of *a*, that is the number of elements (letters) in it, by |a|. We say a string *a* is a *subword* of *b* if *a* can be obtained from *b* by only removing elements of *b*. For example, 2234 is a subword of 142254364, while 452 is not (since reordering is required).

A q—ary code is a collection of q—ary words. A linear code of dimension k is a subspace of dimension k of GF(q).

A code can *correct* r deletions if any string of length $\ell - r$ is a subword of at most one codeword. We say such a code has a deletion correcting capacity of r. For a particular code Γ we use the notation $r(\Gamma)$ to denote the deletion correcting capability.

To find the deletion correcting capability of a code we need to find the length of the longest common subwords of any pair of codewords, across all pairs of codewords in the code. Let u and v be two codewords of a code Γ and let $\rho(u, v)$ denote a longest common subword of uand v, of length $|\rho(u, v)|$. There may be many common subwords with this same length. We define $\mathcal{R}(\Gamma) = \max_{u,v \in \Gamma, u \neq v} |\rho(u, v)|$ and let $s = \mathcal{R}(\Gamma) + 1$. Then s is the unique subword length, that is; the length of the shortest subword that uniquely identifies a codeword. It follows that Γ is an r—deletion correcting code, where $r = (\ell - s)$.

B. Reed-Solomon (GRS) Codes

Let F_q , q prime, be a field of q elements. Let k be an integer and

 $F_q[x]_k = \{f(x) : f(x) \text{ is a polynomial over } F_q : \deg(f) < k\}.$

Let $\alpha_1, \alpha_2, \ldots, \alpha_\ell \in F_q$, $\ell \leq q$ be distinct. Let $v_1, v_2, \ldots, v_\ell \in F_q$ be non-zero. Write $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \ldots, \alpha_\ell)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_\ell)$. A *k*-dimensional prime Generalized Reed–Solomon (GRS) code of length ℓ is the set of all vectors

$$(v_1 f(\alpha_1), v_2 f(\alpha_2), \dots, v_\ell f(\alpha_\ell)), \quad \forall f \in F_q[x]_k.$$

This code is denoted by $\text{GRS}_k(\ell, q, \boldsymbol{\alpha}, \mathbf{v})$. We refer to $\boldsymbol{\alpha}$ as the *selector* and \mathbf{v} as the *multiplier*. We note that $\text{GRS}_k(\ell, q, \boldsymbol{\alpha}, \mathbf{v})$ has q^k codewords. We say a particular vector, or codeword, in the code/set is *associated* with the polynomial f(x) used to generate it.

We identify two particular sets of GRS codes (over prime field).

Definition 1 (GRS Classes): For fixed ℓ , q, k, let $G(\ell, q, k)$ be the collection of codes obtained by taking all $\text{GRS}_k(\ell, q, \alpha, \mathbf{v})$ codes with all possible α and \mathbf{v} .

For a particular code in $G(\ell, q, k)$, say $\text{GRS}_k(\ell, q, \alpha, \mathbf{v})$, we define $s(\ell, q, k, \alpha, \mathbf{v}) = \mathcal{R} + 1$, where \mathcal{R} was defined in the previous section. We then define

$$\sigma(\ell, q, k) = \min_{\mathbf{x}} \min_{\mathbf{y}} s(\ell, q, k, \boldsymbol{\alpha}, \mathbf{v}) \tag{1}$$

to be the minimum $s(\ell, q, k, \boldsymbol{\alpha}, \mathbf{v})$ for $G(\ell, q, k)$. This gives the highest deletion correcting capability for given parameters ℓ, q, k .

We are interested in a subclass where the multiplier values are all one. Such codes are Reed–Solomon codes over prime fields.

Definition 2 (RS Classes): For fixed ℓ , q, k, the subset of codes in $\text{GRS}_k(\ell, q, \boldsymbol{\alpha}, \mathbf{v})$ for which $v_i = 1, 1 \le i \le \ell - 1$ are called RS codes and are denoted by $\tilde{G}(\ell, q, k)$.

We use $\tilde{G}(\ell, q, 2)$ to denote the subset of $\tilde{G}(\ell, q, k)$ class with k = 2.

We note that, as specified, not all elements of $G(\ell, q, k)$ are distinct. That is two distinct $\boldsymbol{\alpha}$ may result in the same set of codewords. Also two codes Γ and Γ' may have *equivalent* deletion correcting properties. Two codes are *isomorphic* if there is a one-to—one mapping Tbetween Γ and Γ' such that for any pair of codewords $u, v \in \Gamma$ with $|\rho(u,v)| = t$, we have $|\rho(T(u), T(v))| = t$, and T is referred to as an *isomorphism*. Two codes are called *equivalent* if there is an isomorphism between them. We are interested in the enumeration of inequivalent codes and give, in Section IV, lists and counts of codes identified as inequivalent under the classes of isomorphism defined in Section III.

C. RS Codes and Deletion Correcting

The statements in this section regarding the subwords hold for nonprime RS codes also.

Let us use an example of a $\tilde{G}(\ell, q, 2)$ code, for q = 7 and $\ell = 4$, to illustrate RS codes and deletion correcting capability. We choose the selector $\alpha = (1 \ 3 \ 0 \ 4)$. The codebook for this code is shown in the expression at the bottom of the page. Each codeword is of length $\ell = 4$ and is associated with a polynomial of the form $f(x) = a_1 x + a_0$. The

*i*th letter in a codeword is $f(\alpha_i)$. This code is capable of correcting up to one deletion. This means there are no length three words which are subwords of two distinct codewords, but that there are words of length two which are subwords of two distinct codewords.

For any code with unit multipliers, the first q codewords, those associated with the polynomials of degree 0, are constant codewords. Thus, for any given length, there is a single subword only for each of those codewords. For example, any subword of the codeword associated with the polynomial 0x + 2 will always be a string of 2's, of whatever length the subword is.

Each codeword is associated with a polynomial of degree 1 and so has distinct components, that is each letter in the codeword differs from each other letter. Thus two subwords, of any length, taken from different columns of a codeword are always distinct.¹ Furthermore, the length of the longest common subword between, a codeword associated with a polynomial of degree 0 and any codeword associated with a polynomial of degree 1, is at most 1. Using this property effectively means that; to find the deletion correcting capability of a code we can restrict our attention to finding the length of subwords common to two codewords, both of which are associated with polynomials of degree 1.²

III. EQUIVALENT CODES IN $\tilde{G}(\ell, q, 2)$

In this section we present two transformations of selector vectors that result in equivalent codes. The first transformation results in a selector vector which generates the same code; that is, a code with the same set of codewords. The second transformation results in a different code (different set of vectors) that has the same deletion correcting capabilities through the isomorphism.

For a scalar *s* and a vector **v** with the *i*th component v_i , i = 1, ..., n, we adopt the convention that $\mathbf{v} + s$, denotes a vector **r** with components $r_i = v_i + s$, i = 1, ..., n.

A. Affine Transformations of the Selector

Theorem 1: If two codes Γ and Γ' in $G(\ell, q, 2)$ have respective selectors $\boldsymbol{\alpha} = (\alpha_1 \dots \alpha_\ell)$ and $\boldsymbol{\alpha}' = (\alpha'_1 \dots \alpha'_\ell)$ and there is an affine transformation T such that $\alpha'_i = T(\alpha_i), i = 1, \dots \ell$, then the two

¹This allows us to identify both the deleted elements and the locations from which they have been deleted.

²Note that in the above case the longest common subword may be longer if the multipliers differ from 1, supporting the observation that unit multiplier codes (i.e., RS codes) would have higher deletion correcting capabilities. This property probably becomes less significant for larger qs, since the proportion of codewords associated with degree 0 polynomials becomes insignificant.

0x + 0 0000	0x + 1 1111	0x + 2 2222	0x + 3 3333
0x + 4 4444	0x + 5 5555	0x + 6 6666	1x + 0 1304
1x + 1 2415	1x + 2 3526	1x + 3 4630	1x + 4 5041
1x + 5 6152	1x + 6 0263	2x + 0 2601	2x + 1 3012
2x + 2 4123	2x + 3 5234	2x + 4 6345	2x + 5 0456
2x + 6 1560	3x + 0 3205	3x + 1 4316	3x + 2 5420
3x + 3 6531	3x + 4 0642	3x + 5 1053	3x + 6 2164
4x + 0 4502	4x + 1 5613	4x + 2 6024	4x + 3 0135
4x + 4 1246	4x + 5 2350	4x + 6 3461	5x + 0 5106
5x + 1 6210	5x + 2 0321	5x + 3 1432	5x + 4 2543
5x + 5 3654	5x + 6 4065	6x + 0 6403	6x + 1 0514
6x + 2 1625	6x + 3 2036	6x + 4 3140	6x + 5 4251
6x + 6 5362			

codes have the same set of codewords and therefore the same deletion correcting capability.

Proof: Let Γ and Γ' have deletion correcting capabilities r and r', respectively. Let T = aX + b be the affine transformation relating the selectors of Γ and Γ' , that is $\boldsymbol{\alpha} = a\boldsymbol{\alpha}' + b$, $a \neq 0$, $a, b \in F_q$. For any $a_0, a_1 \in F_q$, that is any codeword $a_1\mathbf{x} + a_0$ in Γ , the codeword is $a_1(\boldsymbol{\alpha}) + a_0$. Applying the affine transformation we see the same codeword in Γ' is of the form $(a_0 + ba_1) + a_1a(\boldsymbol{\alpha}')$. This is a codeword in Γ' since the selector is $\boldsymbol{\alpha}'$, the polynomial degree is at most 1 and both $(a_0 + ba_1)$ and a_1a are in F_q . Thus any codeword in Γ is also a codeword in Γ' is equal they contain the same codewords, and thus have equal deletion correcting capabilities.

Let us consider an example of this correspondence through an affine transformation. In the previous section we considered a code with selector $\boldsymbol{\alpha} = (1 \ 3 \ 0 \ 4)$. Let us consider the code with selector related by the affine transformation $\boldsymbol{\alpha}' = 2\boldsymbol{\alpha} + 3 = (5 \ 2 \ 3 \ 4)$. For each polynomial in Γ , we give the codeword and the polynomial in Γ' which has the same codeword.

Г		Γ'	Г		Γ'
0x + 0	0000	0x + 0	0x + 1	1111	0x + 1
0x + 2	2222	0x + 2	0x + 3	3333	0x + 3
0x + 4	4444	0x + 4	0x + 5	5555	0x + 5
0x + 6	6666	0x + 6	1x + 0	1304	4x + 2
1x + 1	2415	4x + 3	1x + 2	3526	4x + 4
1x + 3	4630	4x + 5	1x + 4	5041	4x + 6
1x + 5	6152	4x + 0	1x + 6	0263	4x + 1
2x + 0	2601	1x + 4	2x + 1	3012	1x + 5
2x + 2	4123	1x + 6	2x + 3	5234	1x + 0
2x + 4	6345	1x + 1	2x + 5	0456	1x + 2
2x + 6	1560	1x + 3	3x + 0	3205	5x + 6
3x + 1	4316	5x + 0	3x + 2	5420	5x + 1
3x + 3	6531	5x + 2	3x + 4	0642	5x + 3
3x + 5	1053	5x + 4	3x + 6	2164	5x + 5
4x + 0	4502	2x + 1	4x + 1	5613	2x + 2
4x + 2	6024	2x + 3	4x + 3	0135	2x + 4
4x + 4	1246	2x + 5	4x + 5	2350	2x + 6
4x + 6	3461	2x + 0	5x + 0	5106	6x + 3
5x + 1	6210	6x + 4	5x + 2	0321	6x + 5
5x + 3	1432	6x + 6	5x + 4	2543	6x + 0
5x + 5	3654	6x + 1	5x + 6	4065	6x + 2
6x + 0	6403	3x + 5	6x + 1	0514	3x + 6
6x + 2	1625	3x + 0	6x + 3	2036	3x + 1
6x + 4	3140	3x + 2	6x + 5	4251	3x + 3
6x + 6	5362	3x + 4			

We want to count inequivalent codes. We define a standard representation for codes and use that to distinguish inequivalent codes.

Corollary 1: A code Γ represented by $\alpha_1 > 0$ and/or $\alpha_2 > 1$ can also be represented by a unique selector vector with $\alpha'_1 = 0$, $\alpha'_2 = 1$. We call this the *standard representation* or *standard form* of the code.

Proof: Let the code Γ have a selector $\boldsymbol{\alpha}$. Consider the selector $\boldsymbol{\alpha}' = \frac{\boldsymbol{\alpha}-\alpha_1}{\alpha_2-\alpha_1}$, where $\alpha_i' = \frac{\alpha_i-\alpha_1}{\alpha_2-\alpha_1}$ for all $i = 1, \ldots, \ell$ and α_i' and α_i denote the *i*th component of $\boldsymbol{\alpha}'$ and $\boldsymbol{\alpha}$, respectively. Since $\alpha_2 \neq \alpha_1$, by definition, an inverse $A = (\alpha_2 - \alpha_1)^{-1}$ exists we have $\alpha_i' = A\alpha_i - \alpha_1 A$ and since $\alpha_1 > 0$ the relationship between $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}'$ is an affine transformation. Using Theorem 1, we conclude that $\boldsymbol{\alpha}'$ generates

the same code as α . Evaluating the first two elements of α' we find $\alpha'_1 = 0$ and $\alpha'_2 = 1$.

The two parameters of the affine transformation are fixed by the need to fix the 0 and 1 in the first two components of the selector in standard form and so the transformation and the standard form representation of the vector are unique. \Box

These results are especially useful for codes in $G(\ell, q, 2)$ classes. There we only need to consider codes in the standard representation, that is with $\alpha_1 = 0$ and $\alpha_2 = 1$. This reduces the search space by a factor of $1/(q^2 - q)$.

B. Selector Reversal

Here we show that the deletion correcting capabilities of $\hat{G}(\ell, q, k)$ codes is invariant under reversal of the selector, for arbitrary $k.^3$

For error correcting codes the error correcting capability is invariant under *any permutation* of the columns of the code. This is not the case for deletion correcting capability, as the following example illustrates. Consider two codewords $c_1 = (1 \ 2 \ 3 \ 4 \ 5)$ and $c_2 = (5 \ 2 \ 4 \ 6 \ 7)$. The cyclic permutation of columns $(1 \ 5 \ 4 \ 3 \ 2)$ gives the codewords $c'_1 = (2 \ 3 \ 4 \ 5 \ 1)$ and $c'_2 = (2 \ 4 \ 6 \ 7 \ 5)$. While c_1 and c_2 have a longest common subword $(2 \ 4)$ of length 2, c'_1 and c'_2 have a longest common subword $(2 \ 4 \ 5)$ of length 3.

We define \overline{x} for a word x where $\overline{x}_i = x_{|x|+1-i}$. That is, \overline{x} is x written backwards.

Lemma 1: If a is a subword of b, than \overline{a} is a subword of \overline{b} .

Proof: Let a_i , a_{i+1} be a subword of a. Then by definition \overline{b} contains a_{i+1} , a_i . The result follows for any length subword a_i , $a_{i+1} \dots a_{i+u}$ by noting that the subword can be written as $(((a_i, a_{i+1}), a_{i+2}) \dots a_{i+u})$, and using recursion.

Lemma 2: For any two words c_1 and c_2 , $\rho(\overline{c_1}, \overline{c_2}) = \rho(c_1, c_2)$.

Proof: Since $\rho(c_1, c_2)$ is a subword of c_1 and c_2 , Lemma 1 tells us that $\overline{\rho(c_1, c_2)}$ is a subword of $\overline{c_1}$ and $\overline{c_2}$. Assume $\rho(\overline{c_1}, \overline{c_2}) = p$ where $|p| > |\rho(c_1, c_2)|$, i.e., that there exists a subword common to $\overline{c_1}$ and $\overline{c_2}$ which is longer than $\overline{\rho(c_1, c_2)}$. By Lemma 1, \overline{p} is a subword of both c_1 and c_2 , implying $|\rho(c_1, c_2)| \ge |\overline{p}| = |p|$. But since p was defined to satisfy $|p| > |\overline{\rho(c_1, c_2)}| = |\rho(c_1, c_2)|$, such a p cannot exist and therefore the longest subword common to $\overline{c_1}$ and $\overline{c_2}$ is $\overline{\rho(c_1, c_2)}$, as required.

Theorem 2: If a length ℓ code Γ with selector $\boldsymbol{\alpha}$ has a deletion correcting capability of r, then the code specified by the selector $\boldsymbol{\alpha}' : \alpha'_i = \alpha_{\ell+1-i}$, that is $\boldsymbol{\alpha}' = \overline{\boldsymbol{\alpha}}$, also has a deletion correcting capability of r.

Proof: Since $r(\Gamma) = \ell - \mathcal{R}(\Gamma) - 1$ and $r(\Gamma') = \ell - \mathcal{R}(\Gamma') - 1$, we may equivalently demonstrate that $\mathcal{R}(\Gamma') = \mathcal{R}(\Gamma)$

$$\mathcal{R}(\Gamma) = \max_{\substack{c_1, c_2 \in \Gamma, c_1 \neq c_2 \\ c_1, c_2 \in \Gamma, c_1 \neq c_2 \\ c_1, c_2 \in \Gamma, c_1 \neq c_2 }} |\rho(c_1, c_2)|$$

$$= \max_{\substack{c_1, c_2 \in \Gamma, c_1 \neq c_2 \\ c_1, c_2 \in \Gamma', c_1 \neq c_2 }} |\rho(\overline{c_1}, \overline{c_2})| \text{ by Lemma 2.}$$

$$= \max_{\substack{\overline{c_1}, \overline{c_2} \in \Gamma', \overline{c_1} \neq c_2 \\ c_1, \overline{c_2} \in \Gamma', \overline{c_1} \neq c_2 }} |\rho(\overline{c_1}, \overline{c_2})|$$

$$= \mathcal{R}(\Gamma').$$

The above theorem shows that the code with selector α' , generated by the reversal transformation, is isomorphic to α and so they are equivalent. Consider, for example, the selectors of codes in $\tilde{G}(\ell, q, 2)$ with q = 13, $\ell = 5$, that have deletion correcting capability of 2; that is r = 2. There are only two such codes, $\alpha = (0\ 1\ 7\ 6\ 2)$ and $\alpha' = (0\ 1\ 11\ 3\ 6)$ in the standard representation. Now consider the reversal selector obtained from α ; that is $\overline{\alpha} = (2\ 6\ 7\ 1\ 0)$. We see that

³A similar isomorphism exists for general GRS codes if one reverses both the multiplier and the selector.

 $\overline{\alpha} = 4\alpha' + 2$, that is $\overline{\alpha}$ and α' are related by an affine transformation. Thus the reversal transformation on one code gives the other code and so there is only one inequivalent code in the standard representation. Thus using either α or α' we can generate, using the affine and reversal transformations, any other selector corresponding to a $\tilde{G}(\ell, q, 2)$ code with q = 13, $\ell = 5$ and r = 2.

Corollary 2: Using the reversal transformation, a code in the standard representation is isomorphic to at most one other code in the standard representation.

Proof: Consider a code with selector α in standard form $\alpha_1 = 0$ and $\alpha_2 = 1$. The reversal of α gives the selector $\overline{\alpha} = (\alpha_{\ell} \ \alpha_{\ell-1} \ \dots \ \alpha_3 \ 1 \ 0)$. By Corollary 1, there is only one affine transformation which can be applied to $\overline{\alpha}$ to obtain a selector α' satisfying $\alpha'_1 = 0$ and $\alpha'_2 = 1$. The transformation (and thus selector) is specified by $\alpha' = \frac{\overline{\alpha} - (\overline{\alpha})_1}{(\overline{\alpha})_2 - (\overline{\alpha})_1} = \frac{\overline{\alpha} - \alpha_{\ell}}{\alpha_{\ell-1} - \alpha_{\ell}}$, where $(\overline{\alpha})_i$ means the *i*th element of $\overline{\alpha}$. It is possible for α to equal α' . It is however possible for selector reversal to result in the same code, that is, a code with the same standard representation.

C. Codes That are Invariant Under Selector Reversal

Consider a selector $\boldsymbol{\alpha} = (0 \ 1 \ \alpha_3 \ \dots \ \alpha_{\ell-1} \ \alpha_\ell)$. The reversal is $\overline{\boldsymbol{\alpha}} = (\alpha_\ell \ \alpha_{\ell-1} \ \dots \ \alpha_3 \ 1 \ 0)$. Following Theorem 1 we apply the affine transformation to obtain the selector of the new code in standard form, $\boldsymbol{\alpha}' = \frac{\overline{\boldsymbol{\alpha}} - \alpha_\ell}{\alpha_{\ell-1} - \alpha_\ell}$.

For the two codes to be the equivalent through the reversal transformation and affine transformation, we must have $\alpha' = \alpha$, and so

$$\alpha_i = \frac{\alpha_{\ell+1-i} - \alpha_\ell}{\alpha_{\ell-1} - \alpha_\ell} \tag{2}$$

for all i = 1, $\operatorname{ind}^{\ell} i = 2$ conditions imply $\alpha_1 = \frac{\alpha_{\ell} - \alpha_{\ell}}{\alpha_{\ell-1} - \alpha_{\ell}} = 0$ and $\alpha_2 = \frac{\alpha_{\ell-1} - \alpha_{\ell}}{\alpha_{\ell-1} - \alpha_{\ell}} = 1$. These simply represent the transformation to the standard representation. When $\ell = 2$ we only have those conditions and there is only a single selector in standard form $(0 \ 1)$, and it satisfies this condition.

The conditions for $i = \ell$ and $i = \ell - 1$ reduce to the same condition for α' and α to be equal, that is

$$\alpha_{\ell} - \alpha_{\ell-1} = 1 . \tag{3}$$

Substituting this back into (2) gives the reduced condition

$$\alpha_i = \alpha_\ell - \alpha_{\ell+1-i}.\tag{4}$$

The simplicity of this reduction means we can count the number of codes with the specified invariance. In the case $\ell = 3$ the only selector with such reversal invariance is $(0 \ 1 \ 2)$, since (3) becomes $\alpha_3 - \alpha_2 = 1$, or $\alpha_3 = 2$.

Theorem 3: The number of length $\ell \geq 4$ selectors $\alpha = (0 \ 1 \ \alpha_3 \ \dots \ \alpha_{\ell-1} \ \alpha_\ell)$, over a prime field F_q , $q \geq \ell$, which specify a code with the same standard form before and after reversal is given by the expression

$$\frac{(q-3)!!}{(q-(2\lfloor\frac{\ell}{2}\rfloor+1))!!}.$$
(5)

where $x!! = x(x-2)(x-4) \dots (x \mod 2+2)$.

Proof: We proceed by identifying the number of relations which restrict the values of the selector elements. From (3), we obtain the relation $\alpha_{\ell} - \alpha_{\ell-1} = 1$. The value of α_{ℓ} cannot be equal to 0 or 1 as these values already appear in the selector vector. Furthermore, setting $\alpha_{\ell} = 2$ gives $\alpha_{\ell-1} = 1$, which has already appeared in the selector. This relation thus allows (q - 3) values to be chosen for α_{ℓ} , with no freedom in the subsequent choice of $\alpha_{\ell-1}$. For $\ell = 4$ we obtain only this enumeration and so we have (q - 3) such selectors.

If $\ell \ge 6$ is even we obtain from (4) a list of $\ell/2 - 2$ equations $\alpha_3 + \alpha_{\ell-2} = \alpha_{\ell}, \alpha_4 + \alpha_{\ell-3} = \alpha_{\ell}, \dots \alpha_{\ell/2} + \alpha_{\ell/2+1} = \alpha_{\ell}$. Each equation implies we can choose one of the components other than α_{ℓ} independently, and obtain the other relative to α_{ℓ} and that choice. In making the choice we must avoid all the values already used in the selector. For the first of those equations we need to avoid 0, 1, $\alpha_{\ell-1}$ and α_{ℓ} . In addition we must avoid making α_3 and $\alpha_{\ell-2}$ equal to each other, that is avoid $\alpha_3 = \alpha_{\ell-2} = 2^{-1}\alpha_{\ell}$. We thus have (q-5) possibilities for α_3 , which then fixes $\alpha_{\ell-2}$ also. Each subsequent equation is used to choose one selector component and derive a second one. The chosen selector values, as well as $2^{-1}\alpha_{\ell}$. For the *j* th equation then we have q - (2j + 3) possible values. Each of these equations results in additional possibilities independent of the (q-3) factor from the freedom described in the first paragraph of the proof. The total number of equations is therefore

$$(q-3)\Pi_1^{\ell/2-2}q - (2j+3) = \frac{(q-3)!!}{(q-(\ell+1))!!}$$

If ℓ is odd the selector component for $i = (\ell + 1)/2$ is evaluated through (4) as $2\alpha_{(\ell+1)/2} = \alpha_{\ell}$. For any of the (q-3) valid α_{ℓ} there is always a $\alpha_{(\ell+1)/2}$ not equal to 0, 1, $\alpha_{\ell-1}$ or α_{ℓ} . This is also the very value avoided in the "odd" counting to ensure α_i and $\alpha_{\ell+1-i}$ are not equal, so we avoid all previously specifed selector values also. Thus the number of reversal invariant selectors for odd ℓ is equal to the number of reversal invariant selectors for the even number $\ell - 1$. This is represented by the use of the floor function in (5).

IV. DELETION CORRECTING CAPABILITY BOUNDS AND THE ENUMERATION OF INEQUIVALENT CODES FOR $\tilde{G}(\ell, q, 2)$

In this section we give a bound on the deletion correcting capability of codes and enumerate, and in some cases list, the inequivalent $\hat{G}(\ell, q, 2)$ codes.

Theorem 4: For an RS code with k = 2 and $\ell \ge 3$, the largest deletion correcting capability possible is $\ell - 3$.

Proof: Recall from Section II-C that the RS codewords associated with polynomials of degree 0 have constant components and so have one subword of constant component of any length t. Furthermore, codewords associated with polynomials of degree exactly 1 have all subwords distinct. For a codeword associated with a polynomial of degree 1, there are $\frac{\ell!}{(\ell-t)!t!}$ subwords of length $\ell - t$. To be able to correct t deletions these must be distinct from the subwords of every other codeword associated with a polynomial of degree 1. Thus, we need $(q^2 - q)\frac{\ell!}{(\ell-t)!t!}$ distinct words of length $\ell - t$. For a given field F_q there are $q^{\ell-t}$ words of length $\ell - t$.

Thus there can only be enough subwords to correct deletions if

$$(q^{2} - q)\frac{\ell!}{(\ell - t)!t!} \le q^{\ell - t}.$$

Let $t = \ell - 2$. The equation reduces to $(q-1)\ell(\ell-1)/2 \le q$. But this cannot be satisfied for $\ell \ge 3$ and so no RS code of dimension k = 2 is capable of correcting $(\ell - 2)$ deletions.

Let $t = (\ell - 3)$. For this case the condition above reduces to $(q - 1)\ell(\ell - 1)(\ell - 2)/6 \le q^2$, which can be satisfied by large enough q. \Box

A. Experimental Results

We have performed extensive computer searches to find inequivalent codes that have the best performance, in one of two senses which we will describe. We are also interested in determining the number of codes with such properties.

We firstly consider codes that satisfy the bound in Theorem 4. In Table I we give the current state of our computer search to find codes with the highest deletion correcting capability for $\ell \le 25$. These results are significant improvements over previously reported results [16]. We

TABLE I

A TABULATION OF EXPERIMENTAL UPPER BOUNDS ON THE VALUE OF THE $\sigma(\ell, q, 2)$ FOR PRIME q. The Highest Deletion Correcting Capability Is Given by $\ell - \sigma(\ell, q, 2)$. We Emphasize These Exhaustive and Selective Results Are for Codes With Unit Multipliers (i.e., for RS Codes). The (ℓ, q) Classes Marked With a * Have Been Exhaustively Surveyed. The Rows and Columns Label the Prime Value q and Code Length ℓ , Respectively

$qackslash\ell$	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	q
5	4*	4*																					5
7	3*	4*	4*	5*		- 34	C *	-*															7
11	3* 3*	4* 3*	4* 4*	4* 4*	5* 5*	5* 5*	6* 6*	7* 6*	7*	7													11
13 17	3*	3*	4*	4*	4*	5*	5	6	6	777	7	8	8	9									13 17
19	3*	3*	4*	4*	4*	5*	5	6	6	7	7	8	8	8	9	9							19
23	3*	3*	3*	4*	4*	5	5	5	6	6	7	7	7	8	8	9	9	10	10	11			23
29	3*	3*	3*	4*	4	4	5	5	5	6	6	7	7	8	8	8	9	9	10	10			29
31	3*	3*	3*	4*	4	4	5	5	5	6	6	7	7	7	8	8	9	9	9	10	10		31
37	3*	3*	3*	4*	4	4	5	5	5	6	6	6	7	7	7	8	8	8	9	9	10		37
41	3*	3*	3*	4*		4	4	5	5	5	6	6	6	7	7	7	8	8	9	9	9		41
43 47	3* 3*	3* 3*	3* 3*	4* 3*	4	44	4	5 5	5 5	5 5	6 6	6 6	6 6	7 7	7 7	77	8 7	8 8	8	9	9 9	9	43 47
53	3*	3*	3*	3	4	4	4	5	5	5	5	6	6	6	7	7	7	7	8	9	9	9	53
59	3*	3*	3*	3	4	4	4	4	5	5	5	6	6	6	7	7	7	7	8	8	9	9	59
61	3*	3*	3*	3	4	4	4	4	5	5	5	6	6	6	7	7	7	7	8	8	8	9	61
67	3*	3*	3*	3	4	4	4	4	5	5	5	6	6	6	6	7	7	7	8	8	8	9	67
71	3*	3*	3*	3	3	4	4	4	5	5	5	6	6	6	6	7	7	7	8	8	8	8	71
73	3*	3*	3*	3	3	4			5	5	5	5	6	6	6	7	7	7		8	8	8	73
79 83	3* 3*	3* 3*	3*	3	3	4	4	4	5 5	5	5	5	6	6	6	6	7 7	7		8	8	8 8	79
83	3*	3*	3* 3*	3	3	4	4	4	5	5 5	5 5	5 5	6 5	6	6 6	6 6	7	7 7	777	7 7	8	8	83 89
97	3*	3*	3*	3	3	4	4	4	4	5	5	5	5	6	6	6	6	7	7	7	8	8	97
101	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	7	7	7	8	8	101
103	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	7	7	7	7	8	103
107	3*	3*	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6	6	7	7	7	8	107
109	3*	3*		3	3	4				5	5	5	5	6	6	6	6	6	7	7	7	8	109
113	3*	3* 3*		3	3	4	4	4	4	5	5 5	5	5	6	6	6	6	6	6	7	7	8	113
127	3* 3*	3*	3	3	3	4	4	4	4	5 5	5	5 5	5 5	5 5	6 6	6 6	6 6	6 6	6	777	7 7	7 7	127 131
131	3*	3*	3	3	3	4	4	4	4	4	5	5	5	5	6	6	6	6	6	7	7	7	131
139	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	7	7	7	139
149	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	7	7	7	149
151	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	151
157	3*	3*	3	3	3	3			4	4	5	5	5	5	5	6	6	6	6	6	7	7	157
163	3* 3*	3* 3*		3	3	$\begin{vmatrix} 3\\2 \end{vmatrix}$	4	4	4	4	5 5	5 5	5 5	5 5	5 5	6	6	6	6	6	7 7	7 7	163
167 173	3*	3*	33	3	3	33	4	4	4	4	5	5	5	5	5	6 6	6 6	6 6	6	6	7	7	167 173
179	3*	3*	3	3	3	3	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	7	179
181	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	7	7	181
191	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	191
193	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	193
197	3*	3*	3	3	3	3			4	4	4	5	5	5	5	5	6	6	6	6	6	7	197
199 211	3* 3*	3* 3*	3	3	3	3	4	4	4	4	4	5 5	5 5	5 5	5 5	5 5	6 6	6 6	6	6	6 6	7 7	199 211
211	3*	3*	3	3	$\begin{vmatrix} 3\\ 3 \end{vmatrix}$	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	211 223
223	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	227
229	3*	3*	3	3	3	3	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6	7	229
233	3*	3*	3	3	3	3	3	4	4	4	4	5	5	5	5	5	5	6	6	6	6	6	233
389	3*	3	3	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	5	6	6	6	389
683		3	3	3	3	3	3	3	3	4	4	4	4	4	4	5	5	5	5	5	5	5 5	683
1093 1747		3	3	3	3	3	3	3	3	3	4	4 4	4	4	4	44	4	5 4	5	5	5	5	1093 1747
2477	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	2477
3499	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	3499
4877	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4877
6619	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	6619
8849		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4		4	4	4	8849
11987		3		3	3	$\begin{vmatrix} 3\\2 \end{vmatrix}$	3	3	3	3	3	3	3		3	3	3	4	4	4	4	4	11987
15227 18979		3	3	3	3	3	3	3	3 3	3	3	3 3	3 3	3	3 3	3	3	3	3	4	4	4	15227 18979
23993		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	23993
29959		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	29959
36997	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	36997
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	

also list, in Table II, examples of codes with the highest deletion correcting capability. We note that the results in Table I are obtained by a mix of exhaustive and non-exhaustive searches. The former cases are marked by '*'. The entries in the table are of $\sigma(\ell, q, 2)$, which is the

length of the shortest subword that uniquely identifies codewords of codes in $\tilde{G}(\ell, q, 2)$ and so $\sigma(\ell, q, 2) = 3$ means that the deletion correcting capability is $\ell - 3$, and thus the highest possible according to Theorem 4. We observe that for any ℓ in the table, the bound in The-

			TABLE ARE OPTIMAL, IN THE SENSE $r = t - 3$
q	l	r	α
11	9	4	(0 1 2 10 4 6 5 8 9)
13	13	6	$(0\ 1\ 7\ 8\ 3\ 11\ 4\ 2\ 12\ 9\ 6\ 5\ 10)$
17	12	6	(0 1 8 10 6 7 16 15 5 12 3 13)
23	11	6	
23	13	7	(0 1 8 12 17 21 10 13 11 19 4 6 7)
29	9	5	(0 1 13 11 26 27 4 18 10)
41	10	6	(0 1 37 5 12 39 30 29 11 24)
59	11	7	0 1 54 28 26 15 40 17 12 35 43)
71	8	5	(0 1 64 42 70 48 40 41)
139	9	6	(0 1 5 95 129 78 79 88 113)
233	10	7	(0 1 2 9 135 227 68 202 174 14)
389	11	8	0 1 2 5 7 120 360 18 99 281 378)
683	12	9	(0 1 2 5 7 18 46 434 437 534 177 409)
1093	13	10	(0 1 2 5 7 18 24 61 1008 807 707 1019 931)
1747	14	11	(0 1 2 5 7 18 24 44 59 608 1518 692 1478 731)
2477	15	12	(0 1 2 5 7 18 24 44 59 67 903 1839 2209 2465 1617)
3499	16	13	(0 1 2 5 7 18 24 44 59 67 152 1272 3192 3312 143 2227)
4877	17	14	(0 1 2 5 7 18 24 44 59 67 101 218 1931 4835 2092 4494 495)
6619	18	15	(0 1 2 5 7 18 24 44 59 67 101 218 358 2625 4937 422 4154 6532)
8849	19	16	(0 1 2 5 7 18 24 44 59 67 101 218 225 358 4815 5157 8393 3040 5265)
11987	20	17	(0 1 2 5 7 18 24 44 59 67 101 225 250 357 422 1975 9561 11780 6675 6744)
15227	21	18	(0 1 2 5 7 18 24 44 59 67 101 218 225 333 399 591 2402 15049 13124 6960 12509)
18979	22	19	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 410 476 729 7798 14501 1839 15348 4403)
23993	23	20	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 410 476 637 910 10845 7925 19933 16366 11382)
29959	24	21	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 440 467 570 1634 21776 25173 9744 28169 29747)
36997	25	22	0 1 2 5 7 18 24 44 59 67 101 218 225 279 422 467 567 570 688 1470 10747 9562 15939 20406 33155)
45497	26	23	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 410 422 471 643 781 1017 1389 13605 22405 13535 44530 27227)
56999	27	24	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 736 791 936 2580 17735 33926 13462 16727 32794)
67499	28	25	0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 570 580 1572 1763 2284 51986 38417 58446 31056 60095)
86993	29	26	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 471 570 580 643 1171 1196 1363 1942 7146 30287 76088 79401
			73323)
99991	30	27	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 570 637 688 921 1356 1590 3544 7015 38270 65856
			81477 12911)
120691	31	28	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 570 580 1084 1186 1337 1750 2703 4460 6877 119243
			58051 90704 92833)
144983	32	29	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 580 786 808 908 1119 1319 1753 2012 4206 6794 55281
			78151 34019 79376)
169991	33	30	(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 570 637 805 921 1048 1366 1972 2452 3450 4421 9944

(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 570 580 736 1084 1196 1235 1275 3014 3873 4535 5815 ...

(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 570 580 736 825 1084 1223 1257 1337 1926 1966 2288 ...

(0 1 2 5 7 18 24 44 59 67 101 218 225 279 358 422 467 471 570 580 736 825 1084 1223 1281 1763 2131 2730 2854 ...

TABLE II Some Examples of the Best Codes Found, in the Sense of Smallest q for Given ℓ and r. The Codes in the First Section of the Table Are Not Optimal, in the Sense $r < \ell - 3$, but are Significant Improvements on the Results of [16]. The Codes in the Second Section of the Table Are Optimal, in the Sense $r = \ell - 3$

orem 4 can be achieved with equality if q is sufficiently large (in each column there is a row with an entry equal to 3).

31

34

35 32

36 33

189997

239999

274973

.. 108285 162094 74880 109191)

21962 169804 137158 38325 118616)

.. 6228 9776 12390 79449 121080 209265)

... 4634 6954 10480 37213 73629 165748 132173)

Second, we consider codes that satisfy a property, for example the highest deletion correction capability, over the smallest size prime field. Of particular value are the smallest fields for which codes with $r = \ell - 3$ have been found. For nonexhaustive searches the smallest field provides an upper bound on the value. In Table II we give examples of such codes, specified by the selector, for $\ell \leq 36$.

Let $\mathcal{Q}(\ell, r)$ denote the smallest prime q for which we have a code in $\tilde{G}(\ell, q, 2)$ with a deletion correcting capability r. Then $\mathcal{Q}(\ell, \ell - 3)$ gives the smallest q, for a given ℓ , for which $\sigma(\ell, q, 2) = 3$, that is for which the code meets the deletion correcting bound. Using Table I we can see that $\mathcal{Q}(4, 1) = 7$ and so there is no single deletion correcting code of length 4 for q = 3 or q = 5.

Using Table I we have Q(4,1) = 7, Q(5,2) = 13, Q(6,3) = 23, Q(7,4) = 47 and Q(8,5) = 71, all as exhaustively tested minimums. These values suggest the smallest prime field, with the best deletion correcting capability possible, grows quickly as we increase the length. We see this is supported by the current experimental evidence in Fig. 1.

The value of the upper bound on $\mathcal{Q}(\ell, r)$ for $4 \leq \ell \leq 36$ is given in the array below and in Fig. 1. Note again that the "*" entries are proven, by exhaustive searches, to be minimums.

l	$Q(\ell,\ell-3)$	l	$Q(\ell, \ell-3)$	l	$Q(\ell,\ell-3)$
4	7*	15	2477	26	45497
5	13*	16	3499	27	56999
6	23*	17	4877	28	67499
7	47*	18	6619	29	86933
8	71*	19	8849	30	99991
9	139	20	11987	31	120691
10	233	21	15227	32	144983
11	389	22	18979	33	169991
12	683	23	23993	34	189997
13	1093	24	29959	35	239999
14	1747	25	36997	36	274973

Fig. 1. This figure illustrates the currently determined values of $Q(\ell, \ell - 3)$ for ℓ from 4 to 36. We see that the size of q increases rapidly, approximately as a constant multiple of $\ell^{5.25}$.

Table II has two parts. The first part of the table gives selective examples of *the best* codes, in the sense of smallest q for a give (ℓ, r) pair. For example, for $\ell = 9$ and r = 4, the smallest q = 11. Some examples for smaller ℓ and r appear in Section IV-B, in the inequivalence sets given in Appendix, and in Tables IV–VII.

In the second part of Table II, examples of codes with $\sigma(\ell, q, 2) = 3$, the best deletion correcting capability possible, are given for $8 \leq \ell \leq 36$.

B. Tabulations of Inequivalence Set Cardinalities

In Section III, we considered two isomorphisms of selector vectors, that result in codes equivalent to the original one. We would like to enumerate inequivalent $\tilde{G}(\ell, q, 2)$ codes for a given set of parameters. Let $\mathbb{P}[q, \ell]_r$ denote the set of inequivalent codes (in standard form) of length ℓ over a field of size q and with deletion correcting capability of r.

Note that $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_r$ denotes the set of codes with length ℓ , deletion correcting capability r, and the smallest known q with that length and deletion correcting capability. In Table III we tabulate the cardinalities of the various inequivalent code sets, for primes from 5 to 97 and for various lengths. For q = 5, 7 and 11 we have completed exhaustive enumerations for lengths up to and including $\ell = q$. As the value of the field q increases, the exhaustive enumerations become increasingly time consuming; thus for q > 11 we do not have enumerations for all lengths up to q.

In cases where there are only a small number of distinct codes for given small q and small ℓ , we explicitly give the codes, in terms of the selectors, in Section IV-D and in Tables IV–VII. The $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_r$ of small cardinality are listed in Appendix.

An interesting result of our search is the explicit construction of a code whose parameters achieve a bound, proposed elsewhere, with equality. In particular, for q = 7, $\ell = 7$, it has been proven in [4], [9] that codes with deletion correcting capability greater than two cannot exist. We have found a code with q = 7, $\ell = 7$ and r = 2, thus providing an explicit construction for that bound.

C. The Distribution of Deletion Correcting Capabilities

In cases where we have undertaken exhaustive enumerations the pro-portion of codes with particular deletion correcting capabilities is of interest. We can compare this with results in [16, Table 1]. For example, in [16] it was noted that 1% of all $\text{GRS}_k(\ell, q, \alpha, \mathbf{v})$ codes with k = 2, q = 7, $\ell = 4$ are capable of correcting 1 deletion. We have found that 45% of all $\hat{G}(\ell, q, 2)$ codes with q = 7 and $\ell = 4$ are capable of correcting 1 deletion. The relative proportion of codes with higher deletion correcting capabilities supports the emphasis placed on RS codes. Similarly with k = 2, q = 7, $\ell = 5$ 60%4 of $\text{GRS}_k(\ell, q, \alpha, \mathbf{v})$ codes can correct one deletion, against 88% of $\hat{G}(\ell, q, k)$ codes.

D. Some "Nice" Codes

In this section, and in Appendix, we give the explicit codebooks for some of the smaller RS codes capable of correcting deletions, that is some of the $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_r$ codes (see Section IV-B). The codes are labelled in terms of q, ℓ , r and the selector α . In Appendix we use capitalized Latin letters to denote the numbers from 10(A) to 22(M), allowing us to more compactly represent the codewords for $q \geq 11$.

⁴The 60% and 40% in the second to last column of Table I of [16] should each be one row higher. That is for q = 7, $\ell = 5$, we have 60% with s = 4 (r = 1) and 40% with s = 5 (r = 0).

We note that the codes of interest over GF(q) have q^2 codewords. The first two examples are listed in the text below, the remaining examples can be found in Tables IV–VII.

000000	$1\ 1\ 1\ 1\ 1\ 1$	$2\ 2\ 2\ 2\ 2\ 2\ 2$	$3\ 3\ 3\ 3\ 3\ 3\ 3$
$4\ 4\ 4\ 4\ 4\ 4$	$5\ 5\ 5\ 5\ 5\ 5$	666666	$0\ 1\ 6\ 5\ 3\ 4$
$1\ 2\ 0\ 6\ 4\ 5$	$2\ 3\ 1\ 0\ 5\ 6$	$3\ 4\ 2\ 1\ 6\ 0$	$4\ 5\ 3\ 2\ 0\ 1$
$5\ 6\ 4\ 3\ 1\ 2$	$6\ 0\ 5\ 4\ 2\ 3$	$0\ 2\ 5\ 3\ 6\ 1$	$1\ 3\ 6\ 4\ 0\ 2$
$2\ 4\ 0\ 5\ 1\ 3$	$3\ 5\ 1\ 6\ 2\ 4$	$4\ 6\ 2\ 0\ 3\ 5$	$5\ 0\ 3\ 1\ 4\ 6$
$6\ 1\ 4\ 2\ 5\ 0$	$0\ 3\ 4\ 1\ 2\ 5$	$1\ 4\ 5\ 2\ 3\ 6$	$2\ 5\ 6\ 3\ 4\ 0$
$3\ 6\ 0\ 4\ 5\ 1$	$4\ 0\ 1\ 5\ 6\ 2$	$5\ 1\ 2\ 6\ 0\ 3$	$6\ 2\ 3\ 0\ 1\ 4$
$0\ 4\ 3\ 6\ 5\ 2$	$1\ 5\ 4\ 0\ 6\ 3$	$2\ 6\ 5\ 1\ 0\ 4$	$3\ 0\ 6\ 2\ 1\ 5$
$4\ 1\ 0\ 3\ 2\ 6$	$5\ 2\ 1\ 4\ 3\ 0$	$6\ 3\ 2\ 5\ 4\ 1$	$0\ 5\ 2\ 4\ 1\ 6$
$1\ 6\ 3\ 5\ 2\ 0$	204631	$3\ 1\ 5\ 0\ 4\ 2$	$4\ 2\ 6\ 1\ 5\ 3$
$5\ 3\ 0\ 2\ 6\ 4$	$6\ 4\ 1\ 3\ 0\ 5$	$0\ 6\ 1\ 2\ 4\ 3$	$1\ 0\ 2\ 3\ 5\ 4$
$2\ 1\ 3\ 4\ 6\ 5$	$3\ 2\ 4\ 5\ 0\ 6$	$4\ 3\ 5\ 6\ 1\ 0$	$5\ 4\ 6\ 0\ 2\ 1$
$6\ 5\ 0\ 1\ 3\ 2$			

There is a single code in $\mathbb{P}[\mathcal{Q}(5,1) = 5,5]_1$. It is specified by the selector $\boldsymbol{\alpha} = (0\ 1\ 4\ 2\ 3)$ as shown in the first table at the bottom of the page.

There is a single code in $\mathbb{P}[\mathcal{Q}(6,2) = 7,6]_2$. It is specified by the selector $\boldsymbol{\alpha} = (0\ 1\ 6\ 5\ 3\ 4)$ as shown in the second table at the bottom of the page.

Another nice code, worthy of mention here, is the lone member of $\mathbb{P}[\mathcal{Q}(8,5) = 71,8]_5$, specified by the selector $\alpha = (0\ 1\ 64\ 42\ 70\ 48\ 40\ 41)$. Not only is this the only code in this equivalence set, there exist no GRS codes of this length with the same deletion correcting capability and a shorter length.

V. SUMMARY AND DISCUSSION

We have presented an investigation into the classification of the deletion correcting capabilities of prime RS codes with dimension k = 2.

We have proven that the deletion correcting capability is invariant under affine transformations and reversal of the selector. Using these isomorphisms we have focused on inequivalent codes and enumerated $\tilde{G}(\ell, q, 2)$ classes with small parameter values. We have listed the inequivalent codes in cases where the sets are themselves small, and in some cases given the codebooks too.

We have proven that for $G(\ell, q, 2)$ codes $r \leq \ell - 3$. We have identified examples of codes meeting this bound for $\ell \leq 36$. For example, in Table II we give a length $\ell = 36$ code capable of correcting 33 deletions. This code is over a F_{274973} , with about 7.55×10^{10} codewords.

Let us conclude with some open questions for consideration. Firstly, How do we design codes with a particular deletion correcting capability? For the class of codes considered in this correspondence, the code is defined by a selector, and the question becomes; How do we choose a selector to provide a particular deletion correcting capability? Another related question is; Given a selector, how can we determine the deletion correcting capability of the code generated by the selector?

We note that the question; What is the deletion correcting capability of a code with specified q, ℓ and selector α ?; can be closely related to the problem of decoding. This will be discussed in future work.

Closer to the direction of our work here, we would like to be able to answer, for a given $\tilde{G}(\ell, q, 2)$ class, Does there exist a selector specifying a code capable of correcting r deletions? Thus we want to more precisely determine the values of $\mathcal{Q}(\ell, r)$, that is the smallest q for which we have a code of length ℓ capable of correcting r deletions. This question is somewhat complicated by an unresolved proposition [16];

00000	11111	$2\ 2\ 2\ 2\ 2\ 2$	33333	$4\ 4\ 4\ 4\ 4$
$0\ 1\ 4\ 2\ 3$	$1\ 2\ 0\ 3\ 4$	$2\ 3\ 1\ 4\ 0$	$3\ 4\ 2\ 0\ 1$	$4\ 0\ 3\ 1\ 2$
$0\ 2\ 3\ 4\ 1$	$1\ 3\ 4\ 0\ 2$	$2\ 4\ 0\ 1\ 3$	$3\ 0\ 1\ 2\ 4$	$4\ 1\ 2\ 3\ 0$
$0\ 3\ 2\ 1\ 4$	$1\ 4\ 3\ 2\ 0$	20431	$3\ 1\ 0\ 4\ 2$	$4\ 2\ 1\ 0\ 3$
$0\ 4\ 1\ 3\ 2$	$1\ 0\ 2\ 4\ 3$	$2\ 1\ 3\ 0\ 4$	$3\ 2\ 4\ 1\ 0$	$4\ 3\ 0\ 2\ 1$

000000	111111	$2\ 2\ 2\ 2\ 2\ 2\ 2$	$3\ 3\ 3\ 3\ 3\ 3\ 3$
$4\ 4\ 4\ 4\ 4\ 4$	$5\ 5\ 5\ 5\ 5\ 5$	666666	$0\ 1\ 6\ 5\ 3\ 4$
$1\ 2\ 0\ 6\ 4\ 5$	$2\;3\;1\;0\;5\;6$	$3\ 4\ 2\ 1\ 6\ 0$	$4\ 5\ 3\ 2\ 0\ 1$
$5\ 6\ 4\ 3\ 1\ 2$	$6\ 0\ 5\ 4\ 2\ 3$	$0\ 2\ 5\ 3\ 6\ 1$	$1\ 3\ 6\ 4\ 0\ 2$
$2\ 4\ 0\ 5\ 1\ 3$	$3\ 5\ 1\ 6\ 2\ 4$	$4\ 6\ 2\ 0\ 3\ 5$	$5\ 0\ 3\ 1\ 4\ 6$
$6\ 1\ 4\ 2\ 5\ 0$	$0\;3\;4\;1\;2\;5$	$1\ 4\ 5\ 2\ 3\ 6$	256340
$3\ 6\ 0\ 4\ 5\ 1$	$4\ 0\ 1\ 5\ 6\ 2$	$5\ 1\ 2\ 6\ 0\ 3$	$6\ 2\ 3\ 0\ 1\ 4$
$0\ 4\ 3\ 6\ 5\ 2$	$1\ 5\ 4\ 0\ 6\ 3$	$2\ 6\ 5\ 1\ 0\ 4$	$3\ 0\ 6\ 2\ 1\ 5$
$4\ 1\ 0\ 3\ 2\ 6$	$5\ 2\ 1\ 4\ 3\ 0$	$6\ 3\ 2\ 5\ 4\ 1$	$0\ 5\ 2\ 4\ 1\ 6$
$1\ 6\ 3\ 5\ 2\ 0$	$2\ 0\ 4\ 6\ 3\ 1$	$3\ 1\ 5\ 0\ 4\ 2$	$4\ 2\ 6\ 1\ 5\ 3$
$5\ 3\ 0\ 2\ 6\ 4$	$6\ 4\ 1\ 3\ 0\ 5$	$0\ 6\ 1\ 2\ 4\ 3$	$1 \ 0 \ 2 \ 3 \ 5 \ 4$
$2\ 1\ 3\ 4\ 6\ 5$	$3\ 2\ 4\ 5\ 0\ 6$	$4\ 3\ 5\ 6\ 1\ 0$	$5\ 4\ 6\ 0\ 2\ 1$
$6\ 5\ 0\ 1\ 3\ 2$			

TABLE III THE CARDINALITIES OF INEQUIVALENCE SETS, FOR PRIMES FROM 5 TO 97 AND FOR VARIOUS LENGTHS

If $q_1 < q_2$ are prime powers then $\sigma(\ell, q_1, k) \ge \sigma(\ell, q_2, k)$. That is, the deletion correction capability of codes does not decrease as q increases with fixed ℓ and k. In generating Table I we have not assumed this proposition to be true, we have explicitly identified codes in every case. The identification of codes in $\mathbb{P}[\mathcal{Q}(\ell, r), \ell]_r$ is also important.

	-		-	-	-		
0000000	1111111	2 2 2 2 2 2 2 2	3333333	444444	5555555	6666666	7777777
8888888	99999999	ААААААА	0128A35	1239046	234A157	3450268	4561379
567248A	6783590	78946A1	89A5702	9 A 0 6 8 1 3	A 0 1 7 9 2 4	024596A	1356A70
2467081	3 5 7 8 1 9 2	46892A3	579A304	68A0415	7901526	8 A 1 2 6 3 7	9023748
A 1 3 4 8 5 9	0362894	14739A5	2584A06	3695017	47A6128	5807239	691834A
7 A 2 9 4 5 0	803A561	9140672	A 2 5 1 7 8 3	048A719	159082A	26A1930	3702A41
4813052	5924163	6 A 3 5 2 7 4	7046385	8157496	92685A7	A 3 7 9 6 0 8	05A7643
1608754	2719865	382A976	4930A87	5 A 4 1 0 9 8	60521A9	716320A	8274310
9385421	A 4 9 6 5 3 2	0614578	1725689	283679A	39478A0	4 A 5 8 9 0 1	5069A12
617A023	7280134	8391245	94A2356	A 5 0 3 4 6 7	07314A2	1842503	2953614
3 A 6 4 7 2 5	4075836	5186947	6297A58	73A8069	840917A	951A280	A 6 2 0 3 9 1
0859327	196A438	2 A 7 0 5 4 9	308165A	4192760	52A3871	6304982	7415A93
85260A4	9637105	A 7 4 8 2 1 6	0976251	1 A 8 7 3 6 2	2098473	31A9584	420A695
53107A6	6421807	7532918	8643A29	975403A	A 8 6 5 1 4 0	0 A 9 3 1 8 6	10A4297
21053A8	3216409	432751A	5438620	6549731	765A842	8760953	9871A64
A 9 8 2 0 7 5							
	1	1	1	1	1	1	

TABLE V

There are three Codes in $\mathbb{P}[\mathcal{Q}(9,4) = 11,9]_4$. One is specified by the Selector $\alpha = (0\ 1\ 2\ A\ 4\ 6\ 5\ 8\ 9)$

0000000000	111111111	2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3	44444444	555555555
666666666	777777777	888888888	9999999999	AAAAAAAAA	012A46589
12305769A	2341687A0	3 4 5 2 7 9 8 0 1	45638A912	567490A23	6785A1034
789602145	89A713256	9 A 0 8 2 4 3 6 7	A 0 1 9 3 5 4 7 8	024981A57	135A92068
2460A3179	3 5 7 1 0 4 2 8 A	468215390	5793264A1	6 8 A 4 3 7 5 0 2	790548613
8 A 1 6 5 9 7 2 4	90276A835	A 1 3 8 7 0 9 4 6	036817425	147928536	258A39647
3 6 9 0 4 A 7 5 8	47A150869	58026197A	691372A80	7 A 2 4 8 3 0 9 1	8 0 3 5 9 4 1 A 2
9146A5203	A 2 5 7 0 6 3 1 4	0487529A3	159863A04	26A974015	370A85126
481096237	5921A7348	6 A 3 2 0 8 4 5 9	70431956A	81542A670	926530781
A 3 7 6 4 1 8 9 2	05A698371	1607A9482	27180A593	3829106A4	4 9 3 A 2 1 7 0 5
5 A 4 0 3 2 8 1 6	605143927	7 1 6 2 5 4 A 3 8	827365049	93847615A	A 4 9 5 8 7 2 6 0
06152384A	172634950	283745A61	394856072	4 A 5 9 6 7 1 8 3	506A78294
6170893A5	72819A406	8392A0517	94A301628	A 5 0 4 1 2 7 3 9	073469218
18457A329	29568043A	3 A 6 7 9 1 5 4 0	4078A2651	518903762	629A14873
73A025984	840136A95	9512470A6	A 6 2 3 5 8 1 0 7	0 8 5 3 A 4 7 9 6	1964058A7
2 A 7 5 1 6 9 0 8	308627A19	41973802A	52A849130	63095A241	741A60352
852071463	963182574	A 7 4 2 9 3 6 8 5	0 9 7 2 3 A 1 6 4	1 A 8 3 4 0 2 7 5	209451386
31A562497	4206735A8	531784609	64289571A	7 5 3 9 A 6 8 2 0	864A07931
975018A42	A 8 6 1 2 9 0 5 3	0 A 9 1 7 5 6 3 2	10A286743	210397854	3214A8965
432509A76	54361A087	654720198	7658312A9	87694230A	987A53410
A 9 8 0 6 4 5 2 1					

TABLE VI

There Is one Code in $\mathbb{P}[\mathcal{Q}(5,2) = 13,5]_2$. It is specified by the Selector $\boldsymbol{\alpha} = (0\ 1\ 7\ 6\ 2)$. A deletion correcting Capability of Two Is the Maximum Achievable by $\bar{G}(\ell,q,2)$ codes of Length 5 (see Theorem 4)

00000	11111	22222	33333	44444	55555	66666	77777	88888	99999
AAAAA	вввв	CCCCC	01762	12873	23984	34A95	45BA6	56CB7	670C8
78109	8921A	9 A 3 2 B	A B 4 3 C	BC540	C 0 6 5 1	021C4	13205	24316	35427
46538	57649	6875A	7986B	8 A 9 7 C	9 B A 8 0	ACB91	B 0 C A 2	C 1 0 B 3	03856
14967	25A78	36B89	47C9A	580AB	691BC	7 A 2 C 0	8 B 3 0 1	9 C 4 1 2	A 0 5 2 3
B 1 6 3 4	C 2 7 4 5	042B8	153C9	2640A	3751B	4862C	59730	6 A 8 4 1	7 B 9 5 2
8 C A 6 3	90B74	A 1 C 8 5	B2096	C 3 1 A 7	0594A	16A5B	27B6C	38C70	49081
5 A 1 9 2	6 B 2 A 3	7 C 3 B 4	804C5	91506	A 2 6 1 7	B 3 7 2 8	C4839	063AC	174B0
285C1	39602	4 A 7 1 3	5 B 8 2 4	6 C 9 3 5	70A46	81B57	92C68	A 3 0 7 9	B418A
C 5 2 9 B	07A31	18B42	29C53	3 A 0 6 4	4 B 1 7 5	5 C 2 8 6	60397	714A8	825B9
936CA	A 4 7 0 B	B 5 8 1 C	C 6 9 2 0	08493	195A4	2 A 6 B 5	3 B 7 C 6	4 C 8 0 7	50918
61A29	72B3A	83C4B	9405C	A 5 1 6 0	B6271	C 7 3 8 2	09B25	1 A C 3 6	2 B 0 4 7
3 C 1 5 8	40269	5137A	6248B	7359C	846A0	957B1	A 6 8 C 2	B7903	C 8 A 1 4
0 A 5 8 7	1 B 6 9 8	2 C 7 A 9	308BA	419CB	52A0C	63B10	74C21	85032	96143
A 7 2 5 4	B 8 3 6 5	C 9 4 7 6	0 B C 1 9	1 C 0 2 A	2013B	3124C	42350	53461	64572
75683	86794	978A5	A 8 9 B 6	B9AC7	CAB08	0 C 6 7 B	1078C	21890	329A1
4 3 A B 2	54BC3	65C04	76015	87126	98237	A 9 3 4 8	BA459	C B 5 6 A	
-	1	1		•					

A further question requiring resolution is; Can arbitrary multiplier (GRS) codes provide better deletion correcting capabilities than unit multiplier (RS) codes?

In this correspondence, we have only considered k = 2, higher dimension codes need to be considered also. Some experimental results were given in [16]. It was also proven therein that the shortest subword

TABLE VII

000000 11111 22222 33333 44444 55555 666666 77777 88888 99999 AAAAA BBBBB CCCCCC DDDDD EEEEEE FFFFFF 12HD56 C231E67 3JJF73 45KG89 SCLBDA LLLLL MMMMMM 016C43 PAAAAA ASKG89 SCLBDA GATAAAA 13A2978 GGGGGG MMMMMM 016C43 PABAAC ASC4BD BKC01 KKKKK SKKKKK SKAEKA GG7B14 GG1213 HJ324 ACDINK BDKCJL CELDKM DFMEL0 EG07FN1 FH1602 G12413 HJ3124 BED103 CFE214 DG7325 MB2904 6C3A15 902B16 A25C77 BFC045 GG7559 DISF6A FXAISC GKB190 HXSE2 J27DGM4 38EH62 49F116 AG051 PJB5A6 CASC37 BFC045 SAFFF SAFFF SAFFF SAFFF SAFFF SAFFFF SAFFFF SAFFFFFFFFFF SAFFFFFFFFFFF SAF]	MAXIMUM ACHIEV	ABLE BY $G(\ell,q,2)$	CODES OF LENGT	h 6 (see Theorem	(4)	
G G G G G G G H IHHHH H 11111 IIII JJJJJ JJJ JJ SK KK KK KK KK KK LLLL L MM MM M 01 G C 45 9 A2 L D E A3 JF F3 34 JF F3 55 G G C D S I G H D E G 2 H I E F 7 J J F 7 8 0 JB C G G 9 5 K C D F G 8 4 J K G H 9 5 K L D 9 1 2 L M E A2 3 M F B 3 4 M F B				3 3 3 3 3 3 3			666666	
12 HD 56 231E 67 341F78 45K G 89 56L H9A 67 MI AB 76 MI AB 76 MI AB 76 SAJK CD 9A 2L DE AB 3 MET BC 40 DC DS C 4B 13A 22 B 36 A 40 DC CE 13A 22 B 24 B 3 AC 35 C 4B D A 6 D SC CE 57 E 6D F 68 F 7E 6 79 G 8F H 8A H9 G1 H3 1 A 22 B 36 S G F 1 47 6 H G 1 C E D KM D F ME L 6 E G P MI F FH 1G 02 G 118 3 H3 1 A 24 H 36 S G F 1 47 6 H G 1 S S T H A 6 M S M B B A 1 M 1 A S C M A 3 B B A 1 M 1 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 B 20 A S C M A 3 B D 4 E 20 A S D M A 3 A S D M A 3 </td <td></td> <td>999999</td> <td></td> <td></td> <td></td> <td></td> <td>ЕЕЕЕЕ</td> <td></td>		999999					ЕЕЕЕЕ	
9 A 2L DE A B 3 M EF B C 4 0 F G C D S I G H D E 6 2 H I E F 7 3 J I F G 8 4 K G H 9 5 K L 24 B 3 A C 3 S C 4 B D A C J B I K A D S C E 5 F 6 0 F 7 E G 7 9 G 8 F H 8 A H 0 G I 9 B 1 A H H A C J B I K B D K C L I C E L D K M D F M E L O C F C F 1 A S C A H D H A 1 A J A S C A H D H A J A J A J A J A J A J A J A J A J A								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
2483AC 35C48D 4605CE 57E60F 6877EG 7968FH 88A901 981AHJ 1K4135 JL5K46 KM6L57 L07M68 M18079 032DCF 143B4DG 254FEH 165G7H L170BA7 KG16456 F1H547 G11658 HKK7569 JLK87A JMM68B S9M7LC L10BA7 KG16456 F1H547 G11658 HK7769 JLK87A GG7E59 D18F6A E19G7B FJAHSC GK819D HLC7AE JK8FM5 JFL02M8 KIFMDH L206ER HS1471 J75428 266539 J97644 A875B J898C GCA37D D18AF FUIDK HM54811 JM147 J30185 J0147C B6785G J177AGL K28BHM M33206 O7K852 I81060 J90H14 HM512 J20MK3 S30164 J421M5 J308764 J421M5 J308764 J421M5 J3886C J397644 J421M5 J308764 J421M5 J308764 J421M5 J308764 J421M5 J308764 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
A C JB IK B D K C JL C LO LO KM D F M E LO E G G F M I F H I G D 2 G I 1 3 E H I 3 E L 2 5 4 F E H I 3 4 5 G 3 6 5 G F I 4 7 6 H G J 5 8 7 1 H K 6 9 8 J IL 7 A 9 K J M 8 B A L K O 9 C E M L 1 A D C O M 2 3 M J V B B K M A V C L I D R A D M 2 L C E E 6 4 1 2 G K 15 J 3 H L 2 6 K 4 J M 3 J L 5 J 0 S 6 K M M A V C L I D R A D T A J M K K S A J A J M J M J F J 0 5 B E K Z 1 6 C F L 3 2 7 D G M L 3 A A E 5 C 5 T 1 6 E D L 3 A A E 5 C 5 T 1 6 E D L 3 A A E 5 C 5 T 1 6 E D L 3 A A E 5 C 5 T 1 6 E D L 3 A A E 5 C 5 T 1 6 E D L 3 A A E 5 C 5 T 1 6 E D L 3 A A E 5 C 5 T 1 6 E D L 3 A A E 5 C 5 T 1 6 E D A A E 5 C 5 T 1 6 E D A A E 5 C 5 T 1 6 E D A A A A S T 5 B S B S C C A C 5 A G E D B H 1 7 A S L 3 A A A A S T 5 B 1 A S B 9 8 K C A A A S T 5 B 1 A S A A A A S T 5 B 1 A S A A A A S T 5 B 1 A S A A A A A S T 5 B 1 A S A A A A A S T 5 B 1 A S A A A A A S T 5 B 1 A S A A A A A A A A A A A A A A A A A								13A29B
1K4135 JL5K46 KM6L57 L07M68 M18079 032DCF 143EDG 254FEH BED103 CFE214 DGF325 EHG436 F1H547 GJ1658 HK1769 ILLK87A ALUSB KOMA9C L10BAD M21CBE 0412CR ISJ111 26K41M 37L510 AKM6K1 S907L2 GA18M3 7B2904 8C3A15 9D4B26 ACESC37 BF6D48 CG7ES9 DH8F6A E19G7B FJAHEC GKB1D HLCVAE IMDKBF JOECG GA1917 GB1S367 FIL48 RDLF7D 9D5BK2 IGC7F15 ZADGM4 BE10G7 CG8BBE D10127 GB1S367 GA317 T75428 Z86539 39764A AAS75B S5986C SAS206 O7KF50 I8L060 29MH7B 3A0B18 KHE029 LS103A M6JE48 MS3206 O7KF50 I8L0612 AHFF7M I80367 CJ9MK3 K310L4 L421MS FG4C417 JG1644 BJ7KC7 JG10A M6J								
365GF1 476HGJ S871HK 6981L 7.49KJM 8BALK0 9CBML1 AADC0M2 JML98B CCMA49C LIOBAD M21CBE 0412GK 15J3HL 26K41M 37L510 A8M6K1 5907L2 6A18MA 7B2904 8C3A15 9D4B26 AESC37 BF6D48 GG7E59 DH8F6A E19G7B FJAHRC GKB19D HLCJAE IMDKBF JOELCG SIT <mdh< td=""> L20GEI M3H1F1 05BEK2 16CFL3 27DGM4 38EH05 49F116 SAG71 FB12SBC FK36CH GKB19D PHOCAB 38EH05 48F116 CG20F DFARAB SKCBPH PFOCAG AGEDH HIF7C3 KGB12 KESBHM CG20F DFARAB SKCBPH PFOCAG AGEDH HHF7C3 KGFAD SHS8C KGFAD SHS98C KGFAD KGFAD SHS98C KGFAD SHS98C KGFAD SHS94C KGFAD SHS94C KGFAD SHS94C KGFAD SHS94C SGFAD SHS94C<</mdh<>								
BED103 CFE214 DGF525 EHG436 FIHS47 GJI658 HK769 ILK87A JML98B KOMA9C L10BAM TCE 0412CK 1531HL 26K41M 37L510 48M6K1 S907L2 6A18M3 7B2904 8C3A15 9D4B26 AESC37 BF6D48 CG7E57 GBHK38 TCIL49 8DJM5A 9EK06B AFL17C BGM28D CH039E D114AF EJ25BG FK36CH GL47D1 HM58E1 1069FK J17AGL K28BH0 CH039E D114AF EJ25BG FK36CH GL47D1 HM58E1 1069FK J17AGL K28BH L82BH L39C10 MAAD1 0643T1 T54282 26653 39764A 4A875B S9898C S3206 O7KF5C 18.66D 29MH7E 3A018F 4B1J9G S22KH 6D3LB FEAMF JF850K CK2GL6 L3HM7F B18A6C C7KHA F05J19 G608L02 SPAFA B165A3 CK2GL6 L3HM7F								
JML 98BKOMA9CLIOBADM21CBE0412GK1513HL26K41M37L51048M 6K15907L26A18M377L52086A3437B29048C3A159D4B26AESC37BF6D48CG7E59DH8F6AE19G7BFJAHSCGKB19DHLCIAEMIMCKBFJOELCGSIGMA37CL149SDJMSA9EK06BAFL17CBGM28DCH039ED114AFFL25BGFK36CHGL47D1HMS8E11066PKJIACKK28BIML39C10MAADJ106431717542828653939764A4X875BSB986CCCA97DTDBA8E8ECBP9FDCAGAGCBBBHFECICIGFD1DJHGEKEKINFLFLJIGMGMK1H0HOLK1111ML12J20MK3X310L4L421MSM5320607KF5C18L60C29MH7PT38016F4B19GSC2KAH6D3LB17E4W7K467500C18L60C29MH7PT38016F4B19GSC2KAH6D3LB17E4W7K419E5A112AFCB138C4CK40458SD1PM6ELFA80D40H119E5A12AFCB138C4CK40458SD1PM6ELFA91E2M819E5A138G7CK44A4K4055SEBL4SC41A14K421K991E2M8A1051912AFCB138EA14C152CSC42L6L32FFM7C38G096GDM1A7HE02B81F13C91G2AAFA4SEBL4GC5CKADF1A92CSJ2KAKSG44A41A7HE02B81F13C91G2SF4A4MGC5B0AF4C1B8<								
48 M 6 K I 59 07 L2 6 A 18 M 3 7 B 2 9 0 4 8 C 3 A 1 5 9 D 4 B 2 6 A E 5 C 3 7 B F 6 D 4 8 C G 7 E 5 7 D H 8 F 6 A E 1 9 C F F 1 A R G R E 1 9 D L C 1 A E I M D B F 1 0 C 1 A E I M D B F 1 0 C 1 A E I M D B F 1 0 C 3 A E 1 A 7 D 1 0 A 3 A 1 1 0 A 5 A F 1 A 7 A C L R 2 A 7 D 1 0 A 4 A A 7 S B 5 B 9 8 C C D 11 4 A F E 1 2 5 B G F K 3 6 C H G L 4 7 D 1 H M S 8 E J 1 0 6 9 F K 1 1 7 A C L K 2 8 B 1 M 1 0 C 4 3 1 7 1 7 5 4 2 R 2 8 6 5 3 9 3 9 7 6 4 A 4 A 8 7 S B 5 B 9 8 C C G C A 9 7 D 7 D B A 8 E B E C B 9 F P C C A G A G E D B H B H F E C 1 C 1 G F D J D J H G E K A 1 A 7 S B 5 3 9 8 C C D A 1 1 0 K 4 1 1 M 1 J 2 J 2 0 M K 3 K 3 1 0 1 4 L 4 2 1 M 5 1 3 3 0 6 1 7 K 5 C I L 2 H M D 1 3 A 1 0 E 1 A 1 7 2 M B 18 3 G O C 1 9 4 H 1 D K A 5 1 2 E L B 6 1 3 1 B G 7 C K 4 C H B D J 5 D F M 6 L 1 A 7 0 F R 5 C K 4 G 0 D K 1 5 1 1 E 9 M 6 1 3 B G C C 7 C K 4 C A D L 5 D 1 7 M 6 E D 3 L 5 0 T M 6 0 5 1 1 9 M 6 1 2 F A 1 0 7 M 1 0 F A 1 0 B 1 3 B 1 3 S M C 1 D A 1 D 7 4 H B 1 1 0 K A 1 1 K A 1 1 A 1 K A 1 1 A 1 K K A 1 A 1								
C G T E 5 9 D IN R F 6 A E 19 G 7 B F J A IN S C G K B 19 D ILC J A E I M D K B F J O E L C G S A G J Z 7 6 B H K 3 8 7 C I L 4 9 B D I M S A 9 E K 0 6 B A F L 1 7 C B G M 2 8 D C H 0 3 9 E D 11 4 A F E J 2 5 B G F K 3 6 C G C A 7 D I M S B J I 0 6 9 F K J 1 7 A G L K 2 K B H M C C A 7 D T D B A 8 E S E C B G F K 3 6 C G C A 7 D I M S B J J 0 6 9 F K J 1 A G L K 2 K B H M K 5 3 0 G 0 7 K F 5 C I K L G D 2 9 M F E 3 A 0 1 8 F H 1 D G S C 2 K A H G J L B J E B J B F A H J 2 0 M K 3 K 3 1 0 1 4 L 4 2 1 M S T A G 0 D S L H E 9 M H B 1 2 A F 6 B J 3 B G 7 C K 4 C H 8 D L S D J P E M F K B G L A B J F A H B B A S G C C A C G L D L J H T D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 8 D K A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				M21CBE				
K1FMDH L2G0EI M3H1FJ 05BEK2 16CFL3 27DGM4 38EH05 49F116 SAGJZ7 6BHK38 7CIL49 8DJM5A PEK06B AFLI7C BGM28D CH039E D114AF EJ25BG FK36CH GL47D1 HM58EJ I069FK J17AGL K28BHM L39CIO M4ADJ1 0643FH HM572 28539 39764A 4A875B 5B986C CAOPA GMLMH GMLK1H HIL12J J20MK3 K31044 L421MS M53206 O7FF5C I8LG6D 29MH7E 3A018F HB19EG CJ2FK GEB3 M6774 GODSL5 IILE9M6 12FA07 J3GB18 K4HC29 GEJAFO 7FKBG1 80D49H 19E5A1 2AFG039 BK4H21 SCCA4 FM4108 F05J19 G16K2A H27TS3 J38MA J4VAKB3 SEBL14 GE7CM74 FG10K6 8H6117 J174E0 2881F1 3C9JG2 HDAKH3 SEBL14 GE7CM74 SG9M6D								
SAGJ27 6BHX38 7C1L49 8DJMSA 9EK06B AFL17C BGM28D CH039E D114AF EJ256B FK36CH GL47D1 HMSEJ I069FK JJ17AGL K28BHM L39C10 M4ADJ1 064317 175428 286539 39764A AA875B 5B986C CA97D 7DBA8E 8EC6DB PHFC1 CIGPJ DJH4L L421MS M53206 07KF5C 18L66D 29MF1E 3A018F 4B119G SCAAH CDJB1B FMC7K4 G0DSL5 H1E9M6 12FA77 J36B18 K4HC29 L51D3A M61E48 08D49H J9E5A1 2AF6BJ 3BG7CK 4CR4BDL SD19EM GEJAF0 7FKBG1 G16K2A H2713B J38M4C J4905D KSA16E L6B27F MTC38G 096GDM A7HE0 D28K7 4E39L8 SF4AM9 G55DA TC44BK MK108 F0119 1A1B8H J52C21 K6JBA1 TC4HEBK MKSFCL OAK6BHE17								
D114AF E125BG FK36CH GL47D1 HM58EJ 1069FK J17AGL K28BHM L39C10 M4ADJ1 064317 175428 286539 39764A 4A875B 5B986C 6CA97D 7DBA8E 8ECB9F 9FDCAG AGEDBH BHFEC1 C1GFDJ DJHGEK MTS3206 07KF5C 18LG6D 29MH7E 3A018F 4B1J9G 5C2KAH 6D3LB1 FMC7K4 G0D8L5 H1E9M6 12FA07 J3GB18 K4HC29 L5ID3A M6JE4B 80504H 19E5A1 2AFGBJ 3B7CK 4CH8DL SD19EM 6E1AF0 FKBGJ 8061CH2 9HMD13 A10E14 BJ1FK5 CK2GL6 DL3HM7 EM4108 F05J19 G16K2A H27L3 I38M4C J405D K5A16E L6B27F M7C38G 096GDM 17H7H0 28B1F1 3C9JG2 4DAKH3 SEBL14 6FCMJ2 J6HA08 F05J19 2017J6 3D28K7 4E3948 SC44AM96 6G5B0A TAF6								
6 CA 97 D 70 B A 8 E C B 9F 9FD C A G A G E D B H B H F E CI C1 G F D J D J H G E K M 53 20 6 07 K F 5 C 1 8 L G G D 2 9 M H 7 E 3 A 01 8 F 4 B 1 J 9 G 5 C 2 K A H 6 D 3 L B 1 F 4 M C J 8 F 5 O D N 9 G 6 1 E L A H 7 2 F M B 1 3 8 G O C 1 9 4 H 1 D K A 51 2 E L B 6 J 3 3 G C K 4 C H 8 D L 5 C 2 K A H 6 D 3 1 A M 6 J E A 8 N N 0 N 4 H 19 E 5 A 1 2 A F 6 B J 3 B G 7 C K 4 C H 8 D L 5 C 1 A 4 1 A 7 C 1 R 7 K B G 1 M 6 J A 1 0 B 1 F K 5 C K 2 G L 6 D L 3 H M 7 E M 4 10 8 F 0 5 J 1 9 0 9 G G M A 1 0 9 6 G D M 1 A 7 H E 0 J 2 8 I T 1 3 C 9 J G 2 4 D A K H 3 S E B L 1 4 6 F C M 1 7 T G D 0 K 6 8 H E 1 L 7 1 8 J 1 0 A 7 G 1 4 1 B 8 H J 5 2 C 9 I K 6 3 D A 1 L 7 4 E B K M 5 F C L 0 A M 5 H 4 1 B 0 6 1 5 1 2 C 1 7 I 6 3 D 2 8 K 7 4 E 3 D 2 8 J 8 5 F 4 A M 9 6 G B 0 A 7 H 6 C 1 B 8 1 7 D 2 C 9 J 1 8 J 8 D 2 K 1 3 7 I A 4 G M B L 1 5 J 0 2 K 1 7 I A 5 G N K 3 D 1 2 C 9 J 1 8 J 8 D 2 K 1 3 T I A 4 G M B L 1 B 0 5 K 4 C 4 J 1 2 D 5 G K A 3 B 6 H L 0 4 F 7 I 1 H 5 G N 6 B 6 H D 1 C G I M A 2 D H 10 B 3 H 8 J 2 K 1 J 7 H A 1 B 2 A 2 K 3 J 0 A 1 4 G M A 2 D H 10 B 3 J 2 C 4 J A K 3 B 6 H L 0 A M 1 G C I B 3 D 2 G K J 3 A 1 4 C M A 2 D H 10 B 3 J 1 6 A C G 4 J 3 F B 3 F H A 5 J A C C 4 A A 1 B 0 A H G C I B 0 J 1 A 2 K 4 J B 0 A 1 A C K 3 D A 1 K A D 4 A 1 B 0 A A 1 C A 1 B A A 1 A C K 3 D A 1 A C K 4 J A C C A 1 B A A A C A A 1 B A A A C A A 1 A A C A A 1 B A A A C A A 1 A A A A A A C A A 1 A A A A								
EKHFL FLJIGM GMKJHO HOLKII IIMLJ2 J20MK3 K310L4 L421M5 M53206 07KFSC 18LGO 29MF7E 3A018F H4B1J9G SCZKAH D3L61 FMCTKA GODBK5 H1E9M6 12FA07 J3GB18 K4HC29 L5ID3A M6JE4B 08D49H 19E5AI 2AF6BJ 3BG7CK 4CH8DL 5D19EM 6EJAFO 7FKBG1 G16K2A H27L3B I38M4C J4905D K5A16E L6B27F M7C38G 096GDM A7HEO 288K7 AE39L8 J4905D K5A16E L6B27F M7C38G 096GDM 12017J6 3D28K7 4E39L8 SF4AM9 6G5B0A 7H6C1B 817D2C 9J8E3D AK9F4E BLAGSF CMB6G D0C17H E1D181 F2EK9J G3FLAK H4GMBL 2DH10B 3EIK1C 4FJ12D SGKM3E HAG4K3 0BFH2 H39B73 I6ACC4 17BDH5 K8C2AM 9LFBD AMIGC1 BD11B3 IFC4HAG8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
							EM4108	
1 A7 HE 0 2 B 8 IF 1 3 C 9 J G 2 4 D A K H 3 5 E B L 14 6 F C M J 5 7 G D 0 K 6 8 H E I L 7 9 IF 2 M A J G 30 9 B K H 4 1 A C L 1 5 2 B D M J 6 3 C E 0 K 7 4 D F I L 8 S E G 2 M 9 6 F 2 C 1 7 I 6 3 D 2 8 K 7 4 E 3 9 L 8 S F 4 A M 9 6 G 5 B 0 A T H 6 C I B 81 T D 2 C 91 8 E 3 D 3 K 9 F 4 E B L A G 5 F C M B H 6 G D 0 C 1 7 H E 1 D J 8 I F 2 E K 9 J G 3 F L A K H 4 G M B L 1 S H L 4 J 6 1 1 D 0 K 7 J 2 E I L 8 K 3 F 2 M 9 L 4 G 3 D B F H L 9 I C G 1 M A D D H J B 3 B I K 1 C 4 F J 2 D S G K M 3 E H L 0 K 7 J 2 E I L 8 K 3 F 2 M 9 L 4 G 3 D B F H 2 N I C 3 I T 3 T 1 I L 2 H 3 T 3 I L 2 A S J 1 T B 3 D 2 L F 4 E 3 M K 6 T A D T 1 M E G K 8 O C 8 C 2 E I D 7 T 1 K 9 J 3 K 4 2 L A K 9 S 3 M B L A 6 4 0 C M B 7 5 I D D 1 I 6 J 1 E 2 1 7 K 2 S 7 K 8 L 3 G 4 L 9 M H 4 S M A 0 3 D 3 E N 1 E 4 F 9 K A F S G A L B G 6 H B M C H 7 I C O D 1 B J J B 1 H 3 J D 1 E J S C 4								
91F2M8 AJG309 BKH41A CL152B DMJ63C E0K74D FIL8SE G2M96F 130A7G I41B8H J52C91 K63DA1 I74EBK M85FCL 0AM5H4 IB0615 2K17J6 3D28K7 4E39L8 SF4AM9 6G5B0A 7H6C1B 817D2C 9J8E3D AK9F4E BLAG5F CMBH6G D0C17H E1DJ81 7B6C1B 817D2C 9J8E3D 3EIK1C 4FJL2D 5GKM3E 6HL04F 7IM15G 8J026H 9K1371 AL248J BM359K C046AL D157BM E268C0 F379D1 G48AE2 H59B73 I6ACG4 JTBDH5 K8CE16 L9DFJ7 MAEGK8 0C862E H973F 2EA84G 3FB95H 4GCA61 SHDB73 6IEC8K 7JFD9L 8KGEAM 9LHFB0 AM1611 B01202 I731K9 J842LA K953MB LA640C MB751D DD1161 1E217K 2F3K8L 3G4L9M 4H5MA0 S160B1 6J71C2 7K82D3 SL93E								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
		BLAGSE						
3 EIK1C 4 FJL2D 5 GKM3E 6 HL04F 71M15G 8 J026H 9 K1371 A L248J BM359K C046AL D157BM E268C0 F379D1 G48AE2 H59BF3 I6ACG4 J7BDH5 K8CE16 L9DFJ7 MAEGK8 0C862E 1D973F G48AE2 H59BF3 4GCA61 SHDB7J 61EC8K 7JFD9L 8KGEAM 9LHFB0 AMIGC1 B0JHD2 C1K1E3 D2JF4 E3MKG5 F40LH6 G51M17 H620J8 J73IK9 J842LA K953MB LA640C MB751D 0D116J 1E2J7K 2F3K8L 3G6L9M H45MA0 J3E8J9 E4F9KA F5GALB G6HBMC H71C0D 18JD1E J9KE2F KALF3G LBMG4H MC0H51 0EH7A1 1F18B2 2GJ9C3 3HKAD4 41LBE5 5JMCF6 6K0DG7 7L1EH8 M2FI9 903GA A14HKB B2SILC C36JMD D47K0E E58L1F F69M2G G7A03H H8B141 19C25J					M9L4G3			
B M S 9 S K C 0 4 6 A L D 15 7 B M E 26 8 C 0 F 3 7 9 D I G 4 8 A E 2 H 5 9 B F 3 I 6 A C G 4 J 7 B D H 5 K S C E I 6 L 9 D F J 7 M A E G K 8 0 C 8 6 2 E I D 9 7 3 F 2 E A 8 4 G 3 F B 9 5 H C I K I E 3 D 2 L J F 4 E 3 M K G 5 F 4 0 L H 6 G 5 1 M 17 H 6 2 0 J 8 J 7 3 I K 9 J 8 4 2 L A K 9 5 3 M B L A 6 4 0 C M B 7 5 I D 0 D I 1 6 J I E 2 J 7 K 2 F 3 K 8 L 3 G 4 L 9 M 4 H 5 M A 0 S 16 0 B I 6 J 7 1 C 2 7 K 8 2 D 3 8 L 9 3 E 4 9 M A 4 F 5 A 0 B 5 G 6 B I C 6 H 7 C 2 D 7 I 8 D 3 E 8 J 9 E 4 F 9 K A F 5 G A L B G 6 H B M C H 7 I 1 0 C 2 J J A 0 3 6 K K B E 4 7 L L C 5 D 5 J J A D 3 6 K K B E 4 7 L L C F 5 8 M D 6 G 9 0 O F A J E 6 I G B K F 7 2 H C L G 8 3 I D M H 9 4 J E 0 I A S K F I J B 6 L G 2 K C 7 M H 3 L 0 8 0 I A 5 9 I J B 4 E 1 A 1 I 5 C 5 F K 7 0 D 6 G L 8 1 K 7 H B 9 I D 5 0 A 2 K 6 1 A 5 K </td <td></td> <td></td> <td></td> <td></td> <td>7 I M 1 5 G</td> <td></td> <td></td> <td></td>					7 I M 1 5 G			
J7BDH5 K8CE16 L9DFJ7 MAEGK8 0C862E 1D973F 2EA84G 3FB95H 4GCA61 SHDB7J 61EC8K 7JFD9L 8KGEAM 9LHFB0 AMIGC1 B0JHD2 C1K1E3 D2LJF4 E3MKG5 F40LH6 G51M17 H620J8 1731K9 J842LA K953MB LA640C MB751D 0D116J 1E2J7K 2F3K8L 3G4L9M 4H5MA0 S160B1 6J7C2 7K82D3 8L93E4 9MA4F5 A0B5G6 B1C6H7 C2D718 D3E8J9 E4F9KA F5GALB G6HBMC H71C0D 18JD1E J9KE2F KALF3G LBMG4H MC0H51 0EH7A1 1F18B2 2GJ9C3 3HKAD4 41LBE5 5JMCF6 658L1F F69M2G G7A03H H818141 19C25J JAD36K KBE47L LCF58M MDG690 0FAJE6 1GBKF7 2HCLG8 31DMH9 JE01A 5KF1JB 6LG2KC 7MH3LD 8014ME J150F A2K61G B3L72H C4M831 D5094J E61A5K F72B6L G83C7M H94D80 1								
4 G C A 615 H D B 7 J61E C 8 K7 J F D 9 L8 K G E A M9 L H F B 0A M I G C 1B 0 J H D 2C 1 K 1 E 3D 2 L J F 4E 3 M K G 5F 4 0 L H 6G 5 1 M 1 7H 6 2 0 J 8I 7 3 1 K 9J 8 4 2 L AK 9 5 3 M BL A 6 4 0 CM B 7 5 1 D0 D 1 1 6 JI E 2 J 7 K2 F 3 K 8 L3 G 4 L 9 M4 H 5 M A 05 1 6 0 B 16 J 7 1 C 27 K 8 2 D 38 L 9 3 E 49 M A 4 F 5A 0 B 5 G 6B 1 C 6 H 7C 2 D 7 1 8D 3 E 8 J 9E 4 F 9 K AF 5 G A L BG 6 H B M CH 7 1 C 0 D1 8 J D 1 EJ 9 K E 2 FK A L F 3 GL B M G 4 HM C 0 H 5 10 E H 7 A 1I F 1 8 B 22 G J 9 C 33 H K A D 44 I L B E 55 J M C F 66 K 0 D G 77 L 1 E H 88 M 2 F 1 99 0 3 G J AA 1 4 H K BB 2 5 I L CC 3 6 J M DD 4 7 K 0 EE 5 8 L FF 6 9 M 2 GG 7 A 0 3 HH 8 B 1 4 IJ 9 C 2 5 JJ A D 3 6 KK K E 4 7 LL C F 5 8 MM D G 6 9 00 F A J E 61 G B K F 72 H C L G 83 I D M H 94 J E 0 I A5 K F 1 J B6 L G 2 K C7 M H 3 L D8 0 1 4 M E9 I J 5 0 FA 2 K 6 I GB 3 L 7 2 HC 4 M 8 3 ID 5 0 9 4 JE 6 I A 5 K6 G 3 8 I B1 H 4 9 J C2 I 5 A K D3 J 6 B L EA C 7 G B 3L D 8 H C 4M E 9 I 5 0 A 36 G 3 1 B 4H A C 2 C 5 I B L 3 D 6J C M 4 2 7 K A D 5 F 8L E 1 6 G G 9M F 2 7 H A 0 H J K M G7 J 1 B 4 A A 2 C 5 A A 6 7 3B 5 7 8								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
D 3 E 8 J 9E 4 F 9 K AF 5 G A L BG 6 H B M CH 7 I C 0 DI 8 J D 1 EJ 9 K E 2 FK A L F 3 GL B M G 4 HM C 0 H 5 I0 E H 7 A 11 F I 8 B 22 G J 9 C 33 H K A D 44 I L B E 55 J M C F 66 K 0 D G 77 L 1 E H 88 M 2 F 1 99 0 3 G J AA 1 4 H K BB 2 5 I L CC 3 6 J M DD 4 7 K 0 EE 5 8 L 1 FF 6 9 M 2 GG 7 A 0 3 HH 8 B 1 4 I1 9 C 2 5 JJ A D 3 6 KK B E 4 7 LL C F 5 8 MM D G 6 9 00 F A J E 61 G B K F 72 H C L G 83 I D M H 94 J E 0 I A5 K F 1 J B6 L G 2 K C7 M H 3 L D8 0 I 4 M E9 I J 5 0 FA 2 K 6 I GB 3 L 7 2 HC 4 M 8 3 ID 5 0 9 4 JE 6 I A 5 K6 G 3 8 I B1 H 4 9 J C2 J 5 A K D3 J 6 B L E4 K 7 C M F5 L 8 D 0 G6 M 9 E 1 H7 0 A F 2 I8 I B G 3 J9 2 C H 4 KA 3 D I 5 LB 4 E J 6 MC 5 F K 7 0D 6 G L 8 1E 7 H M 9 2F 8 I 0 A 3G 9 J I B 4H A K 2 C 5I B L 3 D 6J C M 4 E 7K D 0 5 F 8L E I 6 G 9M F 2 7 H A0 H J K M G1 I K L 0 H2 J L M 1 I3 K M 0 2 J4 L 0 1 3 K5 M 1 2 4 L6 0 2 3 5 M7 1 3 4 6 08 2 4 5 7 19 3 5 6 8 2A 4 6 7 9 3B 5 7 8 A 4C 6 8 9 B 5D 7 9 A C 6E 8 A B D 7F 9 B C E 8G A C D F 91 B B G A I C E F H BJ D F G I CK E G H J DL F H I K EM G I J L C 7A 5 M J D 86 0 K L 97 2 J G A 58								
LBMG4HMC0H5I0EH7A11F18B22GJ9C33HKAD44ILBE5SJMCF66K0DG77L1EH88M2F19903GJAAI4HKBB25ILCC36JMDD47K0EE58L1FF69M2GG7A03HH8B14I9C2SJJAD36KKBE47LLCF58MMDG6900FAJE61GBKF72HCLG83IDMH94JE0IASKF1JB6LG2KC7MH3LD8014ME91J50FA2K61GB3L72HC4M83ID5094JE61A5KF72B6LG83C7MH94D80IA5E9IJB6FA2KC7GB3LD8HC4ME9ID50G38IB1H49JC2I5AKD3J6BLE4K7CMFSL8D0G6M9E1H70AF2I81BG3J92CH4KA3D15LB4EJ6MC5FK70D6GL81E7HM92F8I0A3G9J1B4HAK2C5IBL3D6JCM4E7KD05F8LE16G9MF27HA0HJKMG1KL0H2JLM1I3KM02J4L013K5M124L60235M713460824571935682A46793B578A4C689B5D79AC6E8ABD7F9BCE8GACDF9HBDEGAICCFHBJDFGICKEGHJDLFHIKEMGIJLF0IC93L1JDA4M2KEB503LFC614MGD7250HE8361IF9472JGA583KHB694L1C7A5MJD8B60KE9C71LFAD82MGBE930HCFA411DGB52JEHC63KF1D74LGJE85MHKF960ILGA71JMH882K0J5L731K6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GC<								
6K0DG77L1EH88M2F19903GJAA14HKBB25ILCC36JMDD47K0EE58L1FF69M2GG7A03HH8B14I19C25JJAD36KKBE47LLCF58MMDG6900FAJE61GBKF72HCLG831DMH94JE0IA5KF1JB6LG2KC7MH3LD8014ME91J50FA2K61GB3L72HC4M83ID5094JE61A5KF72B6LG83C7MH94D801A5E91JB6FA2KC7GB3LD8HC4ME91D50G38IB1H49JC215AKD3J6BLE4K7CMF5L8D0G6M9E1H70AF2I81BG3J92CH4KA3D15LB4EJ6MC5FK70D6GL81E7HM92F810A3G9J1B4HAK2C5IBL3D6JCM4E7KD05F8LE16G9MF27HA0HJKMG11KL0H2JLM113KM02J4L013K5M124L60235M713460824571935682A46793B578A4C689B5D79AC6E8ABD7F9BCE8GACDF9HBDEGAICEFHBJDFGICKEGHJDLFH1KEMGIJLF01C93L1JDA4M2KEB503LFC614MGD7250HE83611F9472JGA583KHB694LIC7A5MJD8B60KE9C71LFAD82MGBE930HCFA411DGB52JEHC63KF1D74LGJE85MHKF9601LGA71JMHB82K0J5L731K6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GCA6F8HDB7G9IEC8HAJFD91BKGEAJCLHFCD230GDE341HEF45								
E 5 8 L 1 FF 6 9 M 2 GG 7 A 0 3 HH 8 B 1 4 I1 9 C 2 5 JJ A D 3 6 KK B E 4 7 LL C F 5 8 MM D G 6 9 00 F A J E 61 G B K F 72 H C L G 83 1 D M H 94 J E 0 1 A5 K F 1 J B6 L G 2 K C7 M H 3 L D8 0 I 4 M E9 1 J 5 0 FA 2 K 6 1 GB 3 L 7 2 HC 4 M 8 3 ID 5 0 9 4 JE 6 1 A 5 K7 M H 3 L DG 8 3 C 7 MH 9 4 D 8 0I A 5 E 9 1J B 6 F A 2K C 7 G B 3L D 8 H C 4M E 1 D 50 G 3 8 I B1 H 4 9 J C2 I 5 A K D3 J 6 B L E4 K 7 C M F5 L 8 D 0 G6 M 9 E 1 H7 0 A F 2 I8 1 B G 3 J9 2 C H 4 KA 3 D 1 5 LB 4 E J 6 MC 5 F K 7 0D 6 G L 8 1E 7 H M 9 2F 8 1 0 A 3G 9 J 1 B 4H A K 2 C 5I B L 3 D 6J C M 4 E 7K D 0 5 F 8L E 1 6 G 9M F 2 7 H A0 H J K M G1 K L 0 H2 J L M 1 I3 K M 0 2 J4 L 0 1 3 K5 M 1 2 4 L6 0 2 3 5 M7 1 3 4 6 08 2 4 5 7 19 3 5 6 8 2A 4 6 7 9 3B 5 7 8 A 4C 6 8 9 B 5D 7 9 A C 6E 8 A B D 7F 9 B C E 8G A C D F 9H B D E G AI C E F H BJ D F G I CK E G H J DL F H I K EM G I J L F0 I C 9 3 LI J D A 4 M2 K E B 5 03 L F C 6 14 M G D 7 25 0 H E 8 36 1 I F 9 47 2 J G A 58 3 K H B 69 4 L I C 7A 5 M J D 8B 6 0 K E 9C 7 1 L F AD 8 2 M G BE 9 3 0 H CF A 4 1 1 DG B 5 2 J EH C 6 3 K F <tr<tr>1 D</tr<tr>						B 2 5 I L C		
MDG6900FAJE61GBKF72HCLG83IDMH94JE0IA5KF1JB6LG2KC7MH3LD80I4ME91J50FA2K61GB3L72HC4M83ID5094JE61A5KF72B6LG83C7MH94D80IA5E91JB6FA2KC7GB3LD8HC4ME9ID50G38IB1H49JC2I5AKD3J6BLE4K7CMFSL8D0G6M9E1H70AF2I81BG3J92CH4KA3D15LB4EJ6MC5FK70D6GL81E7HM92F810A3G9J1B4HAK2C5IBL3D6JCM4E7KD05F8LE16G9MF27HA0HJKMG1KL0H2JLM1I3K002J4L013K5M124L60235M713460824571935682A46793B578A4C689B5D79AC6E8ABD7F9BCE8GACDF9HBDEGAICEFHBJDFGICKEGHJDLFH1KEMGIJLF01C93LIJDA4M2KEB503LFC614MGD7250HE8361IF9472JGA583KHB694LIC7A5MJD8B60KE9C71LFAD82MGBE930HCFA411DGB52JEHC63KF1D74LGJE85MHKF960ILGA71JMHB82K0J5L731K6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GCA6F8HDB7G9IEC8HAJFD9IBKGEAJCLHFBKDMIGCLE0JHDMF1KIE0G2LJF1H3MKG2I40LH3J5IM14K620KLAB8ILMBC92M0CDA301DEB412EFC523FGD634GHE745HIF856IJG967JKHA78KLI		F 6 9 M 2 G	G 7 A 0 3 H	H8B14I	I 9 C 2 5 J	J A D 3 6 K	K B E 4 7 L	LCF58M
7 M H 3 L D8 0 1 4 M E9 1 J 5 0 FA 2 K 6 1 GB 3 L 7 2 HC 4 M 8 3 ID 5 0 9 4 JE 6 1 A 5 KF 7 2 B 6 LG 8 3 C 7 MH 9 4 D 8 0I A 5 E 9 IJ B 6 F A 2K C 7 G B 3L D 8 H C 4M E 9 I D 50 G 3 8 I B1 H 4 9 J C2 1 5 A K D3 J 6 B L E4 K 7 C M F5 L 8 D 0 G6 M 9 E 1 H7 0 A F 2 I8 I B G 3 J9 2 C H 4 KA 3 D I 5 LB 4 E J 6 MC 5 F K 7 0D 6 G L 8 IE 7 H M 9 2F 8 I 0 A 3G 9 J 1 B 4H A K 2 C 5I B L 3 D 6J C M 4 E 7K D 0 5 F 8L E 1 6 G 9M F 2 7 H A0 H J K M G1 I K L 0 H2 J L M 1 I3 K M 0 2 J4 L 0 1 3 K5 M 1 2 4 L6 0 2 3 5 M7 1 3 4 6 08 2 4 5 7 19 3 5 6 8 2A 4 6 7 9 3B 5 7 8 A 4C 6 8 9 B 5D 7 9 A C 6E 8 A B D 7F 9 B C E 8G A C D F 99 H B D E G AI C E F H BJ D F G I CK E G H J DL F H I K EM G I J L F 0 I C 9 3 LI J D A 4 M2 K E B 5 03 L F C 6 14 M G D 7 25 0 H E 8 36 1 I F 9 47 2 J G A 58 3 K H B 69 4 L I C 7A 5 M J D 8B 6 0 K E 9C 7 1 L F AD 8 2 M G BE 9 3 0 H CF A 4 1 I DG B 5 2 J EH C 6 3 K F1 D 7 4 L GJ E 8 5 M HK F 9 6 0 IL G A 7 1 JM H B 8 2 K0 J 5 L 7 3I K 6 M 8 42 L 7 0 9 53 M 8 1 A 64 0 9 2 B 75 1 A 3 C 86 2 B 4 D 97 3 C 5 E A8 4 D 6 F B9 5 E 7 G CA 6 F 8 H DJ F 1 H	M D G 6 9 0	0 F A J E 6	1 G B K F 7		3 I D M H 9		5 K F 1 J B	6LG2KC
F72B6LG83C7MH94D80IA5E91JB6FA2KC7GB3LD8HC4ME9ID50G38IB1H49JC2I5AKD3J6BLE4K7CMF5L8D0G6M9E1H70AF2181BG3J92CH4KA3DI5LB4EJ6MC5FK70D6GL81E7HM92F8I0A3G9J1B4HAK2C5IBL3D6JCM4E7KD05F8LE16G9MF27HA0HJKMG1KL0H2JLM1I3KM02J4L013K5M124L60235M713460824571935682A46793B578A4C689B5D79AC6E8ABD7F9BCE8GACDF9HBDEGAICEFHBJDFGICKEGHJDLFHIKEMGJLF0IC93LIJDA4M2KEB503LFC614MGD7250HE8361IF9472JGA583KHB694L1C7A5MJD8B60KE9C71LFAD82MGBE930HCFA411DGB52JEHC63KFID74LGJE85MHKF9601LGA71JMHB82K0J5L731K6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GCA6F8HDB7G9IEC8HAJFD9IBKGEAJCLHFBKDMIGCLE0JHDMF1KIE0G2LJF1H3MKG2I40LH3J51MI4K620KLAB8ILMBC92M0CDA301DEB412EFC523FGD634GHE745HIF856IJG967JKHA78KLIB89LMJC9AM0KDAB01LEBC12MFCD230GDE341HEF452IFG563JGH674KH1785LIJS86MJK9A70LEMFDIMF0GE20G1HF31H2IG<	7 M H 3 L D	80I4ME	91J50F	A 2 K 6 1 G	B 3 L 7 2 H	C 4 M 8 3 I	D 5 0 9 4 J	E 6 1 A 5 K
81BG3J92CH4KA3DI5LB4EJ6MC5FK70D6GL81E7HM92F810A3G9J1B4HAK2C5IBL3D6JCM4E7KD05F8LE16G9MF27HA0HJKMG11KL0H2JLM1I3KM02J4L013K5M124L60235M713460824571935682A46793B578A4C689B5D79AC6E8ABD7F9BCE8GACDF9HBDEGAICEFHBJDFGICKEGHJDLFHIKEMGIJLF0IC93L1JDA4M2KEB503LFC614MGD7250HE83611F9472JGA583KHB694L1C7A5MJD8B60KE9C71LFAD82MGBE930HCFA41IDGB52JEHC63KFID74LGJE85MHKF960ILGA71JMHB82K0J5L731K6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GCA6F8HDB7G9IEC8HAJFD9IBKGEAJCLHFBKDMIGCLE0JHDMF1KIE0G2LJF1H3MKG2140LH3J51M14K620KLAB81LMBC92M0CDA301DEB412EFC523FGD634GHE745HIF856IJG967JKHA78KLIB89LMJC9AM0KDAB01LEBC12MFCD230GDE341HEF452IFG563JGH674KH1785LIJ896MJK9A70LEMFD1MF0GE20G1HF31H2IG4213JH53J4KI64K5LJ75L6MK86M70L97081MA81920B92A31CA3B42DB4C53EC5D64FD6E75GE7F86HF8G97IG9HA8JHAIB	F 7 2 B 6 L	G 8 3 C 7 M	H 9 4 D 8 0		J B 6 F A 2	K C 7 G B 3		ME9ID5
G9J1B4HAK2C5IBL3D6JCM4E7KD05F8LE16G9MF27HA0HJKMG1IKL0H2JLM1I3KM02J4L013K5M124L60235M713460824571935682A46793B578A4C689B5D79AC6E8ABD7F9BCE8GACDF9HBDEGAICEFHBJDFGICKEGHJDLFHIKEMGIJLF0IC93L1JDA4M2KEB503LFC614MGD7250HE8361IF9472JGA583KHB694LIC7A5MJD8B60KE9C71LFAD82MGBE930HCFA41IDGB52JEHC63KF1D74LGJE85MHKF960ILGA71JMHB82K0J5L731K6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GCA6F8HDB7G9IEC8HAJFD9IBKGEAJCLHFBKDMIGCLE0JHDMF1KIE0G2LJF1H3MKG2I40LH3J51M14K620KLAB81LMBC92M0CDA301DEB412EFC523FGD634GHE745HIF856IG967JKHA78KLIB89LMJC9AM0KDAB01LEBC12MFCD230GDE341HEF452IFG563JGH674KH1785LIJ896MJK9A70LEMFD1MF0GE20G1HF31H2IG4213JH53J4KI64K5LJ75L6MK86M70L97081MA81920B92A31CA3B42DB4C53EC5D64FD6E75GE7F86HF8G97IG9HA8JHA1B9KIBJCALJCKDBMKDLEC0M7BJI108CKJ219DLK32AEML43BF0M								
1 I K L 0 H2 J L M 1 I3 K M 0 2 J4 L 0 1 3 K5 M 1 2 4 L6 0 2 3 5 M7 1 3 4 6 08 2 4 5 7 19 3 5 6 8 2A 4 6 7 9 3B 5 7 8 A 4C 6 8 9 B 5D 7 9 A C 6E 8 A B D 7F 9 B C E 8G A C D F 9H B D E G AI C E F H BJ D F G I CK E G H J DL F H I K EM G I J L F0 I C 9 3 L1 J D A 4 M2 K E B 5 03 L F C 6 14 M G D 7 25 0 H E 8 36 1 I F 9 47 2 J G A 58 3 K H B 69 4 L I C 7A 5 M J D 8B 6 0 K E 9C 7 1 L F AD 8 2 M G BE 9 3 0 H CF A 4 1 I DG B 5 2 J EH C 6 3 K FI D 7 4 L GJ E 8 5 M HK F 9 6 0 IL G A 7 1 JM H B 8 2 K0 J 5 L 7 31 K 6 M 8 42 L 7 0 9 53 M 8 1 A 64 0 9 2 B 75 1 A 3 C 86 2 B 4 D 97 3 C 5 E A8 4 D 6 F B9 5 E 7 G CA 6 F 8 H DB 7 G 9 I EC 8 H A J FD 9 I B K GE A J C L HF B K D M IG C L E 0 JH D M F 1 KI E 0 G 2 LJ F 1 H 3 MK G 2 I 4 0L H 3 J 5 1M I 4 K 6 20 K L A B 8I L M B C 92 M 0 C D A3 0 1 D E B4 1 2 E F C5 2 3 F G D6 3 4 G H E7 4 5 H I F8 5 6 I J G9 6 7 J K HA 7 8 K L IB 8 9 L M JC 9 A M 0 KD A B 0 1 LE B C 1 2 MF C D 2 3 0G D E 3 4 1H E F 4 5 2I F G 5 6 3J G H 6 7 4K H I 7 8 5L I J 8 9 6M J K 9 A 70 L E M F DI M F 0 G E2 0 G I H F3 1 H 2 I G4 2 I 3 J H5		92CH4K		B 4 E J 6 M	C 5 F K 7 0	D 6 G L 8 1	E 7 H M 9 2	
935682A46793B578A4C689B5D79AC6E8ABD7F9BCE8GACDF9HBDEGAICEFHBJDFGICKEGHJDLFHIKEMGIJLF01C93L1JDA4M2KEB503LFC614MGD7250HE8361IF9472JGA583KHB694LIC7A5MJD8B60KE9C71LFAD82MGBE930HCFA41IDGB52JEHC63KFID74LGJE85MHKF960ILGA71JMHB82K0J5L731K6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GCA6F8HDB7G9IEC8HAJFD9IBKGEAJCLHFBKDMIGCLE0JHDMF1KIE0G2LJF1H3MKG2140LH3J51MI4K620KLAB81LMBC92M0CDA301DEB412EFC523FGD634GHE745HIF856IJG967JKHA78KLIB89LMJC9AM0KDAB01LEBC12MFCD230GDE341HEF452IFG563JGH674KH1785LIJ896MJK9A70LEMFD1MF0GE20G1HF31H2IG42I3JH53J4KI64K5LJ75L6MK86770L97081MA81920B92A31CA3B42DB4C53EC5D64FD6E75GE7F86HF8G97IG9HA8JHAIB9KIBJCALJCKDBMKDLEC0M7BJI108CKJ219DLK32AEML43BF0M54CG1065DH2176EI3287FJ4398GK54A9HL65BAIM76CBJ087DCK198EDL2A9FEM3BAGF04CBHG15DCIH26EDJI37FEKJ48G								
H B D E G AI C E F H BJ D F G I CK E G H J DL F H I K EM G I J L F0 I C 9 3 L1 J D A 4 M2 K E B 5 03 L F C 6 14 M G D 7 25 0 H E 8 36 1 I F 9 47 2 J G A 58 3 K H B 69 4 L I C 7A 5 M J D 8B 6 0 K E 9C 7 1 L F AD 8 2 M G BE 9 3 0 H CF A 4 1 I DG B 5 2 J EH C 6 3 K FI D 7 4 L GJ E 8 5 M HK F 9 6 0 IL G A 7 1 JM H B 8 2 K0 J 5 L 7 3I K 6 M 8 42 L 7 0 9 53 M 8 1 A 64 0 9 2 B 75 I A 3 C 86 2 B 4 D 97 3 C 5 E A8 4 D 6 F B9 5 E 7 G CA 6 F 8 H DB 7 G 9 I EC 8 H A J FD 9 I B K GE A J C L HF B K D M IG C L E 0 JH D M F 1 KI E 0 G 2 LJ F 1 H 3 MK G 2 I 4 0L H 3 J 5 1M I 4 K 6 20 K L A B 8I L M B C 92 M 0 C D A3 0 1 D E B4 1 2 E F C5 2 3 F G D6 3 4 G H E7 4 5 H I F8 5 6 I J G9 6 7 J K HA 7 8 K L IB 8 9 L M JC 9 A M 0 KD A B 0 1 LE B C 1 2 MF C D 2 3 0G D E 3 4 1H E F 4 5 2I F G 5 6 3J G H 6 7 4K H 17 8 5L I J 8 9 6M J K 9 A 70 L E M F D1 M F 0 G E2 0 G 1 H F3 1 H 2 I G4 2 I 3 J H5 3 J 4 K I6 4 K 5 L J7 5 L 6 M K8 6 M 7 0 L9 7 0 8 1 MA 8 1 9 2 0B 9 2 A 3 1C A 3 B 4 2D B 4 C 5 3E C 5 D 6 4F D 6 E 7 5G E 7 F 8 6H F 8 G 9 7I G 9 H A 8J H A I B 9K I B J C AL J								
2 K E B 5 03 L F C 6 14 M G D 7 25 0 H E 8 36 1 I F 9 47 2 J G A 58 3 K H B 69 4 L I C 7A 5 M J D 8B 6 0 K E 9C 7 1 L F AD 8 2 M G BE 9 3 0 H CF A 4 1 I DG B 5 2 J EH C 6 3 K FI D 7 4 L GJ E 8 5 M HK F 9 6 0 IL G A 7 1 JM H B 8 2 K0 J 5 L 7 31 K 6 M 8 42 L 7 0 9 53 M 8 1 A 64 0 9 2 B 75 1 A 3 C 86 2 B 4 D 97 3 C 5 E A8 4 D 6 F B9 5 E 7 G CA 6 F 8 H DB 7 G 9 I EC 8 H A J FD 9 I B K GE A J C L HF B K D M IG C L E 0 JH D M F 1 KI E 0 G 2 LJ F 1 H 3 MK G 2 I 4 0L H 3 J 5 1M 1 4 K 6 20 K L A B 81 L M B C 92 M 0 C D A3 0 1 D E B4 1 2 E F C5 2 3 F G D6 3 4 G H E7 4 5 H I F8 5 6 I J G9 6 7 J K HA 7 8 K L IB 8 9 L M JC 9 A M 0 KD A B 0 1 LE B C 1 2 MF C D 2 3 0G D E 3 4 1H E F 4 5 2I F G 5 6 3J G H 6 7 4K H 17 8 5L I J 8 9 6M J K 9 A 70 L E M F D1 M F 0 G E2 0 G 1 H F3 1 H 2 I G4 2 I 3 J H5 3 J 4 K I6 4 K 5 L J7 5 L 6 M K8 6 M 7 0 L9 7 0 8 1 MA 8 1 9 2 0B 9 2 A 3 1C A 3 B 4 2D 8 4 C 5 3E C 5 D 6 4F D 6 E 7 5G E 7 F 8 6H F 8 G 9 7I G 9 H A 8J H A I B 9K I B J C AL J C K D BM K D L E C0 M 7 B J I1 0 8 C K J2 1 9 D L K3 2 A E M L4 3 B F 0 M5 4 C G 1 06 5								
A 5 M J D 8B 6 0 K E 9C 7 1 L F AD 8 2 M G BE 9 3 0 H CF A 4 1 1 DG B 5 2 J EH C 6 3 K FI D 7 4 L GJ E 8 5 M HK F 9 6 0 IL G A 7 1 JM H B 8 2 K0 J 5 L 7 31 K 6 M 8 42 L 7 0 9 53 M 8 1 A 64 0 9 2 B 75 1 A 3 C 86 2 B 4 D 97 3 C 5 E A8 4 D 6 F B9 5 E 7 G CA 6 F 8 H DB 7 G 9 I EC 8 H A J FD 9 I B K GE A J C L HF B K D M IG C L E 0 JH D M F 1 KI E 0 G 2 LJ F 1 H 3 MK G 2 I 4 0L H 3 J 5 1M 1 4 K 6 20 K L A B 81 L M B C 92 M 0 C D A3 0 1 D E B4 1 2 E F C5 2 3 F G D6 3 4 G H E7 4 5 H I F8 5 6 I J G9 6 7 J K HA 7 8 K L IB 8 9 L M JC 9 A M 0 KD A B 0 1 LE B C 1 2 MF C D 2 3 0G D E 3 4 1H E F 4 5 2I F G 5 6 3J G H 6 7 4K H I 7 8 5L I J 8 9 6M J K 9 A 70 L E M F D1 M F 0 G E2 0 G 1 H F3 1 H 2 I G4 2 I 3 J H5 3 J 4 K I6 4 K 5 L J7 5 L 6 M K8 6 M 7 0 L9 7 0 8 1 MA 8 1 9 2 0B 9 2 A 3 1C A 3 B 4 2D B 4 C 5 3E C 5 D 6 4F D 6 E 7 5G E 7 F 8 6H F 8 G 9 7I G 9 H A 8J H A I B 9K I B J C AL J C K D BM K D L E C0 M 7 B J I1 0 8 C K J2 1 9 D L K3 2 A E M L4 3 B F 0 M5 4 C G 1 06 5 D H 2 17 6 E I 3 28 7 F J 4 39 8 G K 5 4A 9 H L 6 5B A I M 7 6C B J 0 8 7D C K 1 9 8 <tr<tr><td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></tr<tr>								
ID74LGJE85MHKF960ILGA71JMHB82K0J5L73IK6M842L70953M81A64092B751A3C862B4D973C5EA84D6FB95E7GCA6F8HDB7G9IEC8HAJFD9IBKGEAJCLHFBKDMIGCLE0JHDMF1KIE0G2LJF1H3MKG2I40LH3J51MI4K620KLAB81LMBC92M0CDA301DEB412EFC523FGD634GHE745HIF856IJG967JKHA78KLIB89LMJC9AM0KDAB01LEBC12MFCD230GDE341HEF452IFG563JGH674KH1785LIJ896MJK9A70LEMFD1MF0GE20G1HF31H2IG42I3JH53J4KI64K5LJ75L6MK86M70L97081MA81920B92A31CA3B42D84C53EC5D64FD6E75GE7F86HF8G97IG9HA8JHAIB9KIBJCALJCKDBMKDLEC0M7BJI108CKJ219DLK32AEML43BF0M54CG1065DH2176EI3287FJ4398GK54A9HL65BAIM76CBJ087DCK198EDL2A9FEM3BAGF04CBHG15DCIH26EDJI37FEKJ48GFLK59HG								
3 M 8 1 A 6 4 0 9 2 B 7 5 1 A 3 C 8 6 2 B 4 D 9 7 3 C 5 E A 8 4 D 6 F B 9 5 E 7 G C A 6 F 8 H D B 7 G 9 I E C 8 H A J F D 9 I B K G E A J C L H F B K D M I G C L E 0 J H D M F 1 K I E 0 G 2 L J F 1 H 3 M K G 2 I 4 0 L H 3 J 5 1 M I 4 K 6 2 0 K L A B 8 1 L M B C 9 2 M 0 C D A 3 0 1 D E B 4 1 2 E F C 5 2 3 F G D 6 3 4 G H E 7 4 5 H I F 8 5 6 1 J G 9 6 7 J K H A 7 8 K L I B 8 9 L M J C 9 A M 0 K D A B 0 1 L E B C 1 2 M F C D 2 3 0 G D E 3 4 1 H E F 4 5 2 I F G 5 6 3 J G H 6 7 4 K H 17 8 5 L I J 8 9 6 M J K 9 A 7 0 L E M F D 1 M F 0 G E 2 0 G 1 H F 3 1 H 2 I G 4 2 I 3 J H 5 3 J 4 K I 6 4 K 5 L J 7 5 L 6 M K 8 6 M 7 0 L 9 7 0 8 1 M A 8 1 9 2 0 B 9 2 A 3 1 C A 3 B 4 2 D B 4 C 5 3 E C 5 D 6 4 F D 6 E 7 5 G E 7 F 8 6 H F 8 G 9 7 I G 9 H A 8 J H A I B 9 K I B J C A L J C K D B M K D L E C 0 M 7 B J I 1 0 8 C K J 2 1 9 D L K 3								
B 7 G 9 I EC 8 H A J FD 9 I B K GE A J C L HF B K D M IG C L E 0 JH D M F 1 KI E 0 G 2 LJ F 1 H 3 MK G 2 I 4 0L H 3 J 5 1M I 4 K 6 20 K L A B 81 L M B C 92 M 0 C D A3 0 1 D E B4 1 2 E F C5 2 3 F G D6 3 4 G H E7 4 5 H I F8 5 6 I J G9 6 7 J K HA 7 8 K L IB 8 9 L M JC 9 A M 0 KD A B 0 1 LE B C 1 2 MF C D 2 3 0G D E 3 4 1H E F 4 5 2I F G 5 6 3J G H 6 7 4K H 17 8 5L I J 8 9 6M J K 9 A 70 L E M F D1 M F 0 G E2 0 G 1 H F3 1 H 2 I G4 2 I 3 J H5 3 J 4 K I6 4 K 5 L J7 5 L 6 M K8 6 M 7 0 L9 7 0 8 1 MA 8 1 9 2 0B 9 2 A 3 1C A 3 B 4 2D B 4 C 5 3E C 5 D 6 4F D 6 E 7 5G E 7 F 8 6H F 8 G 9 7I G 9 H A 8J H A I B 9K I B J C AL J C K D BM K D L E C0 M 7 B J I1 0 8 C K J2 1 9 D L K3 2 A E M L4 3 B F 0 M5 4 C G 1 06 5 D H 2 17 6 E I 3 28 7 F J 4 39 8 G K 5 4A 9 H L 6 5B A I M 7 6C B J 0 8 7D C K 1 9 8E D L 2 A 9F E M 3 B AG F 0 4 C BH G 1 5 D CI H 2 6 E DJ I 3 7 F EK J 4 8 G FL K 5 9 H G								
JF1H3MKG2I40LH3J51MI4K620KLAB81LMBC92M0CDA301DEB412EFC523FGD634GHE745HIF856IJG967JKHA78KLIB89LMJC9AM0KDAB01LEBC12MFCD230GDE341HEF452IFG563JGH674KH1785LIJ896MJK9A70LEMFD1MF0GE20G1HF31H2IG42I3JH53J4KI64K5LJ75L6MK86M70L97081MA81920B92A31CA3B42DB4C53EC5D64FD6E75GE7F86HF8G97IG9HA8JHAIB9KIBJCALJCKDBMKDLEC0M7BJI108CKJ219DLK32AEML43BF0M54CG1065DH2176EI3287FJ4398GK54A9HL65BAIM76CBJ087DCK198EDL2A9FEM3BAGF04CBHG15DCIH26EDJI37FEKJ48GFLK59HG								
412 EFC 523 FGD 634 GHE 745 HIF 856 IJG 967 JKH A78 KLI B89 LMJ C9A M0K DAB01L EBC12M FCD230 GDE341 HEF452 IFG563 JGH674 KH1785 LIJ896 MJK9A7 0LEMFD 1MF0GE 20G1HF 31H2IG 42I3JH 53J4KI 64K5LJ 75L6MK 86M70L 97081M A81920 B92A31 CA3B42 DB4C53 EC5D64 FD6E75 GE7F86 HF8G97 IG9HA8 JHAIB9 KIBJCA LJCKDB MKDLEC 0M7BJI 108CKJ 219DLK 32AEML 43BF0M 54CG10 65DH21 76EI32 87FJ43 98GK54 A9HL65 BAIM76 CBJ087 DCK198 EDL2A9 FEM3BA GF04CB HG15DC IH26ED JI37FE KJ48GF LK59HG								
C9AM0K KH1785DAB01L LIJ896EBC12M MJK9A7FCD230 OLEMFDGDE341 HF0GEHEF452 20G1HFIFG563 31H2IGJGH674 42I3JH53J4KI DB4C5364K5LJ EC5D6475L6MK FD6E7586M70L GE7F8697081M HF8G97A81920 IG9HA8B92A31 JHAIB9CA3B42 KIBJCALJCKDB 65DH21MKDLEC 76EI320M7BJI 87FJ43108CKJ 98GK54219DLK A9HL6532AEML BAIM7643BF0M CBJ08754CG10 DCK198EDL2A9FEM3BAGF04CBHG15DCIH26EDJI37FEKJ48GFLK59HG								
K H1785L I J 8 96M J K 9 A 70 L E M F D1 M F 0 G E2 0 G 1 H F3 1 H 2 I G4 2 I 3 J H5 3 J 4 K I6 4 K 5 L J7 5 L 6 M K8 6 M 7 0 L9 7 0 8 1 MA 8 1 9 2 0B 9 2 A 3 1C A 3 B 4 2D B 4 C 5 3E C 5 D 6 4F D 6 E 7 5G E 7 F 8 6H F 8 G 9 7I G 9 H A 8J H A I B 9K I B J C AL J C K D BM K D L E C0 M 7 B J I1 0 8 C K J2 1 9 D L K3 2 A E M L4 3 B F 0 M5 4 C G 1 06 5 D H 2 17 6 E I 3 28 7 F J 4 39 8 G K 5 4A 9 H L 6 5B A I M 7 6C B J 0 8 7D C K 1 9 8E D L 2 A 9F E M 3 B AG F 0 4 C BH G 1 5 D CI H 2 6 E DJ I 3 7 F EK J 4 8 G FL K 5 9 H G								
53J4KI 64K5LJ 75L6MK 86M70L 97081M A81920 B92A31 CA3B42 DB4C53 EC5D64 FD6E75 GE7F86 HF8G97 IG9HA8 JHAIB9 KIBJCA LJCKDB MKDLEC 0M7BJI 108CKJ 219DLK 32AEML 43BF0M 54CG10 65DH21 76EI32 87FJ43 98GK54 A9HL65 BAIM76 CBJ087 DCK198 EDL2A9 FEM3BA GF04CB HG15DC IH26ED JI37FE KJ48GF LK59HG								
DB4C53 EC5D64 FD6E75 GE7F86 HF8G97 IG9HA8 JHAIB9 KIBJCA LJCKDB MKDLEC 0M7BJI 108CKJ 219DLK 32AEML 43BF0M 54CG10 65DH21 76EI32 87FJ43 98GK54 A9HL65 BAIM76 CBJ087 DCK198 EDL2A9 FEM3BA GF04CB HG15DC IH26ED JI37FE KJ48GF LK59HG								
LJCKDB MKDLEC 0M7BJI 108CKJ 219DLK 32AEML 43BF0M 54CG10 65DH21 76EI32 87FJ43 98GK54 A9HL65 BAIM76 CBJ087 DCK198 EDL2A9 FEM3BA GF04CB HG15DC IH26ED JI37FE KJ48GF LK59HG								
65DH21 76EI32 87FJ43 98GK54 A9HL65 BAIM76 CBJ087 DCK198 EDL2A9 FEM3BA GF04CB HG15DC IH26ED JI37FE KJ48GF LK59HG								
EDL2A9 FEM3BA GF04CB HG15DC IH26ED JI37FE KJ48GF LK59HG								
MLUAIN		гемзва	GF04CB		THZOED	JIS/FE	KJ48GF	LKSYHG
	MLOAIH							

There Is One Code in $\mathbb{P}[\mathcal{Q}(6,3) = 23,6]_3$. It is specified by the Selector $\boldsymbol{\alpha} = (0\ 1\ G\ C\ 4\ 5)$. A deletion correcting Capability of Three Is the Maximum Achievable by $\overline{G}(\ell,q,2)$ codes of Length 6 (see Theorem 4)

length cannot become smaller if k is increased for fixed q and ℓ . Having identified optimal k = 2 codes it will be useful to check the deletion correcting capability of those codes obtained with the same parameters other than higher values of k.

It would also be useful to extend the results of [16] for RS codes fields of prime characteristic, in particular with prime characteristic 2. Codes over such fields have been previously found to have more practical application than those over prime fields.

VI. A NOTE ON THE EXPERIMENTAL RESULTS

The tables in this correspondence do not present all our selective and exhaustive results. Experimental results will occasionally be updated at http://www.uow.edu.au/~lukemc/expt.html.

APPENDIX LISTINGS OF INEQUIVALENCE SETS

In this Appendix, we list the inequivalence sets of Section IV-B with cardinalities of length than about 40. The codes are identified by the standard form selectors, which are listed without the first two elements since they are always 0 and 1.

In general a selector $\boldsymbol{\alpha}$ is related to a selector $\boldsymbol{\alpha}'$ under the combined reversal and affine transformation. If $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}'$ are equal, we mark the selector with a *. Otherwise, we list only the smaller of $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}'$, in the sense of $\boldsymbol{\alpha}$ being smaller than $\boldsymbol{\alpha}'$ if $\alpha_j < \alpha'_j$ for some j such that $\alpha_i = \alpha'_i, \forall i < j$.

$$\mathbb{P}[5,4]_0 = \{(2\ 3)^*, (2\ 4), (3\ 2), (3\ 4)^*\}.$$

$$\mathbb{P}[5,5]_0 = \{(2\ 3\ 4)^*, (2\ 4\ 3), (3\ 2\ 4)\}.$$

$$\mathbb{P}[5,5]_1 = \{(4\ 2\ 3)^*\}.$$

$$\mathbb{P}[7,4]_0 = \{(2\ 3)^*, (2\ 4), (3\ 2), (3\ 6), (4\ 3), (4\ 6)\}.$$

$$\mathbb{P}[7,4]_1 = \{(2\ 5), (2\ 6), (3\ 4)^*, (4\ 5)^*, (5\ 3), (5\ 6)^*\}$$

$$\mathbb{P}[7,5]_0 = \{(2\ 3\ 4)^*, (3\ 2\ 6), (4\ 6\ 3), (4\ 6\ 5)\}.$$

- $\mathbb{P}[7,5]_1 = \{(2\ 3\ 5), (2\ 3\ 6), (2\ 4\ 3), (2\ 4\ 5), (2\ 4\ 6), (2\ 5\ 3) \\ (2\ 5\ 4), (2\ 5\ 6), (2\ 6\ 4), (2\ 6\ 5), (3\ 2\ 4), (3\ 2\ 5) \\ (3\ 4\ 2), (3\ 4\ 6), (3\ 5\ 2), (3\ 5\ 4), (3\ 5\ 6)*, (3\ 6\ 5) \\ (4\ 2\ 3), (4\ 2\ 5), (4\ 2\ 6), (4\ 5\ 3), (5\ 2\ 3)*, (5\ 3\ 4) \\ (5\ 3\ 6), (5\ 6\ 2), (6\ 2\ 4), (6\ 4\ 5)*\}.$
- $\mathbb{P}[7,6]_0 = \{(2\ 3\ 4\ 5)*, (3\ 2\ 6\ 4), (4\ 6\ 5\ 2), (4\ 6\ 5\ 3)\}.$
- $\mathbb{P}[7,6]_2 = \{(6\ 5\ 3\ 4)*\}.$
- $\mathbb{P}[7,7]_0 = \{(2\ 3\ 4\ 5\ 6)*, (3\ 2\ 6\ 4\ 5), (4\ 6\ 5\ 2\ 3)\}.$
- $\mathbb{P}[7,7]_2 = \{(2\ 3\ 5\ 6\ 4), (2\ 5\ 4\ 6\ 3), (2\ 5\ 6\ 3\ 4), (2\ 6\ 5\ 3\ 4) \\ (3\ 4\ 5\ 6\ 2), (3\ 5\ 6\ 2\ 4), (4\ 3\ 2\ 6\ 5), (4\ 3\ 5\ 6\ 2) \\ (4\ 5\ 2\ 3\ 6), (4\ 5\ 3\ 2\ 6), (5\ 3\ 6\ 2\ 4), (6\ 2\ 5\ 3\ 4)*\}.$
 - $$\begin{split} \mathbb{P}\left[11,4\right]_0 &= \{(2\ 3)*,(2\ 4),(3\ 7),(3\ 9),(3\ 10),(4\ 2),(4\ 5)* \\ &\quad (5\ 3),(6\ 8),(6\ 9),(7\ 5),(8\ 2),(8\ 9)*\}. \end{split}$$
 - $\mathbb{P} [11, 4]_1 = \{ (25), (26), (27), (28), (29), (210), (32) \\ (34)*, (36), (38), (43), (46), (48), (49) \\ (410), (52), (54), (56)*, (58), (62), (65) \\ (67)*, (74), (78)*, (810), (95), (910)* \}.$
 - $\mathbb{P} [11,5]_0 = \{ (2\ 3\ 4) *, (2\ 4\ 8), (3\ 7\ 4), (3\ 7\ 10), (3\ 9\ 5) \\ (4\ 2\ 5), (4\ 2\ 7), (5\ 3\ 4), (6\ 9\ 2), (6\ 9\ 8) \\ (7\ 5\ 2), (8\ 2\ 4), (8\ 2\ 9) \}.$
 - $\mathbb{P} \left[11, 6 \right]_0 = \left\{ (2 \ 3 \ 4 \ 5) *, (2 \ 4 \ 8 \ 5), (3 \ 7 \ 4 \ 9), (3 \ 7 \ 4 \ 10) \\ (3 \ 9 \ 5 \ 4), (4 \ 2 \ 7 \ 5), (5 \ 3 \ 4 \ 9), (6 \ 9 \ 2 \ 8) \\ (7 \ 5 \ 2 \ 3), (8 \ 2 \ 4 \ 7), (8 \ 2 \ 4 \ 9) \right\}.$

 $\mathbb{P}[11,7]_0 = \{(2\ 3\ 4\ 5\ 6)*, (2\ 4\ 8\ 5\ 10), (3\ 7\ 4\ 9\ 8)\}$

 $(3\ 7\ 4\ 9\ 10).(7\ 5\ 2\ 3\ 10),(8\ 2\ 4\ 7\ 6)$ $(8\ 2\ 4\ 7\ 9)\}.$

$$\mathbb{P}[11,7]_3 = \{(2\ 8\ 10\ 3\ 5), (7\ 8\ 4\ 3\ 9)\}.$$

- $\mathbb{P}[11,8]_0 = \{(2\ 3\ 4\ 5\ 6\ 7)*, (2\ 4\ 8\ 5\ 10\ 9), (3\ 7\ 4\ 9\ 8\ 6) \\ (3\ 7\ 4\ 9\ 8\ 10), (7\ 5\ 2\ 3\ 10\ 4), (8\ 2\ 4\ 7\ 6\ 9) \\ (8\ 2\ 4\ 7\ 6\ 10)\}.$
- $\mathbb{P} \left[11, 9 \right]_0 = \left\{ (2\ 3\ 4\ 5\ 6\ 7\ 8) *, (2\ 4\ 8\ 5\ 10\ 9\ 7), (3\ 7\ 4\ 9\ 8\ 6\ 2) \right. \\ \left. (3\ 7\ 4\ 9\ 8\ 6\ 10), (7\ 5\ 2\ 3\ 10\ 4\ 6), (8\ 2\ 4\ 7\ 6\ 10\ 5) \right. \\ \left. (8\ 2\ 4\ 7\ 6\ 10\ 9) \right\}.$
- $\mathbb{P}[11,9]_4 = \{(2\ 10\ 4\ 6\ 5\ 8\ 9), (2\ 10\ 8\ 5\ 6\ 4\ 9), (6\ 7\ 3\ 2\ 8\ 9\ 5)\}.$
 - $\mathbb{P}[11,10]_0 = \{(2\ 3\ 4\ 5\ 6\ 7\ 8\ 9)*, (2\ 4\ 8\ 5\ 10\ 9\ 7\ 3) \\ (3\ 7\ 4\ 9\ 8\ 6\ 2\ 5), (3\ 7\ 4\ 9\ 8\ 6\ 2\ 10) \\ (7\ 5\ 2\ 3\ 10\ 4\ 6\ 9), (8\ 2\ 4\ 7\ 6\ 10\ 5\ 3) \\ (8\ 2\ 4\ 7\ 6\ 10\ 5\ 9)\}.$
 - $\mathbb{P} [11, 11]_0 = \{ (2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10) *, (2\ 4\ 8\ 5\ 10\ 9\ 7\ 3\ 6) \\ (3\ 7\ 4\ 9\ 8\ 6\ 2\ 5\ 10), (7\ 5\ 2\ 3\ 10\ 4\ 6\ 9\ 8) \\ (8\ 2\ 4\ 7\ 6\ 10\ 5\ 3\ 9) \}.$
- $\mathbb{P}[13,4]_0 = \{(2\ 3)*,(2\ 4),(3\ 7),(3\ 9),(3\ 12),(4\ 3),(4\ 6),(5\ 4) \\ (5\ 8),(5\ 12),(6\ 3),(6\ 5),(6\ 10),(7\ 4),(7\ 5)\}.$
 - $\mathbb{P}[13,5]_0 = \{(2\ 3\ 4)*, (2\ 4\ 8), (3\ 7\ 2), (3\ 7\ 12), (4\ 3\ 12) \\ (5\ 8\ 4), (5\ 8\ 7), (5\ 12\ 8), (6\ 5\ 3), (6\ 10\ 8) \\ (7\ 4\ 5), (7\ 4\ 12)\}.$

 $\mathbb{P}[13,5]_2 = \{(7\ 6\ 2)\}.$

- $\mathbb{P}[13, 6]_0 = \{(2\ 3\ 4\ 5)*, (2\ 4\ 8\ 3), (3\ 7\ 2\ 5), (3\ 7\ 2\ 12) \\ (4\ 3\ 12\ 9), (5\ 8\ 7\ 3), (5\ 8\ 7\ 4), (6\ 10\ 8\ 9) \\ (7\ 4\ 12\ 5), (7\ 4\ 12\ 8)\}.$
- $$\begin{split} \mathbb{P} \, [13,7]_0 &= \big\{ (2\ 3\ 4\ 5\ 6) *, (2\ 4\ 8\ 3\ 6), (3\ 7\ 2\ 5\ 11) \\ &\quad (3\ 7\ 2\ 5\ 12), (4\ 3\ 12\ 9\ 10), (5\ 8\ 7\ 3\ 4) \\ &\quad (6\ 10\ 8\ 9\ 2), (7\ 4\ 12\ 8\ 5), (7\ 4\ 12\ 8\ 10) \big\}. \end{split}$$
- $$\begin{split} \mathbb{P} \left[13,8 \right]_0 = \{ (2\ 3\ 4\ 5\ 6\ 7)*, (2\ 4\ 8\ 3\ 6\ 12), (3\ 7\ 2\ 5\ 11\ 10) \\ & (3\ 7\ 2\ 5\ 11\ 12), (6\ 10\ 8\ 9\ 2\ 12), (7\ 4\ 12\ 8\ 10\ 5) \\ & (7\ 4\ 12\ 8\ 10\ 9) \}. \end{split}$$
 - $\mathbb{P} [13, 9]_0 = \{ (2\ 3\ 4\ 5\ 6\ 7\ 8) *, (2\ 4\ 8\ 3\ 6\ 12\ 11) \\ (3\ 7\ 2\ 5\ 11\ 10\ 8), (3\ 7\ 2\ 5\ 11\ 10\ 12) \\ (6\ 10\ 8\ 9\ 2\ 12\ 7), (7\ 4\ 12\ 8\ 10\ 9\ 3) \\ (7\ 4\ 12\ 8\ 10\ 9\ 5) \}.$

 $\mathbb{P}[17,4]_0 = \{(2\ 3)*, (2\ 4), (3\ 7), (3\ 9), (3\ 16), (4\ 8), (4\ 13) \\ (4\ 16), (5\ 4), (5\ 8), (5\ 11), (6\ 4), (6\ 14), (8\ 13) \}$

(95), (912), (1015), (112), (119), (1115)(125), (1214).

- $$\begin{split} \mathbb{P}[17,5]_0 &= \{(2\ 3\ 4)*,(2\ 4\ 8),(3\ 7\ 15),(3\ 7\ 16),(3\ 9\ 10)\\ &\quad (4\ 13\ 6),(4\ 13\ 8),(4\ 16\ 13),(5\ 4\ 11),(5\ 8\ 6)\\ &\quad (6\ 14\ 3),(6\ 14\ 4),(8\ 13\ 2),(9\ 5\ 7),(9\ 5\ 12)\\ &\quad (10\ 15\ 14),(11\ 2\ 5),(11\ 9\ 6),(11\ 9\ 15),(12\ 14\ 2)\\ &\quad (12\ 14\ 5)\}. \end{split}$$
 - $$\begin{split} \mathbb{P}\left[17,6\right]_{0} &= \{(2\ 3\ 4\ 5)*,(2\ 4\ 8\ 16),(3\ 7\ 15\ 14),(3\ 7\ 15\ 16)\\ &\quad (3\ 9\ 10\ 13),(4\ 13\ 6\ 2),(4\ 13\ 6\ 8),(5\ 8\ 6\ 13)\\ &\quad (6\ 14\ 3\ 4),(6\ 14\ 3\ 16),(8\ 13\ 2\ 16),(9\ 5\ 7\ 6)\\ &\quad (9\ 5\ 7\ 12),(10\ 15\ 14\ 4),(11\ 2\ 5\ 4),(11\ 9\ 6\ 10)\\ &\quad (11\ 9\ 6\ 15),(12\ 14\ 2\ 5),(12\ 14\ 2\ 6)\}. \end{split}$$
 - $$\begin{split} \mathbb{P} \, [17,7]_0 &= \{(2\ 3\ 4\ 5\ 6)*, (2\ 4\ 8\ 16\ 15), (3\ 7\ 15\ 14\ 12) \\ &\quad (3\ 7\ 15\ 14\ 16), (3\ 9\ 10\ 13\ 5), (4\ 13\ 6\ 2\ 7) \\ &\quad (4\ 13\ 6\ 2\ 8), (5\ 8\ 6\ 13\ 14), (6\ 14\ 3\ 16\ 4) \\ &\quad (6\ 14\ 3\ 16\ 13), (8\ 13\ 2\ 16\ 9), (9\ 5\ 7\ 6\ 12) \\ &\quad (9\ 5\ 7\ 6\ 15), (10\ 15\ 14\ 4\ 6), (11\ 2\ 5\ 4\ 10) \\ &\quad (11\ 9\ 6\ 10\ 15), (11\ 9\ 6\ 10\ 16), (12\ 14\ 2\ 6\ 5) \\ &\quad (12\ 14\ 2\ 6\ 16) \}. \end{split}$$
- $$\begin{split} \mathbb{P} \, [19,4]_0 &= \{(2\ 3)*,(2\ 4),(3\ 7),(3\ 9),(3\ 18),(4\ 9),(4\ 13) \\ &\quad (4\ 16),(5\ 2),(5\ 6)*,(6\ 17),(7\ 5),(7\ 11),(7\ 15) \\ &\quad (8\ 3),(8\ 7),(9\ 5),(9\ 8),(9\ 16),(10\ 7),(10\ 15) \\ &\quad (14\ 6),(15\ 2),(15\ 16)*\}. \end{split}$$
- $\mathbb{P} [19, 5]_0 = \{ (2\ 3\ 4) *, (2\ 4\ 8), (3\ 7\ 15), (3\ 7\ 18), (3\ 9\ 8) \\ (4\ 13\ 2), (4\ 13\ 9), (4\ 16\ 7), (5\ 2\ 6), (5\ 2\ 9) \\ (6\ 17\ 7), (7\ 5\ 12), (7\ 5\ 15), (8\ 7\ 18), (9\ 5\ 7) \\ (9\ 16\ 8), (9\ 16\ 15), (10\ 15\ 3), (10\ 15\ 7), (14\ 6\ 8) \\ (15\ 2\ 10), (15\ 2\ 16) \}.$
- $\mathbb{P} [19,7]_0 = \{ (2\ 3\ 4\ 5\ 6)*, (2\ 4\ 8\ 16\ 13), (3\ 7\ 15\ 12\ 6) \\ (3\ 7\ 15\ 12\ 18), (3\ 9\ 8\ 5\ 15), (4\ 13\ 2\ 7\ 3) \\ (4\ 13\ 2\ 7\ 9), (4\ 16\ 7\ 9\ 17), (5\ 2\ 9\ 18\ 6) \\ (5\ 2\ 9\ 18\ 16), (6\ 17\ 7\ 4\ 5), (7\ 5\ 12\ 16\ 2) \\ (7\ 5\ 12\ 16\ 15), (8\ 7\ 18\ 11\ 12), (9\ 5\ 7\ 6\ 16) \\ (9\ 16\ 15\ 7\ 8), (10\ 15\ 3\ 9\ 6), (10\ 15\ 3\ 9\ 7) \\ (14\ 6\ 8\ 17\ 10), (15\ 2\ 10\ 8\ 16), (15\ 2\ 10\ 8\ 18) \}.$
- $$\begin{split} \mathbb{P}\left[23,4\right]_{0} &= \{(2\ 3)*,(2\ 4),(3\ 7),(3\ 9),(3\ 22),(4\ 11),(4\ 13) \\ &\quad (4\ 16),(5\ 2),(5\ 15),(5\ 21),(6\ 8),(6\ 17),(7\ 3) \\ &\quad (8\ 11),(8\ 19),(9\ 12),(10\ 20),(10\ 22),(11\ 6) \\ &\quad (12\ 16),(12\ 18),(13\ 8),(14\ 21),(14\ 22),(15\ 18) \\ &\quad (16\ 11),(16\ 18),(17\ 13),(18\ 8),(18\ 10)\}. \end{split}$$
- $\mathbb{P}[23,5]_0 = \{(2\ 3\ 4)*,(2\ 4\ 8),(3\ 7\ 15),(3\ 7\ 22),(3\ 9\ 4)\\ (4\ 13\ 11),(4\ 13\ 17),(4\ 16\ 18),(5\ 2\ 10),(5\ 21\ 15) \}$

$$(5\ 21\ 16), (6\ 8\ 17), (6\ 8\ 18), (7\ 3\ 21), (8\ 11\ 9)$$

 $(8\ 11\ 19), (9\ 12\ 16), (10\ 22\ 15), (10\ 22\ 20)$
 $(11\ 6\ 20), (12\ 18\ 15), (12\ 18\ 16), (13\ 8\ 12)$
 $(14\ 22\ 11), (14\ 22\ 21), (15\ 18\ 17), (16\ 11\ 5)$
 $(16\ 11\ 18), (17\ 13\ 14), (18\ 8\ 10), (18\ 8\ 22)\}.$

 $\mathbb{P} [23, 6]_0 = \{(2\ 3\ 4\ 5)*, (2\ 4\ 8\ 16), (3\ 7\ 15\ 8), (3\ 7\ 15\ 22) \\ (3\ 9\ 4\ 12), (4\ 13\ 17\ 6), (4\ 13\ 17\ 11), (4\ 16\ 18\ 3) \\ (5\ 2\ 10\ 4), (5\ 21\ 16\ 15), (5\ 21\ 16\ 19), (6\ 8\ 18\ 17) \\ (6\ 8\ 18\ 22), (7\ 3\ 21\ 9), (8\ 11\ 9\ 18), (8\ 11\ 9\ 19) \\ (9\ 12\ 16\ 6), (10\ 22\ 15\ 20), (10\ 22\ 15\ 21) \\ (11\ 6\ 20\ 13), (12\ 18\ 15\ 5), (12\ 18\ 15\ 16) \\ (13\ 8\ 12\ 18), (14\ 22\ 11\ 6), (14\ 22\ 11\ 21) \\ (15\ 18\ 17\ 2), (16\ 11\ 5\ 7), (16\ 11\ 5\ 18) \\ (17\ 13\ 14\ 8), (18\ 8\ 22\ 7), (18\ 8\ 22\ 10) \}.$

 $\mathbb{P}[23,6]_3 = \{(16\ 12\ 4\ 5)*\}.$

- $$\begin{split} \mathbb{P} \left[23,7 \right]_0 &= \left\{ (2\ 3\ 4\ 5\ 6) *, (2\ 4\ 8\ 16\ 9), (3\ 7\ 15\ 8\ 17) \\ &\quad (3\ 7\ 15\ 8\ 22), (3\ 9\ 4\ 12\ 13), (4\ 13\ 17\ 6\ 11) \\ &\quad (4\ 13\ 17\ 6\ 19), (4\ 16\ 18\ 3\ 12), (5\ 2\ 10\ 4\ 20) \\ &\quad (5\ 21\ 16\ 19\ 8), (5\ 21\ 16\ 19\ 15), (6\ 8\ 18\ 22\ 17) \\ &\quad (6\ 8\ 18\ 22\ 19), (7\ 3\ 21\ 9\ 17), (8\ 11\ 9\ 18\ 12) \\ &\quad (6\ 8\ 18\ 22\ 19), (7\ 3\ 21\ 9\ 17), (8\ 11\ 9\ 18\ 12) \\ &\quad (8\ 11\ 9\ 18\ 19), (9\ 12\ 16\ 6\ 8), (10\ 22\ 15\ 21\ 6) \\ &\quad (10\ 22\ 15\ 21\ 20), (11\ 6\ 20\ 13\ 5), (12\ 18\ 15\ 5\ 10) \\ &\quad (12\ 18\ 15\ 5\ 16), (13\ 8\ 12\ 18\ 4), (14\ 22\ 11\ 6\ 10) \\ &\quad (14\ 22\ 11\ 6\ 21), (15\ 18\ 17\ 2\ 7), (16\ 11\ 5\ 7\ 14) \\ &\quad (16\ 11\ 5\ 7\ 18), (17\ 13\ 14\ 8\ 21), (18\ 8\ 22\ 7\ 5) \\ &\quad (18\ 8\ 22\ 7\ 10) \right\}. \end{split}$$
- $$\begin{split} \mathbb{P} & [29,4]_0 = \{(2\ 3)*,(2\ 4),(3\ 7),(3\ 9),(3\ 28),(4\ 13),(4\ 14) \\ & (4\ 16),(5\ 19),(5\ 21),(5\ 25),(6\ 2),(6\ 7)*,(7\ 20) \\ & (8\ 6),(8\ 24),(8\ 28),(9\ 4),(9\ 15),(9\ 23),(10\ 4) \\ & (10\ 18),(12\ 28),(13\ 12),(13\ 21),(14\ 22),(15\ 8) \\ & (15\ 20),(16\ 24),(17\ 12),(17\ 27),(18\ 5),(19\ 13) \\ & (19\ 17),(19\ 24),(20\ 4),(20\ 8),(23\ 7),(24\ 2) \\ & (24\ 25)*\}. \end{split}$$
- $\mathbb{P} [29, 5]_0 = \{(2\ 3\ 4)*, (2\ 4\ 8), (3\ 7\ 15), (3\ 7\ 28), (3\ 9\ 27) \\ (4\ 13\ 11), (4\ 13\ 14), (4\ 16\ 6), (5\ 21\ 19), (5\ 21\ 27) \\ (5\ 25\ 9), (6\ 2\ 7), (6\ 2\ 11), (7\ 20\ 24), (8\ 6\ 19) \\ (8\ 28\ 23), (8\ 28\ 24), (9\ 15\ 4), (9\ 15\ 5), (9\ 23\ 4) \\ (10\ 4\ 8), (10\ 4\ 18), (12\ 28\ 17), (13\ 12\ 21) \\ (14\ 22\ 18), (15\ 8\ 20), (15\ 8\ 26), (16\ 24\ 7) \\ (17\ 12\ 19), (17\ 12\ 27), (18\ 5\ 3), (19\ 13\ 15) \\ (19\ 24\ 17), (19\ 24\ 27), (20\ 4\ 8), (20\ 4\ 19) \\ (23\ 7\ 16), (24\ 2\ 18), (24\ 2\ 25) \}.$
- $\mathbb{P} [29, 6]_0 = \{ (2\ 3\ 4\ 5) *, (2\ 4\ 8\ 16), (3\ 7\ 15\ 2), (3\ 7\ 15\ 28) \\ (3\ 9\ 27\ 23), (4\ 13\ 11\ 5), (4\ 13\ 11\ 14), (4\ 16\ 6\ 24) \\ (5\ 21\ 27\ 19), (5\ 21\ 27\ 22), (5\ 25\ 9\ 16), (6\ 2\ 11\ 7) \\ (6\ 2\ 11\ 27), (7\ 20\ 24\ 23), (8\ 6\ 19\ 7), (8\ 28\ 23\ 17) \\ (8\ 28\ 23\ 24), (9\ 15\ 5\ 4), (9\ 15\ 5\ 12), (9\ 23\ 4\ 7)$

 $(10\ 4\ 8\ 15), (10\ 4\ 8\ 18), (14\ 22\ 18\ 20) \\(15\ 8\ 26\ 17), (15\ 8\ 26\ 20), (16\ 24\ 7\ 25) \\(17\ 12\ 19\ 15), (17\ 12\ 19\ 27), (18\ 5\ 3\ 25) \\(19\ 13\ 15\ 24), (19\ 24\ 27\ 17), (19\ 24\ 27\ 23) \\(20\ 4\ 19\ 8), (20\ 4\ 19\ 14), (23\ 7\ 16\ 20) \\(24\ 2\ 18\ 9), (24\ 2\ 18\ 25)\}.$

$$\mathbb{P}[47,7]_4 = \{(8\ 23\ 42\ 16\ 18), (15\ 46\ 28\ 14\ 41) \\ (16\ 27\ 42\ 26\ 29), (27\ 2\ 40\ 22\ 35)\}.$$

ACKNOWLEDGMENT

The authors appreciate the valuable comments of the thorough reviewers. They have helped us to significantly improve the readability and consistency of this correspondence.

REFERENCES

- P. A. H. Bours, "On the construction of perfect deletion—Correcting codes using design theory," *Designs, Codes, Cryptogr.*, vol. 6, pp. 5–20, 1995.
- [2] L. Calabi and W. E. Hartnett, "Some general results of coding theory with applications to the study of codes for the correction of synchronisation errors," *Inf. Contr.*, vol. 15, pp. 235–249, 1969.
- [3] V. Guruswami and M. Sudan, "Improved decoding of Reed—Solomon and algebraic—Geometry codes," *IEEE Trans. Inf. Theory*, vol. 45, pp. 1757–1767, 1999.
- [4] A. Klein, "On perfect deletion-correcting codes," J. Comb. Des., vol. 12, no. 1, pp. 72–77, 2004.
- [5] T. Kløve, "Codes correcting a single insertion/deletion of a zero or a single peak-shift," *IEEE Trans. Inf. Theory*, vol. 41, pp. 279–283, 1995.
- [6] V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions and reversals," *Soviet Phys.—Doklady*, vol. 10, no. 8, pp. 707–710, 1966.
- [7] V. I. Levenshtein, "One method of constructing quasilinear codes providing synchronisation in the presence of errors," *Probl. Inf. Transm.*, vol. 7, no. 3, pp. 215–222, 1971.
- [8] A. Mahmoodi, "Existence of perfect 3—Deletion-correcting codes," Designs, Codes, Cryptogr., vol. 14, pp. 81–87, 1998.
- [9] R. Mathon and T. van Trung, "Directed t—Packings and directed t—Steiner systems," *Designs, Codes, Cryptogr.*, vol. 18, pp. 187–198, 1999.
- [10] I. Reed and G. Solomon, "Polynomial codes over certain finite fields," SIAM J. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.
- [11] R. Safavi-Naini and Y. Wang, "Traitor tracing for shortened and corrupted fingerprints," in *Proc. ACM-DRM'02, LNCS*, 2003, vol. 2696, pp. 81–100.
- [12] N. Shalaby, J. Wang, and J. Yin, "Existence of perfect 4—Deletion-Correcting codes with length six," *Designs, Codes, Cryptogr.*, vol. 27, pp. 145–156, 2002.
- [13] N. J. A. Sloane, On Single-Deletion—Correcting Codes' in Codes and Designs. Columbus, OH: Math. Res. Inst. Publications, Ohio Univ., 2002, vol. 10, pp. 273–291.
- [14] E. Tanaka and T. Kasai, "Synchronisation and substitution error correcting codes for the Levenshtein metric," *IEEE Trans. Inf. Theory*, vol. 22, pp. 156–162, 1976.
- [15] R. R. Varshamov and G. M. Tenengolts, "Codes which correct single asymmetric errors (in Russian)," (in Russian) Avtomatika i Telemekhanika, vol. 26, no. 2, pp. 288–292, 1965.
- [16] Y. Wang, L. McAven, and R. Safavi-Naini, *Deletion Correcting Using Generalised Reed-Solomon Codes.* 't Coding, Cryptography and Combinatorics, K. Q. Feng, H. Niederreiter, and C. Xing, Eds. Basel: Birkhäuser, 2004.
- [17] J. Yin, "A combinatorial construction for perfect deletion-correcting codes," *Designs, Codes and Cryptogr.*, vol. 23, pp. 99–110, 2001.

Bounds on Key Appearance Equivocation for Substitution Ciphers

Yuri L. Borissov and Moon Ho Lee, Senior Member, IEEE

Abstract—The average conditional entropy of the key given the message and its corresponding cryptogram, $H(\mathbf{K}|\mathbf{M}, \mathbf{C})$, which is refer as a key appearance equivocation, was proposed as a theoretical measure of the strength of the cipher system under a known plaintext attack by Dunham in 1980. In the same work (among other things), lower and upper bounds for $H(\mathcal{S}_{\mathcal{M}}|\mathbf{M}^{\mathbf{L}}\mathbf{C}^{L})$ are found and its asymptotic behavior as a function of cryptogram length L is described for simple substitution ciphers, i.e., when the key space $\mathcal{S}_{\mathcal{M}}$ is the symmetric group acting on a discrete alphabet \mathcal{M} . In the present paper we consider the same problem when the key space is an arbitrary subgroup $\mathcal{K} \triangleleft \mathcal{S}_{\mathcal{M}}$ and generalize Dunham's result.

Index Terms—Key equivocation, known plaintext attack, memoryless message source, message equivocation, simple substitution ciphers.

I. INTRODUCTION

Shannon, in his seminal paper [2], showed that the conditional entropies of the key and message given the cryptogram can be used as a theoretical measure of strength of the cipher system when assuming unlimited cryptanalytic computational capabilities. These conditional entropies are called the key and message equivocation, respectively.

In general it is difficult to calculate these equivocations explicitly. For that Shannon established in [2] a general lower bound and introduced a random cipher model which would approximate the behavior of complex practical ciphers. Afterward, Hellman [3] reviewed and extended Shannon's information-theoretic approach and showed that random cipher model is conservative in that a randomly chosen cipher is essentially the worst possible. Later on Blom [5] obtained exponentially tight bounds on the key equivocation for simple substitution ciphers. In [1] to derive bounds for simple substitution ciphers on the message equivocation in terms of the key equivocation, Dunham derived such bounds for so-called key appearance equivocation. This author pointed out also, that it can be considered as a theoretical measure of the strength of the cipher system under known plaintext attack. Another contribution of this subject is the Sgarro's work [7].

In this paper we consider a situation where the key space is confined to a subgroup \mathcal{K} of the group $\mathcal{S}_{\mathcal{M}}$ of all permutations acting on a discrete alphabet \mathcal{M} . Apart from simple substitution ciphers, some other classical cipher systems (e.g., transposition cipher with fixed period, matrix system from [2, Example 4.6, p. 667], etc.) can be studied in this model. Other examples are given in [4] and [6].

The paper is organized as follows. In Section II, we present the assumptions and background of substitution ciphers and key appearance equivocation. In Section III, we state a theorem which gives the

Manuscript received December 11, 2006; revised February 19, 2007. This work was supported in part by Ministry of Information and Communication (MIC) Korea under the IT Foreign Specialist Inviting Program (ITFSIP), ITSOC, ITRC, International Cooperative Research by the Ministry of Science and Technology, KOTEF, and 2nd stage Brain Korea 21.

Y. L. Borissov is with the Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria (e-mail: yborisov@moi.math.bas. bg).

M. H. Lee is with the Institute of Information and Communication, Chonbuk National University, Jeonju 561-756, Republic of Korea (e-mail: moonho@ chonbuk.ac.kr).

Communicated by E. Okamoto, Associate Editor for Complexity and Cryptography.

Digital Object Identifier 10.1109/TIT.2007.896865