
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

Fall 2007

Classification of the Deletion Correcting Capabilities of Reed–Solomon Classification of the Deletion Correcting Capabilities of Reed–Solomon

Codes of Dimension Over Prime Fields Codes of Dimension Over Prime Fields

L. McAven
University of Wollongong, lukemc@uow.edu.au

R. Safavi-Naini
University of Wollongong, rei@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
McAven, L. and Safavi-Naini, R.: Classification of the Deletion Correcting Capabilities of Reed–Solomon
Codes of Dimension Over Prime Fields 2007.
https://ro.uow.edu.au/infopapers/717

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37004813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F717&utm_medium=PDF&utm_campaign=PDFCoverPages

Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of
Dimension Over Prime Fields Dimension Over Prime Fields

Abstract Abstract
Deletion correction codes have been used for transmission synchronization and, more recently, tracing
pirated media. A generalized Reed-Solomon (GRS) code, denoted by GRSk(l,q,alpha,v), is a code of length l
over GF(q) with qk codewords. These codes have an efficient decoding algorithm and have been widely
used for error correction and detection. It was recently demonstrated that GRS codes are also capable of
correcting deletions. We consider a subclass of GRS codes with dimension k=2 and q prime, and study
them with respect to deletion correcting capability. We give transformations that either preserve the code
or maintain its deletion correction capability. We use this to define equivalent codes; and then use
exhaustive and selective computer searches to find inequivalent codes with the highest deletion
correcting capabilities. We show that, for the class under consideration, up to l-3 deletions may be
corrected. We also show that for lles36 there exist codes with q2 codewords such that receiving only 3
out of t transmitted symbols of a codeword is enough to recover the codeword, thus meeting the bound
specified above. We also specify some "nice" codes which are associated with the smallest field possible
for codes of a given length and deletion correcting capability. Some of the identified codes are unique,
with respect to the defined equivalence.

Keywords Keywords
Codes, deletion correction, Reed–Solomon.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
This article was originally published as McAven, L & Safavi-Naini, R, Classification of the Deletion
Correcting Capabilities of Reed–Solomon Codes of Dimension Over Prime Fields, IEEE Transactions on
Information Theory, 53(6), 2007, 2280-2294. Copyright Institute of Electronics and Electrical Engineers
2007. Original article available here

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/717

http://dx.doi.org/10.1109/TIT.2007.896889
https://ro.uow.edu.au/infopapers/717

2280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

As a consequence of Lemma 2 and Lemma 3 we have the following.

Corollary 1: G has a vertex cover of size t if and only if G00

has a stopping set of size t(m + 1) + m, 1 � t � n � 1. Hence
(G; t) 2 VERTEX COVER(=) if and only if (G00; t(m+ 1) +m) 2
STOPPING DISTANCE.

Corollary 2: G has a vertex cover of size at most t if and only if G00

has a stopping set of size at most t(m+ 1)+m, t 2 f1; 2; ::; n� 1g.
Hence (G; t) 2 VERTEX COVER if and only if (G00; t(m+1)+m) 2
STOPPING DISTANCE.

We are now ready to prove.

Theorem 1: STOPPING DISTANCE and STOPPING SET are
NP-complete

Proof: Since G00 can be constructed from G in polynomial time
(O(mn) time suffices), it follows that VERTEX COVER(=)�p STOP-
PING SET and VERTEX COVER �p STOPPING DISTANCE from
Corollary 1 and Corollary 2 respectively. It is easy to verify whether a
given set of left vertices of a bipartite graph forms a stopping set in time
linear in the size of the graph. Hence both STOPPING DISTANCE and
STOPPING SET belong to the class NP.

As a consequence, we have the following corollary.

Corollary 3: There is no polynomial time algorithm for computing
the stopping distance of a Tanner graph unless P = NP.

ACKNOWLEDGMENT

The authors would like to thank Dr. L. Sunil Chandran for useful
discussions, and the anonymous referees for their helpful comments.
K. Murali Krishnan acknowledges sponsorship for the Ph.D. degree
from the National Institute of Technology, Calicut under the QIP
scheme.

REFERENCES

[1] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite length analysis of low-density parity-check codes on the binary
erasure channel,” IEEE Trans. Inf. Theory., vol. 48, pp. 1570–1579,
Jun. 2002.

[2] C. Di, A. Montanari, and R. Urbanke, “Weight distribution of LDPC
code ensembles: Combinatorics meets statistical physics,” in Proc.
IEEE Int. Symp. Inf. Theory, Chicago, IL, Jul. 2004, p. 102.

[3] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution of
LDPC code ensembles,” IEEE Trans. Inf. Theory, vol. 51, pp. 929–953,
Mar. 2005.

[4] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of
irregular LDPC codes with low error floors,” in Proc. IEEE Int. Conf.
Commun., Seattle, WA, May 2003, pp. 3125–3129.

[5] A. Ramamoorthy and R. Wesel, “Construction of short block length ir-
regular LDPC codes,” in Proc. IEEE Int. Conf. Commun., Paris, France,
Jun. 2004, pp. 410–414.

[6] A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, “Stopping sets
and girth of Tanner graphs,” in Proc. IEEE Int. Symp. Inf. Theory, Lau-
sanne, Jun. 2002, p. 2.

[7] M. Schwartz and A. Vardy, “On the stopping distance and the stopping
redundancy of codes,” IEEE Trans. Inf. Theory, vol. 52, pp. 922–932,
Mar. 2006.

[8] R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, pp. 533–547, Sep. 1981.

[9] T. H. Cormen, C. E. Leicerson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1990.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[11] S. Cook, “The complexity of theorem proving procedures,” in Proc.
Third ACM Ann. Symp. Theory Comput., Shaker Heights, OH, May
1971, pp. 151–158.

[12] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check
codes over the binary erasure channel,” IEEE Trans. Inf. Theory, vol.
50, pp. 439–454, Mar. 2004.

[13] J. Han and P. Siegel, Improved Upper Bounds on Stopping Redundancy
[Online]. Available: http://www.arXiv.org, cs.IT/0511056, to be pub-
lished

[14] A. Vardy, “The intractability of computing the minimum distance of a
code,” IEEE Trans. Inf. Theory, vol. 46, pp. 1757–1766, Nov. 1997.

[15] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the
inherent intractability of certain coding problems,” IEEE Trans. Inf.
Theory, vol. IT-24, pp. 384–386, May 1978.

Classification of the Deletion Correcting Capabilities of
Reed–Solomon Codes of Dimension Over Prime Fields

Luke McAven and Reihaneh Safavi-Naini, Member, IEEE

Abstract—Deletion correction codes have been used for transmission
synchronization and, more recently, tracing pirated media. A Generalized
Reed–Solomon (GRS) code, denoted by GRS (`; q;���;v), is a code of length
` over GF(q) with q codewords. These codes have an efficient decoding
algorithm and have been widely used for error correction and detection. It
was recently demonstrated that GRS codes are also capable of correcting
deletions. We consider a subclass of GRS codes with dimension k = 2 and
q prime, and study them with respect to deletion correcting capability. We
give transformations that either preserve the code or maintain its deletion
correction capability. We use this to define equivalent codes; and then use
exhaustive and selective computer searches to find inequivalent codes with
the highest deletion correcting capabilities. We show that, for the class
under consideration, up to `� 3 deletions may be corrected. We also show
that for ` � 36 there exist codes with q codewords such that receiving
only 3 out of ` transmitted symbols of a codeword is enough to recover the
codeword, thus meeting the bound specified above. We also specify some
“nice” codes which are associated with the smallest field possible for codes
of a given length and deletion correcting capability. Some of the identified
codes are unique, with respect to the defined equivalence.

Index Terms—Codes, deletion correction, Reed–Solomon.

I. INTRODUCTION

Error-correcting codes are widely used to correct substitution and
erasure errors. A different, less studied, class of codes are the deletion
correcting (DC) codes, introduced by Levenshtein [6] to correct syn-
chronisation errors. The applications of DC codes include packet loss
in Internet transmission [13] and, more recently, tracing pirate media
[11]. Various studies of DC codes have been made [1], [2], [5]–[8],
[12]–[14], [17]. These studies generally consider a small number of
deletions, or a specific class of combinatorial based codes, or bounds
of various sorts. Perfect deletion correcting codes are codes for which
every possible word of some length over the associated alphabet is a
subword of exactly one codeword. It is known that perfect codes exist.
For example, there are many length 6 codes (over different alphabets)
capable of correcting four deletions [12]. In that case any word of length
2 is a subword of exactly one codeword.

Manuscript received June 2, 2004; revised February 19, 2007.
L. McAven is with the Centre for Computer and Information Security Re-

search, School of Computer Science and Software Engineering University of
Wollongong, Australia (e-mail: lukemc@uow.edu.au).

R. Safavi-Naini is with the iCore Information Security Lab, Department of
Computer Science, University of Calgary, Canada (e-mail: rei@epsc.ucalgary.
ca).

Communicated by Ø. Ytrehus, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2007.896889

0018-9448/$25.00 © 2007 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007 2281

Sloane [13] surveys single deletion correcting codes. He primarily
focuses on binary codes and discusses difficulties of constructing and
analysing deletion correcting codes. Sloane reports on exhaustive
searches to find the largest single deletion correcting binary codes of
a given length, which showed that the Varshamov–Tenengolts codes
[15] are of optimal size for length up to 9. Lenveshtein [6] had shown
that these codes are capable of correcting one deletion.

It was recently observed [11] that Generalized Reed–Solomon
(GRS) codes, extensively studied for their error correction capability,
are also capable of deletion correction. A subsequent study [16]
detailed a method for obtaining length 5 codes capable of correcting
one deletion. That work also gave the results of numerical experiments
to investigate the deletion correction capabilities of GRS codes.

An important advantage of using GRS codes, initially noted in [11],
is the existence of an efficient deletion correcting algorithm. The de-
coding algorithm for GRS codes can be formulated as a polynomial
reconstruction problem, to which the efficient list decoding algorithm
of Guruswami and Sudan [3] applies.

A GRSk(`; q; ���;v) code is specified by the parameters ���, v, k, `
and q. We call ��� and v the selector and multiplier, respectively. GRS
codes for which v = 1 is a vector of all ones, are the widely studied
Reed–Solomon (RS) codes [10]. We focus on RS codes that are defined
over a prime field GF(q) that have dimension k = 2 and so qk = q2

codewords. The choice of unit multiplier codes is because our pre-
vious computer searches [16], both exhaustive and selective, suggest
that these codes appear likely to correct more deletions then nonunit
multiplier codes. We also believe RS codes merit special attention be-
cause of their importance and wide application. Restricting ourselves
to codes with dimension k = 2 allows us to exploit the linear relation-
ship between codewords to analyze them.

We first prove an upper bound on the deletion correcting capability of
the codes in this class. A follow-on question is; “When can the bound be
achieved with equality?”, which translates into; “What is the smallest
field for which there exists a code that achieves the bound?” We use
structured computer searches to obtain insight into the above questions
and provide interesting results. We use properties of code classes to aid
the search, hence being able to obtain insight into the above questions
and produce results for larger (and so more interesting) fields. We also
find codes that are the ’best’, in ways that we will define.

In our computer searches we restrict our attention to finite fields of
prime order to simplify our search and classification. Classification of
codes over non-prime fields introduces other factors, such as the choice
of primitive polynomial, that complicate the task of obtaining exper-
imental results (some experimental results for fields of prime power
size are given in [16]). The theoretical results in this correspondence,
or slightly modified versions of them, are applicable to nonprime fields.
In particular, we show the bound on deletion capacity is for dimension
k = 2 RS codes, over prime and nonprime fields.

For RS codes, we show that distinct ��� can result in the same code
(the same set of codewords). Indeed, an affine transformation applied to
the vector ��� results in ���0, which generates the same code in this sense.
This allows us to associate each unit multiplier code with a code having
a selector of the form (0 1 �3 . . . �`), and hence reduce exhaustive
searches of k = 2 unit multiplier codes to a small proportion (1=(q2�
q)) of all codes in the class.

We define equivalent codes as codes that are obtained through ap-
plying a deletion correcting distance preserving transformation, pre-
serving at the level of codeword to codeword with a map across the
entire codebook.

We define equivalent codes as codes related through the application
of a distance preserving (deletion correcting distance) transformation.
We refer to such a transformation as a isomorphism in Section II-B,
and note that the codes have the same deletion correcting capability. We

seek transformations on selectors that result in equivalent codes. Unlike
error correcting codes, for which column permutations leave the codes
invariant from a distance distribution view point, a general column per-
mutation changes the deletion correcting capability of codes. We show,
however, that there is a nontrivial permutation for which the deletion
correcting capability will remain the same.

We enumerate inequivalent RS codes (over prime field) parameter-
ized by q, ` and r, where r is the number of deletions that a code can
correct. We prove that r = ` � 3 is an upper bound on the deletion
correcting capability, that is r � ` � 3. We have identified examples
of codes with r = `� 3 for ` � 36. For ` � 8 we have identified, and
proven by exhaustive search, the smallest q for which such codes exist.
When the number of such inequivalent codes is known and is small,
we have listed the complete set in Appendix. In some cases there are
very few codes with these parameters. For example, there is only one
code for q = 23, ` = 6 and r = 3, and there is no code with ` = 6,
r = 3 for any q < 23. We give explicit examples of such codes with
complete codebooks.

The rest of the correspondence is structured as follows. In Section II
we introduce the basics of deletion correcting codes, GRS codes and
RS codes. We define the notion of equivalence of codes in this context.

In Section III, we define and discuss the affine and reversal trans-
formations. In Section IV, we give bounds on the deletion correcting
capability and enumerate the distinct codes with the same deletion cor-
recting capabilities. Finally, Section V contains a summary of, and
discussion on, our results. An Appendix contains lists of small sets
of inequivalent codes for particular prime RS codes parameterized by
(q; `; r).

II. PRELIMINARIES

A. Deletion Correcting

Let a and b be strings over a q—ary alphabetA. We denote the length
of a, that is the number of elements (letters) in it, by jaj. We say a
string a is a subword of b if a can be obtained from b by only removing
elements of b. For example, 2234 is a subword of 142254364, while
452 is not (since reordering is required).

A q—ary code is a collection of q—ary words. A linear code of
dimension k is a subspace of dimension k of GF(q).

A code can correct r deletions if any string of length ` � r is a
subword of at most one codeword. We say such a code has a deletion
correcting capacity of r. For a particular code � we use the notation
r(�) to denote the deletion correcting capability.

To find the deletion correcting capability of a code we need to find
the length of the longest common subwords of any pair of codewords,
across all pairs of codewords in the code. Let u and v be two codewords
of a code � and let �(u; v) denote a longest common subword of u
and v, of length j�(u; v)j. There may be many common subwords with
this same length. We define R(�) = maxu;v2�;u 6=v j�(u; v)j and let
s = R(�)+1. Then s is the unique subword length, that is; the length
of the shortest subword that uniquely identifies a codeword. It follows
that � is an r—deletion correcting code, where r = (`� s).

B. Reed–Solomon (GRS) Codes

Let Fq , q prime, be a field of q elements. Let k be an integer and

Fq[x]k = ff(x) : f(x)is a polynomial over Fq : deg(f) < kg:

Let �1; �2; . . . ; �` 2 Fq , ` � q be distinct. Let v1; v2; . . . ; v` 2 Fq

be non-zero. Write ��� = (�1; �2; . . . ; �`) and v = (v1; v2; . . . ; v`).
A k-dimensional prime Generalized Reed–Solomon (GRS) code of
length ` is the set of all vectors

(v1f(�1); v2f(�2); . . . ; v`f(�`)) ; 8 f 2 Fq[x]k:

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

2282 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

This code is denoted by GRSk(`; q;���;v). We refer to��� as the selector
and v as the multiplier. We note that GRSk(`; q; ���;v) has qk code-
words. We say a particular vector, or codeword, in the code/set is asso-
ciated with the polynomial f(x) used to generate it.

We identify two particular sets of GRS codes (over prime field).

Definition 1 (GRS Classes): For fixed `, q, k, let G(`; q; k) be the
collection of codes obtained by taking all GRSk(`; q; ���;v) codes with
all possible ��� and v.

For a particular code in G(`; q; k), say GRSk(`; q; ���;v), we define
s(`; q; k; ���;v) = R+1, whereR was defined in the previous section.
We then define

�(`; q; k) = min
���

min
v

s(`; q; k; ���; v) (1)

to be the minimum s(`; q; k; ���; v) forG(`; q; k). This gives the highest
deletion correcting capability for given parameters `, q, k.

We are interested in a subclass where the multiplier values are all
one. Such codes are Reed–Solomon codes over prime fields.

Definition 2 (RS Classes): For fixed `, q, k, the subset of codes in
GRSk(`; q; ���;v) for which vi = 1, 1 � i � `�1 are called RS codes
and are denoted by ~G(`; q; k).

We use ~G(`; q; 2) to denote the subset of ~G(`; q; k) class with k = 2.
We note that, as specified, not all elements of G(`; q; k) are distinct.

That is two distinct ��� may result in the same set of codewords. Also
two codes � and �0 may have equivalent deletion correcting proper-
ties. Two codes are isomorphic if there is a one-to—one mapping T

between � and �0 such that for any pair of codewords u, v 2 � with
j�(u; v)j = t, we have j�(T (u); T (v))j = t, and T is referred to as
an isomorphism. Two codes are called equivalent if there is an isomor-
phism between them. We are interested in the enumeration of inequiv-
alent codes and give, in Section IV, lists and counts of codes identified
as inequivalent under the classes of isomorphism defined in Section III.

C. RS Codes and Deletion Correcting

The statements in this section regarding the subwords hold for non-
prime RS codes also.

Let us use an example of a ~G(`; q; 2) code, for q = 7 and ` = 4, to
illustrate RS codes and deletion correcting capability. We choose the
selector ��� = (1 3 0 4). The codebook for this code is shown in the
expression at the bottom of the page. Each codeword is of length ` = 4
and is associated with a polynomial of the form f(x) = a1x+a0. The

ith letter in a codeword is f(�i). This code is capable of correcting up
to one deletion. This means there are no length three words which are
subwords of two distinct codewords, but that there are words of length
two which are subwords of two distinct codewords.

For any code with unit multipliers, the first q codewords, those asso-
ciated with the polynomials of degree 0, are constant codewords. Thus,
for any given length, there is a single subword only for each of those
codewords. For example, any subword of the codeword associated with
the polynomial 0x+2will always be a string of 2’s, of whatever length
the subword is.

Each codeword is associated with a polynomial of degree 1 and so
has distinct components, that is each letter in the codeword differs from
each other letter. Thus two subwords, of any length, taken from dif-
ferent columns of a codeword are always distinct.1 Furthermore, the
length of the longest common subword between, a codeword associ-
ated with a polynomial of degree 0 and any codeword associated with
a polynomial of degree 1, is at most 1. Using this property effectively
means that; to find the deletion correcting capability of a code we can
restrict our attention to finding the length of subwords common to two
codewords, both of which are associated with polynomials of degree 1.2

III. EQUIVALENT CODES IN ~G(`; q; 2)

In this section we present two transformations of selector vectors that
result in equivalent codes. The first transformation results in a selector
vector which generates the same code; that is, a code with the same
set of codewords. The second transformation results in a different code
(different set of vectors) that has the same deletion correcting capabil-
ities through the isomorphism.

For a scalar s and a vectorv with the ith component vi, i = 1; . . . ; n,
we adopt the convention that v+s, denotes a vector r with components
ri = vi + s, i = 1; . . . ; n.

A. Affine Transformations of the Selector

Theorem 1: If two codes � and �0 in ~G(`; q; 2) have respective se-
lectors ��� = (�1 . . .�`) and ���0 = (�0

1 . . .�
0

`) and there is an affine
transformation T such that �0

i = T (�i), i = 1; . . . `, then the two

1This allows us to identify both the deleted elements and the locations from
which they have been deleted.

2Note that in the above case the longest common subword may be longer
if the multipliers differ from 1, supporting the observation that unit multiplier
codes (i.e., RS codes) would have higher deletion correcting capabilities. This
property probably becomes less significant for larger qs, since the proportion of
codewords associated with degree 0 polynomials becomes insignificant.

0x+ 0 0000 0x+ 1 1111 0x+ 2 2222 0x+ 3 3333

0x+ 4 4444 0x+ 5 5555 0x+ 6 6666 1x+ 0 1304

1x+ 1 2415 1x+ 2 3526 1x+ 3 4630 1x+ 4 5041

1x+ 5 6152 1x+ 6 0263 2x+ 0 2601 2x+ 1 3012

2x+ 2 4123 2x+ 3 5234 2x+ 4 6345 2x+ 5 0456

2x+ 6 1560 3x+ 0 3205 3x+ 1 4316 3x+ 2 5420

3x+ 3 6531 3x+ 4 0642 3x+ 5 1053 3x+ 6 2164

4x+ 0 4502 4x+ 1 5613 4x+ 2 6024 4x+ 3 0135

4x+ 4 1246 4x+ 5 2350 4x+ 6 3461 5x+ 0 5106

5x+ 1 6210 5x+ 2 0321 5x+ 3 1432 5x+ 4 2543

5x+ 5 3654 5x+ 6 4065 6x+ 0 6403 6x+ 1 0514

6x+ 2 1625 6x+ 3 2036 6x+ 4 3140 6x+ 5 4251

6x+ 6 5362

:

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007 2283

codes have the same set of codewords and therefore the same deletion
correcting capability.

Proof: Let � and �0 have deletion correcting capabilities r and
r0 , respectively. Let T = aX + b be the affine transformation relating
the selectors of � and �0, that is ��� = a���0 + b, a 6= 0, a; b 2 Fq . For
any a0; a1 2 Fq , that is any codeword a1x+ a0 in �, the codeword is
a1(���)+ a0. Applying the affine transformation we see the same code-
word in �0 is of the form (a0 + ba1) + a1a(���

0). This is a codeword
in �0 since the selector is ���0, the polynomial degree is at most 1 and
both (a0 + ba1) and a1a are in Fq . Thus any codeword in � is also
a codeword in �0 (although there are different polynomials associated
with the codeword in the different codes). Since the number of code-
words in � and �0 is equal they contain the same codewords, and thus
have equal deletion correcting capabilities.

Let us consider an example of this correspondence through an affine
transformation. In the previous section we considered a code with se-
lector ��� = (1 3 0 4). Let us consider the code with selector related by
the affine transformation ���0 = 2��� + 3 = (5 2 3 4). For each polyno-
mial in �, we give the codeword and the polynomial in �0 which has
the same codeword.

� �0 � �0

0x + 0 0000 0x+ 0 0x+ 1 1111 0x+ 1

0x+ 2 2222 0x+ 2 0x+ 3 3333 0x+ 3

0x+ 4 4444 0x+ 4 0x+ 5 5555 0x+ 5

0x+ 6 6666 0x+ 6 1x+ 0 1304 4x+ 2

1x+ 1 2415 4x+ 3 1x+ 2 3526 4x+ 4

1x+ 3 4630 4x+ 5 1x+ 4 5041 4x+ 6

1x+ 5 6152 4x+ 0 1x+ 6 0263 4x+ 1

2x+ 0 2601 1x+ 4 2x+ 1 3012 1x+ 5

2x+ 2 4123 1x+ 6 2x+ 3 5234 1x+ 0

2x+ 4 6345 1x+ 1 2x+ 5 0456 1x+ 2

2x+ 6 1560 1x+ 3 3x+ 0 3205 5x+ 6

3x+ 1 4316 5x+ 0 3x+ 2 5420 5x+ 1

3x+ 3 6531 5x+ 2 3x+ 4 0642 5x+ 3

3x+ 5 1053 5x+ 4 3x+ 6 2164 5x+ 5

4x+ 0 4502 2x+ 1 4x+ 1 5613 2x+ 2

4x+ 2 6024 2x+ 3 4x+ 3 0135 2x+ 4

4x+ 4 1246 2x+ 5 4x+ 5 2350 2x+ 6

4x+ 6 3461 2x+ 0 5x+ 0 5106 6x+ 3

5x+ 1 6210 6x+ 4 5x+ 2 0321 6x+ 5

5x+ 3 1432 6x+ 6 5x+ 4 2543 6x+ 0

5x+ 5 3654 6x+ 1 5x+ 6 4065 6x+ 2

6x+ 0 6403 3x+ 5 6x+ 1 0514 3x+ 6

6x+ 2 1625 3x+ 0 6x+ 3 2036 3x+ 1

6x+ 4 3140 3x+ 2 6x+ 5 4251 3x+ 3

6x+ 6 5362 3x+ 4

:

We want to count inequivalent codes. We define a standard represen-
tation for codes and use that to distinguish inequivalent codes.

Corollary 1: A code � represented by �1 > 0 and/or �2 > 1 can
also be represented by a unique selector vector with �0

1 = 0, �0

2 = 1.
We call this the standard representation or standard form of the code.

Proof: Let the code � have a selector ���. Consider the selector
���0 = �����

� ��
, where �0i =

� ��

� ��
for all i = 1; . . . ; ` and �0i and �i

denote the ith component of ���0 and ���, respectively. Since �2 6= �1,
by definition, an inverse A = (�2 � �1)

�1 exists we have �0i =
A�i � �1A and since �1 > 0 the relationship between ��� and ���0 is an
affine transformation. Using Theorem 1, we conclude that���0 generates

the same code as ���. Evaluating the first two elements of ���0 we find
�01 = 0 and �02 = 1.

The two parameters of the affine transformation are fixed by the need
to fix the 0 and 1 in the first two components of the selector in standard
form and so the transformation and the standard form representation of
the vector are unique.

These results are especially useful for codes in ~G(`; q; 2) classes.
There we only need to consider codes in the standard representation,
that is with �1 = 0 and �2 = 1. This reduces the search space by a
factor of 1=(q2 � q).

B. Selector Reversal

Here we show that the deletion correcting capabilities of ~G(`; q; k)
codes is invariant under reversal of the selector, for arbitrary k.3

For error correcting codes the error correcting capability is invariant
under any permutation of the columns of the code. This is not the case
for deletion correcting capability, as the following example illustrates.
Consider two codewords c1 = (1 2 3 4 5) and c2 = (5 2 4 6 7).
The cyclic permutation of columns (1 5 4 3 2) gives the codewords
c01 = (2 3 4 5 1) and c02 = (2 4 6 7 5). While c1 and c2 have a longest
common subword (2 4) of length 2, c01 and c02 have a longest common
subword (2 4 5) of length 3.

We define x for a word x where xi = xjxj+1�i. That is, x is x
written backwards.

Lemma 1: If a is a subword of b, than a is a subword of b.
Proof: Let ai, ai+1 be a subword of a. Then by definition

b contains ai+1 , ai. The result follows for any length subword
ai, ai+1 . . . ai+u by noting that the subword can be written as
(((ai; ai+1); ai+2) . . . ai+u), and using recursion.

Lemma 2: For any two words c1 and c2, �(c1; c2) = �(c1; c2).
Proof: Since �(c1; c2) is a subword of c1 and c2, Lemma 1 tells

us that �(c1; c2) is a subword of c1 and c2. Assume �(c1; c2) = p
where jpj > j�(c1; c2)j, i.e., that there exists a subword common to
c1 and c2 which is longer than �(c1; c2). By Lemma 1, p is a subword
of both c1 and c2, implying j�(c1; c2)j � jpj = jpj. But since p was
defined to satisfy jpj > j�(c1; c2)j = j�(c1; c2)j, such a p cannot exist
and therefore the longest subword common to c1 and c2 is �(c1; c2),
as required.

Theorem 2: If a length ` code � with selector ��� has a deletion cor-
recting capability of r, then the code specified by the selector���0 : �0i =
�`+1�i, that is ���0 = ���, also has a deletion correcting capability of r.

Proof: Since r(�) = `�R(�)� 1 and r(�0) = `�R(�0)� 1,
we may equivalently demonstrate that R(�0) = R(�)

R(�) = max
c ;c 2�;c 6=c

j�(c1; c2)j

= max
c ;c 2�;c 6=c

j�(c1; c2)j

= max
c ;c 2�;c 6=c

j�(c1; c2)j by Lemma 2.

= max
c ;c 2� ;c 6=c

j�(c1; c2)j

=R(�0):

The above theorem shows that the code with selector ���0, generated
by the reversal transformation, is isomorphic to��� and so they are equiv-
alent. Consider, for example, the selectors of codes in ~G(`; q; 2) with
q = 13, ` = 5, that have deletion correcting capability of 2; that
is r = 2. There are only two such codes, ��� = (0 1 7 6 2) and
���0 = (0 1 11 3 6) in the standard representation. Now consider the
reversal selector obtained from ���; that is ��� = (2 6 7 1 0). We see that

3A similar isomorphism exists for general GRS codes if one reverses both the
multiplier and the selector.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

2284 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

��� = 4���0 + 2, that is ��� and ���0 are related by an affine transformation.
Thus the reversal transformation on one code gives the other code and
so there is only one inequivalent code in the standard representation.
Thus using either ��� or���0 we can generate, using the affine and reversal
transformations, any other selector corresponding to a ~G(`; q; 2) code
with q = 13, ` = 5 and r = 2.

Corollary 2: Using the reversal transformation, a code in the stan-
dard representation is isomorphic to at most one other code in the stan-
dard representation.

Proof: Consider a code with selector ��� in standard form
�1 = 0 and �2 = 1. The reversal of ��� gives the selector
��� = (�` �`�1 . . . �3 1 0). By Corollary 1, there is only one
affine transformation which can be applied to ��� to obtain a selector ���0

satisfying �01 = 0 and �02 = 1. The transformation (and thus selector)
is specified by ���0 = ����(�)

(�) �(�)
= �����

� ��
, where (�)i means the

ith element of ���. It is possible for ��� to equal ���0. It is however possible
for selector reversal to result in the same code, that is, a code with the
same standard representation.

C. Codes That are Invariant Under Selector Reversal

Consider a selector ��� = (0 1 �3 . . . �`�1 �`). The reversal is
��� = (�` �`�1 . . . �3 1 0). Following Theorem 1 we apply the affine
transformation to obtain the selector of the new code in standard form,
���0 = �����

� ��
.

For the two codes to be the equivalent through the reversal transfor-
mation and affine transformation, we must have ���0 = ���, and so

�i =
�`+1�i � �`

�`�1 � �`
(2)

for all i = 1; . . . `.The i = 1 and i = 2 conditions imply �1 = � ��
� ��

= 0 and

�2 =
� ��

� ��
= 1. These simply represent the transformation to the

standard representation. When ` = 2 we only have those conditions
and there is only a single selector in standard form (0 1), and it satisfies
this condition.

The conditions for i = ` and i = `�1 reduce to the same condition
for ���0 and ��� to be equal, that is

�` � �`�1 = 1 : (3)

Substituting this back into (2) gives the reduced condition

�i = �` � �`+1�i: (4)

The simplicity of this reduction means we can count the number of
codes with the specified invariance. In the case ` = 3 the only selector
with such reversal invariance is (0 1 2), since (3) becomes�3��2 = 1,
or �3 = 2.

Theorem 3: The number of length ` � 4 selectors ��� =
(0 1 �3 . . . �`�1 �`), over a prime field Fq , q � `, which
specify a code with the same standard form before and after reversal
is given by the expression

(q � 3)!!

q � 2b `
2
c+ 1 !!

: (5)

where x!! = x(x � 2)(x� 4) . . . (x mod 2 + 2).
Proof: We proceed by identifying the number of relations which

restrict the values of the selector elements. From (3), we obtain the
relation �` � �`�1 = 1. The value of �` cannot be equal to 0 or 1 as
these values already appear in the selector vector. Furthermore, setting
�` = 2 gives �`�1 = 1, which has already appeared in the selector.
This relation thus allows (q � 3) values to be chosen for �`, with no
freedom in the subsequent choice of �`�1. For ` = 4 we obtain only
this enumeration and so we have (q � 3) such selectors.

If ` � 6 is even we obtain from (4) a list of `=2 � 2 equations
�3 + �`�2 = �`, �4 + �`�3 = �`; . . .�`=2 + �`=2+1 = �`. Each

equation implies we can choose one of the components other than �`

independently, and obtain the other relative to �` and that choice. In
making the choice we must avoid all the values already used in the se-
lector. For the first of those equations we need to avoid 0, 1, �`�1 and
�`. In addition we must avoid making �3 and �`�2 equal to each other,
that is avoid �3 = �`�2 = 2�1�`. We thus have (q � 5) possibilities
for �3, which then fixes �`�2 also. Each subsequent equation is used
to choose one selector component and derive a second one. The chosen
selector should avoid the previous values chosen and derived for the
selector values, as well as 2�1�`. For the jth equation then we have
q � (2j + 3) possible values. Each of these equations results in addi-
tional possibilities independent of the (q� 3) factor from the freedom
described in the first paragraph of the proof. The total number of equa-
tions is therefore

(q � 3)�
`=2�2
1 q � (2j + 3) =

(q � 3)!!

(q � (`+ 1))!!
:

If ` is odd the selector component for i = (` + 1)=2 is evaluated
through (4) as 2�(`+1)=2 = �`. For any of the (q � 3) valid �` there
is always a �(`+1)=2 not equal to 0; 1; �`�1 or �`. This is also the
very value avoided in the “odd” counting to ensure �i and �`+1�i

are not equal, so we avoid all previously specifed selector values also.
Thus the number of reversal invariant selectors for odd ` is equal to the
number of reversal invariant selectors for the even number `� 1. This
is represented by the use of the floor function in (5).

IV. DELETION CORRECTING CAPABILITY BOUNDS AND THE

ENUMERATION OF INEQUIVALENT CODES FOR ~G(`; q; 2)

In this section we give a bound on the deletion correcting capa-
bility of codes and enumerate, and in some cases list, the inequivalent
~G(`; q; 2) codes.

Theorem 4: For an RS code with k = 2 and ` � 3, the largest
deletion correcting capability possible is ` � 3.

Proof: Recall from Section II-C that the RS codewords associ-
ated with polynomials of degree 0 have constant components and so
have one subword of constant component of any length t. Furthermore,
codewords associated with polynomials of degree exactly 1 have all
subwords distinct. For a codeword associated with a polynomial of de-
gree 1, there are `!

(`�t)!t!
subwords of length `� t. To be able to correct

t deletions these must be distinct from the subwords of every other
codeword associated with a polynomial of degree 1. Thus, we need
(q2 � q) `!

(`�t)!t!
distinct words of length ` � t. For a given field Fq

there are q`�t words of length ` � t.
Thus there can only be enough subwords to correct deletions if

(q2 � q)
`!

(`� t)!t!
� q`�t:

Let t = `�2. The equation reduces to (q�1)`(`�1)=2 � q. But this
cannot be satisfied for ` � 3 and so no RS code of dimension k = 2 is
capable of correcting (` � 2) deletions.

Let t = (` � 3). For this case the condition above reduces to (q �
1)`(`�1)(`�2)=6 � q2, which can be satisfied by large enough q.

A. Experimental Results

We have performed extensive computer searches to find inequivalent
codes that have the best performance, in one of two senses which we
will describe. We are also interested in determining the number of codes
with such properties.

We firstly consider codes that satisfy the bound in Theorem 4. In
Table I we give the current state of our computer search to find codes
with the highest deletion correcting capability for ` � 25. These results
are significant improvements over previously reported results [16]. We

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007 2285

TABLE I
A TABULATION OF EXPERIMENTAL UPPER BOUNDS ON THE VALUE OF THE �(`; q; 2) FOR PRIME q. THE HIGHEST DELETION CORRECTING CAPABILITY IS GIVEN

BY `� �(`; q; 2). WE EMPHASIZE THESE EXHAUSTIVE AND SELECTIVE RESULTS ARE FOR CODES WITH UNIT MULTIPLIERS (I.E., FOR RS CODES). THE (`; q)
CLASSES MARKED WITH A � HAVE BEEN EXHAUSTIVELY SURVEYED. THE ROWS AND COLUMNS LABEL THE PRIME VALUE q AND CODE LENGTH `, RESPECTIVELY

also list, in Table II, examples of codes with the highest deletion cor-
recting capability. We note that the results in Table I are obtained by a
mix of exhaustive and non-exhaustive searches. The former cases are
marked by ’�’. The entries in the table are of �(`; q; 2), which is the

length of the shortest subword that uniquely identifies codewords of
codes in ~G(`; q; 2) and so �(`; q; 2) = 3 means that the deletion cor-
recting capability is ` � 3, and thus the highest possible according to
Theorem 4. We observe that for any ` in the table, the bound in The-

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

2286 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

TABLE II
SOME EXAMPLES OF THE BEST CODES FOUND, IN THE SENSE OF SMALLEST q FOR GIVEN ` AND r. THE CODES IN THE FIRST SECTION OF THE TABLE ARE

NOT OPTIMAL, IN THE SENSE r < ` � 3, BUT ARE SIGNIFICANT IMPROVEMENTS ON THE RESULTS OF [16]. THE CODES IN THE SECOND SECTION OF THE

TABLE ARE OPTIMAL, IN THE SENSE r = ` � 3

orem 4 can be achieved with equality if q is sufficiently large (in each
column there is a row with an entry equal to 3).

Second, we consider codes that satisfy a property, for example the
highest deletion correction capability, over the smallest size prime field.
Of particular value are the smallest fields for which codes with r =
` � 3 have been found. For nonexhaustive searches the smallest field
provides an upper bound on the value. In Table II we give examples of
such codes, specified by the selector, for ` � 36.

Let Q(`; r) denote the smallest prime q for which we have a code
in ~G(`; q; 2) with a deletion correcting capability r. Then Q(`; `� 3)
gives the smallest q, for a given `, for which �(`; q; 2) = 3, that is for
which the code meets the deletion correcting bound. Using Table I we
can see that Q(4; 1) = 7 and so there is no single deletion correcting
code of length 4 for q = 3 or q = 5.

Using Table I we have Q(4; 1) = 7, Q(5; 2) = 13, Q(6; 3) = 23,
Q(7; 4) = 47 andQ(8; 5) = 71, all as exhaustively tested minimums.
These values suggest the smallest prime field, with the best deletion
correcting capability possible, grows quickly as we increase the length.
We see this is supported by the current experimental evidence in Fig. 1.

The value of the upper bound onQ(`; r) for 4 � ` � 36 is given in
the array below and in Fig. 1. Note again that the “�” entries are proven,
by exhaustive searches, to be minimums.

` Q(`; `� 3) ` Q(`; `� 3) ` Q(`; `� 3)

4 7� 15 2477 26 45497

5 13� 16 3499 27 56999

6 23� 17 4877 28 67499

7 47� 18 6619 29 86933

8 71� 19 8849 30 99991

9 139 20 11987 31 120691

10 233 21 15227 32 144983

11 389 22 18979 33 169991

12 683 23 23993 34 189997

13 1093 24 29959 35 239999

14 1747 25 36997 36 274973

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007 2287

Fig. 1. This figure illustrates the currently determined values of Q(`; ` � 3) for ` from 4 to 36. We see that the size of q increases rapidly, approximately as a
constant multiple of ` .

Table II has two parts. The first part of the table gives selective ex-
amples of the best codes, in the sense of smallest q for a give (`; r) pair.
For example, for ` = 9 and r = 4, the smallest q = 11. Some exam-
ples for smaller ` and r appear in Section IV-B, in the inequivalence
sets given in Appendix, and in Tables IV–VII.

In the second part of Table II, examples of codes with �(`; q; 2) = 3,
the best deletion correcting capability possible, are given for 8 � `

� 36.

B. Tabulations of Inequivalence Set Cardinalities

In Section III, we considered two isomorphisms of selector vectors,
that result in codes equivalent to the original one. We would like to
enumerate inequivalent ~G(`; q; 2) codes for a given set of parameters.
Let [q; `]r denote the set of inequivalent codes (in standard form) of
length ` over a field of size q and with deletion correcting capability
of r.

Note that [Q(`; r); `]r denotes the set of codes with length `, dele-
tion correcting capability r, and the smallest known q with that length
and deletion correcting capability. In Table III we tabulate the cardinal-
ities of the various inequivalent code sets, for primes from 5 to 97 and
for various lengths. For q = 5, 7 and 11 we have completed exhaustive
enumerations for lengths up to and including ` = q. As the value of
the field q increases, the exhaustive enumerations become increasingly
time consuming; thus for q > 11 we do not have enumerations for all
lengths up to q.

In cases where there are only a small number of distinct codes for
given small q and small `, we explicitly give the codes, in terms of the
selectors, in Section IV-D and in Tables IV–VII. The [Q(`; r); `]r of
small cardinality are listed in Appendix.

An interesting result of our search is the explicit construction of
a code whose parameters achieve a bound, proposed elsewhere, with

equality. In particular, for q = 7, ` = 7, it has been proven in [4], [9]
that codes with deletion correcting capability greater than two cannot
exist. We have found a code with q = 7, ` = 7 and r = 2, thus pro-
viding an explicit construction for that bound.

C. The Distribution of Deletion Correcting Capabilities

In cases where we have undertaken exhaustive enumerations the
pro-portion of codes with particular deletion correcting capabilities
is of interest. We can compare this with results in [16, Table 1]. For
example, in [16] it was noted that 1% of all GRSk(`; q; ���;v) codes
with k = 2, q = 7, ` = 4 are capable of correcting 1 deletion. We
have found that 45% of all ~G(`; q; 2) codes with q = 7 and ` = 4

are capable of correcting 1 deletion. The relative proportion of codes
with higher deletion correcting capabilities supports the emphasis
placed on RS codes. Similarly with k = 2, q = 7, ` = 5 60%4

of GRSk(`; q; ���; v) codes can correct one deletion, against 88% of
~G(`; q; k) codes.

D. Some “Nice” Codes

In this section, and in Appendix, we give the explicit codebooks
for some of the smaller RS codes capable of correcting deletions, that
is some of the [Q(`; r); `]r codes (see Section IV-B). The codes
are labelled in terms of q, `, r and the selector ���. In Appendix we
use capitalized Latin letters to denote the numbers from 10(A) to
22(M), allowing us to more compactly represent the codewords for
q � 11.

4The 60% and 40% in the second to last column of Table I of [16] should each
be one row higher. That is for q = 7, ` = 5, we have 60% with s = 4 (r = 1)
and 40% with s = 5 (r = 0).

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

2288 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

We note that the codes of interest over GF(q) have q2 codewords.
The first two examples are listed in the text below, the remaining ex-
amples can be found in Tables IV–VII.

0 0 0 0 0 0

4 4 4 4 4 4

1 2 0 6 4 5

5 6 4 3 1 2

2 4 0 5 1 3

6 1 4 2 5 0

3 6 0 4 5 1

0 4 3 6 5 2

4 1 0 3 2 6

1 6 3 5 2 0

5 3 0 2 6 4

2 1 3 4 6 5

6 5 0 1 3 2

1 1 1 1 1 1

5 5 5 5 5 5

2 3 1 0 5 6

6 0 5 4 2 3

3 5 1 6 2 4

0 3 4 1 2 5

4 0 1 5 6 2

1 5 4 0 6 3

5 2 1 4 3 0

2 0 4 6 3 1

6 4 1 3 0 5

3 2 4 5 0 6

2 2 2 2 2 2

6 6 6 6 6 6

3 4 2 1 6 0

0 2 5 3 6 1

4 6 2 0 3 5

1 4 5 2 3 6

5 1 2 6 0 3

2 6 5 1 0 4

6 3 2 5 4 1

3 1 5 0 4 2

0 6 1 2 4 3

4 3 5 6 1 0

3 3 3 3 3 3

0 1 6 5 3 4

4 5 3 2 0 1

1 3 6 4 0 2

5 0 3 1 4 6

2 5 6 3 4 0

6 2 3 0 1 4

3 0 6 2 1 5

0 5 2 4 1 6

4 2 6 1 5 3

1 0 2 3 5 4

5 4 6 0 2 1

There is a single code in [Q(5; 1) = 5; 5]1. It is specified by the
selector ��� = (0 1 4 2 3) as shown in the first table at the bottom of the
page.

There is a single code in [Q(6; 2) = 7; 6]2. It is specified by the
selector ��� = (0 1 6 5 3 4) as shown in the second table at the bottom
of the page.

Another nice code, worthy of mention here, is the lone
member of [Q(8; 5) = 71; 8]5, specified by the selector
� = (0 1 64 42 70 48 40 41). Not only is this the only code in
this equivalence set, there exist no GRS codes of this length with the
same deletion correcting capability and a shorter length.

V. SUMMARY AND DISCUSSION

We have presented an investigation into the classification of the dele-
tion correcting capabilities of prime RS codes with dimension k = 2.

We have proven that the deletion correcting capability is invariant
under affine transformations and reversal of the selector. Using these
isomorphisms we have focused on inequivalent codes and enumerated
~G(`; q; 2) classes with small parameter values. We have listed the
inequivalent codes in cases where the sets are themselves small, and
in some cases given the codebooks too.

We have proven that for ~G(`; q; 2) codes r � ` � 3. We have
identified examples of codes meeting this bound for ` � 36. For
example, in Table II we give a length ` = 36 code capable of
correcting 33 deletions. This code is over a F274973, with about
7:55 � 1010 codewords.

Let us conclude with some open questions for consideration.
Firstly, How do we design codes with a particular deletion correcting
capability? For the class of codes considered in this correspondence,
the code is defined by a selector, and the question becomes; How
do we choose a selector to provide a particular deletion correcting
capability? Another related question is; Given a selector, how can we
determine the deletion correcting capability of the code generated by
the selector?

We note that the question; What is the deletion correcting capability
of a code with specified q, ` and selector ���?; can be closely related to
the problem of decoding. This will be discussed in future work.

Closer to the direction of our work here, we would like to be able to
answer, for a given ~G(`; q; 2) class, Does there exist a selector speci-
fying a code capable of correcting r deletions? Thus we want to more
precisely determine the values of Q(`; r), that is the smallest q for
which we have a code of length ` capable of correcting r deletions.
This question is somewhat complicated by an unresolved proposition
[16];

0 0 0 0 0

0 1 4 2 3

0 2 3 4 1

0 3 2 1 4

0 4 1 3 2

1 1 1 1 1

1 2 0 3 4

1 3 4 0 2

1 4 3 2 0

1 0 2 4 3

2 2 2 2 2

2 3 1 4 0

2 4 0 1 3

2 0 4 3 1

2 1 3 0 4

3 3 3 3 3

3 4 2 0 1

3 0 1 2 4

3 1 0 4 2

3 2 4 1 0

4 4 4 4 4

4 0 3 1 2

4 1 2 3 0

4 2 1 0 3

4 3 0 2 1

0 0 0 0 0 0

4 4 4 4 4 4

1 2 0 6 4 5

5 6 4 3 1 2

2 4 0 5 1 3

6 1 4 2 5 0

3 6 0 4 5 1

0 4 3 6 5 2

4 1 0 3 2 6

1 6 3 5 2 0

5 3 0 2 6 4

2 1 3 4 6 5

6 5 0 1 3 2

1 1 1 1 1 1

5 5 5 5 5 5

2 3 1 0 5 6

6 0 5 4 2 3

3 5 1 6 2 4

0 3 4 1 2 5

4 0 1 5 6 2

1 5 4 0 6 3

5 2 1 4 3 0

2 0 4 6 3 1

6 4 1 3 0 5

3 2 4 5 0 6

2 2 2 2 2 2

6 6 6 6 6 6

3 4 2 1 6 0

0 2 5 3 6 1

4 6 2 0 3 5

1 4 5 2 3 6

5 1 2 6 0 3

2 6 5 1 0 4

6 3 2 5 4 1

3 1 5 0 4 2

0 6 1 2 4 3

4 3 5 6 1 0

3 3 3 3 3 3

0 1 6 5 3 4

4 5 3 2 0 1

1 3 6 4 0 2

5 0 3 1 4 6

2 5 6 3 4 0

6 2 3 0 1 4

3 0 6 2 1 5

0 5 2 4 1 6

4 2 6 1 5 3

1 0 2 3 5 4

5 4 6 0 2 1

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007 2289

TABLE III
THE CARDINALITIES OF INEQUIVALENCE SETS, FOR PRIMES FROM 5 TO 97 AND FOR VARIOUS LENGTHS

If q1 < q2 are prime powers then �(`; q1; k) � �(`; q2; k).
That is, the deletion correction capability of codes does not decrease

as q increases with fixed ` and k. In generating Table I we have not

assumed this proposition to be true, we have explicitly identified codes
in every case. The identification of codes in [Q(`; r); `]r is also
important.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

2290 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

TABLE IV
THERE ARE TWO CODES IN [Q(7; 3) = 11;7] . ONE IS SPECIFIED BY THE SELECTOR ��� = (0 1 2 8 A 3 5)

TABLE V
THERE ARE THREE CODES IN [Q(9; 4) = 11;9] . ONE IS SPECIFIED BY THE SELECTOR ��� = (0 1 2 A 4 6 5 8 9)

TABLE VI
THERE IS ONE CODE IN [Q(5; 2) = 13;5] . IT IS SPECIFIED BY THE SELECTOR ��� = (0 1 7 6 2). A DELETION CORRECTING CAPABILITY OF TWO IS THE

MAXIMUM ACHIEVABLE BY ~G(`; q; 2) CODES OF LENGTH 5 (SEE THEOREM 4)

A further question requiring resolution is; Can arbitrary multiplier
(GRS) codes provide better deletion correcting capabilities than unit
multiplier (RS) codes?

In this correspondence, we have only considered k = 2, higher di-
mension codes need to be considered also. Some experimental results
were given in [16]. It was also proven therein that the shortest subword

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007 2291

TABLE VII
THERE IS ONE CODE IN [Q(6; 3) = 23;6] . IT IS SPECIFIED BY THE SELECTOR ��� = (0 1G C 4 5). A DELETION CORRECTING CAPABILITY OF THREE IS THE

MAXIMUM ACHIEVABLE BY ~G(`; q; 2) CODES OF LENGTH 6 (SEE THEOREM 4)

length cannot become smaller if k is increased for fixed q and `. Having
identified optimal k = 2 codes it will be useful to check the deletion
correcting capability of those codes obtained with the same parameters
other than higher values of k.

It would also be useful to extend the results of [16] for RS codes
fields of prime characteristic, in particular with prime characteristic
2. Codes over such fields have been previously found to have more
practical application than those over prime fields.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

2292 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

VI. A NOTE ON THE EXPERIMENTAL RESULTS

The tables in this correspondence do not present all our selective and
exhaustive results. Experimental results will occasionally be updated at
http://www.uow.edu.au/~lukemc/expt.html.

APPENDIX

LISTINGS OF INEQUIVALENCE SETS

In this Appendix, we list the inequivalence sets of Section IV-B with
cardinalities of length than about 40. The codes are identified by the
standard form selectors, which are listed without the first two elements
since they are always 0 and 1.

In general a selector ��� is related to a selector ���0 under the combined
reversal and affine transformation. If ��� and ���0 are equal, we mark the
selector with a �. Otherwise, we list only the smaller of ��� and ���

0, in
the sense of ��� being smaller than ���

0 if �j < �
0

j for some j such that
�i = �0

i, 8 i < j.

[5; 4]0 = f(2 3)�; (2 4); (3 2); (3 4)�g:

[5; 5]0 = f(2 3 4)�; (2 4 3); (3 2 4)g:

[5; 5]1 = f(4 2 3)�g:

[7; 4]0 = f(2 3)�; (2 4); (3 2); (3 6); (4 3); (4 6)g:

[7; 4]1 = f(2 5); (2 6); (3 4)�; (4 5)�; (5 3); (5 6)�g:

[7; 5]0 = f(2 3 4)�; (3 2 6); (4 6 3); (4 6 5)g:

[7; 5]1 = f(2 3 5); (2 3 6); (2 4 3); (2 4 5); (2 4 6); (2 5 3)

(2 5 4); (2 5 6); (2 6 4); (2 6 5); (3 2 4); (3 2 5)

(3 4 2); (3 4 6); (3 5 2); (3 5 4); (3 5 6)�; (3 6 5)

(4 2 3); (4 2 5); (4 2 6); (4 5 3); (5 2 3)�; (5 3 4)

(5 3 6); (5 6 2); (6 2 4); (6 4 5)�g:

[7; 6]0 = f(2 3 4 5)�; (3 2 6 4); (4 6 5 2); (4 6 5 3)g:

[7; 6]2 = f(6 5 3 4)�g:

[7; 7]0 = f(2 3 4 5 6)�; (3 2 6 4 5); (4 6 5 2 3)g:

[7; 7]2 = f(2 3 5 6 4); (2 5 4 6 3); (2 5 6 3 4); (2 6 5 3 4)

(3 4 5 6 2); (3 5 6 2 4); (4 3 2 6 5); (4 3 5 6 2)

(4 5 2 3 6); (4 5 3 2 6); (5 3 6 2 4); (6 2 5 3 4)�g:

[11; 4]0 = f(2 3)�; (2 4); (3 7); (3 9); (3 10); (4 2); (4 5)�

(5 3); (6 8); (6 9); (7 5); (8 2); (8 9)�g:

[11; 4]1 = f(2 5); (2 6); (2 7); (2 8); (2 9); (2 10); (3 2)

(3 4)�; (3 6); (3 8); (4 3); (4 6); (4 8); (4 9)

(4 10); (5 2); (5 4); (5 6)�; (5 8); (6 2); (6 5)

(6 7)�; (7 4); (7 8)�; (8 10); (9 5); (9 10)�g:

[11; 5]0 = f(2 3 4)�; (2 4 8); (3 7 4); (3 7 10); (3 9 5)

(4 2 5); (4 2 7); (5 3 4); (6 9 2); (6 9 8)

(7 5 2); (8 2 4); (8 2 9)g:

[11; 6]0 = f(2 3 4 5)�; (2 4 8 5); (3 7 4 9); (3 7 4 10)

(3 9 5 4); (4 2 7 5); (5 3 4 9); (6 9 2 8)

(7 5 2 3); (8 2 4 7); (8 2 4 9)g:

[11; 7]0 = f(2 3 4 5 6)�; (2 4 8 5 10); (3 7 4 9 8)

(3 7 4 9 10):(7 5 2 3 10); (8 2 4 7 6)

(8 2 4 7 9)g:

[11; 7]3 = f(2 8 10 3 5); (7 8 4 3 9)g:

[11; 8]0 = f(2 3 4 5 6 7)�; (2 4 8 5 10 9); (3 7 4 9 8 6)

(3 7 4 9 8 10); (7 5 2 3 10 4); (8 2 4 7 6 9)

(8 2 4 7 6 10)g:

[11; 9]0 = f(2 3 4 5 6 7 8)�; (2 4 8 5 10 9 7); (3 7 4 9 8 6 2)

(3 7 4 9 8 6 10); (7 5 2 3 10 4 6); (8 2 4 7 6 10 5)

(8 2 4 7 6 10 9)g:

[11; 9]4 = f(2 10 4 6 5 8 9); (2 10 8 5 6 4 9); (6 7 3 2 8 9 5)g:

[11; 10]0 = f(2 3 4 5 6 7 8 9)�; (2 4 8 5 10 9 7 3)

(3 7 4 9 8 6 2 5); (3 7 4 9 8 6 2 10)

(7 5 2 3 10 4 6 9); (8 2 4 7 6 10 5 3)

(8 2 4 7 6 10 5 9)g:

[11; 11]0 = f(2 3 4 5 6 7 8 9 10)�; (2 4 8 5 10 9 7 3 6)

(3 7 4 9 8 6 2 5 10); (7 5 2 3 10 4 6 9 8)

(8 2 4 7 6 10 5 3 9)g:

[13; 4]0 = f(2 3)�; (2 4); (3 7); (3 9); (3 12); (4 3); (4 6); (5 4)

(5 8); (5 12); (6 3); (6 5); (6 10); (7 4); (7 5)g:

[13; 5]0 = f(2 3 4)�; (2 4 8); (3 7 2); (3 7 12); (4 3 12)

(5 8 4); (5 8 7); (5 12 8); (6 5 3); (6 10 8)

(7 4 5); (7 4 12)g:

[13; 5]2 = f(7 6 2)g:

[13; 6]0 = f(2 3 4 5)�; (2 4 8 3); (3 7 2 5); (3 7 2 12)

(4 3 12 9); (5 8 7 3); (5 8 7 4); (6 10 8 9)

(7 4 12 5); (7 4 12 8)g:

[13; 7]0 = f(2 3 4 5 6)�; (2 4 8 3 6); (3 7 2 5 11)

(3 7 2 5 12); (4 3 12 9 10); (5 8 7 3 4)

(6 10 8 9 2); (7 4 12 8 5); (7 4 12 8 10)g:

[13; 8]0 = f(2 3 4 5 6 7)�; (2 4 8 3 6 12); (3 7 2 5 11 10)

(3 7 2 5 11 12); (6 10 8 9 2 12); (7 4 12 8 10 5)

(7 4 12 8 10 9)g:

[13; 9]0 = f(2 3 4 5 6 7 8)�; (2 4 8 3 6 12 11)

(3 7 2 5 11 10 8); (3 7 2 5 11 10 12)

(6 10 8 9 2 12 7); (7 4 12 8 10 9 3)

(7 4 12 8 10 9 5)g:

[17; 4]0 = f(2 3)�; (2 4); (3 7); (3 9); (3 16); (4 8); (4 13)

(4 16); (5 4); (5 8); (5 11); (6 4); (6 14); (8 13)

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007 2293

(9 5); (9 12); (10 15); (11 2); (11 9); (11 15)

(12 5); (12 14)g:

[17; 5]0 = f(2 3 4)�; (2 4 8); (3 7 15); (3 7 16); (3 9 10)

(4 13 6); (4 13 8); (4 16 13); (5 4 11); (5 8 6)

(6 14 3); (6 14 4); (8 13 2); (9 5 7); (9 5 12)

(10 15 14); (11 2 5); (11 9 6); (11 9 15); (12 14 2)

(12 14 5)g:

[17; 6]0 = f(2 3 4 5)�; (2 4 8 16); (3 7 15 14); (3 7 15 16)

(3 9 10 13); (4 13 6 2); (4 13 6 8); (5 8 6 13)

(6 14 3 4); (6 14 3 16); (8 13 2 16); (9 5 7 6)

(9 5 7 12); (10 15 14 4); (11 2 5 4); (11 9 6 10)

(11 9 6 15); (12 14 2 5); (12 14 2 6)g:

[17; 7]0 = f(2 3 4 5 6)�; (2 4 8 16 15); (3 7 15 14 12)

(3 7 15 14 16); (3 9 10 13 5); (4 13 6 2 7)

(4 13 6 2 8); (5 8 6 13 14); (6 14 3 16 4)

(6 14 3 16 13); (8 13 2 16 9); (9 5 7 6 12)

(9 5 7 6 15); (10 15 14 4 6); (11 2 5 4 10)

(11 9 6 10 15); (11 9 6 10 16); (12 14 2 6 5)

(12 14 2 6 16)g:

[19; 4]0 = f(2 3)�; (2 4); (3 7); (3 9); (3 18); (4 9); (4 13)

(4 16); (5 2); (5 6)�; (6 17); (7 5); (7 11); (7 15)

(8 3); (8 7); (9 5); (9 8); (9 16); (10 7); (10 15)

(14 6); (15 2); (15 16)�g:

[19; 5]0 = f(2 3 4)�; (2 4 8); (3 7 15); (3 7 18); (3 9 8)

(4 13 2); (4 13 9); (4 16 7); (5 2 6); (5 2 9)

(6 17 7); (7 5 12); (7 5 15); (8 7 18); (9 5 7)

(9 16 8); (9 16 15); (10 15 3); (10 15 7); (14 6 8)

(15 2 10); (15 2 16)g:

[19; 7]0 = f(2 3 4 5 6)�; (2 4 8 16 13); (3 7 15 12 6)

(3 7 15 12 18); (3 9 8 5 15); (4 13 2 7 3)

(4 13 2 7 9); (4 16 7 9 17); (5 2 9 18 6)

(5 2 9 18 16); (6 17 7 4 5); (7 5 12 16 2)

(7 5 12 16 15); (8 7 18 11 12); (9 5 7 6 16)

(9 16 15 7 8); (10 15 3 9 6); (10 15 3 9 7)

(14 6 8 17 10); (15 2 10 8 16); (15 2 10 8 18)g:

[23; 4]0 = f(2 3)�; (2 4); (3 7); (3 9); (3 22); (4 11); (4 13)

(4 16); (5 2); (5 15); (5 21); (6 8); (6 17); (7 3)

(8 11); (8 19); (9 12); (10 20); (10 22); (11 6)

(12 16); (12 18); (13 8); (14 21); (14 22); (15 18)

(16 11); (16 18); (17 13); (18 8); (18 10)g:

[23; 5]0 = f(2 3 4)�; (2 4 8); (3 7 15); (3 7 22); (3 9 4)

(4 13 11); (4 13 17); (4 16 18); (5 2 10); (5 21 15)

(5 21 16); (6 8 17); (6 8 18); (7 3 21); (8 11 9)

(8 11 19); (9 12 16); (10 22 15); (10 22 20)

(11 6 20); (12 18 15); (12 18 16); (13 8 12)

(14 22 11); (14 22 21); (15 18 17); (16 11 5)

(16 11 18); (17 13 14); (18 8 10); (18 8 22)g:

[23; 6]0 = f(2 3 4 5)�; (2 4 8 16); (3 7 15 8); (3 7 15 22)

(3 9 4 12); (4 13 17 6); (4 13 17 11); (4 16 18 3)

(5 2 10 4); (5 21 16 15); (5 21 16 19); (6 8 18 17)

(6 8 18 22); (7 3 21 9); (8 11 9 18); (8 11 9 19)

(9 12 16 6); (10 22 15 20); (10 22 15 21)

(11 6 20 13); (12 18 15 5); (12 18 15 16)

(13 8 12 18); (14 22 11 6); (14 22 11 21)

(15 18 17 2); (16 11 5 7); (16 11 5 18)

(17 13 14 8); (18 8 22 7); (18 8 22 10)g:

[23; 6]3 = f(16 12 4 5)�g:

[23; 7]0 = f(2 3 4 5 6)�; (2 4 8 16 9); (3 7 15 8 17)

(3 7 15 8 22); (3 9 4 12 13); (4 13 17 6 11)

(4 13 17 6 19); (4 16 18 3 12); (5 2 10 4 20)

(5 21 16 19 8); (5 21 16 19 15); (6 8 18 22 17)

(6 8 18 22 19); (7 3 21 9 17); (8 11 9 18 12)

(8 11 9 18 19); (9 12 16 6 8); (10 22 15 21 6)

(10 22 15 21 20); (11 6 20 13 5); (12 18 15 5 10)

(12 18 15 5 16); (13 8 12 18 4); (14 22 11 6 10)

(14 22 11 6 21); (15 18 17 2 7); (16 11 5 7 14)

(16 11 5 7 18); (17 13 14 8 21); (18 8 22 7 5)

(18 8 22 7 10)g:

[29; 4]0 = f(2 3)�; (2 4); (3 7); (3 9); (3 28); (4 13); (4 14)

(4 16); (5 19); (5 21); (5 25); (6 2); (6 7)�; (7 20)

(8 6); (8 24); (8 28); (9 4); (9 15); (9 23); (10 4)

(10 18); (12 28); (13 12); (13 21); (14 22); (15 8)

(15 20); (16 24); (17 12); (17 27); (18 5); (19 13)

(19 17); (19 24); (20 4); (20 8); (23 7); (24 2)

(24 25)�g:

[29; 5]0 = f(2 3 4)�; (2 4 8); (3 7 15); (3 7 28); (3 9 27)

(4 13 11); (4 13 14); (4 16 6); (5 21 19); (5 21 27)

(5 25 9); (6 2 7); (6 2 11); (7 20 24); (8 6 19)

(8 28 23); (8 28 24); (9 15 4); (9 15 5); (9 23 4)

(10 4 8); (10 4 18); (12 28 17); (13 12 21)

(14 22 18); (15 8 20); (15 8 26); (16 24 7)

(17 12 19); (17 12 27); (18 5 3); (19 13 15)

(19 24 17); (19 24 27); (20 4 8); (20 4 19)

(23 7 16); (24 2 18); (24 2 25)g:

[29; 6]0 = f(2 3 4 5)�; (2 4 8 16); (3 7 15 2); (3 7 15 28)

(3 9 27 23); (4 13 11 5); (4 13 11 14); (4 16 6 24)

(5 21 27 19); (5 21 27 22); (5 25 9 16); (6 2 11 7)

(6 2 11 27); (7 20 24 23); (8 6 19 7); (8 28 23 17)

(8 28 23 24); (9 15 5 4); (9 15 5 12); (9 23 4 7)

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

2294 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

(10 4 8 15); (10 4 8 18); (14 22 18 20)

(15 8 26 17); (15 8 26 20); (16 24 7 25)

(17 12 19 15); (17 12 19 27); (18 5 3 25)

(19 13 15 24); (19 24 27 17); (19 24 27 23)

(20 4 19 8); (20 4 19 14); (23 7 16 20)

(24 2 18 9); (24 2 18 25)g:

[47; 7]4 = f(8 23 42 16 18); (15 46 28 14 41)

(16 27 42 26 29); (27 2 40 22 35)g:

ACKNOWLEDGMENT

The authors appreciate the valuable comments of the thorough re-
viewers. They have helped us to significantly improve the readability
and consistency of this correspondence.

REFERENCES

[1] P. A. H. Bours, “On the construction of perfect deletion—Correcting
codes using design theory,” Designs, Codes, Cryptogr., vol. 6, pp. 5–20,
1995.

[2] L. Calabi and W. E. Hartnett, “Some general results of coding theory
with applications to the study of codes for the correction of synchroni-
sation errors,” Inf. Contr., vol. 15, pp. 235–249, 1969.

[3] V. Guruswami and M. Sudan, “Improved decoding of Reed—Solomon
and algebraic—Geometry codes,” IEEE Trans. Inf. Theory, vol. 45, pp.
1757–1767, 1999.

[4] A. Klein, “On perfect deletion-correcting codes,” J. Comb. Des., vol.
12, no. 1, pp. 72–77, 2004.

[5] T. Kløve, “Codes correcting a single insertion/deletion of a zero or
a single peak-shift,” IEEE Trans. Inf. Theory, vol. 41, pp. 279–283,
1995.

[6] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals,” Soviet Phys.—Doklady, vol. 10, no. 8, pp.
707–710, 1966.

[7] V. I. Levenshtein, “One method of constructing quasilinear codes pro-
viding synchronisation in the presence of errors,” Probl. Inf. Transm.,
vol. 7, no. 3, pp. 215–222, 1971.

[8] A. Mahmoodi, “Existence of perfect 3—Deletion-correcting codes,”
Designs, Codes, Cryptogr., vol. 14, pp. 81–87, 1998.

[9] R. Mathon and T. van Trung, “Directed t—Packings and directed
t—Steiner systems,” Designs, Codes, Cryptogr., vol. 18, pp. 187–198,
1999.

[10] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
SIAM J. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[11] R. Safavi-Naini and Y. Wang, “Traitor tracing for shortened and cor-
rupted fingerprints,” in Proc. ACM-DRM’02, LNCS, 2003, vol. 2696,
pp. 81–100.

[12] N. Shalaby, J. Wang, and J. Yin, “Existence of perfect 4—Deletion-
Correcting codes with length six,” Designs, Codes, Cryptogr., vol. 27,
pp. 145–156, 2002.

[13] N. J. A. Sloane, On Single-Deletion—Correcting Codes’ in Codes and
Designs. Columbus, OH: Math. Res. Inst. Publications, Ohio Univ.,
2002, vol. 10, pp. 273–291.

[14] E. Tanaka and T. Kasai, “Synchronisation and substitution error cor-
recting codes for the Levenshtein metric,” IEEE Trans. Inf. Theory, vol.
22, pp. 156–162, 1976.

[15] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” (in Russian) Avtomatika i Tele-
mekhanika, vol. 26, no. 2, pp. 288–292, 1965.

[16] Y. Wang, L. McAven, and R. Safavi-Naini, Deletion Correcting Using
Generalised Reed-Solomon Codes.’ t Coding, Cryptography and Com-
binatorics, K. Q. Feng, H. Niederreiter, and C. Xing, Eds. Basel:
Birkhäuser, 2004.

[17] J. Yin, “A combinatorial construction for perfect deletion-correcting
codes,” Designs, Codes and Cryptogr., vol. 23, pp. 99–110, 2001.

Bounds on Key Appearance Equivocation for
Substitution Ciphers

Yuri L. Borissov and Moon Ho Lee, Senior Member, IEEE

Abstract—The average conditional entropy of the key given the message
and its corresponding cryptogram, H(KjM;C), which is refer as a key
appearance equivocation, was proposed as a theoretical measure of the
strength of the cipher system under a known plaintext attack by Dunham
in 1980. In the same work (among other things), lower and upper bounds
for H(S jM C) are found and its asymptotic behavior as a function of
cryptogram lengthL is described for simple substitution ciphers, i.e., when
the key space S is the symmetric group acting on a discrete alphabetM.
In the present paper we consider the same problem when the key space is
an arbitrary subgroup K / S and generalize Dunham’s result.

Index Terms—Key equivocation, known plaintext attack, memoryless
message source, message equivocation, simple substitution ciphers.

I. INTRODUCTION

Shannon, in his seminal paper [2], showed that the conditional en-
tropies of the key and message given the cryptogram can be used as
a theoretical measure of strength of the cipher system when assuming
unlimited cryptanalytic computational capabilities. These conditional
entropies are called the key and message equivocation, respectively.

In general it is difficult to calculate these equivocations explicitly.
For that Shannon established in [2] a general lower bound and intro-
duced a random cipher model which would approximate the behavior
of complex practical ciphers. Afterward, Hellman [3] reviewed and
extended Shannon’s information-theoretic approach and showed that
random cipher model is conservative in that a randomly chosen cipher
is essentially the worst possible. Later on Blom [5] obtained exponen-
tially tight bounds on the key equivocation for simple substitution ci-
phers. In [1] to derive bounds for simple substitution ciphers on the
message equivocation in terms of the key equivocation, Dunham de-
rived such bounds for so-called key appearance equivocation. This au-
thor pointed out also, that it can be considered as a theoretical measure
of the strength of the cipher system under known plaintext attack. An-
other contribution of this subject is the Sgarro’s work [7].

In this paper we consider a situation where the key space is confined
to a subgroup K of the group SM of all permutations acting on a dis-
crete alphabet M. Apart from simple substitution ciphers, some other
classical cipher systems (e.g., transposition cipher with fixed period,
matrix system from [2, Example 4.6, p. 667], etc.) can be studied in
this model. Other examples are given in [4] and [6].

The paper is organized as follows. In Section II, we present the
assumptions and background of substitution ciphers and key appear-
ance equivocation. In Section III, we state a theorem which gives the

Manuscript received December 11, 2006; revised February 19, 2007. This
work was supported in part by Ministry of Information and Communication
(MIC) Korea under the IT Foreign Specialist Inviting Program (ITFSIP),
ITSOC, ITRC, International Cooperative Research by the Ministry of Science
and Technology, KOTEF, and 2nd stage Brain Korea 21.

Y. L. Borissov is with the Institute of Mathematics and Informatics, Bulgarian
Academy of Sciences, Sofia 1113, Bulgaria (e-mail: yborisov@moi.math.bas.
bg).

M. H. Lee is with the Institute of Information and Communication, Chonbuk
National University, Jeonju 561-756, Republic of Korea (e-mail: moonho@
chonbuk.ac.kr).

Communicated by E. Okamoto, Associate Editor for Complexity and Cryp-
tography.

Digital Object Identifier 10.1109/TIT.2007.896865

0018-9448/$25.00 © 2007 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 22:26 from IEEE Xplore. Restrictions apply.

	Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension Over Prime Fields
	Recommended Citation

	Classification of the Deletion Correcting Capabilities of Reed–Solomon Codes of Dimension Over Prime Fields
	Abstract
	Keywords
	Disciplines
	Publication Details

	PubTeX output 2007.05.15:1113

