
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2007

Implementing Trusted Terminals with a TPM and SITDRM Implementing Trusted Terminals with a TPM and SITDRM

S. Stamm
Indiana University

N. P. Sheppard
University of Wollongong, nps@uow.edu.au

R. Safavi-Naini
University of Calgary, rei@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Stamm, S.; Sheppard, N. P.; and Safavi-Naini, R.: Implementing Trusted Terminals with a TPM and SITDRM
2007.
https://ro.uow.edu.au/infopapers/696

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F696&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ro.uow.edu.au%2Finfopapers%2F696&utm_medium=PDF&utm_campaign=PDFCoverPages

Implementing Trusted Terminals with a TPM and SITDRM Implementing Trusted Terminals with a TPM and SITDRM

Abstract Abstract
In the SITDRM Enterprise system [1], private customer data is protected under customer-provided license
policies. When employees of an organization want to use these customers’ data, they must be forced to
abide by the policies provided. Some sort of hardened terminal must be used to ensure that not only the
hardware and software will cooperate, but that the user of the terminal will too. We use the Trusted
Computing Group’s specifications for a trusted platform upon which to build a SITDRM data user terminal
that can be proved to implement proper license-enforcing behavior. A Trusted Platform Module (TPM)
chip and a TPMusing operating system are all that may be required to construct a verifiably secure
terminal.

Keywords Keywords
Trusted platform module, Digital rights management

Disciplines Disciplines
Computer Sciences | Physical Sciences and Mathematics

Publication Details Publication Details
This conference paper was originally published as Stamm, S, Sheppard, NP & Safavi-Naini, R,
Implementing Trusted Terminals with a TPM and SITDRM, First International Workshop on Run Time
Enforcement for Mobile and Distributed Systems (REM 2007), Dresden, Germany, 27 September 2007.
Original paper available here

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/696

http://dx.doi.org/10.1016/j.entcs.2007.10.015
https://ro.uow.edu.au/infopapers/696

Implementing Trusted Terminals with a TPM and
SITDRM∗

Sid Stamm Nicholas Paul Sheppard Reihaneh Safavi-Naini

Abstract

In the SITDRM Enterprise system [1], private customer data is protected under
customer-provided license policies. When employees of an organization want to
use these customers’ data, they must be forced to abide by the policies provided.
Some sort of hardened terminal must be used to ensure that not only the hardware
and software will cooperate, but that the user of the terminal will too. We use
the Trusted Computing Group’s specifications for a trusted platform upon which
to build a SITDRM data user terminal that can be proved to implement proper
license-enforcing behavior. A Trusted Platform Module (TPM) chip and a TPM-
using operating system are all that may be required to construct a verifiably secure
terminal.

1 Introduction
Digital rights management (DRM) technology allows the use and dissemination of
electronic information to be controlled by a machine readable license that describes
who may perform what action on the protected information, and under what conditions
the action may be performed. DRM is well-known for its application to protecting
copyrighted material, but can also be used to protect private personal information and
to sensitive corporate documents.

In order to restrict access to information according to licenses, DRM requires the
existence of tamper-resistant devices trusted to comply with any conditions imposed
by licenses. Without the existence of such devices, it is possible for an attacker to
obtain access to information by constructing a phony device that simply ignores any
conditions imposed by a license.

Software alone is not enough to verify that the users and terminal follow the rules
set forth by the license. An attacker can easily construct software that behaves identi-
cally to a true device when communicating with the system but has an undesired feature
such as information disclosure. Some sort of hardened terminal must be used to ensure
that not only the hardware and software will cooperate, but that the user of the terminal
will too.

∗This work was partly funded by the Smart Internet Co-operative Research Centre, Australia.

1

In this paper, we describe our experiences in adding support for tamper-resistant
hardware to a privacy protection system known as SITDRM Enterprise [1], which pro-
tects private customer data according to licenses supplied by customers.

We discuss how SITDRM and Trusted Computing (TC) fit together, and how one
can use TC to implement such a terminal. “Security” of a terminal will be defined in
Section 5.1 as a list of goals for the implementation, and then we describe a prototype
implementation of a secure terminal as well as difficulties encountered in development
of the software. Finally, we describe how the prototype terminal was incorporated into
the full SITDRM Enterprise system.

2 Related Work
Several TC platforms have appeared over the past decade, including Microsoft’s dor-
mant Next-Generation Secure Computing Base [5], the “Terra” trusted virtual machine
developed by Garfinkel, et al. [4] and the “Enforcer” Linux Security Module developed
by Marchesini, et al [3].

Marchesini, et al., in particular, describe an experiment in which their TC platform
was used to attest to the integrity of an off-the-shelf multimedia player, similar to the
effect that we wished to achieve in our project. The player used in their demonstra-
tion, however, does not support DRM and they do not appear to have explored the
development of a complete DRM system based on their platform.

3 SITDRM Enterprise
SITDRM Enterprise is a a privacy and document protection system based on the Intel-
lectual Property Management and Protection Components of the MPEG-21 Multimedia
Framework [1]. It allows individuals to control the way in which their information is
distributed and used by expressing their privacy preferences in a way enabling auto-
matic enforcement by data users’ computers.

In essence, SITDRM Enterprise applies the DRM model to protecting information
submitted via web forms, as shown in Figure 1. Data is created by a data subject
(e.g. customer), and submitted in a protected form to a data controller (e.g. service
provider). In order to access the protected data, a data user (e.g. employee) must obtain
a license from a license issuer. In this system, individual data subjects act as license
issuers for their own data.

The fundamental requirement for the system to be secure is that there exist tamper-
resistant terminals trusted to uphold the conditions imposed by licenses, and whose
compliance can be established by license issuers prior to any licenses being issued to
them. The design of such terminals and their integration into SITDRM is the focus of
the present paper.

We assume that every trusted terminal T has a private key K̄T and corresponding
public key KT , and that the authenticity of the public key KT can be verified by license
issuers using some public key infrastructure. The private key K̄T is known only to the
terminal; in particular, it is not known to the human user of the terminal.

2

Data Subject

License
Issuer

Data
Provider

Data Controller

License
Store

Data
Store

Data User

Terminal

� forms

-
licenses

� forms

-
data

-licenses

-
data

Figure 1: Applying digital rights management to private data.

Every item of protected content x is encrypted by a unique resource key kx. Any
license that grants a right to perform an action on a resource x must contain the resource
key kx encrypted by the public key KT of the terminal on which that license is to be
used. License issuers are assumed to issue licenses only to terminals that they have
verified to be genuine, and only that a terminal in possession of a license is able to
access the resource keys using the terminal’s private key.

We assume that data users are identified in licenses by their public keys. Data users
may use knowledge of their private keys to prove their identity to a trusted terminal, but
users’ private keys are not used for any cryptographic purpose in licenses or protected
data. In this way, the security of the system depends on the trustworthiness of terminals
rather than the trustworthiness of the users.

4 Trusted Computing
“Trusted Computing” (TC) is a used to describe a computing environment that can be
trusted to behave appropriately — for example, the computer will not run malicious
software. In the case of SITDRM, the system designers would trust a TC computer to
properly enforce any licenses issued.

The Trusted Computing Group (TCG) is a group developed in order to provide
unbiased standards for TC. They have developed many specifications and standards
for the Trusted Computing Platform, including functionality requirements and an API
specification for software stacks to be implemented by hardware manufacturers.

The TC platform is composed of many pieces. Trusted Building Blocks are items
that must be reasonably trusted on faith before the whole system can be trusted; they
include elements such as a few CPU instructions used to initialize the system and RAM.
The Trusted Platform Module (TPM) is a chip on the computer’s main board and acts
as the core engine of the TC system and it performs cryptographic operations, manages
trusted data storage, and verifies the operation of various system pieces. With these
elements and a TC certificate authority, a TC platform can be implemented providing
the following the following features.

3

4.1 Measurement and Attestation.
A trusted computer needs to have the ability to prove that it should be trusted. This is
done by measuring its current and previous operational states — including the hardware
and operating system — in a way that cannot be falsified. This involves extending a
cryptographic hash chain and logging what was measured. If the boot process of a
computer can be trusted (is measured as expected), then the currently running operating
system can be trusted to behave properly.

A TC measurement is simply a digest of some values. For example, a MD5 di-
gest of a binary, embedded code, or hardware register values may be produced as
a measurement for a computer’s component or program. These measurements are
stored in Platform Configuration Registers (PCRs). The order in which they are mea-
sured is enforced by extending the PCR by replacing the PCR’s current value with
valt ← SHA1(valt−1|X), where X is the new measurement.

Figure 2: How the TPM measures the boot process

When the computer boots, a chain of trust is formed by taking measurements of
each part of the system as it starts, then extending a hash with the measured values
(Figure 2). This trusted boot process is discussed heavily in [2]. Applications can be
measured by the OS before they are launched and the measured value is used to extend
a PCR. Each measurement is also stored in a Stored Measurement Log (SML) which
is used later during attestation for integrity verification.

When a third party wishes to verify the integrity of a terminal, it asks the terminal
to attest its integrity. In TC, this is sometimes referred to as Attestation.

On request, the terminal sends the PCR and SML data to the challenger. The chal-
lenger uses the information recorded in the SML to recreate the PCR values. If the
PCR values can be successfully recreated by the challenger, then the configuration of
the terminal has been proven.

The challenger then analyzes the contents of the SML to decide whether or not the
configuration is acceptable. To do this, the challenger must retrieve credentials issued
by a trusted authority or the manufacturer of the software. These credentials contain
information about the software (such as the digest and version), signed by a trusted
authority, that are supposed to be used in the SML of a system using the subject of the
credential.

4

4.2 Protected Cryptographic Operations.
The TPM also contains some protected cryptographic abilities. These are functions
carried out in a trusted area of the computer, secluded from possible intrusion from an
untrusted OS or other malicious third-party software.

Key Generation and Storage. The TPM can be used for RSA key generation, pro-
tected storage, and encryption/decryption or signing/verifying operations. Key
pairs can be generated by the TPM which are then stored encrypted by the TPM’s
storage root key (SRK). The SRK is stored on the TPM itself in nonvolatile mem-
ory, and the private (decrypting) SRK cannot be copied from the chip. In this
way, any key encrypted by the TPM can only be decrypted by the same TPM
with the same SRK, and keys generated by the TPM and may be safely stored on
the hard drive since the TPM is needed to “unlock” them.

Signing and Binding. Additionally, the TPM supports encryption (binding) and de-
cryption (unbinding) as well as signing and verification using these RSA keys
it generates. In essence, one can generate keys on the TPM and never copy the
keys into main memory; this avoids the risk of involuntary memory disclosure
vulnerabilities. (For examples of these vulnerabilities see [6].)

5 A TC Secure Terminal
Our aim in using a TPM chip to harden a SITDRM data user terminal is to control as
tightly as possible the existence and movement of secret keys and unencrypted data.
Ideally, the TPM would be used as an IO filter that would take care of all the cryptog-
raphy between the SITDRM software and output devices. Unfortunately this is unre-
alistic, since the TPM was not created with the intended purpose of a cryptographic
processor. We consider a situation where a custom SITDRM Data User program is run
on a trusted platform.

5.1 Goals
In implementating of a secure terminal, the concept of “secure” must first be defined.
We present three goals as criteria for measuring the security of a Data User terminal.

Goal 1: Prevent Key Exposure. Keys stored in memory should not be leaked unin-
tentionally to processes not complying to SITDRM licenses. When stored in
main memory (unencrypted), keys can be leaked to third-party processes in many
ways [6]. When the client software runs under a kernel that cannot be trusted to
properly enforce a segregate memory policy (or does not securely deallocate
memory), any keys stored in memory may be read by malicious third-party pro-
cesses running on the same host. Leakage of these keys allows a third-party
process to masquerade as a legitimate SITDRM process and must be prevented.

5

Goal 2: Prevent Data Exposure. Data should not be leaked unintentionally to pro-
cesses not complying to SITDRM licenses. When being read or otherwise uti-
lized, sensitive data must be kept unencrypted in memory. This memory must be
managed in a secure manner similar to that for keys.

Additionally, data should not be transmitted to devices that may behave contrary
to a corresponding license. If the behavior of an attached device cannot be veri-
fied, then the device could easily record unencrypted data and later use the data
in violation of a SITDRM license.

Goal 3: Verify Terminal Integrity. The license manager should have a way to deter-
mine that a terminal will enforce SITDRM licenses before sending it any licenses
or encrypted digital items. Terminal integrity includes verification of the hard-
ware and software composing the terminal—a valid configuration should some-
how be proven to the data controller allowing the terminals to be maintained by
someone other than the license issuer. As long as run-time verification can take
place, the terminals can be purchased, installed and used without authorization
of the private data’s subjects, or the manager of the license database.

5.2 Ideal Secure Terminal
An ideal secure terminal would ensure that the data and keys encrypting the data are
only used properly and by the correct terminal users. Such a terminal would be con-
sidered “Trusted” in the fashion that a TC device is trusted. This simply means that the
computer, its attached devices, and its user will all be restricted to usage allowed by
SITDRM licenses.

• Platform Security. The operating system and hardware composing the termi-
nal’s platform would be unconditionally trusted if the SITDRM software could
run on the terminal with complete memory protection. Additionally, the kernel
would need to relinquish all memory ownership rights to the SITDRM process
while it was computing, giving the SITDRM software exclusive control over its
memory to hide keys and data from third-party programs. A terminal is deemed
platform secure if the operating system and hardware behave in a way that can-
not breach the SITDRM licenses, thus prohibiting a third-party program from
“sniffing” the memory used by the SITDRM software.

• Device Security. All devices attached to the terminal must also be bound to the
SITDRM licenses. This means that if a license allows viewing but not recording,
the device used for viewing must prohibit recording of the data. The devices
should be provably conforming to the SITDRM licenses; they cannot be modified
to have different capabilities without being approved by the SITDRM software.

• Communication Security. As data is transferred in and out of the terminal (as
well as to output devices on the terminal), it should not be vulnerable to eaves-
dropping. Transmissions over “sniffable” lines should be encrypted to prevent
misuse or copying of decrypted data. For example, data should be encrypted

6

as it passes through the cable between the video card and the monitor since a
recording device could easily be inserted between the two components.

5.3 Our Terminal
In this section, we describe the architecture of a tamper-resistant terminal based on
the TCG’s specifications and the SITDRM platform. We have simplified some of the
aspects of the full SITDRM Enterprise system in order to facilitate a straightforward
illustration of the techniques employed. We will discuss integration of the simplified
terminal into the full system in Section 6.2.

5.3.1 Operation

The data user software (which we refer to as the software from here on) is launched
by the operating system. Before execution of the software is allowed, the code is
measured and a PCR is extended with the measurement, logging the launch event in
the TPM’s SML (Figure 3). The software then begins executing by loading the terminal
key into the TPM (since it is probably stored — encrypted by the TPM’s storage key —
somewhere outside the chip) and prompts the user for a password. The user’s password
is used to unlock the user key and also load that into the TPM.

PCR

TP
M

Nonvol.
Storage

OS

 USER

 TERM

 USER

 TERM

SITDRM

SITDRM

 SRK

measure

ex
te

nd

load

load
keys

1

2

3

4

Figure 3: When launching, (1) the data user software is measured, (2) the PCR value is
extended, (3) the data user software begins executing, and then (4) the user and terminal
keys are loaded into the TPM.

Once launched, the software permits the data user to select any digital items stored
locally for use. When an item is selected and the user requests to perform some ac-
tion (such as view, email, or print), the software locates a relevant license to decrypt

7

the data. If one of the locally cached licenses permit the user to perform the requested
action, the encrypted resource key is sent to the TPM for decryption (Figure 4). The de-
crypted resource key is returned and the cryptographic engine in the data user software
decrypts the digital item.

Once the requested action is complete, the resource key and decrypted digital item
are erased from memory. This ensures that the key and unencrypted data are not present
longer than necessary, minimizing the possibility of attack. Memory shredding tech-
niques [7] can be used to help decrease the chance of a vulnerability.

TPM USER TERM

PkU

{Ck}PkU

RSA
DECR

 Ck

License

2

AES
DECR

{X}Ck

X
1

3

Figure 4: The steps taken to decrypt a digital item in the Demonstrator: (1) verify the
user’s public key, (3) extract the resource key, (4) decrypt the digital item.

When the data user requests a digital item that is not cached locally, or when no
valid license is available to perform a specific action, the software must connect to the
secure database or license manager, who serve the licenses and digital items.

This verification could be done by adding an Authentication Server (AS) to the
SITDRM. Like granting tickets in the Kerberos5 system [8], the AS could check that
a terminal is valid, then let the license manager and data repository know that this
user/terminal combination is allowed to download digital items and licenses.

Authentication to the AS involves proving the integrity of the data user software.
A secure SITDRM Enterprise system requires that data and licenses are only issued
and distributed to terminals that will abide by the restrictions outlined in the licenses.
Authentication must be established with the following method. Failure of any of the
steps terminates the connection to the server in order to prevent disclosure of licenses
or encrypted digital items to an attacker.

1. User ID presented to server

2. User and Terminal keys presented to server, encrypted with server’s public key

8

3. TC integrity data presented to server (PCR, SML, and credentials)

Once the PCR hash has been validated and the SML is accepted by the AS, the data
user client is allowed to request digital items and licenses from their respective sources.
This data should be transferred via a secure channel.

5.3.2 Security Analysis of this Design

In order to satisfy the three goals specified in Section 5.1, we must make a few trivial
assumptions:

Software-only Adversary. Hardware attacks will not be performed on signals trans-
mitted between components of the computer. An adversary will most likely have
access to the software in the computer, so a software-driven attack is possible.

Secure Memory. The memory space for the data user software will be secure and iso-
lated from other processes. This is a safe assumption, since on a trusted platform,
the Operating System is part of the chain of trust (Section 4). A trusted operat-
ing system should disallow applications that it runs from accessing each other’s
memory space. It should also provide mechanisms to help prevent data leaks
from unallocated memory or virtual swap space.

Based on the description of a secure terminal presented in Section 5.1, and the
adaptation described in Section 5.3, a secure TC-based terminal can be constructed.

Goal 1: Prevents Key Exposure — There are three kinds of keys to be considered:
the RSA private key for the User, the RSA private key for the Terminal, and the
symmetric keys for content access. The RSA keys are generated by the TPM
and are encrypted by the TPM’s SRK so they can only be used by the TPM. The
software’s memory is isolated from other processes either by trusting the OS to
perform proper deallocation, or by implementing a curtained memory mecha-
nism; additionally, the resource keys are decrypted as needed, then deleted from
memory. In this way, resource keys are stored decrypted in main memory only
while they are needed. They are never stored decrypted on persistent storage.

Goal 2: Prevents Data Exposure — As described above, software’s memory is iso-
lated from other processes either by trusting the OS to perform proper deallo-
cation, or by implementing a curtained memory mechanism; additionally, the
decrypted data is as needed for an action, then deleted from memory. In this
way, private data is stored decrypted in main memory only while it is needed. It
is never stored decrypted on persistent storage.

Goal 3: Verifies Terminal Integrity — By following the TC integrity verification pro-
cess, the License Manager is able to test if a terminal is going to follow the rules
specified by SITDRM licenses. Changes in the SITDRM Data User software are
easily detected as an unexpected value in the SML, and untrustworthy system
configurations can be detected as well.

9

6 Implementation
We constructed a prototype client using a TC Software Stack (TSS). The purpose of the
demonstrator was to exhibit the ability to adapt the current SITDRM Data User client
(IPDoc) to a TC platform as described in Section 5. As noted earlier, the some aspects
of the SITDRM system were simplified in order to make the initial prototype easier to
understand. Integration of the simplified prototype into the full SITDRM Enterprise
system is dicussed at the end of this section.

6.1 Design
There were three elements created in development of this demonstrator: a license and
data server, network protocol, and data user client. The only piece of the system that
used a TPM was the client; the other two components were developed as support soft-
ware for the client.

6.1.1 License and Data Server

We proposed the addition of an Authentication Server, or AS, to the SITDRM Enter-
prise system — it acts much like the AS in Kerberos [8]. For simplicity, we combined
the AS, License Manager, and Secure Data Repository into one server that authenti-
cates a client then serves licenses and data.

Acting as the License Manager, a secure data repository, and a user manager, the
server was able to authenticate a client connection (by validating users’ credentials
against a list) and then create/issue licenses and serve encrypted digital items. As well,
the server had the ability to perform integrity verification.

Digital Items. The server provided a simple interface to whomever runs the software;
it allowed an administrator to import arbitrary data files which were then encoded
into Base64, then encrypted and encapsulated in a Digital Item XML format as
specified by MPEG-21’s Digital Item Definition Language. These items were
encrypted with a resource key (created by a one-way function of the server’s
master key and the item identifier), and stored on the server’s hard disk. The
resource key was not stored, but could be recreated with the server’s master key.

Licenses. The server provided the ability to issue licenses. In this demonstrator, all
users in the system who requested a license were granted a simple license with
the “play” right for all digital items. In a real system, of course, licenses would
only be granted if the requester satisfied some policy of the license issuer.

The license was generated and issued using the existing SITDRM software API,
a license authority RSA key pair, and the server’s master key. These licenses
contained a reference to the DI, the DI resource key (encrypted with the grantee’s
public key), and the “play” right. Once generated, licenses were stored on the
server’s hard drive and transmitted at request to the grantee of the license.

10

Authentication. The server also implemented authentication as required to prove a
user’s identity, a terminal’s identity, and a terminal’s integrity. This authentica-
tion is basically user-lookup and key verification, then verification of SML and
PCR confirmation in the TC style.

6.1.2 Data User Client

The client software was a simple interface that allowed the user to connect to a server,
download licenses or digital items, then exercise grants provided by any downloaded
licenses. The client implemented a client-side of the network protocol when commu-
nicating with the server. It also made heavy use of the TPM.

Self Measurement. The software extended the PCR with the MD5 hash of the execut-
ing code since the OS used for development was not TC-enabled, so the program
had to create the measurement events itself.

Key Generation and Storage. The RSA keys for the user and terminal were gener-
ated by the TPM on request. As a simplification, the terminal and user key were
combined into one — since the license model was simplified, there was no need
for two RSA key pairs.

Decryption. resource keys in licenses were sent to the TPM for decryption, since that
is where the user private key was housed. In this way, the user key never left the
TPM unless encrypted by the TPM’s SRK.

Licenses were parsed and enforced using the SITDRM API. Each grant present in
the license were represented by a button that when pressed allowed the user to exercise
it. This was only a single “play” grant for licenses issued by the demonstrator server.
When pressed, the “play” grant exercise button opened a new window and rendered
the document. The window launched a new rendering thread and plugged into the
SITDRM API’s IPMP engine to temporarily decrypt the document.

Though this prototype illustrates the majority of the TPM implementation, secure
memory was not established. The development platform contained only an emulator
for the TPM chip, and so the OS was not a trusted operating system. Additionally, there
was no curtained memory support on the development system, so memory disclosure
attack vulnerabilities may still have been present.

6.2 Integration into SITDRM Enterprise
In the simplified scenario described above, it is necessary for the license issuer to know
the public key of the terminal on which a digital item is to be used before a license to
use that item can be issued. This is obviously impractical in the scenario for which SIT-
DRM Enterprise is intended: data subjects have no way of knowing which terminals
inside an organization will be used to process their data.

SITDRM Enterprise solves this problem by using a simple role-based access con-
trol model. In addition to the key pairs possessed by terminals, SITDRM Enterprise
assumes that every human user u of the system has a private key K̄u and public key

11

Ku, and every role R is associated with a key pair K̄R and KR. We assume that the
public keys of all users and roles can be verified using a public key infrastructure.

Role-based access control is implemented using a two-stage licensing process:
membership certificates permit individual data users to act as members of roles us-
ing the PossessProperty right, while resource licenses permit members of roles
to perform actions using the PropertyPossessor principal. In order for a particu-
lar data user to carry out an action on a document, he or she must obtain both a resource
license that permits some role to carry out that action, and a membership certificate that
makes him or her a member of that role.

A membership certificate identifies a member of the role by his or her public key,
and contains the private key of the role, encrypted by the public key of the terminal on
which that membership certificate is to be used.

Membership certificates can be obtained from a role issuer operated by the data
controller. The role issuer takes on the role of (the authentication server, and will only
award membership certificates to terminals that it has established can be trusted TC’s
integrity verification process.

Resource licenses are issued by data subjects to roles and contain the resource key
encrypted by the public key of the role to which the license has been issued. If a
terminal establishes that it has the right to perform an action on the resource, it may
decrypt the resource key from the resource license using the role’s private key in the
membership certificate.

7 Discussion
Implementing a client that uses the TPM for cryptography, key management, and in-
tegrity reporting is not a simple task. The Trusted Computing Group has published an
enormous specification for each level of their architecture including the software stack
(TSS) core services — the level used by the demonstrator. As a result, some portions
of the hardened terminal were non-trivial to implement.

Before any functionality of the TPM can be used, its “take ownership” process must
take place. This involves creating some identifiers inside the TPM as well as a Storage
Root Key (SRK). Once these are generated, the TPM can be used. Additionally, the
TPM emulator kernel module must be loaded into the kernel and initialized before the
TrouSerS daemon will allow API access to the TPM.

TPM keys are created with a specified type, either as a signing key, binding key
(for encryption) or as a legacy key (general use). After some testing, it was determined
that the signing and binding keys do not always work when the public key is exported
and used with different software. Additionally, when the key is created, its encoding
method must be specified as either RSA v1.5 or OAEP. Omitting one of these specifi-
cations when creating a key causes the TPM to assign defaults which are not specified
by the TCG and can result in unexpected behavior.

When encrypting data, the TPM can use either RSA v1.5 or OAEP encoding meth-
ods (assigned to a key when it is created). Since the W3C recommends using OAEP
over v1.5 for the transport of AES keys, SITDRM originally implemented only that en-
coding method. In the specifications for OAEP, a pseudonym is inserted into padding.

12

The Apache XMLSecurity and Java Security APIs don’t provide an easy way to specify
this pseudonym. Unless the pseudonym is set to “TCPA”, the TPM chip will respond
with a general “decryption error” message.

Due to the nature of TC integrity reporting, it is difficult to properly perform in-
tegrity verification. First, each item recorded in the SML must be issued a credential;
for example, the OS must have a credential issued by the manufacturer and the video
card must have a signed driver. Second, the credentials must be signed and verifiable
using some public key infrastructure — much like SSL certificates. These credentials
do not exist (are not created by the manufacturers) and they are not distributed in a
PKI fashion. If a public key infrastructure were implemented properly to distribute
credential signer certificates, then integrity reporting is strong. Until then, a third party
wishing to verify my terminal is trusted must simply trust on blind faith all certificates
we provide.

8 Conclusions
We have shown how the TC platform can be used to harden a DRM terminal in a way
that provides for license-abiding use of protected content. Requirements for this to
work properly have been outlined as being: a trusted operating system, a TPM chip,
and an authentication server.

TPM chips are now included in many new comuters, and the most recent versions
of both the Windows and Linux operating systems contain at least some support for
TPMs. TPMs are therefore a very attractive option for securing DRM terminals.

References
[1] N. Sheppard, R. Safavi-Naini “Protecting Privacy with the MPEG-21 IPMP

Framework”. International Workshop on Privacy Enhancing Technologies 2006,
pp. 152-171.

[2] Trusted Computing Group, “TCG Specification Architecture Overview.” Revi-
sion 1.2, 28 April 2004. https://www.trustedcomputinggroup.org/
groups/TCG\ 1\ 0\ Architecture\ Overview.pdf

[3] J. Marchesini, S. W. Smith, O. Wild, J. Stabiner and A. Barsamian, “Open-Source
Applications of TCPA Hardware”. Annual Computer Security Applications Con-
ference 2004.

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum and D. Boneh, “Terra: a Virtual
Machine-Based Platform for Trusted Computing”. ACM SIGOPS Operating Sys-
tems Review 37(5):193-206.

[5] Microsoft Corporation. “Next-Generation Secure Computing Base”, http://
www.microsoft.com/resources/ngscb/default.mspx

13

[6] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, M. Jakobsson. “How to forget a
Secret,” In C. Meinel and S. Tison, editors, Proceedings of STACS 1999, volume
1563 of Lecture Notes in Computer Science, pages 500-509. Springer, 1999.

[7] J. Chow, B. Pfaff, T. Garfinkel, M. Rosenblum. “Shredding Your Garbage: Re-
ducing Data Lifetime Through Secure Deallocation,” In Proc. 14th USENIX Se-
curity Symposium. August, 2005.

[8] B.C. Neuman and T. Ts’o. “Kerberos: An Authentication Service for Computer
Networks,” IEEE Communications, 32(9):33-38. September 1994.

[9] M. Strasser, “A Software-based TPM Emulator for Linux,” Semester The-
sis, Department of Computer Science, Swiss Federal Institute of Technol-
ogy Zurich. Summer 2004. http://www.infsec.ethz.ch/people/
psevinc/TPMEmulatorReport.pdf

14

	Implementing Trusted Terminals with a TPM and SITDRM
	Recommended Citation

	Implementing Trusted Terminals with a TPM and SITDRM
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1233787785.pdf.cGspD

