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The Inhabitation Problem for Intersection Types

M W Bunder1

1 School of Mathematics and Applied Statistics
University of Wollongong

Wollongong NSW 2522 AUSTRALIA
Email: mbunder@uow.edu.au

Abstract

In the system λ∧ of intersection types, without ω, the
problem as to whether an arbitrary type has an inhab-
itant, has been shown to be undecidable by Urzyczyn
in [10]. For one subsystem of λ∧, that lacks the ∧-
introduction rule, the inhabitation problem has been
shown to be decidable in Kurata and Takahashi [9].
The natural question that arises is: What other sub-
systems of λ∧, have a decidable inhabitation prob-
lem?

The work in [2], which classifies distinct and
inhabitation-distinct subsystems of λ∧, leads to the
extension of the undecidability result to λ∧ without
the (η) rule. By new methods, this paper shows, for
the remaining six (two of them trivial) distinct sub-
systems of λ∧, that inhabitation is decidable. For
the latter subsystems inhabitant finding algorithms
are provided.

Keywords: Lambda Calculus, Type Theory, Intersec-
tion Types, Inhabitation.

1 Introduction

In simple (Curry-style) type theory (see for example
Hindley [8]), not every closed lambda term (or com-
binator) has a type. Coppo and Dezani-Ciancaglini
in [7] extended simple type theory to include intersec-
tion types and the universal type ω, in their system
all λ−terms have types.

We consider the type assignment system TAλ∧ (or
simply λ∧), which is that of [7], without ω, in which
all closed λ−terms with normal form have types. We
will be interested in the inhabitation problem which
asks if it can be decided whether, for a type α, there
is a term X such that ` X : α in a given type the-
ory. For λ∧ the inhabitation problem was shown to
be undecidable by Urzyczyn in [10]. For a subsystem
of λ∧, that lacks the ∧-introduction rule, the inhab-
itation problem has been shown to be decidable in
Kurata and Takahashi in [9]. We detemine which, of
the other natural subsystems of λ∧, as identified in
[2], have a decidable inhabitation problem, in some
cases this follows easily from the work in [9] and [10].
We also provide algorithms which allow us to find an
inhabitant X for a type α, in the decidable systems.

Before doing this we need to detail the type sys-
tems and list some results from [2].

Copyright (c)2008, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sympo-
sium (CATS2008) Wollongong, NSW, Australia. Conferences
in Research and Practice in Information Technology, Vol. 77.
Editors, Eds. James Harland and Prabhu Manyem. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

1.1 Definition (Types)

The set of types T is given by:

1. a, b, c, ..., atoms (or type variables) are types.

2. If α and β are types so are (α → β) and (α∧β).

A type α → β is called an →-type. A type α ∧ β
is called an ∧-type.

The usual bracketing rules of logic will apply.

1.2 Definition (Statements)

If M is a λ-term and α a type, M : α is a statement.

1.3 Definition (Judgements)

If ∆ is a set of statements {x1 : α1, . . . , xn : αn}
where x1, . . . , xn are distinct variables and M : α is a
statement, ∆ ` M : α is a judgement.

1.4 Definition (Postulates for the Type As-
signment System TAλ∧)

(Var) ∆, x : α ` x : α

(→ E)
∆ ` M : α → β ∆ ` N : α

∆ ` MN : β

(→ I)
∆, x : α ` M : β

∆ ` λx.M : α → β

(∧I)
∆ ` M : α ∆ ` M : β

∆ ` M : α ∧ β

(∧E)
∆ ` M : α ∧ β

∆ ` M : α

∆ ` M : α ∧ β

∆ ` M : β

(η)
∆ ` λx.Nx : α x /∈ FV (N)

∆ ` N : α

∆ ` M : α (or more formally ∆ `λ∧ M : α) will
represent: ∆ ` M : α can be derived from the above
postulates.

The system TAλ∧ will usually be abbreviated to
λ∧.

An alternative formulation of λ∧ uses a preorder
≤ on T .



1.5 Definition (≤)

Axioms
(1) α ≤ α

(2) α ≤ α ∧ α
(3) α ∧ β ≤ α
(4) α ∧ β ≤ β
(5) (α → β) ∧ (α → γ) ≤ α → β ∧ γ

Rules
(6) α ≤ β ≤ γ ⇒ α ≤ γ
(7) α ≤ α′ & β ≤ β′ ⇒ α ∧ β ≤ α′ ∧ β′

(8) α ≤ α′ & β ≤ β′ ⇒ α′ → β ≤ α → β′.

In Definition 1.4 the (∧E) and (η) rules can be
replaced by:

(≤)
∆ ` M : α α ≤ β

∆ ` M : β

We will be interested in the following subsystems
of λ∧.

1.6 Definition (Notation for Type Systems)

We will denote the system involving the judgements of
Definition 1.3 for types, with postulates (Var), (→ E)
and (→ I), by λ( ) and provability in this system by
`. Systems with additional rules will be denoted by
λ(∧I), λ(∧I, η) etc and the corresponding provabil-
ity by `∧I ,`∧I,η etc. Clearly λ∧ is λ(∧I,∧E, η) or
λ(∧I,≤).

We will use λ and `λ for Curry’s simple type the-
ory. This is λ( ) and ` without the use of ∧ in Defi-
nition 1.1(iii) and (∧I) and (∧E) in Definition 1.4.

We will write A,B,C, . . . for arbitrary type sys-
tems.

1.7 Definition (Inhabitation)

If A is one of the type systems of Definition 1.6, we
say that a type α is inhabited if (∃M) `A M : α.

Note that α being inhabited does not imply that
there is any algorithm that guarantees to find an in-
habitant of α.

1.8 Definition (Inhabitation Problem)

The question as to whether, in a system A, it can
be decided if an arbitrary type is inhabited or not is
called the inhabitation problem of A.

Urzyczyn showed in [10] that the inhabitation
problem for λ∧ is undecidable. Kurata and Taka-
hashi have shown in [9] that the problem is decidable
for λ(≤). Note that their method does not include an
algorithm for finding an inhabitant for a given type.

In [2] we studied and classified the various subsys-
tems of λ∧. We found that some of the subsystems
A and B were equivalent in the sense that:

(∀α, M) [`A M : α ⇔ `B M : α] (1)

This is denoted by A ≈1 B.
Additional systems A and B had equivalent inhab-

itation problems in that

(∀α) [(∃N) `A N : α ⇔ (∃N) `B N : α] (2)

This is denoted by A ≈2 B.
Any pair of systems satisfying (2) that we found

also satisfied

(∀α, M) [`A M : α ⇒ `B M : α] ∨ (3)
(∀α, M) [`B M : α ⇒ `A M : α]

Work in [2] showed that systems equivalent in the
(2) - (3) sense come in the following groups (or inhab-
itation equivalence classes).

(1) λ ∧ [≡ λ(∧I,∧E, η) ≈1 λ(∧I,≤)], λ(∧I,∧E)
(2) λ(∧I), λ(∧I, η)
(3) λ(≤) [≈1 λ(≤,∧E, η) ≈1 λ(≤,∧E)]
(4) λ(∧E), λ(∧E, η)
(5) λ( ) [≈1 λ(η)].

Note that λ(≤) and λ(∧E, η) are distinct systems
that are both “λ∧ without (∧I)”. (a ∧ b → b ∧ a is
inhabited in λ(≤) but not in λ(∧E, η).)

Urcyczyn’s work in [10] for λ∧ and the inhabita-
tion equivalence of the systems in Group 1 lead to:

1.9 Theorem

The inhabitation problems for the systems
λ∧, λ(∧I,≤) and λ(∧I,∧E) are undecidable.

The work of Kurata and Takahashi in [9] shows
that λ(≤) is decidable. As the systems in Group 3
are equivalent it follows that:

1.10 Theorem

The inhabitation problems for λ(≤), λ(≤,∧E, η) and
λ(≤,∧E) are decidable.

The system considered by Kurata and Takahashi
was actually λ(≤) with (ω), but the addition or dele-
tion of (ω) does not affect the result.

We will show below, using generation lemmas
proved in [2], that inhabitation problems for the sys-
tems in Groups 2, 4 and 5 are also decidable. We
will in fact provide algorithms to find inhabitants for
arbitrary types in these systems.

Note that in systems that do not have both (∧E)
and (∧I) or the full strength of (≤), we may have

∆ ` M : α ∧ β

but not ∆ ` M : β ∧ α

and ∆ ` M : α ∧ (β ∧ α)
but not ∆ ` M : (α ∧ β) ∧ α.

Notation We write α1 ∧ . . . ∧ αn to represent one of
the possible bracketings of α1 ∧ . . . ∧ αn.

Of course, via the formulas as types isomorphism,
a type in a type system can be considered as a the-
orem of a logic and its inhabitant as a proof of that
theorem. The logics corresponding to the intersection
type systems however, are not particularly simple (see
Venneri [11] and Bunder [5] and [6]) and it is easier
to examine decidability for the type theories rather
than for the corresponding logics.



2 Inhabitation for λ( )

It is easy to show that any valid judgement Γ ` α in
λ( ) can be transformed into a valid judgement Γ′ ` α′

in λ by replacing all distinct ∧-types in Γ and α by
distinct atoms. Hence as λ( ) ≈2 λ(η):

2.1 Theorem

The inhabitation problems for the systems λ( ) and
λ(η) are decidable.

If α is a type, an inhabitant of α, or a guarantee
that there is none in λ( ) and λ(η), can be provided
by an inhabitant finding algorithm, such as that in
[3], for λ, applied to the α′ . (The methods used in
[3] are a simplified version of the Ben-Yelles algorithm
(see [4] and Hindley [8]).)

2.2 Example

τ = (a∧b → c) → a∧b → (a∧b → c → (a∧b)∧d) →
(a ∧ b) ∧ d

Let τ ′ = (e → c) → e → (e → c → f) → f .
Using the algorithm of [3] for λ:

x1 : e → c, x2 : e and x3 : e → c → f , give
x1x2 : c, x3x2(x1x2) : f .

So ` λx1x2x3.x3x2(x1x2) : τ ′ and
` λx1x2x3.x3x2(x1x2) : τ .

Our proof of the decidability of the inhabitation
problem for λ(∧E) requires some additional notation
and a number of preliminary lemmas.

3 Notation

3.1 Definition (Long Subterms)

An occurrence of a subterm N of a term M is said to
be long in M if (i) N ≡ xiX1 . . . Xn and the occur-
rence is not part of NXn+1 or (ii) if N ≡ λx1 . . . xk.Q
and the occurrence is not part of λx0.N .

3.2 Definition (Positive and Negative Sub-
types)

1. τ is a positive subtype of τ .

2. If α → β is a positive (negative) subtype of τ
then α is a negative (positive) subtype of τ and
β is a positive (negative) subtype of τ .

3. If α∧ β is a positive (negative) subtype of τ, α
and β are positive (negative) subtypes of τ .

3.3 Definition (Long Subtypes)

An occurrence of a subtype α of a type τ is said to
be a long →-subtype of τ if the occurrence is not the
α in a β → α in τ .

An occurrence of a subtype α in τ is a long ∧-
subtype of τ if the occurrence is not the α in an α∧β
or β ∧ α in τ .

3.4 Example

τ = (a ∧ b → (c → d) → e) ∧ (f → g).
τ and c are long positive → and ∧ subtypes of

τ (→ ∧-subtypes).
a∧ b, c → d and f are long negative → ∧-subtypes

of τ .
a ∧ b → (c → d) → e and f → g are long positive

→-subtypes of τ .
a and b are long negative →-subtypes of τ .
c, e and g are long positive ∧-subtypes of τ .
d is a long negative ∧-subtype of τ .

3.5 Definition (Nontrivial Intersections)

A nontrivial intersection is any one other than one of
the form α ∧ . . . ∧ α.

4 The Generation Lemma for λ(∧E)

The Generation Lemma follows directly from the
work in [2], modified using Definition 1.11 and Lemma
4.3(v) of [2].

4.1 Lemma Generation Lemma for λ(∧E)

If

∆ `∧E M : α (4)

then one of the following holds:
1. M ≡ x, (∃β) x : β ε ∆ & β ≡ β1∧. . .∧α∧. . .∧βn.

2. M ≡ PQ, (∃β, γ) ∆ `∧E P : γ → β

∆ `∧E Q : γ

where the derivations are shorter than those of
(4) and β ≡ β1 ∧ . . . ∧ α ∧ . . . ∧ βn.

3. M ≡ λx.N, (∃β, γ) ∆, x : β `∧E N : γ

where the derivation is shorter than that of (4) and
α ≡ (β → γ).

5 The Main Lemma for λ(∧E)

A derivation is said to have a cut if it has a use of
(→ E), as in Definition 1.4, where ∆ ` M : α → β is
derived by (→ I), or a use of (∧I) followed immedi-
ately by a use of (∧E) (or an equivalent use of (≤)).
A derivation is normalised if it has no cuts.

It is well known (see [1]) that all derivations in
λ∧ with ω can be normalised. All terms appearing
in such derivations are in normal form. This result
clearly applies to λ∧ and its subsystems as well.

5.1 Definition

The type of a variable xm in a derivation of

x1 : τ1, . . . , xn : τn `A N : α

will be defined to be τm, (i) if 1 ≤ m ≤ n, or, (ii) if
λxm.M is introduced into N by (→ I) from

x1 : τ1, . . . , xm : τm `A M : β.

In the derivation β is defined to be the type of the
occurrence of M in N .

For systems without (∧I) the type of a variable
and the type of a term introduced, as a subterm, into
a normalised derivation are uniquely defined. For sys-
tems with (∧I) an occurrence of a term may have a
finite set of types in a derivation.



5.2 Lemma

If x1 : τ1, . . . , xn : τn `∧E N : α, there exists a term
M in β-normal form such that no two distinct vari-
ables of M have the same type and also:

1.
xj1 : τj1 , . . . , xj`

: τj`
`∧E M : α (5)

where {j1, . . . , j`} ⊆ {1, . . . , n}.

2. For every occurrence of a long subterm P of M
with

FV (P ) = {xi1 , . . . , xik
}

there are types τi1 , . . . , τik
and β such that

xi1 : τi1 , . . . , xik
: τik

`∧E P : β (6)

where:

(I) τi1 , . . . , τik
are long negative →∧-subtypes of τ =

τ1 → . . . → τn → α.

(II) If P is of the form λxr...xt.R, β has a long pos-
itive → ∧-occurrence in α or a long negative → ∧-
occurrence in one of τi1 , . . . , τik

.

(III) If P is of the form xrP1 . . . Pt, (t ≥ 0), β has a
long positive ∧-occurrence in α or a long negative ∧-
occurrence in one of τi1 , . . . , τik

. Also β has a negative
occurrence in α or a positive occurrence in one of
τi1 , . . . , τik

. .

Proof (i) If N ′ is the β-normal form of N there is
a normalised derivation of

x1 : τ1, . . . , xn : τn `∧E N ′ : α. (7)

If in (7) a long subterm xsQ1 . . . Qt of N ′

has type α1 → . . . → αu → γ, where γ
is an atom or an intersection, this is replaced
by λxq . . . xq+u−1.xsQ1 . . . Qtxq . . . xq+u−1, where
xq, . . . xq+u−1 are variables not in N ′, q > n and
τq+i−1 = αi for q = 1, . . . , u. When all such changes
to N ′ are made call the result N ′′.

Next free or bound variables xp and xq, with
the same type in N ′′, are identified. For example
λxq.C1[λxp.C[xq, xp]] becomes λxp.C1[λxp.C[xp, xp]].
If 1 ≤ p, q ≤ n, xq can be omitted from the left hand
side of the ` in (7). None of these changes alter any
subtypes of τ .

When all such changes have been made we have
M and (7) becomes (5).

(ii) Let the variables in M other than x1, . . . , xn be
xn+1, . . . , xm and their types be τn+1, . . . , τm.

Case 1 M ≡ P.
In this case β ≡ α and (6) is (5) with any xj 6∈

FV (M) omitted. (This can always be done in a nor-
malised derivation). (I) and (II) clearly hold and if P
is of the form xrP1...Pt it follows from Lemma 4.1(ii)
that β has a positive occurrence in τr, so (III) holds.

We now prove the remaining cases by induction on
M .

Case 2 M ≡ xiM1 . . .Mp. (p ≥ 0) and P is, or is in,
an Mj .

By Lemma 4.1(ii) applied p times we have:
xj1 : τj1 , . . . , xj`

: τj`
`∧E xi : α1 → . . . → αp → ξ

and
xj1 : τj1 , . . . , xj`

: τj`
`∧E Mj : αj

where ξ = ξ1 ∧ . . . ∧ α ∧ . . . ∧ ξt and 1 ≤ j ≤ p.

We have (6) and (I) by the induction hypothesis,
after leaving out variables not free in P . Also by the
induction hypothesis, if P is of the form λxr...xt.R
and β does not have a long negative → ∧−occurrence
in one of τi1 , . . . , τik

, it has a long positive → ∧-
occurrence in αj and so a long negative one in τi and
a long positive one in α. Thus (II) holds.

If P is of the form xrP1...Pt, β has a long positive
∧-occurrence in αj (and so a long negative one in τi)
or a long negative ∧-occurrence in one of τi1 , ..., τik

.
Also β has a negative occurrence in αj (and so a
positive one in τi) or a positive occurrence in one of
τi1 , ..., τik

. Thus (III) holds.

Case 3 M ≡ λxn+1.Q, where P is, or is in, Q.
By Lemma 4.1 (iii)

xj1 : τj1 , . . . , xj`
: τi`

, xn+1 : τn+1 `∧E Q : ξ

where α ≡ τn+1 → ξ.
By the induction hypothesis and the omission of

variables that are duplicated or not free in Q, (6)
and (I) hold. If P is of the form λxr...xt.R, β has
a long positive ∧-occurrence in ξ, and so in α, or a
long negative ∧-occurrence in one of τ1, ..., τn+1. If
this is in τn+1 it has a long positive ∧-occurrence in
α. (Note that P can’t be Q, in this case, as then P
is not long in M .) Thus (II) holds.

If P is of the form xrP1...Pt, β has a long positive
∧-occurrence in ξ (and so in α) or a long negative ∧-
occurrence in one of τi1 , . . . , τik

. If this is in τn+1 this
is a positive ∧-occurrence in α. Also β has a negative
occurrence in ξ (and so in α) or a positive occurrence
in one of τi1 , . . . , τik

. If this is τn+1, this is negative
in α. Thus (III) holds.

Note 1. In many modern trteatments of λ−calculus,
clashes of bound variables, as introduced in part (i) of
the proof, though strictly allowed, are avoided. The
identification of variables with the same types, in this
proof, and that of Lemma 8.2, simplifies the proof
and leads to finitely bounded inhabitation search al-
gorithms for λ(∧E) and λ(∧I) in Sections 6 and 9.
2. In the lemma corresponding to 5.2 in [3] (and also
in the Ben-Yelles algorithm in Hindley [8]), we could
assume that M was in long normal form, which meant
that every long subterm of M , formed by application
had an atomic type. Here we can only assume that
M must have an atomic or an intersection type. For
example M = x1x2 in:

x1 : a → (b → c) ∧ (e → f), x2 : a,

x3 : (b → c) ∧ (e → f) → g `∧E x3(x1x2) : g

cannot be expanded to λx4.x1x2x4 where x1x2x4 has
an atomic type.

5.3 Lemma

If

∆ `∧E M : τ, (8)

N appears in M and is introduced into the derivation
of (8) by

∆′ `∧E N : α (9)

where ∆ ⊆ ∆′, then if

∆′ `∧E P : α (10)

where FV (P ) ⊆ FV (N), we have

∆ `∧E [P/N ]M : τ (11)



where in [P/N ]M only the given occurrence of N with
type α, introduced in (9), is replaced by P .

Proof By induction, on M .

Case 1 M ≡ N then ∆′ ≡ ∆ and (11) is (10).

Case 2 M ≡ RQ where N is (in) R or Q
By Lemma 4.1 (ii)

∆ ` R : γ → β

∆ ` Q : γ

where β ≡ β1 ∧ . . . ∧ τ ∧ . . . ∧ βn.
By the induction hypothesis we have

∆ `∧E [P/N ]R : γ → β

or ∆ `∧E [P/N ]Q : γ

and (→ E) and (∧E) gives (11).

Case 3 M ≡ λx.R where N is (in) R
By Lemma 4.1 (iii) we have

∆, x : β `∧E R : γ

where β → γ ≡ τ .
The result follows by the induction hypothesis and

(→ I).

6 The Type Inhabitant Search Algorithm for
λ(∧E)

Aim Given a → ∧-type τ , to find a λ-term M such
that

`∧E M : τ

Step 1 To each distinct long negative → ∧-subtype
of τ assign a distinct variable, giving a list:

x1 : τ1, . . . , xm : τm

Step 2 For each type τi ≡ α ∧ β from Step 1 write
xi : α, xi : β, repeat the procedure if α or β are
intersections. Identical types for the same xi may
be omitted, identical types may also be obtained for
distinct xis.

Step 3 For each set A ⊆ {x1, . . . , xm} and for each
β that has both a long positive ∧- and a negative
occurrence in τ find an N , by application and (∧E),
such that FV (N) ⊆ A and N : β, if there is not
already such an N .

Step 4 For each set A ⊆ {x1, . . . , xm} and each β
which has both a long positive and a long negative
→ ∧-occurrence in τ , if possible, find a term N by
abstraction with respect to some or all of the vari-
ables found in Step 1 such that FV (N) ⊆ A and
N : β, if there isn’t already such an N . (More than
one abstraction with respect to the same variable is
allowed.)

If after a Step 4 a closed M : τ is found stop. If
not continue with further applications of Steps 3 and
4 until no new terms are created. If that happens,
without forming M : τ, τ has no inhabitants. This

same algorithm, without Step 2, can be used to find
inhabitants in λ( ) of λ.

6.1 Example

τ ≡ (a → b ∧ (c → d)) → a ∧ c → d

Step 1 x1 : a → b ∧ (c → d), x2 : a ∧ c

Step 2 x2 : a, x2 : c

Step 3 x1x2 : b∧ (c → d), x1x2 : c → d, x1x2x2 : d

Step 4 λx1x2.x1x2x2 : τ .

6.2 Example

τ = [(a → b → c) ∧ a → b → b → c]

Step 1 x1 : (a → b → c) ∧ a, x2 : b

Step 2 x1 : a → b → c, x1 : a

Step 3 x1x1 : b → c, x1x1x2 : c

Step 4 λx1x2.x1x1 : τ and λx1x2x2.x1x1x2 : τ.

6.3 Theorem

Given a type τ , the Type Inhabitant Search Al-
gorithm for λ(∧E) will produce an inhabitant in β-
normal form for τ in λ(∧E) and λ(∧E, η), or show
that there is no such inhabitant in either system.

Proof By Lemma 5.2, if τ has an inhabitant, it has
one M in β-normal form with no two variables of the
same type.

Also by Lemma 5.2, Step 1 of the algorithm pro-
vides us with a finite set of typed variables which is
the largest set that need appear in M . Step 2 pro-
vides each of these variables with a finite (possibly
empty) set of additional types which includes all the
types these variables need take in M .

Lemma 5.2 also provides us with all the composite
types subterms of M can have and these again form
a finite set. By Lemma 5.3, once we have a subterm
for M with a certain set of free variables, there is no
need to look for another with a superset of this set
of free variables. Hence the number of terms that
can be formed is finite and these are systematically
constructed by Steps 3 and 4.

As the inhabitant Search Algorithm for λ(∧E) is
inherently finite, if it terminates without having found
an inhabitant for τ , then τ has none.

Given that λ(∧E) ≈2 λ(∧E, η) and that λ(∧E)
is a subsystem of λ(∧E, η), this algorithm also finds
inhabitants of τ in λ(∧E, η) or shows that there are
none.

7 The Generation Lemma for λ(∧I)

The Generation Lemma follows directly from the
work in [2], modified using Definition 1.11 and Lemma
4.3(iv) of [2].

7.1 Lemma Generation Lemma for λ(∧I)

If
∆ `∧I M : α (12)

where M is in normal form, then one of the following
holds:

1. M ≡ x, (∃β) x : β ∈ ∆ & α ≡ β ∧ . . . ∧ β.



2. M ≡ PQ, (∃β1, α1, . . . βk, αk)∆ `∧I P : βi →
αi

∆ `∧I Q : βi.
for 1 ≤ i ≤ k, where α ≡ α1 ∧ . . . ∧ αk and the
derivations, together, are shorter than those of
(12).

3. M ≡ λx.N, (∃β1, γ1, . . . , βk, γk) ∆, x : βi `∧I
N : γi

for 1 ≤ i ≤ k, where α ≡ (β1 → γ1) ∧ . . . ∧ (βk → γk)
and each derivation is shorter than that of (12).

8 The Main Lemmas for λ(∧I)

The two lemmas below are generalisations of two lem-
mas used in [3] to prove that the inhabitation find-
ing algorithm for simple type theory, that appears
there, is valid. The situation here is little more com-
plex because one occurrence of a subterm of X in
∆ `∧I X : τ can have more than one type in the
derivation.

For example with x : β we might prove:

∆ `∧I λx.M : β → α

and with x : γ, we might prove:

∆ `∧I λx.M : γ → δ,

and so by (∧I):

∆ `∧I λx.M : (β → α) ∧ (γ → δ).

So not only λx.M , but also x, can have more than
one type in a derivation.

8.1 Lemma

If X is in normal form, U is an occurrence of a sub-
term of X which has types α1 . . . αk in the derivation
of ∆ `∧I X : τ , then if V , with FV (V ) ⊆ FV (U),
can also be assigned types α1, . . . , αk, given ∆, and
if the types of FV (V ) are the same as they were for
FV (U), then

∆ `∧I X[U := V ] : τ.

Proof By induction on X, as in Lemma 5.3.

8.2 Lemma

If
x1 : τ1, . . . , x` : τ` `∧I Z : τ (13)

then there is an X =β Z in β-normal form such that:

1. No two distinct variables of X have the same set
of types.

2. For some {i1, . . . , ik} ⊆ {1, . . . , `},

xi1 : τi1 , . . . , xik
: τik

`∧I X : τ (14)

3. Each type of each variable xij
in λxi1 . . . xik

.X
that is used in a derivation of (14), will have a
long negative→ - occurrence in τ ′ = τi1 → . . . →
τik

→ τ .

4. Each occurrence of a composite subterm Y of X,
that is, in the derivation of (14), an abstraction,
or is long and formed by application, will have a
type which is a long positive ∧-occurrence in τ ′.

Proof (i), (ii). Theorem 4.13 of [1] proves that every
Z satisfying (13), with λ∧ for λ(∧I), has a β-normal
form. Clearly this also holds for λ(∧I). Subject re-
duction can be proved for λ(∧I), by standard means,
so (13) holds with nf(Z) for Z.

If nf(Z) contains two variables xp and xq, with the
same set of types, we can change, by Lemma 8.1, all
occurrences of xq to xp, without altering any types.
Also we can drop one of two, now identical xp : τp
and xq : τq from x1 : τ1, . . . , x` : τ`. We then have
(14), so (i) and (ii) hold.

(iii), (iv) By induction on the length of X.
If X, which is in normal form, is formed by appli-

cation, X ≡ xit
X1 . . . Xm then by Lemma 7.1(ii) and

(i) we have:

xi1 : τi1 , . . . , xik
: τik

`∧I xit : β1 → . . . → βm → β

xi1 : τi1 , . . . , xik
: τik

`∧I Xr : βr (15)

for 1 ≤ r ≤ m, where τ = β ∧ . . . ∧ β, 1 ≤ t ≤ k and
τit

= β1 → . . . → βm → β.
If xij

= xit
, τij

= τit
has a long negative → -

occurrence in τ ′, so (iii) holds.
If xij

is in Xr, for some r, then, by the induction
hypothesis (iii), τij

has a long negative→ - occurrence
in τi1 → . . . → τik

→ βr.
If this occurrence is in τi1 → . . . → τik

→, this is a
long negative → - occurrence in τ ′. If it is in βr, then
τij

has a long positive → - occurrence in τit
and so a

long negative → - occurrence in τ ′. Hence (iii) holds.
If Y is a long composite subterm of X formed by

application, it may be X itself, in which case (iv)
holds with τ as the type of Y .

Otherwise Y is (in) an Xr. By the induction hy-
pothesis (iv), applied to (15), we have that this oc-
currence of Y has a type with a long positive ∧ -
occurrence in τi1 → . . . → τik

→ βr. If the occur-
rence is in τi1 → . . . → τik

→, it is also one in τ ′. If
the occurrence is in βr, as βr has a long negative →
- occurrence in τit and so a positive one in τ ′, each
type of Y has a long positive ∧ - occurrence in τ ′, i.e.
(iv) holds.

If X is formed by abstractions, X = λxik+1 .V ,
then by Lemma 7.1 (iii)

xi1 : τi1 , . . . , xik
: τik

, xik+1 : τ s `∧I V : βs (16)

for 1 ≤ s ≤ u and τ = (τ1 → β1) ∧ . . . ∧ (τu → βu).
As the derivation of (14) can come via (16), for

1 ≤ s ≤ u, and (∧I), any types τij of the variable xij

used in the derivation of (14) , must be used in the
derivation of (16) for at least one value of s.

By the induction hypothesis (iii), applied to (16),
we have that each τij

has a long negative → - occur-
rence in τi1 → . . . → τik

→ τ s → βs and so in τ ′.
Thus (iii) holds.

If Y is formed by application and is long in X, it
is also long in V , so, by the induction hypothesis (iv),
each occurrence of Y , in the derivation of (16), for
some s, 1 ≤ s ≤ u, has a type with a long positive ∧
- occurrence in τi1 → . . . → τik

→ τ s → βs and so in
τ ′. So (iv) holds.

If Y is formed by abstraction and is (in) V , the
result (iv) holds by induction hypothesis (iv).

If Y is X, (iv) holds as the type of Y is τ .

The λ(∧I) Inhabitant Search Algorithm, given be-
low, is a generalised version of the algorithm for λ
given in [4]. The latter, in turn, is a simplified ver-
sion of the Ben-Yelles Algorithm for λ (see Hindley
[8]).



9 The λ(∧I) Inhabitant Search Algorithm

Aim To find a λ-term X such that, for all i, 1 ≤ i ≤ k

x1 : τ i
1, . . . , xn : τ i

n `∧I X : δi (17)

where Xx1 . . . xn has (i) a minimal number of distinct
variables and (ii) a minimal total number of occur-
rences of these variables.

Notes 1. To find an inhabitant X of a type τ , we
only need to solve (17) for n = 0, k = 1, and δ1 = τ ,
but we require to solve more general versions of (17)
in the process.

2. For no value of m and ` (1 ≤ m < ` ≤ n)
is τ i

` = τ i
m for all i, 1 ≤ i ≤ k, as otherwise

X[x` := xm] will be a solution of (17) where X[x` :=
xm]x1 . . . x`−1x`+1 . . . xn has fewer distinct variables
than Xx1 . . . xn.

3. We assume that no two instances of (17), for
distinct values of i, are identical.

4. We will call a set of judgements, such as (17),
for 1 ≤ i ≤ k, with a common set of variables on the
left of the ` and a common unknown λ-term, such
as X, on the right of the `, a simultaneous set of
judgements (ssj).

5. An ssj of the form

x1 : τ i
1, . . . , xn : τ i

n `∧I Y : δi

for 1 ≤ i ≤ k is said to be equivalent to the ssj (17).
6. In the algorithm we will construct a tree where

the nodes are ssj’s, with (17) at the root.

Step 1 If in (17) τ i
j = δi for some j (1 ≤ j ≤ n)

and all i, (1 ≤ i ≤ k), then the tree consists only of
the root, the ssj (17), and the algorithm stops with
X = xj .

Otherwise, if τ i
j = βi

1 → . . . → βi
r → δi for all i,

1 ≤ i ≤ k, construct a group of ssj’s

x1 : τ i
1, . . . , xn : τ i

n `∧I Xt1 : βi
t1 (18)

each with 1 ≤ i ≤ k, provided there is no ssj equiv-
alent to (18) for any t1(1 ≤ t1 ≤ r) in the branch
from (17) to the root of the tree. If there is such an
equivalent ssj, (17) has no solution.

For each τ i
j of the appropriate form, that is not

excluded in this way, there is a group of ssj’s of the
form (18) with 1 ≤ t1 ≤ r, that appears in the tree
directly below (17).

If all of the ssj’s in a group have a solution, found
by going back to Step 1, then (17) has as solution
X = xjX1 . . . Xr.

If there is no solution of (18) for any t1, there is
no solution of (17) for that value of j, and the tree is
not extended below the ssj’s in the group with that
value of j.

If there is no solution of (17) for any value of j or
no τ i

j is of the right form and if δi = τ i
n+1 → γi for all

i (1 ≤ i ≤ k), go to Step 2. If δi = αi ∩ γi, for some
i, go to Step 3.

Step 2 If τ i
n+1 6= τ i

j for some i and all j the ssj

x1 : τ i
1, . . . , xn+1 : τ i

n+1 `∧I X ′ : γi (19)

with 1 ≤ i ≤ k, appears directly below (17) in the
tree (as a singleton group), provided no equivalent ssj
appears in the branch from (17) to the root of the tree.
(19) is then solved by returning to Step 1. If there is
a solution then the solution to (17) is λxn+1.X

′.

If τ i
n+1 = τ i

j for some j and all i, 1 ≤ i ≤ k, the ssj

x1 : τ i
1, . . . , xn : τ i

n `∧I X ′ : γi (20)

appears directly below (17) in the tree, provided no
equivalent ssj appears in the branch from (17) to the
root.

(20) is solved by returning to Step 1. If there is a
solution, then X = λxj .X

′.
Step 3 We assume that (17) is ordered so that

this i = k. In each of the four cases below we add a
new ssj directly below (17) in the tree (as a singleton
group), provided no equivalent ssj has appeared in
the branch from (17) to the root.

1. If τk
1 , . . . , τk

n , αk and τk
1 , . . . , τk

n , γk are both dis-
tinct from each τ j

1 , . . . , τ j
n, δj for 1 ≤ j < k, and

from each other the ssj is

x1 : τ i
1, . . . , xn : τ i

n `∧I X : δi (21)

for 1 ≤ i ≤ k+1, where δk = αk, δk+1 = γk, and
τk
t = τk+1

t for 1 ≤ t ≤ n.

2. If τk
1 , . . . , τk

n , αk is distinct from each
τ j
1 , . . . , τ j

n, δj but τk
1 , . . . , τk

n , δk, γk ≡
τ j
1 , . . . , τ j

n, δj for some j, (1 ≤ j ≤ k) or
≡ τk

1 , . . . , τk
n , αk the new ssj is similar to (17)

but with αk instead of δk.

3. If τk
1 , . . . , τk

n , γk is distinct from each
τ j
1 , . . . , τ j

n, δj , but τk
1 , . . . , τk

n , αk ≡ τ j
1 , . . . , τ j

n, δj

for some j, (1 ≤ j ≤ k) the new ssj is similar to
(17) but with γk for δk.

4. If τk
1 , . . . , τk

n , γk ≡ τ r
1 , . . . , τ r

n, δr and
τk
1 , . . . , τk

n , αk ≡ τ j
1 , . . . , τ j

n, δj for some j
and r, 1 ≤ j, r ≤ k, the new ssj is similar to (17),
but with 1 ≤ i ≤ k − 1.

In each case now go back to Step 1.

We now prove that the algorithm is effective.

9.1 Theorem

The λ(∧I) Inhabitation Search Algorithm provides a
solution X for (17), for all i(1 ≤ i ≤ k) or a guarantee
that there is no solution, by generating a tree with an
ssj at each node and (17) at the root. No node will
have more than rs + 1 nodes directly below it and no
branch is longer than 2s(r−n)! where r is the number
of long negative →-subtypes of

α = (τ1
1 → . . . → τ1

n → δ1)∧. . .∧(τk
1 → . . . → τk

n → δk)

and s is the number of long positive ∧-subtypes of α.

Proof In the algorithm, Step 1 considers all the pos-
sible ways in which (17) can be derived by (Var) or
using (→ E) as the final step, Step 2 considers the
ways in which (17) can be derived by (→ I) as a fi-
nal step and Step 3 the ways in which (17) is derived
using (∧I) as a final step. Any X satisfying (17), for
1 ≤ i ≤ k, must be found in an indefinitely extended
tree.

Coming down any branch of the tree from the root,
the algorithm has each unknown λ-term as a subterm
of the ones above it. If the step above it is Step 1
(other than τ i

j = δi for 1 ≤ i ≤ k) or Step 2, it will be



a proper subterm of the terms higher in the branch.
If on a branch there is an ssj

x1 : τ i
1, . . . , xp : τ i

p `∧I Xt1...ts : βi
t1...ts

(22)

for 1 ≤ i ≤ q, appearing below an equivalent ssj

x : τ i
1, . . . , xp : τ i

p `∧I Xt1...tv
: βi

t1...tv
(23)

(i.e. βi
t1...ts

= βi
t1...tv

for 1 ≤ i ≤ q), then Xt1...ts

is a proper part of Xt1...tv , as there must be at least
one nontrivial Step 1 or a Step 2 between the ssj’s.
This however means that Xt1...ts is a shorter solution
than Xt1...tv

of the ssj (23), so the branch from (23) to
(22) does not lead to an X satisfying (i) and (ii). So
the algorithm rightly does not search branches below
(22).

We now show that the tree must be finite.
By Lemma 7.1 (17) holds for 1 ≤ i ≤ k, if and

only if
`∧I λx1 . . . xn.X : α.

By Lemma 8.2 the variables in λx1 . . . xn.X, and so
in X, have types which are long negative →-subtypes
of α. Let there be r of these.

In a node (i.e. an ssj)

x1 : τ i
1, . . . , xm : τ i

m `∧I Y : βi (24)

for 1 ≤ i ≤ `, as by the algorithm the types of differ-
ent variables are distinct and n < m ≤ r, there can
be at most (r − n)! different sequences τn+1, . . . , τm.

Also by Lemma 8.2, each βi is a long positive ∧-
subtype of α. Let there be s of these. Then there
can be at most s(r − n)! distinct judgements, of the
form (24) in the tree generated by the algorithm and
as each node (i.e. each ssj) in the tree consists of a
subset of this set of judgements, there can be no more
than 2s(r−n)! distinct nodes (ssj’s) in the tree.

Given that there can be no two equivalent ssj’s on
any branch, no branch can be longer than 2s(r−n)!.

Below any ssj, such as (24), there can be at most
m groups of ssj’s resulting from Step 1, where m ≤ r.
Each group can have no more than s members. Also
below (24) there can be an ssj stemming from Step 2
or 3. Thus there can be no more than rs + 1 nodes
below any node in the tree.

9.2 Corollary

The inhabitation problem for λ(∧I)is decidable.

9.3 Example

To find X such that

`∧I X : (a → a → a ∧ a) ∧ ((a → b) → (b → a) → a → b)
|

Step 3
|

`∧I X : a → a→a ∧ a

`∧I X : (a → b)→(b → a) → a → b

|
Step 2 (X = λx1.X

′)
|

x1 : a `∧I X ′ :a → a ∧ a

x1 : a → b `∧I X ′ :(b → a) → a → b

|

Step 2 (X ′ = λx2.X
′′)

|
x1 : a, x2 : a `∧I X ′′ : a ∧ a

x1 : a → b, x2 : b → a `∧I X ′′ : a → b

|
Step 3
|

x1 : a, x2 : a `∧I X ′′ : a

x1 : a → b, x2 : b → a `∧I X ′′ : a → b

|
Step 1 X ′′ = x1

So X = λx1x2.x1.

10 Conclusion

The inhabitation problem is decidable for the
systems λ(≤), λ(≤,∧E, η), λ(≤,∧E), λ(∧I), λ(∧I, η),
λ(∧E), λ(∧E, η), λ(), and λ(η) and undecidable for
λ∧, λ(∧I,≤) and λ(∧I,∧E).

We have given inhabitant finding algorithms for
λ(), λ(η), λ(∧E), λ(∧E, η), λ(∧I) and λ(∧I, η).
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