
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

24-7-2007

Integration of Agent-Oriented Conceptual Models and UML Activity Integration of Agent-Oriented Conceptual Models and UML Activity

Diagrams Using Effect Annotations Diagrams Using Effect Annotations

Moshiur Bhuiyan
University of Wollongong, mmrb95@uow.edu.au

M. M. Islam
University of Wollongong

Aneesh Krishna
University of Wollongong, aneesh@uow.edu.au

Aditya K. Ghose
University of Wollongong, aditya@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Bhuiyan, Moshiur; Islam, M. M.; Krishna, Aneesh; and Ghose, Aditya K.: Integration of Agent-Oriented
Conceptual Models and UML Activity Diagrams Using Effect Annotations 2007.
https://ro.uow.edu.au/infopapers/625

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37004624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages

Integration of Agent-Oriented Conceptual Models and UML Activity Diagrams Integration of Agent-Oriented Conceptual Models and UML Activity Diagrams
Using Effect Annotations Using Effect Annotations

Abstract Abstract
Agent–oriented conceptual modeling notations such as i* represents an interesting approach for
modeling early phase requirements which includes organizational contexts, stakeholder intentions and
rationale. On the other hand, Unified Modeling Language (UML) is suitable for later phases of requirement
capture which usually focus on completeness, consistency, and automated verification of functional
requirements for the new system. In this paper, we propose a methodology to facilitate and support the
combined use of notation for modeling requirement engineering process in a synergistic fashion. For
organizational modeling/early phase requirements capturing we use the i* modeling framework that
describes the organizational relationships among various actors and their rationales. For late (functional)
requirements specification, we rely on UML Activity Diagram.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
This conference paper was originally published as Bhuiyan, M, Islam, MMZ, Krishna, A, Ghose, A,
Integration of Agent-Oriented Conceptual Models and UML Activity Diagrams Using Effect Annotations,
31st IEEE Annual International Computer Software and Applications Conference COMPSAC 2007, 24-27
July, Vol 1, 171-178.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/625

https://ro.uow.edu.au/infopapers/625

Integration of Agent-Oriented Conceptual Models and UML Activity Diagrams
Using Effect Annotations

Moshiur Bhuiyan, M.M.Zahidul Islam, Aneesh Krishna, Aditya Ghose
Decision Systems Laboratory

School of Information Technology and Computer Science (SITACS)
University of Wollongong (UOW), Northfields Avenue, NSW 2522, Australia

{mmrb95, mmzi44, aneesh, aditya}@uow.edu.au

Abstract
Agent–oriented conceptual modeling notations such as

i* represents an interesting approach for modeling early
phase requirements which includes organizational con-
texts, stakeholder intentions and rationale. On the other
hand, Unified Modeling Language (UML) is suitable for
later phases of requirement capture which usually focus
on completeness, consistency, and automated verification
of functional requirements for the new system. In this
paper, we propose a methodology to facilitate and sup-
port the combined use of notation for modeling require-
ment engineering process in a synergistic fashion. For
organizational modeling/early phase requirements cap-
turing we use the i* modeling framework that describes
the organizational relationships among various actors
and their rationales. For late (functional) requirements
specification, we rely on UML Activity Diagram.

1. Introduction
 Understanding the organizational environment as well
as the reasoning and rationale underlying requirements,
design and process formulation decisions is crucial to
model and build effective computing systems. Conceptual
modeling notations employing knowledge representation
techniques have been developed to support such an un-
derstanding [14]. Many modeling techniques tend to
address “late phase” requirements while the vast majority
of critical modeling is arguably taken in early phase re-
quirements engineering. Agent-oriented Conceptual Mod-
eling (AOCM) offers an interesting approach in modeling
the early phase requirements. The i* modeling framework
[14] is a semi-formal notation built on agent-oriented
conceptual modeling.
 The central concept in i* is that of the intentional actor
agent. Intentional properties of an agent such as goals,
beliefs, abilities and commitments are used in modeling
requirements. The actor or agent construct is used to
identify the intentional characteristics represented as
dependencies involving goals to be achieved, tasks to be
performed, resources to be furnished or softgoals (opti-
mization objectives or preferences) to be satisfied. The i*
framework also supports the modeling of rationale by
representing key internal intentional characteristics of
actors/agents.

 A number of proposals have been made for combining
i* modeling with late phase requirements analysis and the
downstream stages of the software lifecycle. The
TROPOS project [2] uses the i* notation to represent
early and late phase requirements, architectures and de-
tailed designs. However, the i* notation itself is not ex-
pressive enough to represent late phase requirements,
architectures and designs. To address this problem, a
custom designed formal language called FormalTropos [6]
has been proposed. Proposals to integrate i* with formal
agent programming languages and formal methods have
also been reported in the literature [8] [12] [13]. This
paper has similar objectives, but takes a somewhat differ-
ent approach. We believe that the value of conceptual
modeling in the i* framework lies in its use as a notation
complementary to existing specification languages, i.e.,
the expressive power of i* complements that of existing
notations. The use of i* in this fashion requires that we
define methodologies that support the mapping of i*
models with more traditional specifications. In the current
instance, we examine how this might be done with Uni-
fied Modeling Language (UML) [1]. Our aim, then, is to
support the modeling of organizational contexts, inten-
tions and rationale in i*, while traditional specifications of
functionality and design proceeds in the UML Activity
Diagram. More generally, this research suggests how
diagrammatic notations for modeling early phase re-
quirements, organization contexts and rationale can be
used in a complementary manner with more traditional
specification notations that lead towards system modeling.
In this paper, we propose some guidelines to facilitate and
support the combined use of notations for modeling re-
quirement-engineering process in a synergistic fashion.
For organizational modeling early phase requirements
capturing we use the i* modeling framework that de-
scribes the organizational relationships among various
actors and their rationales. For late (functional) require-
ments specification, we rely on a UML Activity Diagram.
The heuristics described in this paper helps the system
modeler to develop activity diagram based on i* models.
In Section 2 & 3, below, we present i* modeling frame-
work and UML Activity Diagrams with an example.
Section 4 presents benefits of mapping i* models into
Activity Diagram. Section 5 discusses a methodology

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

supporting the mapping of i* into UML Activity Diagram
using effect annotations. Section 6 contains a discussion
on reflecting changes in an i* model to an associated
Activity Model. Finally, Section 7 presents some con-
cluding remarks.

2. The i* Modeling Framework
 The i* framework for agent-oriented conceptual mod-
eling was designed primarily for early phase requirements
engineering. The central concept in i* is that of the inten-
tional actor (agent). Intentional properties of an agent
such as goals, beliefs, abilities and commitments are used
in modeling requirements. The i* framework consists of
two main modeling components: the Strategic Dependency
(SD) Model and the Strategic Rationale (SR) Model [14]
[15].
 The SD and SR models are graphical representations that
describe the world in a manner closer to the users’ per-
ceptions. The SD model consists of a set of nodes and
links. Each node represents an “actor”, and each link
between the two actors indicates that one actor depends on
the other for something in order that the former may attain
some goal. The depending actor is known as depender,
while the actor depended upon is known as the dependee.
The object around which the dependency relationship
centres is called the dependum.
Strategic Dependency Models: An Example:

Figure 1: A Strategic Dependency model for computer
based training system
 The SD model provides an important level of abstraction
for describing systems in relation to their environments, in
terms of intentional relationships among them. This allows
the modeler to understand and analyse new or existing

organisational and system configurations even if the
internal goals and beliefs of individual agents are not
known.
 An example concerning a computer based training
system (CBT) for volunteers of emergency services will be
used to illustrate the SD Model notation (see figure 1 for
the model). The TrainingCoordinator agent depends on
Volunteer agents to achieve its TrainingAttended goal. The
TrainingCoordinator has two goal dependencies on the
TrainingSystem, TrainingScheduled and OnlineTraining-
Conducted (i.e., the TrainingCoordinator agent relies on
the TrainingSystem agent to schedule training sessions and
to conduct online training). The TrainingSystem has a
dependency on the TrainingCoordinator to provide
TrainingContent, modeled as a resource dependency. The
TrainingSystem has a dependency on Volunteers to achieve
its TrainingAttended goal. The TrainingSystem has a
dependency on Volunteers to provide Confirmation of their
attendance, modeled as a resource dependency. Volunteers
depend on the TrainingSystem to perform the Con-
ductTraining task. Observe that we have chosen not to
model this as a goal dependency since the TrainingSystem
cannot autonomously decide how the corresponding goal
might be achieved but must work with the depender in a
tightly coupled fashion to perform the task. Volunteers
have a further dependency on the TrainingSystem to
TrainingScheduleRemider and TrainingInformation,
modeled as resource dependencies. Volunteers have a
preference for the TrainingSystem to satisfy the softgoal
TrainingModulesEasyToUse. The notion of a softgoal
derives from the Non-Functional Requirements (NFR)
framework [3] [4] and is commonly used to represent
optimisation objectives, preferences or specifications of
desirable (but not necessarily essential) states of affairs.
The Strategic Rationale Models: An Example
 In the i* framework, the SR model provides a more
detailed level of modeling by looking “inside” actors to
model internal intentional relationships. Intentional ele-
ments (goals, tasks, resources, and softgoals) appear in the
SR model not only as external dependencies, but also as
internal elements linked by task decomposition and
means-ends relationships (figure 2). The SR model in
figure 2 thus elaborates on the relationships between the
TrainingCoordinator, TrainingSystem and Volunteer as
represented in the SD model of figure-1.
 For example, the TrainingCoordinator has an internal
task to OrganiseTraining. This task can be performed by
sub-tasks ScheduleTraining and GenerateTrainingContent
(these are related to the parent task via task decomposition
links). The task OrganizeTraining is related to the
LowEffort, Quick softgoals via a task decomposition link.
The intention is not to suggest that the softgoal plays the
role of a sub-task but to relate the softgoal to the high-
est-level task for which the softgoal may be viewed as an
optimization objective. The softgoal thus serves to con-

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

strain design decisions on how the task might be decom-
posed. In this instance, the contribution is positive, i.e.,
organizing the training material contributes (positively) to
achieving the broader goal of making the TrainingMate-
rialEasyToUse.

Figure 2: Strategic Rationale model for computer based
training system

3. Activity Diagram in UML
 An activity diagram is an uncomplicated and perceptive
illustration that depicts the actions, parallel activities and
any possible alternative ways through the workflow.
Activity diagrams defined in the Unified Modeling Lan-
guage [11] are consequential from various methods to
pictorially express sequence of activities or sub-activities
and conditions taken within a process. Activity Diagrams
explain the operational flow from an initiating point to the
terminating point specifying many decision paths that exist
in the development of processes contained in the activity.
They are also used to explain states where parallel proc-
essing may occur in carrying out of some activities.
 The design of an activity diagram may demonstrate the
organisational stage or the system stage. The most impor-
tant exercise of using activity diagrams are in designing the
operational progression that defines the sequences of
operations and the realization of operation. In a system
development process, design is important as the lack of
good design of processes will lead to non-maintainable,
non-reusable system having obscure functionality [9].

Activity diagrams are useful and important for modeling
the dynamic aspects of a system for several reasons; it
describes the internal actions of an operation graphically,
helps to recognize activities whose accountability belongs
to another place, illustrates activities that can occur in
parallel, allows the detection of common functionality
within a system and can construct executable systems
through forward and reverse engineering.
 Graphically an activity diagram is an anthology of
vertices and arcs which generally contains activity states,
action states, transitions and objects. Activity states are
non-atomic as they can be interrupted and usually they may
take some time to be accomplished. But action states are
atomic, their work is non-interrupted. Action states can not
be decomposed. Transitions depict the path initiated from
one action or activity state and passed to next action or
activity state as the action or activity of a state is com-
pleted. Transitions are represented as a simple directed line
in the activity diagram [1].
4. Benefits of Mapping i* model into Activ-
ity Diagram
 Constructing a system that adheres to organisational
environment and meets end users need (such as determin-
ing the main goals of the intended system, relations and
dependencies among stakeholders, alternatives in the
early-stage requirements analysis etc.), requires develop-
ing clearly defined early stage functional requirements.
The i* modeling framework which is a semi-formal nota-
tion built on agent-oriented conceptual modeling is well
suited for this purpose.
 We need to focus on the functional and non-functional
requirements of the system as we continue the develop-
ment process. In this phase we can adopt the UML activity
diagram to discover and reason about the functional re-
quirements of the system. An activity diagram is a dynamic
illustration, which demonstrates the movement and the
event of objects in the particular state. It clearly supports
parallel activities and their synchronization. Activity
diagrams are functional for analysing actions and the states
of a use case, illustrating complex sequential algorithm and
designing applications with parallel processes [1] [9] [10].
They represent the operational workflow of a system by
capturing actions performed and provide a broad repre-
sentation of the overall flow. Some benefits of integrating
these two notations are given below.
• We feel that the usefulness and effectiveness of i* can be
increased manifold by using it with UML activity diagram.
Mapping rules provide a semantics to i* framework. Our
view is that the i* modeling framework and UML activity
diagram can function in a complementary and synergistic
way.
• There is a need to map both SD and SR models into late
phase requirements specification. Activity diagram can be

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

used effectively to realize the actions and states in the late
phase which cannot be represented in the i* diagram.
• For translating informal specifications provided in i* into
Activity diagram, there is no need to add more details into
the corresponding i* model. The mapping from i* models
into Activity diagram does not result in any information
loss.
• Using Activity diagram, we are in a position to express
properties that are not restricted to the current state of the
system, but also to its past and future history.

5. Methodology Supporting the Integration
of i* and UML Activity Diagram
 We shall provide some guidelines for the mapping of i*
model into UML activity diagram. Mapping will be done
in two phases; phase-1 effect annotations, phase-2 map-
ping rules. These guidelines ensure the consistency of the
generated activity diagram with the initial i* model.
 Our proposed methodology uses the notion of cumula-
tive effect annotation to determine whether the i* models
and UML Activity Diagrams are consistent with each
other. An effect is the result (outcome) of an activity being
executed by some cause or agent. It indicates the
achievement of a certain environmental state communi-
cated through an event. In our work, every
goal/task/resource dependency must have an effect anno-
tation. A cause relationship exists between an activity and
an effect. In other words, activity causes the effects to
occur. An activity can cause many effects and an effect can
be caused by a number of activities. For each selected
dependency we have an object in the UML Activity Dia-
gram with the same effect. This we consider as a weak
notion of consistency. It clearly states the result of activity
if the conceptual model were to be theoretically executed.
We also annotate every task in the SR model that is related
to a dependency with a cumulative effect annotation. We
then use the Activity Diagram and annotate actions with
effects. Our approach ensures that a dependency is
achieved through the cumulative effect of the actions on
the UML Activity Diagram. This we refer to as strong
consistency. Using this notion of cumulative effect anno-
tations an analyst can ensure that a UML Activity Diagram
is consistent with respect to the i* model under this regime.
5.1 Consistency Evaluation
 We introduce consistency rules to provide a mechanism
for ensuring consistency between i* model and UML
Activity Diagram. The rules are developed with consid-
eration to [7].
 Rule 1: Every actor in an i* model required as a par-
ticipant in the Activity Diagram must be represented in the
model. Required participants are identified via the associ-
ated dependencies among the actors.
 Rule 2: Every ‘primitively workable’ task decomposed
(or required by decomposition where a dependency exists)

from the chosen routine within the i* model, must be
represented as an action or activity under the control of the
appropriate actor in the process model.
 Rule 3: There must exist a coordinated transition in the
Activity Diagram, whereby the operational objective (as
encoded in the fulfillment conditions or effect annotations)
of the routine is achieved, and the sequence of activities is
consistent with the requirements specified in the routine.
There must exist a coordination of activities in the activity
diagram that satisfy the requirements of the routine further
outlined below.
 Rule 3.1: The fulfillment conditions of the operational
goal at the root of the routine and all its sub-elements must
be achieved through the accumulation of effects during
forward traversal of the transition.
 Rule 3.2: The fulfillment conditions of a task in the
chosen routine must not be fulfilled prior to all tasks that
decompose it, upon accumulation of effects during forward
traversal of the transition.
 Rule 3.3: The fulfillment of a task on the depender side
of a dependency must not be realized before the fulfillment
of the dependency, upon the accumulation of effects during
forward traversal of the transition.
5.2 Phase 1: Effect Annotations
 The concept of effect annotation denotes the potential
outcomes of activities and fulfilment conditions that are
required to meet dependencies by achieving certain results.
An effect generally defines that a result or consequence of
an activity has generated because of its being accom-
plished by an agent or some previous phenomenon. As an
example, effects can be annotated to activity/task nodes or
even complete sub-processes in graphical notations. In i*,
we annotate effects to tasks assigned to actors which
indicate the realization of a certain conditions aimed in the
direction of (i.e. and perhaps required for) some higher
order goal. The effect annotations is intended to provide a
notation free methodology rather than limited to a specific
notation. An effect annotation is a testimonial to the out-
come of an activity related to a state that alters construction
of a given model.
 An effect annotation includes: a label that generalizes the
effect (e.g. ‘CustomerDetailsStored’); a designation
specifying whether the effect is a normal (i.e. desired)
outcome for an activity (e.g. ‘RegistrationValidated’), or
an abnormal (i.e. undesired) outcome for the activity that
may require the application of some mitigation strategy; an
optional informal definition describing the effect in rela-
tion to the result achieved in its environment (e.g. ‘The
details relating to the current customer have been stored
within the system.’); an optional formal definition may be
used to define achieved states in a chosen formalism.
Fulfillment conditions are annotated to intentional actor
elements and dependencies in an i* model (i.e. not in-
cluding softgoals as these are used during assessment of
alternatives and describe non-functional properties to be

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

addressed). A fulfillment condition [7] is a statement
specifying the outcomes required to satisfy a given goal or
dependency. Fulfillment conditions recognize the required
effects on a business process model. For example, a
fulfillment condition for a task dependency to ‘Con-
ductTraining’, may be the ‘TrainingArranged’ effect
(subsequently required by the task assigned to a dependee
actor).
 Intuitively, for a dependency to be fulfilled, explicit
assignment of responsibility is made to a dependee actor
who possesses an intentional element that can satisfy the
dependency. Therefore, one guiding rule during the
annotation of fulfillment conditions to an i* model is that
all fulfillment conditions annotated to a dependency must
be annotated to the intentional element the dependency is
linked to on the dependee.
 In this case we are only concerned with the fact that the
dependee has the knowledge to achieve the dependency,
not the ability (e.g. where another dependency may be
required with another actor). We have introduced two steps
to derive the effect annotations from the CBT i* diagram.
Step 1, Annotate the i* model with effects and then derive
the annotations of dependencies with fulfilment condi-
tions. Step 2, define fulfilment conditions to the tasks that
Realizes/Requires the fulfilment conditions.
Step 1: Annotate model with effects and/or fulfilment
condition
 The tasks assigned to the actors in the CBT model are
initially annotated with effects. Table 1, illustrates the
annotation in a tabular form.
Actor Task Effect Annotation

TC Let Training System
Schedule Training

Training System
Schedule Training

TC Generate Training
Content

Training Material
Generated

TC Organize Training Training Organized
TS Obtain Confirmation Confirmation ob-

tained
TS Create & Forward User

Access Info
User Name & Pass-
word created

TS Impart Training Training Imparted
TS Maintain Schedule Training Schedule

Maintained
TS Arrange Training Training Arranged

Vol Provide Confirmation Confirmation Pro-
vided

Vol Participate in Training Participated in Train-
ing

Vol Acquire Training Skills Training Skills Ac-
quired

Table-1: Annotation of tasks with effects.
 The second segment of the model annotation involves

annotating dependencies with fulfilment conditions that
relate to required effects in the i* model. The following
table depicts the dependency among the actors and their
fulfilment condition to meet the dependencies in the
Training System model.

Dependency Fulfillment Condition

Training Content TC: Training Content Generated
Training Schedule TS: Scheduled Training
Confirmation Vol: Confirmation Provided
Username & Pass-
word

TS: Username & Password Created

Training Schedule
Reminder

TS: Training Schedule Reminded

Online Training
Conducted

TS: Training Conducted

Training Lesson TS: Training Lesson provided

Training Informa-
tion

TS: Training Information Provided

Conduct Training TS: Training Arranged
Training Attended Vol: Acquired Training Skills

Table -2: Annotation of dependencies with fulfilment
conditions
Step 2: Propagate fulfilment conditions in i* models to
task assigned to dependee and depender actors
 The analysis of dependency proliferate effect annota-
tions of dependencies into tasks that realise/require the
fulfilment conditions. The task that realizes the depend-
ency obtains the effect annotation as a required post and
task requiring the dependency obtains the effect annota-
tions as a required pre-condition. The following table
illustrates the dependency with the fulfilment conditions
and tasks that realize/require condition.
Dependency Fulfilment

Condition
Task –

Realizes
Fulfilment
Condition

Task –
Requires

Fulfilment
Condition

Training
Content

TC: Train-
ing Con-
tent Gen-
erated

TC: Gener-
ate Training
Content

TS: Impart
Training

Training
Scheduled

TS:
Schedule
Training

TS: Main-
tain Sched-
ule

TC: Let
Training
System
Schedule
Training

Confirmation Vol: Con-
firmation
Provided

Vol: Provide
Confirma-
tion

TS: Obtain
Confirma-
tion

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

Username &
Password

TS: User-
name &
Password
Created

TS: Create
& Forward
User Access
Info

Vol: Par-
ticipate in
Training

Training
Schedule
Reminder

TS: Train-
ing Sched-
ule Re-
minded

TS: Main-
tain Sched-
ule

Vol: Par-
ticipate in
Training

Online Train-
ing Con-
ducted

TS: Train-
ing Con-
ducted

TS: Impart
Training

TC: Or-
ganize
Training

Training
Lesson

TS: Train-
ing Lesson
provided

TS: Impart
Training

Vol: Par-
ticipate in
Training

Training
Information

TS: Train-
ing Infor-
mation
Provided

TS: Arrange
Training

Vol: Par-
ticipate in
Training

Conduct
Training

TS: Train-
ing Con-
ducted

TS: Arrange
Training

Vol: Par-
ticipate in
Training

Training
Attended

Vol: Ac-
quired

Training
Skills

TC: Organ-
ize Training

Vol: Ac-
quired

Training
Skills

Table-3: Tasks that Realizes/Requires the fulfilment
conditions
 Now we have the effect annotations for the intentional
elements such as goals, resources and tasks. The depend-
ency analysis will recognize the pre/post conditions of the
elements. Below is an illustration of the fulfilment condi-
tion propagation of the Training System Model in Table 4.

Task Effect Annotation Required Pre
TC: Let
Training
System

Schedule
Training

Training System
Schedule Training

TC: Organize
Training Schedule

TC: Generate
Training
Content

Training Material
Generated

TC: Conduct a
computer based

training
TC: Organize

Training
Training Organ-

ized
TS: Impart Training

TS: Obtain
Confirmation

Confirmation
obtained

Vol: Provide Con-
firmation

TS: Create &
Forward User
Access Info

User Name &
Password created

TS: Arrange Train-
ing

TS: Impart
Training

Training Imparted TC: Generate
Training Content

TS: Maintain
Schedule

Training Schedule
Maintained

TC: Let Training
System Schedule

Training
TS: Arrange Training Arranged TC: Organise

Training Training
Vol: Provide
Confirmation

Confirmation
Provided

None

Vol: Partici-
pate in Train-

ing

Participated in
Training

TS: Create & For-
ward User Access

Info
TS: Training Les-

son
TS: Training

Schedule Reminder
TS: Training In-

formation
TS: Conduct

Training
Vol: Acquire

Training
Skills

Training Skills
Acquired

Vol: Attend Train-
ing

Table-4: Propagation of Fulfilment conditions to respec-
tive tasks
5.3 Phase-2: Mapping Rules
Rule-1: Discover the actors and represent them in activity
diagram
 We should go through the i* model to discover the
actors. This step can be completed by looking at either SD
model or SR models. Once the actors are found they will be
placed as the names of the swimlanes of the activity dia-
gram. We prefer using swimlanes pattern of the activity
diagram as they are used to organize responsibilities for the
actions. They can often correspond to organisational units
in a business process model. Each swimlane represents a
high level responsibility for part of the overall activity of
an activity diagram. Every activity will belong to exactly
one swimlane, but transitions may cross lanes.
For example, to discover the actors in the CBT system, we
can look at the SD model in figure 1. From the SD model
we get three actors, Training Coordinator, Training Sys-
tem and Volunteer. When we map the i* model into UML
activity diagram, these actors are represented in the
swimlanes to show the responsibilities of each actor (for
each actions) associated with the overall system
Rule -2: Discover task/ actions
 In this step we need to identify the tasks involved in the
system. SR model of the i* diagram shows the internal
tasks and their rationales. For each actor, the SR model will
be analysed to discover the tasks. In our methodology
identification of tasks/actions and their effects has been
analysed in the effect annotation part. We will take the
tasks from table-1 for the mapping and then categorize
them according to the actors.
 We can discover the task of the CBT system by looking
at its SR model. This model represents all internal tasks
and their rationales. From table-1 we get the complete list
of tasks with their effect annotations. Tasks in i* model
will be regarded as actions in activity diagram. Thus
TrainingCoordinator has GenerateTrainingContent,

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

LetTrainingSystemScheduleTraining and OrganiseTrain-
ing actions, TrainingSystem has ObtainConfirmation,
Create&ForwardUserAcessInfo, MaintainSchedule,
ImpartTraining and ArrangeTraining actions, and Volun-
teer has ProvideConfirmation, ParticipateInTraining and
AcquireTrainingSkills actions.
Rule -3: Identify the Initiating Actor
 Among the discovered actors we need to find the initi-
ating actor. This actor will be responsible for the initial
action in the activity diagram. The initiating actor can be
identified through their ability to satisfy the pre-condition
with an action that realizes the required effect. The initial
actor will be represented in the first swimlane of the ac-
tivity diagram.
 There are three actors in the CBT system. To find the
initiating actor, we need to analyse the actions, their effect
annotations, required pre-condition and fulfilment condi-
tions. By going through these we can conclude that
TrainingCoordinator is the initiating actor which has the
ability to satisfy the pre-condition of conducting a com-
puter based training by triggering the action LetTraining-
SystemScheduleTraining. TrainingCoordinator actor will
be placed in the first swimlane of the activity diagram.
Rule -4: Sequence actions by analysing pre/post conditions
derived during annotation
 The tasks required for the fulfilment of the trigger con-
dition for the course of action will be chosen initially and
placed as action within the initiating actor’s swimlane in
UML activity diagram. After the fulfilment of the
pre-condition, the post-condition must be satisfied through
the interaction of multiple actors, and the execution of their
assigned tasks. These tasks are mapped to activity diagram
as actions and placed in the respective swimlanes that
represents the controlling actors. The sequencing for
actions is a guided task by identifying the required actions
and dependencies in order to achieve the operational goal.
For the CBT system we will start from the initiating actor
that initiates the first action. The initiating action is Let-
TrainingSystemScheduleTraining, so it is placed in the
TrainingCoordinator’s swimlane. After fulfilment of the
pre-condition of this action, the post-conditions will be
satisfied through the execution of one or more actions with
the interaction of other actors. Thus, we get Gener-
ateTrainingContent and MaintainSchedule actions and so
on.
Rule -5: Discover dependencies and represent them in
activity diagram
 It is very straightforward to discover dependencies
among actors from i* model. We can get the dependencies
from SD or SR models. We shall then represent goal, task
and resource dependencies as objects in the activity dia-
gram. The actions will specify which objects perform its
operation and their states. The actions within a swimlane
can be handled by the same objects or multiple objects.
Softgoal dependency in i* model is considered as a

non-functional requirement of the system, which has a
positive or negative contribution for achieving, accom-
plishing a goal, task, resource. For this reason, softgoal
dependency will not represent an object.

Figure-3: UML Activity Diagram Derived Using the
Methodology
We have a total of eleven dependencies in CBT system

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

including one softgoal dependency TrainingCon-
tentEasyToUse. All these dependencies except the goal
dependency will be represented as objects. For example the
resource dependency TrainingContent will be the object
for GenerateTrainingContent and ObtainConfirmation.
The state of the object TrainingContent in this case will be
[Generated].
Rule -6: Introduce required actions and object flow links
between swimlanes
 The final step includes introducing required actions and
objects flow links between actions. The actions will be
linked according to their sequence and then flow links will
be represented among them which will include the objects
and their states. In this step we need to consider the
decision points of the activities if there is any. Decision
points reflect the previous activity state. On each outgoing
transition from decision points, we should cover all possi-
bilities.
 In this step we represent all the actors and their respec-
tive actions with actions and object flow links. The activity
ProvideConfirmation in Volunteer swimlane renders a
decision point. It has two guards, [provided] and [not
provided], which directs the action links accordingly.

7. Conclusions
 In this paper we have presented a consistent methodol-
ogy to support the mapping of early phase requirement
modeling notation i* into UML activity diagram. The
methodology supports the mapping of these two otherwise
disparate approaches in a synergistic fashion. We can now
analyze the system’s behavior and explain the workflow
from an initiating point to the terminating point which is
otherwise not possible by only looking at the i* model and
activity diagram separately. When proposing the mapping
of two otherwise disparate approaches for requirements
engineering, we need to maintain consistency between the
two approaches. Effect annotations and mapping rules can
be viewed as providing semantics to the i* diagrams while
mapping into activity diagram of UML specifications, a
language which already has one. We believe that these
semantics are largely consistent with the somewhat im-
plicit semantics for i*. The proposed set of mapping rules
constrains the modeler to map the elements of the i* model
to appropriate activity diagram and ensures that the two
models are consistent.
 We have not however investigated the possibility of
articulating semantic consistency constraints between i*
models and activity diagrams. We have not focused on the
reflection of changes in one model into another. There are
sixteen categories of changes that may occur to an i*
model [8]. We need to localize these changes to maintain
consistency. Further research is needed to relate
non-functional requirements (NFRs) with functional
requirements of the system [3] [4].

REFERENCE
[1] Booch G., Jacobson I., and Rumbaugh J. (1999) The

Unified Modeling Language User Guide, AddisonWesley.
[2] Castro J., Kolp M., and Mylopoulos J. (2002) Towards

Requirements Driven Information Systems Engineering:
The Tropos Project. Information Systems, Elsevier, Am-
sterdam, The Netherlands.

[3] Chung, L. (1993) Representing and Using Non - Func-
tional Requirements for Information System Development.
A ProcessOriented Approach. PhD Thesis, Graduate De-
partment of Computer Science, Toronto, University of To-
ronto.

[4] Chung, L., Nixon, B., Yu, E., Mylopoulos, J. (2000)
Non-Functional Requirements in Software Engineering.
Kluwer Academic Publishers, pp. 472.

[5] Davis, I., Green, P., Rosemann, M., Gallo,S. (2004) Con-
ceptual Modeling – What And Why in Current Practice. In:
Lecture notes in Computer Science, Volume 3288, 30 – 42.

[6] Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.
(2001) Model checking early requirements specifications
in Tropos. Proceedings of Fifth IEEE International Sym-
posium on Requirements Engineering, Toronto, Canada,
August 27-31, pp. 174 -181.

[7] Fuxman, A. Liu, L. Mylopoulos, J. Pistore, M. Roveri, M.
Traverso, P. (2004) “Specifying and analyzing early re-
quirements in Tropos,” Requirements Engineering,
Springer London, Volume 9, Issue 2, 132 – 150.

[8] Krishna A., Ghose A., and Vilkomir S. (2004)
Co-Evolution of Complementary Formal and Informal
Requirements, Proceedings of 7th International Workshop
on Principles of Software Evolution (IWPSE'04), Septem-
ber 06 - 07, Kyoto, Japan, pp. 159-164.

[9] Larman, Craig (1998). Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design,
Prentice Hall. Upper Saddle River, NJ.

[10] Martin Fowler, Kendall Scott: UML Distilled Addison
Wesley 2000.

[11] [UML2.0] (2004) – OMG UML Specification v. 2.0,
available at http://uml.org/

[12] Vilkomir S., Ghose A. and Krishna A., (2004) Combining
agent-oriented conceptual modeling with formal methods,
Proceedings of 15th Australian Software Engineering
Conference (ASWEC 2004), Melbourne, Australia, IEEE
Computer Society, pp. 147-157.

[13] Wang, X., Lesprance, Y. (2001) Agent-Oriented Require-
ments Engineering Using ConGolog and i*. Proceedings
of 3rd International Bi-Conference Workshop
Agent-Oriented Information Systems (AOIS 2001), Berlin,
Germany, pp. 59-78.

[14] Yu, E. (1995) Modeling Strategic Relationships for Proc-
ess Reengineering. PhD Thesis, Graduate Department of
Computer Science, University of Toronto, Toronto, Canada,
pp. 124.

[15] Yu, E. (1997) Towards Modeling and Reasoning Support
for Early Phase Requirements Engineering. Proceedings of
the 3rd IEEE International Symposium on Requirements
Engineering (RE'97), Washington D.C., USA. pp.
226-235.

31st Annual International Computer Software and Applications Conference(COMPSAC 2007)
0-7695-2870-8/07 $25.00 © 2007

	Integration of Agent-Oriented Conceptual Models and UML Activity Diagrams Using Effect Annotations
	Recommended Citation

	Integration of Agent-Oriented Conceptual Models and UML Activity Diagrams Using Effect Annotations
	Abstract
	Disciplines
	Publication Details

	tmp.1212450868.pdf.Wy8UO

