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On the Internal Structure of ALPHA-MAC

Jianyong Huang, Jennifer Seberry and Willy Susilo

University of Wollongong, Wollongong NSW 2522, Australia
{jyh33, jennie, wsusilo}@uow.edu.au

Abstract. ALPHA-MAC is a MAC function which uses the building
blocks of AES. This paper studies the internal structure of this new
design. First, we provide a method to find second preimages based on the
assumption that a key or an intermediate value is known. The proposed
searching algorithm exploits the algebraic properties of the underlying
block cipher and needs to solve eight groups of linear functions to find
a second preimage. Second, we show that our idea can also be used to
find internal collisions under the same assumption. We do not make any
claims that those findings in any way endanger the security of this MAC
function. Our contribution is showing how algebraic properties of AES
can be used for analysis of this MAC function.

1 Introduction

Hash functions play an important role in many areas of cryptography. The build-
ing of hash functions has received extensive work over the years, for example,
the design of MD4 [17], MD5 [18], SHA-0 [3] and SHA-1 [2]. On the other hand,
the cryptanalysis of hash functions has been carried out by many researchers, for
instance, recent attacks on MD4, MD5, SHA-0 and SHA-1 [6, 7, 10, 14, 19–22].
Message Authentication Codes (MACs) are keyed hash functions that provide

message integrity by appending a cryptographic checksum to a message which is
verifiable only by the intended recipient of the message. Message authentication
is one of the most important ways of ensuring the integrity of information, and it
has been used in many practical applications. MAC functions take a secret key
and a message as input and generate a short digest as output. Many research
groups have presented various approaches to construct MAC functions, for ex-
ample, MAA [13], CBC-MAC [15], UMAC [9], MDx-MAC [16] and HMAC [4,
5].
The ALRED [11] construction is a new MAC design approach presented at

FSE 2005. ALPHA-MAC [11] is a specific instance of the ALRED construction
with AES [1] as the underlying block cipher. The reason why AES was chosen
as the underlying block cipher of the ALPHA-MAC is because AES is efficient
in hardware and software and it has withstood intense public scrutiny since its
publication as Rijndael [12].
In this paper, we study the internal structure of the ALPHA-MAC by employ-

ing the algebraic properties of AES and the structural features of the ALPHA-
MAC. First, we present a method to find second preimages of the ALPHA-MAC



by solving eight groups of linear functions, based on the assumption that an au-
thentication key or an intermediate value of this MAC is known. Each of these
eight groups of linear functions contains two equations. We divide the second-
preimage search algorithm into two steps: the Backwards-aNd-Forwards (BNF)
search and the Backwards-aNd-Backwards (BNB) search. The BNF search pro-
vides an idea for extending 32-bit collisions to 128-bit collisions1 by solving four
groups of linear functions. Given a key (or an intermediate value) and one four-
block message, the BNB search can generate another four-block message such
that these two messages produce 32-bit collisions, which are a prerequisite for
the BNF search. To do the BNB search, we need to solve another four groups of
linear functions. By combining the BNB search with the BNF search, we can find
second preimages of ALPHA-MAC. Second, we show that the second-preimage
finding method can also be used to generate internal collisions. The proposed
collision search method can find two five-block messages such that they produce
128-bit collisions under a selected key (or a selected intermediate value).

This paper is organized as follows: Section 2 provides a description of the
ALPHA-MAC, and Section 3 presents the second-preimage search algorithm. Sec-
tion 4 shows how to generate internal collisions and finally, Section 5 concludes
this paper. Appendix A includes our experimental results.

2 A Brief Description of ALPHA-MAC

ALPHA-MAC [11] is a MAC function which uses the building blocks of AES.
Similarly to AES, the ALPHA-MAC supports keys of 128, 192 and 256 bits. The
word length is 32 bits, and the injection layout places the 4 bytes of each message
word [m0, m1, m2, m3] into a 4 × 4 array. The format of the injection layout is
shown as follows:











m0 0 m1 0

0 0 0 0

m2 0 m3 0

0 0 0 0











.

Like AES, the ALPHA-MAC round function contains SubBytes (SB), ShiftRows
(SR), MixColumns (MC) and AddRoundKey (ARK) , and the output of each in-
jection layout acts as the corresponding 128-bit round key. The message padding
method appends a single 1 followed by the minimum number of 0 bits such that
the length of the result is a multiple of 32. In the initialization, the state is set to
all zeros and AES is applied to the state. For every message word, the chaining
method carries out an iteration, and each iteration maps the bits of the message
word to an injection input. After that, a sequence of AES round functions are
applied to the state, with the round keys replaced by the injection input. In the
final transformation, AES is applied to the state. The MAC tag is the first lm
bits of the resulting final state. The length of lm may have any value less than
or equal to 128. The ALPHA-MAC function is depicted in Figure 1.

1 Here and in the rest of this paper “collisions” stands for “internal collisions”
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Fig. 1. ALPHA-MAC construction

3 The Second-Preimage Search Algorithm

The proposed second-preimage search algorithm aims to find a five-block second-
preimage M̃ for a selected five-block message M , under a selected key (or a
selected intermediate value). The assumption of this search is that we know two
values: a selected key (or a selected intermediate value) and a selected five-block
messageM . The result of the search is thatM and M̃ generate the same 128-bit
value after five rounds of ALPHA-MAC iterations, under the selected key (or the
selected intermediate value).
We use Figure 2 to illustrate the second-preimage search. Figure 2 depicts

five consecutive rounds of the ALPHA-MAC for two different five-block messages
M and M̃ . We assume that we are able to select an intermediate value2 3 of the
Round functions in some round (e.g., in Round y − 3), and select five consecutive

2 The intermediate value is:










a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15











.

3 In the case of a selected key, for the sake of simplicity, we assume that (My−3,
My−2,My−1,My,My+1) are the first five blocks of the selected message. Our search
algorithm works without assuming that (My−3, My−2, My−1, My, My+1) are the
first five blocks of the selected message.



message blocks M(My−3, My−2, My−1, My, My+1). Then we can find another

five-block message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) such that these two five-
block messages collide on 128 bits in Round y + 1 after ARK.

The second-preimage search algorithm has the following form:

Known: 1. a selected key or a selected intermediate value.

2. a selected five-block message M(My−3, My−2, My−1, My, My+1).

Find: another five-block message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) such

that M and M̃ collide on 128 bits after ARK in Round y + 1.

Method: solve eight groups of linear functions. These eight groups of functions

are named as (1), (2), (3), (4), (5), (6), (7) and (8) in this section.

The second-preimage search algorithm consists of two steps: the Backwards-
aNd-Forwards search and the Backwards-aNd-Backwards search. The BNF search
can extend 32-bit collisions to 128-bit collisions, given two messages M and M̃
which collide on 32 bits, namely Bytes s4, s12, s6 and s14, after MC in round y
(see Figure 2). Given a key (or an intermediate value) and one four-block mes-
sage, the BNB search is able to find another four-block message such that these
two messages collide on Bytes s4, s12, s6 and s14 after MC in Round y. The BNB
search generates those 32-bit collisions which are required for the BNF search.
By merging the BNB search with the BNF search, we can find second preimages
of the ALPHA-MAC.

3.1 The Backwards-aNd-Forwards Search

The Backwards-aNd-Forwards search has the following form:

Known: 1. a selected key or a selected intermediate value.

2. two four-block messages M(My−3, My−2, My−1, My) and M̃(M̃y−3,

M̃y−2, M̃y−1, M̃y) colliding on 32 bits (Bytes s4, s12, s6 and s14) after

MC in Round y.

Extend: 32-bit collisions to 128-bit collisions in Round y + 1.

Method: solve four groups of linear functions. These four groups of functions are

numbered as (1), (2), (3) and (4) in this subsection.

The BNF search assumes that we are able to find two messagesM and M̃ , which
collide on Bytes s4, s12, s6 and s14 after MC in round y. Based on the algebraic
property of the MixColumns transformation and the structure of ALPHA-MAC,
we can extend these 32-bit collisions to 128-bit collisions within three rounds by
solving four groups of linear equations.

3.1.1 Extending 32-bit Collisions to 64-bit Collisions We use the dif-
ferential XOR property [8] before and after the MixColumns transformation.
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ĩ3

ĩ2
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ĩ7

ĩ6
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ĩ11
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ñ12

MC
−→

w̃3

w̃2

w̃1

w̃0

w̃7

w̃6

w̃5

w̃4

w̃11

w̃10

w̃9

w̃8

w̃15

w̃14

w̃13

w̃12
(M̃y+1)
ARK
−→

w̃3

w̃∗

2

w̃1

w̃∗

0

w̃7

w̃6

w̃5

w̃4

w̃11

w̃∗

10

w̃9

w̃∗

8

w̃15

w̃14

w̃13

w̃12

Fig. 2. The five-block collisions



In Round y before MC, by XORing those two intermediate values, we get the
following result:

















j̃0 ⊕ j0 j̃4 ⊕ j4 j̃8 ⊕ j8 j̃12 ⊕ j12

j̃1 ⊕ j1 j̃5 ⊕ j5 j̃9 ⊕ j9 j̃13 ⊕ j13

j̃2 ⊕ j2 j̃6 ⊕ j6 j̃10 ⊕ j10 j̃14 ⊕ j14

j̃3 ⊕ j3 j̃7 ⊕ j7 j̃11 ⊕ j11 j̃15 ⊕ j15

















MC
−→

















? 0 ? 0

0 s̃5 ⊕ s5 0 s̃13 ⊕ s13

? 0 ? 0

0 s̃7 ⊕ s7 0 s̃15 ⊕ s15

















.

Here, we use R (to replace j̃0⊕j0), S (to replace j̃8⊕j8), T (to replace j̃2⊕j2)
and U (to replace j̃10 ⊕ j10) so that after the MC transformation in Round y,
Bytes s̃1 ⊕ s1, s̃3 ⊕ s3, s̃9 ⊕ s9 and s̃11 ⊕ s11 become zero. Now the question is
“how to decide R, S, T and U”. The answer is:

– There exists one and only one pair of (R, T ) such that after MC, Bytes
s̃1 ⊕ s1 and s̃3 ⊕ s3 are both zero.

– There exists one and only one pair of (S, U) such that after MC, Bytes
s̃9 ⊕ s9 and s̃11 ⊕ s11 are both zero.

According to the MC transformation, we have the following formula:
















? 0 ? 0

0 s̃5 ⊕ s5 0 s̃13 ⊕ s13

? 0 ? 0

0 s̃7 ⊕ s7 0 s̃15 ⊕ s15

















=

















02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

































R j̃4 ⊕ j4 S j̃12 ⊕ j12

j̃1 ⊕ j1 j̃5 ⊕ j5 j̃9 ⊕ j9 j̃13 ⊕ j13

T j̃6 ⊕ j6 U j̃14 ⊕ j14

j̃3 ⊕ j3 j̃7 ⊕ j7 j̃11 ⊕ j11 j̃15 ⊕ j15

















.

To find out the values of (R, T ) and (S, U), we need to solve the following
two groups of equations.
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01 02 03 01
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[

03 01 01 02

]





















S

j̃9 ⊕ j9

U

j̃11 ⊕ j11





















= 0

(2)

In the two equations in (1), there are two variables R and T , and therefore
there exists one and only one pair of (R, T ) to make these two equations hold
simultaneously. Similarly, we can decide the values of S and U by solving the
two equations in (2).
Once we get the values of R, S, T and U , message block M̃y−1 can be

constructed as follows:



1. Set the values of j̃new0 , j̃new8 , j̃new2 and j̃new10 as follows: j̃new0 = j0 ⊕ R,
j̃new8 = j8 ⊕ S, j̃new2 = j2 ⊕ T , and j̃new10 = j10 ⊕ U . Use j̃new0 to replace j̃0,
j̃new8 to replace j̃8, j̃

new
2 to replace j̃2, and j̃

new
10 to replace j̃10.

2. Perform SR−1 (inverse ShiftRows) and SB−1 (inverse SubBytes). As SR−1

and SB−1 are permutation and substitution, they do not change the prop-
erties we have found. Now we have the outputs of ARK in Round y − 1.

3. Compute the value of M̃new
y−1 as follows:

M̃new
y−1 = (j̃

new
0 ⊕ ĩ0)||(j̃

new
8 ⊕ ĩ8)||(j̃

new
10 ⊕ ĩ2)||(j̃

new
2 ⊕ ĩ10).

Use M̃new
y−1 to replace M̃y−1.

At this stage, two messages (My−3, My−2, My−1) and (M̃y−3, M̃y−2, M̃
new
y−1 )

collide on 64 bits (Bytes s4, s12, s6, s14, s1, s9, s3 and s11) in Round y after
MC.

3.1.2 Extending 64-bit Collisions to 96-bit Collisions We only need to
focus on Round y and Round y+1 to extend 64-bit collisions to 96-bit collisions.
The idea is to choose message block M̃y to cancel out the differences between
Bytes (s5, s13, s7, s15) and Bytes (s̃5, s̃13, s̃7, s̃15) in Round y. The method of
choosing M̃y is exactly same as the method for constructing M̃y−1 in Section
3.1.1.
By taking the outputs of ARK in Round y, we perform the SB and SR

operations, and then XOR the results after SB and SR:

















n0 n4 n8 n12

n1 n5 n9 n13

n2 n6 n10 n14

n3 n7 n11 n15
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ñ0 n4 ñ8 n12

ñ1 n5 ñ9 n13

ñ2 n6 ñ10 n14

ñ3 n7 ñ11 n15

















=

















n0 ⊕ ñ0 0 n8 ⊕ ñ8 0

n1 ⊕ ñ1 0 n9 ⊕ ñ9 0

n2 ⊕ ñ2 0 n10 ⊕ ñ10 0

n3 ⊕ ñ3 0 n11 ⊕ ñ11 0

















MC
−→

















? 0 ? 0

0 0 0 0

? 0 ? 0

0 0 0 0

















.

Here we use π to replace n0⊕ ñ0, ρ to replace n8 ⊕ ñ8, φ to replace n2 ⊕ ñ2 and
ω to replace n10⊕ ñ10 so that after MixColumns in Round y+1, Bytes w1⊕ w̃1,
w9 ⊕ w̃9, w3 ⊕ w̃3 and w11 ⊕ w̃11 are zero:

















π 0 ρ 0

n1 ⊕ ñ1 0 n9 ⊕ ñ9 0

φ 0 ω 0

n3 ⊕ ñ3 0 n11 ⊕ ñ11 0

















MC
−→

















? 0 ? 0

0 0 0 0

? 0 ? 0

0 0 0 0

















.

Now the question is “how to decide π, ρ, φ and ω”. The answer is:

– There exists one and only one pair of (π, φ) such that after MC, Bytes
w1 ⊕ w̃1 and w3 ⊕ w̃3 are both zero. The values of (π, φ) can be decided by
solving (3).



– There exists one and only one pair of (ρ, ω) such that after MC, Bytes
w9 ⊕ w̃9 and w11 ⊕ w̃11 are both zero. By solving (4), we get the values of
(ρ, ω).







































































































[
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n3 ⊕ ñ3





















= 0

[

03 01 01 02
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(3)
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ρ

n9 ⊕ ñ9

ω

n11 ⊕ ñ11





















= 0
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03 01 01 02
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ρ

n9 ⊕ ñ9

ω

n11 ⊕ ñ11





















= 0

(4)

Once we know the values of π, φ, ρ and ω, message block M̃y can be chosen
as follows:

1. Set the values of ñnew0 , ñnew8 , ñnew2 and ñnew10 as follows: ñnew0 = n0⊕π, ñ
new
8

= n8⊕ ρ, ñnew2 = n2⊕φ, and ñnew10 = n10⊕ω. Use ñnew0 to replace ñ0, ñ
new
8

to replace ñ8, ñ
new
2 to replace ñ2, and ñ

new
10 to replace ñ10.

2. Perform SR−1 and SB−1. Since SR−1 and SB−1 are permutation and sub-
stitution, they do not affect the properties we have found. Now we have the
outputs of ARK in Round y.

3. Compute the value of M̃y as follows:

M̃y = (ñ
new
0 ⊕ s̃0)||(ñ

new
8 ⊕ s̃8)||(ñ

new
10 ⊕ s̃2)||(ñ

new
2 ⊕ s̃10).

So far, two messages (My−3, My−2, My−1, My) and (M̃y−3, M̃y−2, M̃
new
y−1 , M̃y)

collide on 96 bits (i.e., Bytes w1, w3, w4, w5, w6, w7, w9, w11, w12, w13, w14 and
w15) in Round y + 1 after MC transformation.

3.1.3 Extending 96-bit Collisions to 128-bit Collisions This step is
straightforward as we can select message My+1 arbitrarily, and construct mes-

sage M̃y+1 to cancel the differences between Bytes w0, w8, w2 and w10. The
construction is provided as follows:

M̃y+1 = ((w0 ⊕ w̃0)||(w8 ⊕ w̃8)||(w2 ⊕ w̃2)||(w10 ⊕ w̃10))⊕My+1.

3.2 The Backwards-aNd-Backwards Search

The Backwards-aNd-Backwards search has the following form:



Known: 1. a selected key or a selected intermediate value.

2. one selected four-block message M(My−3, My−2, My−1, My).

Find: another four-block message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y) such that

these two messages collide on 32 bits (Bytes s4, s12, s6 and s14) after

MC in Round y.

Method: solve four groups of linear functions. These four groups of functions are

named as (5), (6), (7) and (8) in this subsection.

We propose a method to find 32-bit collisions on Bytes s4, s12, s6 and s14 (see
Figure 2) by solving four groups of linear functions. This search assumes that
for a selected key (or a selected intermediate value) and a selected four-block
message (My−3,My−2,My−1,My), we can generate another four-block message

(M̃y−3, M̃y−2, M̃y−1, M̃y) such that these two messages collide on Bytes s4, s12,
s6 and s14 after MC in Round y. The method used by the BNB search is similar
to the idea employed by the BNF search, but works in only one direction (i.e.,
only backwards).

3.2.1 Deciding Four Values (j̃5, j̃7, j̃13 and j̃15) In the beginning, we

choose (M̃y−3, M̃y−2, M̃y−1, M̃y) randomly. Assume that the input and the
output of MC in Round y are listed as follows:

















j̃0 j̃4 j̃8 j̃12

j̃1 j̃
old
5 j̃9 j̃old

13

j̃2 j̃6 j̃10 j̃14

j̃3 j̃
old
7 j̃11 j̃

old
15

















MC
−→

















s̃0 s̃4 s̃8 s̃12

s̃1 s̃5 s̃9 s̃13

s̃2 s̃6 s̃10 s̃14

s̃3 s̃7 s̃11 s̃15

















.

Now we do not use the values of j̃old5 , j̃old7 , j̃old13 or j̃old15 . Instead, we use j̃5
(to replace j̃old5 ), j̃7 (to replace j̃

old
7 ), j̃13 (to replace j̃

old
13 ), and j̃15 (to replace

j̃old15 ) such that we get values s4, s12, s6, and s14 on Bytes s̃4, s̃12, s̃6, and s̃14,
respectively (illustrated as follows):

















j̃0 j̃4 j̃8 j̃12

j̃1 j̃5 j̃9 j̃13

j̃2 j̃6 j̃10 j̃14

j̃3 j̃7 j̃11 j̃15

















MC
−→

















s̃0 s4 s̃8 s12

s̃1 s̃5 s̃9 s̃13

s̃2 s6 s̃10 s14

s̃3 s̃7 s̃11 s̃15

















.

Now the question is “how can we make this happen”. Our answer is to solve
two groups of linear functions. For the values of s4 and s6, we have two linear
equations in (5) with only two unknown variables (j̃5 and j̃7). Therefore, we can
solve (5) to obtain the values of j̃5 and j̃7.
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= s4
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01 01 02 03
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j̃7





















= s6

(5)
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j̃13
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j̃15





















= s12

[

01 01 02 03
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j̃12

j̃13

j̃14

j̃15





















= s14

(6)

Similarly, for the values of s12 and s14, we have two linear functions in (6)
with two unknown variables (j̃13 and j̃15). We can solve (6) to decide the values of
j̃13 and j̃15. After getting four values (j̃5, j̃7, j̃13, and j̃15) decided, we perform
the SR−1 and SB−1 transformations. As SR−1 is permutation and SB−1 is
substitution, j̃5, j̃7, j̃13, and j̃15 are first relocated then substituted by another
four values ĩ9, ĩ3, ĩ1, and ĩ11, respectively. As the message injection layout does
not change the values of ĩ9, ĩ3, ĩ1, and ĩ11, these four values are not changed
after we do ARK. So, we get four known values (̃i9, ĩ3, ĩ1, and ĩ11) after MC in
Round y − 1. Our next target is to modify message block M̃y−2 so that we get
those four values ĩ9, ĩ3, ĩ1, and ĩ11 after MC in Round y − 1.

3.2.2 Modifying Message Block M̃y−2 Suppose by using the original mes-

sage block M̃y−2, we have the following states in Round y − 1:

















g̃∗old
0 g̃4 g̃

∗old
8 g̃12

g̃1 g̃5 g̃9 g̃13

g̃∗old
2 g̃6 g̃

∗old
10 g̃14

g̃3 g̃7 g̃11 g̃15

















SB◦SR
−→

















h̃old
0 h̃4 h̃

old
8 h̃12

h̃1 h̃5 h̃9 h̃13

h̃old
2 h̃6 h̃

old
10 h̃14

h̃3 h̃7 h̃11 h̃15

















MC
−→

















? ĩ4 ? ĩ12

? ĩ5 ? ĩ13

? ĩ6 ? ĩ14

? ĩ7 ? ĩ15

















.

Now we replace values (h̃old0 , h̃old2 , h̃old8 , h̃old10 ) with (h̃0, h̃2, h̃8, h̃10) and then we
get those four values (̃i9, ĩ3, ĩ1, and ĩ11) located as follows:

















g̃∗0 g̃4 g̃∗8 g̃12

g̃1 g̃5 g̃9 g̃13

g̃∗2 g̃6 g̃
∗

10 g̃14

g̃3 g̃7 g̃11 g̃15

















SB◦SR
−→

















h̃0 h̃4 h̃8 h̃12

h̃1 h̃5 h̃9 h̃13

h̃2 h̃6 h̃10 h̃14

h̃3 h̃7 h̃11 h̃15

















MC
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? ĩ4 ? ĩ12

ĩ1 ĩ5 ĩ9 ĩ13

? ĩ6 ? ĩ14

ĩ3 ĩ7 ĩ11 ĩ15

















.

Based on the property of MC transformation, we can form the following two
groups of linear functions:
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(7)
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h̃11

























= ĩ11

(8)

We know the values of h̃1, h̃3, h̃9 and h̃11 from the original message block
M̃y−2. We can get the values of (h̃0, h̃2) by solving (7), and get the values of

(h̃8, h̃10) by solving (8). After finding the values of (h̃0, h̃2, h̃8, h̃10), we perform
SR−1 and SB−1, and obtain the corresponding four values (g̃∗0 , g̃

∗
2 , g̃

∗
8 , g̃

∗
10). Once

we know the values of (g̃∗0 , g̃
∗
2 , g̃

∗
8 , g̃

∗
10), we replace M̃y−2 with M̃

new
y−2 . M̃

new
y−2 is

constructed as follows (note that g̃0, g̃8, g̃2 and g̃10 are known from the message
block M̃y−3 in Round y − 3):

M̃new
y−2 = (g̃

∗

0 ⊕ g̃0)||(g̃
∗

8 ⊕ g̃8)||(g̃
∗

2 ⊕ g̃2)||(g̃
∗

10 ⊕ g̃10).

3.3 Combining the BNB Search with the BNF Search

The second-preimage search algorithm combines the BNB search with the BNF
search. To search for a second preimage of the ALPHA-MAC, we perform the
following steps:

1. Select a key or an intermediate value.
2. Select a five-block message M(My−3,My−2,My−1,My,My+1).

3. Generate the second preimage M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) randomly.

We need to guarantee that M̃y−3 is not equal to My−3.
4. Perform the BNB search to generate 32-bit collisions. The BNB search is
done by modifying message block M̃y−2.

5. Use the BNF search to extend those 32-bit collisions to 128-bit collisions.
The BNF search is carried out by modifying the values of M̃y−1, M̃y, and

M̃y+1. Message M̃(M̃y−3, M̃y−2, M̃y−1, M̃y, M̃y+1) is a second preimage of
message M(My−3, My−2, My−1, My, My+1) under the selected key (or the
selected intermediate value).

The routine of finding second preimages is shown in Table 1, and Figure
3 depicts this finding. The name of the BNB search comes from the fact that
searching for M̃y−2 is carried out by moving backwards and then backwards,

and the name of the BNF search comes from the fact that searching for M̃y−1,

M̃y and M̃y+1 is performed by moving backwards and then forwards (see Table



1). A personal computer takes about 1 second to find a second preimage of the
ALPHA-MAC. In Appendix A, we provide a second preimage of a selected key
and a selected five-block message.

Table 1. Second-preimage search = BNB search + BNF search

Search R Round y − 2 Di Round y − 1 Di Round y

BNB 1 ⇐ s̃4 ⇀ s4, s̃12 ⇀ s12, s̃6
⇀ s6, s̃14 ⇀ s14

2 ⇐ h̃old
0 ⇀ h̃0, h̃

old
2 ⇀ h̃2,

h̃old
8 ⇀ h̃8, h̃

old
10 ⇀ h̃10

3 M̃y−2 ⇀ M̃new
y−2

Round y − 1 Di Round y Di Round y + 1

BNF 4 modify M̃y−1 ⇐ collisions on s4, s12, s6
and s14

5 ⇒ collisions on s4, s12, s6,
s14, s1, s9, s3 and s11

6 modify M̃y ⇒ 96-bit collisions

7 modify M̃y+1 → 128-bit
collisions

Di - Direction

R - Routine

4 The Collision Search Algorithm

Known: a selected key or a selected intermediate value.

Find: two five-block messages M and M̃ such that they collide under the

selected key or the intermediate value.

Method: employ the second-preimage search.

In the second-preimage search, we choose the first five-block message arbitrar-
ily, and once it is decided, we do not modify it. All we need to do is modify
the second five-block message so that 128-bit collisions happen. Therefore, the
second-preimage search can also be used to find two colliding five-block messages
under a selected key (or a selected intermediate value).

5 Conclusions

In this paper, we have presented our analysis on the internal structure of ALPHA-
MAC. We proposed a method to find second preimages of the ALPHA-MAC
by combining the Backwards-aNd-Forwards search and the Backwards-aNd-
Backwards search, based on the assumption that a key or an intermediate value is
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Fig. 3. The second-preimage search

known. Our method employs the algebraic properties of AES and the structural
features of the ALPHA-MAC. To find a second preimage of the ALPHA-MAC, our
idea needs to solve eight groups of linear functions. We also showed that the
second-preimage finding method can be used to generate internal collisions.
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A A Found Second Preimage

For a selected key K (see Table 3) and a selected five-block message M (see
Table 2), a second preimage found by our algorithm is M̃ (shown in Table 2).
The 128-bit colliding value is listed in Table 4. Note that these two messages are
listed after injection layout.

Table 2. Two five-block messages

M (the selected message)

My−3 My−2 My−1 My My+1

c4 0 8c 0 e6 0 2a 0 77 0 fd 0 ef 0 a1 0 81 0 9f 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 f3 0 95 0 04 0 4c 0 37 0 68 0 09 0 25 0 2c 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M̃ (the found second preimage)

M̃y−3 M̃y−2 M̃y−1 M̃y M̃y+1

1d 0 43 0 22 0 04 0 e4 0 83 0 2f 0 e5 0 69 0 06 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1c 0 0d 0 2f 0 30 0 2f 0 9b 0 d4 0 30 0 f4 0 3a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. The selected key K

83 55 2d 81

88 2c 05 67

c1 63 be c2

2a a2 52 a4

Table 4. The 128-bit collisions

7d 69 88 d7

02 cb 1f af

b9 d8 7b 5e

0e 10 79 21
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