
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

1-1-2007 

Verifying semantic business process models in inter-operation Verifying semantic business process models in inter-operation 

George Koliadis 
University of Wollongong, gk56@uowmail.edu.au 

Aditya K. Ghose 
University of Wollongong, aditya@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Koliadis, George and Ghose, Aditya K.: Verifying semantic business process models in inter-operation 
2007. 
https://ro.uow.edu.au/infopapers/572 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F572&utm_medium=PDF&utm_campaign=PDFCoverPages


Verifying semantic business process models in inter-operation Verifying semantic business process models in inter-operation 

Abstract Abstract 
Process inter-operation is characterized as cooperative interactions among loosely coupled autonomous 
constituents to adaptively fulfill system-wide purpose. Issues of inconsistency can be anticipated in inter-
operating processes given their independent management and design. To reduce inconsistency (that may 
contribute to failures) effective methods for statically verifying behavioral interoperability are required. 
This paper contributes a method for practical, semantic verification of interoperating processes (as 
represented with BPMN models). We provide methods to evaluate consistency during process design 
where annotation of the immediate effect of tasks and sub-processes has been provided. Furthermore, 
some guidelines are defined against common models of inter-operation for scoping traceability to 
possible causes of inconsistency. This supports subsequent resolution efforts. 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
Koliadis, G. & Ghose, A. K. (2007). Verifying semantic business process models in inter-operation. In 
Proceedings of the 2007 IEEE International Conference on Services Computing SCC 2007, 9-13 Jul, 
731-738. USA: IEEE Computer Society Press. 

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/572 

https://ro.uow.edu.au/infopapers/572


Verifying Semantic Business Process Models
in Inter-operation

George Koliadis and Aditya Ghose
Decision Systems Laboratory

School of Computer Science and Software Engineering
University of Wollongong (UOW)
{gk56, aditya}@uow.edu.au

Abstract

Process inter-operation is characterized as coopera-
tive interactions among loosely coupled autonomous con-
stituents to adaptively fulfill system-wide purpose. Issues
of inconsistency can be anticipated in inter-operating pro-
cesses given their independent management and design. To
reduce inconsistency (that may contribute to failures) effec-
tive methods for statically verifying behavioral interoper-
ability are required. This paper contributes a method for
practical, semantic verification of interoperating processes
(as represented with BPMN models). We provide methods
to evaluate consistency during process design where anno-
tation of the immediate effect of tasks and sub-processes
has been provided. Furthermore, some guidelines are de-
fined against common models of inter-operation for scop-
ing traceability to possible causes of inconsistency. This
supports subsequent resolution efforts.

1. Introduction

The goal of system inter-operation is independent com-
ponent evolution, while still maintaining each components
ability to interact efficiently and conveniently [17]. Interop-
eration (between systems) is defined as “cooperative inter-
actions among loosely coupled autonomous constituents to
adaptively fulfill system-wide purpose” [3]. Additionally,
[13] defines interoperability as the“effective capability of
mutual communication of information, proposals and com-
mitments, requests and results (including exceptions)”.

Successful inter-operation is characterized [3] as requir-
ing: common purpose; sufficient cooperation; minimal con-
strain; and, consistency of action among constituents in
order to achieve required product and service outcomes.
These outcomes are enabled via “emergent effects [arising
from cumulative action and interaction] that produce the de-

sired global properties in continuously changing situations”
[3]. Changing situations may arise given: the autonomy
of the inter-operating entities; the independent management
and design of their activities; and, changing environmental
influences (e.g. regulatory, cultural).

Current trends in business process inter-operation [13]
are moving toward unified and federated approaches requir-
ing rigorous support for: preserving participant autonomy;
failure tolerance / remediation; complex coordination be-
tween multiple existing (or new partners); and joint cross-
organizational process management at all architectural lev-
els. Furthermore, increased support for life-cycle functions
(i.e. operational, managerial and design) such as “facili-
ties for statically verifying behavioral interoperability and
preservation of information semantics in the collaboration”
are in need [13].

In this work we focus on problems arising via inconsis-
tent action. We propose a simple and practical approach
for static design-time verification of business process model
properties (represented in BPMN), annotated with addi-
tional semantic information in the form of effects. This al-
lows us to reveal accidental (or deliberate) design / imple-
mentation errors that may adversely affect inter-operation.
In most cases, these may not be identified due to the ‘high-
level’ nature of most business process models, leading to
implementation errors. In this approach, we cannot hope
to anticipate all errors as we are dependent on the amount
of information provided by analysts (as with other ap-
proaches). However, we believe many errors that may go
unnoticed will be identified given the accumulation of in-
formation within models (discussed in Section 2).

1.1. Related Work

Existing approaches to model checking rely on detailed
fine grained execution and interaction models [9] [10] [11]
[6]. That is, when working with high-level models at an
early phase of design (such as in the case of BPMN [26]),



adequate information with which to conduct effective model
checking may not be available (i.e. designed primarily by
business analysts in conversation with process participants).
These models may not include a rich state description as
modeled by Work-Flow Nets [22], and may include the in-
tegration of unbound (possibly nested) loops that may not
guarantee the generation of finite state models. Further-
more, many techniques employing model checking have
limited support for localizing errors and inconsistencies to
specific (or range of) elements on process models.

In [23], the consistency of UML models are managed
via an approach for [de]composing sound workflow nets
(via synchronization and projection). These nets are used
to model event transition in use cases and object lifecy-
cles. Process verification / validation is applied to these
integrated and detailed use case and object lifecycles.

In [25] describes an approach for checking semantic
integrity constraints within the narrative structure of web
documents. Description logic extensions to Computational
Tree Logic (CTL) are provided for specifying a formal
model of a documents conventions, criteria, structure and
content. Analyst annotations are applied to describe the
properties of specific document fragments with reference to
some background knowledge. Thus, the approach provides
the means to verify the semantic properties of a documents
content along narrative paths rather than just transitions be-
tween pages.

In [14] open workflow nets are used to analyze inter-
acting BPEL processes w.r.t. their controllability, and [27]
propose a structure and approach to track processes across
cross-organizational workflows. In addition, [15] propose a
method for verifying semantic properties of a process w.r.t.
execution traces once change operations have been applied,
and [5] describe approaches to verify process integration
operations. Finally, [12] describe an approach for develop-
ing UML sequence diagrams in a co-evolutionary manner
with agent-oriented conceptual models by including seman-
tic effect annotations.

Finally, Statecharts [7] provide a visual formalism for ef-
ficiently representing rich state-based system specifications.
Statecharts however, do not easily lend themselves for direct
use for verifying high-level processes, and as such we class
our approach (in comparison) as a lightweight and approxi-
mate means for achieving this purpose.

Specifically, we aim to provide a means to verify inter-
model properties when designed for inter-operation. As a
result it may be used in a stand-alone or complementary
manner with other techniques. Additionally, the informa-
tion collected during annotation will be valuable in support-
ing anticipated implementation of system components that
completely (or partially) automate process activities (e.g.
the development of a data model). Furthermore, the gen-
erality of our approach, based on a standard set of modeling

elements (inc. basic control flow constructs), makes it ap-
plicable in a wide range of applications and notations (with
close to minimal alteration). We describe our approach
with a focus toward supporting interoperability considera-
tions such as clarity of common purpose and managerial
and design independence. We illustrate the approach using
inter-operating business process models defined using the
Business Process Modeling Notation (BPMN) [26]. Incon-
sistencies are identified between accumulated effects, anno-
tated to state altering model elements.

Below, we provide a discussion of the business process
modeling notation, and standard modes of inter-operation
to be used. Section 2 then outlines our proposed model an-
notations and procedures. Section 3 provides illustration,
prior to concluding in Section 4.

1.2. Business Process Modeling

The Business Process Modeling Notation (BPMN) [26]
has received strong interest and support from tool ven-
dors as an open standard for modeling business processes.
BPMN is found to be of high maturity in representing the
concepts required for modeling business process, apart from
some limitations regarding the representation of process
state and possible ambiguity of the swim-lane concept [1].

Processes are represented in BPMN using flow objects:
events, activities, and decisions; connecting objects: con-
trol flow links, and message flow links; and swim-lanes:
pools, and lanes within pools. BPMN allows three (3) de-
grees of inter-operation to be modeled. Firstly, private (i.e.
or internal) business processes indicate no inter-operation
with external entities and processes. In this case, single pool
may be used to represent the organization or to delegate re-
sponsibility with swim-lanes . An abstract (i.e. or public)
business process on the other hand may include multiple
pools to support communication with abstract external en-
tities (i.e. no explicit external processes are shown). In the
third case, collaboration (i.e. or global) business processes
(as in Figures 2, 3) explicitly define the internal behavior of
all interoperating participants. Figure 3 illustrates a collab-
orative (inter-operational) Package Routing process.

1.3. Standard Modes of Interoperation

The Workflow Handbook [8] describes three main modes
of interoperation that are applicable to our current context.
Firstly, sequential (“chained” or “serial”) interoperation oc-
curs over a single / synchronization point following a se-
quential and uni-directional flow of control and information
between the two processes.

Next, nested inter-operation draws similarity with hierar-
chically structured sub-processes in that execution control is
passed to a subsequent inter-operating process with block-



Figure 1. Models of Process Inter-operation.

ing on the execution of the first. Furthermore, “the hier-
archic relationship may be continued across several levels,
forming a set of nested sub-processes” [8].

In the parallel case, “two processes operate essentially
independently. . . but requires that synchronization points
exist between the two processes. . . once the processes each
reach a predefined point” [8]. Therefore, corresponding ac-
tivities are synchronized, based on control or information
transfer requirements.

2. Using Model Annotations to Semantically
Verify Models of Interoperating Processes

Activities and Sub-Processes (i.e. represented in BPMN
as rounded boxes) signify a transition of state. Therefore,
the labeling of an activity (e.g. ‘Register New Customer’)
generalizes one or more normal/abnormal outcomes. In or-
der to improve the clarity and descriptive capability of pro-
cess models, we augment state altering nodes (i.e. atomic
activities and sub-processes) with effect annotations. This
parsimonious extension to the BPMN notation permits
modelers to annotate activities in a process model with a
richer specification of its immediate effects.

2.1. Effect Annotation

An effect is the result (i.e. product or outcome) of an
activity being executed by some cause or agent. An effect
annotation relates a specific result or outcome to an activity
on a business process model. It explicitly states a result of
the activity in its domain of execution. A causal relationship
exists between a process activity and an effect. An activity
can cause many effects, and an effect can be caused many
activities. Effects can be viewed as both: normative - as
they state required outcomes; and, descriptive in that they
describe the normal, and predicted, subset of all possible
outcomes.

When an analyst is annotating existing process mod-
els, the conditions labeling control-flows leaving a decision
gateway may provide some understanding of the effect of
a downstream activity. Effects may also refer to assump-
tions on how the immediate state of an observer (i.e. during
inter-operation) may change as a result of some informa-
tion / work item transfer. When implemented within a tool,
effects may be viewed on a business process model graphi-
cally, or added to activity metadata.

We recommend that informal annotations of effect be
applied as a first pass to ensure a rich expression of effects
and for ease of communication. Effect annotations can be
formal (for instance, in first order logic, possibly augmented
with temporal operators), or informal (such as simple En-
glish). Many of the examples we use in this paper rely on
formal effect annotations, but most of our observations hold
even if these annotations were in natural language. For ex-
ample, through the use of Controlled Natural Languages
(CNL) with grammar and vocabulary restrictions such as
in [16] [20] [4] [21]. Formal annotations (i.e. provided,
or derived from CNL) permit us to use automated reason-
ers, while informal annotations oblige analysts to check for
consistency between effects.

Effect annotations are formed in the indicative mood,
or as fact (e.g. Provided(Courier, Contract, Details, Un-
signed)). We have also employed some intuitive grammat-
ical and vocabulary constraint to the example effects illus-
trated in Section 3.

• Performs(Agent, Action, Object) - This signifies an
event that has occurred, which may be governed by
constraints that are specified in a domain ontology.

• Knows(Agent, Object, Property, Value) - This predi-
cate describes how a participants knowledge is updated
via the enactment of an activity.

An annotated BPMN model, for the purposes of this pa-
per, is one in which every task (atomic, loop, compensatory
or multi-instance) and every sub-process has been annotated
with descriptions of its immediate effects. We will now
describe a procedure for accumulating these effect annota-
tions to obtain a cumulative effect annotation for a complete
process. We will assume that formal annotations are avail-
able in describing this procedure. The procedure serves as
a methodology for analysts to follow if only informal anno-
tations are available. We assume that the effect annotations
have been represented in conjunctive normal form or CNF.
Simple techniques exist for translating arbitrary sentences
into the conjunctive normal form (e.g. [18]).

2.2. Effect Accumulation

We define a process for pair-wise effect accumulation,
which, given an ordered pair of tasks with effect annota-



tions, determines the cumulative effect after both tasks have
been executed in contiguous sequence.

Let 〈ti, tj〉 be the ordered pair of tasks, and let ei and
ej be the corresponding pair of effect annotations. Let
ei = {ci1, ci2, . . . , cim} and ej = {cj1, cj2, . . . , cjn} (we
can view CNF sentences as sets of clauses, without loss
of generality). If ei ∪ ej is consistent, then the result-
ing cumulative effect is ei ∪ ej . Else, we define e′

i =
{ck|ck ∈ ei and {ck} ∪ ej is consistent} and the resulting
cumulative effect to be e′

i ∪ ej . In other words, the cumula-
tive effect of the two tasks consists of the effects of the sec-
ond task plus as many of the effects of the first task as can be
consistently included. We remove those clauses in the effect
annotation of the first task that contradict the effects of the
second task. The remaining clauses are undone, i.e., these
effects are overridden by the second task. In the following,
we shall use acc(e1, e2) to denote the result of pair-wise ef-
fect accumulation of two contiguous tasks t1 and t2 with
effects e1 and e2.

Effects are only accumulated within participant lanes.
In addition to the effect annotation of each task, we anno-
tate each task t with a cumulative effect Et. Et is defined
as a set {es1, es2, . . . , esp} of alternative effect scenarios.
Alternative effect scenarios are introduced by OR-joins or
XOR-joins, as we shall see below. Cumulative effect an-
notation involves a left-to-right pass through a participant
lane. Tasks which are not connected to any preceding task
via a control flow link are annotated with the cumulative ef-
fect {e} where e is the immediate effect of the task in ques-
tion. We accumulate effects through a left-to-right pass of a
participant lane, applying the pair-wise effect accumulation
procedure on contiguous pairs of tasks connected via con-
trol flow links. The process continues without modification
over splits. Joins require special consideration. In the fol-
lowing, we describe the procedure to be followed in the case
of 2-way joins only, for brevity. The procedure generalizes
in a straightforward manner for n-way joins.

• AND-joins: Let t1 and t2 be the two tasks immedi-
ately preceding an AND-join. Let their cumulative
effect annotations be E1 = {ec11, ec12, . . . , ec1m}
and E2 = {ec21, ec22, . . . , ec2n} respectively (where
ecsc denotes an effect clause within an effect sce-
nario). Let e be the immediate effect annotation,
and E the cumulative effect annotation of a task t
immediately following the AND-join. We define E =
{acc(ec1i, e) ∪ acc(ec2j , e)|ec1i ∈ E1 and ec2j ∈ E2}.
Note that we do not consider the possibility of a pair of
effect scenarios ec1i and ec2j being inconsistent, since
this would only happen in the case of intrinsically and
obviously erroneously constructed process models.
The result of effect accumulation in the setting
described here is denoted by ANDacc(E1, E2, e).

• XOR-joins: Let t1 and t2 be the two tasks immedi-
ately preceding an XOR-join. Let their cumulative
effect annotations be E1 = {ec11, ec12, . . . , ec1m}
and E2 = {ec21, ec22, . . . , ec2n} respectively. Let
e be the immediate effect annotation, and E the
cumulative effect annotation of a task t immedi-
ately following the XOR-join. We define E =
{acc(eci, e)|eci ∈ E1 or eci ∈ E2}. The result of ef-
fect accumulation in the setting described here is de-
noted by XORacc(E1, E2, e).

• OR-joins: Let t1 and t2 be the two tasks immedi-
ately preceding an OR-join. Let their cumulative ef-
fect annotations be E1 = {ec11, ec12, . . . , ec1m} and
E2 = {ec21, ec22, . . . , ec2n} respectively. Let e be the
immediate effect annotation, and E the cumulative ef-
fect annotation of a task t immediately following the
OR-join. The result of effect accumulation in the set-
ting described here is denoted by ORacc(E1, E2, e) =
ANDacc(E1, E2, e) ∪XORacc(E1, E2, e).

Take for example Figure 3, esp. the activities labeled
‘Identify Package’ (e3), ‘Label Package’ (e4), and ‘Up-
date Status’ (e5). The cumulative effect at ‘Label Package’
would be E4 = {e4∪en|en ⊆ e3 and e4∪en is consistent}.
We would then determine the cumulative effect at e5 to be
either E5 or E′

5 where E5 = {e5 ∪ ek|ek ⊆ e3 and ek ∪
e5 is consistent} and E′

5 = {e5 ∪ el|el ⊆ E4 and ek ∪
e5 is consistent}. That is, E5 and E′

5 are possible results
from two alternate paths that may be selected upon enact-
ment. We will refer to the cumulative effect annotation of
the final task in a process as the cumulative effect of the pro-
cess.

2.3. Verifying the Consistency of Interoper-
ating Business Processes Models

Inconsistencies in design artifacts exist when some do-
main / process specific rules required to hold between or
within the artefact[s] are left unsatisfied at design-time.
These rules may check for the existence of or agreement be-
tween information represented within or among design arte-
fact[s] [2]. [24] state “a set of descriptions is inconsistent
if there is no way to satisfy those descriptions all together”,
and provide a broad inconsistency classification scheme.

Our focus in this paper is on semantic inconsistencies
between inter-operating process specifications. We evalu-
ate inconsistency between effects, during accumulation in a
process, in order to ensure that the properties required of ob-
jects transfered between inter-operating processes are met.
We define inconsistency in inter-operating business process
models as a contradiction between the effect scenarios of
two synchronizing tasks. The aforementioned accumulation
procedure is effective in providing a local description of the



accumulated context within a process as well as the immedi-
ate effect of each activity. Therefore allowing us to conduct
a pairwise analysis.

By using the aforementioned Knows predicate, we can
include a general rule for identifying inconsistencies dur-
ing synchronization. This rule states that agent (i.e. Partici-
pants) agreement (a1, a2) must exist between values (v1, v2)
assigned to the properties of an object at the points of syn-
chronization / information transfer in inter-operating pro-
cesses. Formally,

• ∀a1, a2 : Agent, o : Object, p : Property, v1, v2 :
V alue, Knows(a1, o, p, v1) ∧ ¬equal(v1, v2) ⇒
¬Knows(a2, o, p, v2).

Let Pi and Pj be two inter-operating processes, and
let ti ∈ Pi and tj ∈ Pj be two corresponding tasks
(poss. in synchronization). Let their cumulative effects be
Eti = {esi1, . . . , esin} and Etj = {esj1, . . . , esjm} re-
spectively. Also let D represent some set of background
knowledge that also includes the previous rules. An incon-
sistency exists between ti and tj , if for some effect scenarios
esin ∈ Eti and esjm ∈ Etj , esin ∪ esjm ∪D `⊥ holds. In
other words esin, esjm and D contradict each other.

2.4. Identifying Possible Causes of Inconsis-
tency in Inter-operating Processes

Once identified, inconsistencies can be localized be-
tween two tasks, participating in some object transfer during
synchronization. That is, for some inconsistencies to exist
there must be some disagreement between the actual and
expected accumulated properties of two objects.

In order to resolve an inconsistency, analyst involvement
will be required. Negotiation between the participants will
need to occur, conceivably with reference to some agreed
upon contract. In order to guide negotiations, an identifica-
tion of the possible causes would be desirable. In Section
3 below we describe and illustrate (with examples) some
rules that can be applied, once inconsistencies are found for
identification of primary causes.

Specifically, inconsistencies between inter-operating
processes have unique causes that can be identified via re-
gression analysis. This involves backtracking through a
process involved in an inconsistency to a point where the
inconsistency does not hold. As a result, the preceding ac-
tivity, where the inconsistency held is identified as respon-
sible for introducing the inconsistency. In some cases, the
cause may be traced across synchronization points to other
inter-operating processes. The decision at this point as to
the offending activity / process is also left to the analyst.

3. Detecting Inconsistencies in Interoperating
Business Process Models

As will be discussed in the sections below, our ap-
proach permits static design-time verification in the sequen-
tial, nested and parallel cases. In run-time settings the ca-
pability to manage and schedule concurrent interleaving ac-
tion (including roll-backs) would be required.

The following examples relate to the operations of a
Transport Organization responsible for routing containers
and packages between customers. Prior to verifying con-
sistency, the effects of activities on the models being tested
should be accumulated.

3.1. Sequential and Nested Inter-operation

During both sequential and nested process inter-
operation, inconsistency will be simply identified across
synchronization points. Intuitively, this means that some
required property of a shared object (possibly being trans-
ferred between organizations) does not hold. Furthermore,
the scope of sequential and nested inconsistencies can be
traced to some activity prior to the activities that are syn-
chronizing on either the source or target side of the syn-
chronization.

Take for example Figure 2, where two processes inter-
operate in a nested manner to satisfy a Container Notifica-
tion requirement. In this process, the Dispatch Officer of a
Courier Organization sends a manifest to a SubContracting
Courier to signify the arrival of a number of containers on a
particular airline. The SubContracting Courier uses the in-
formation contained within the manifest to allocate process-
ing resources and to confirm their take-on of the containers.
The Send Manifest activity is accumulated with the effect
E1, and the Receive Manifest activity is accumulated with
E2, both described below.

• E1 |= Knows(DOfficer,Manifest,
ClearanceStatus, False)

• E2 |= Knows(POfficer,Manifest,
ClearanceStatus, True)

In this scenario, the analyst has described in their annota-
tion that the manifest to be forwarded has not been allocated
a clearance status. This means that there may be a possibil-
ity that certain containers will not be present during their
subsequent delivery given some regulatory requirements.
The annotation to e2 however, requires that the containers
contained in the manifest have been allocated a clearance
status to ensure that all expected containers are actually for
delivery (i.e. non-cleared containers may not be processed
and delivered). The ramification of this error may be the
allocation of redundant resources and/or mistaken delivery



Figure 2. A nested Container Notification pro-
cess.

of non-cleared containers. Even in the subtlety of this ex-
ample, an inconsistency has been detected that may have
significant ramifications during process deployment and ex-
ecution.

3.2. Parallel Process Interoperation

Figure 3 outlines a parallel inter-operation between a
Courier Organization and a Regulatory Authority to route
and screen packages prior to delivery. The process in Figure
3 is in fact incorrect (as will be discussed). In this example
the Courier Organization Scans, Assesses, and Routes pack-
ages through to their routing destinations via a conveyor
belt. The Regulatory Authority Screens, Identifies and may
Label packages as they proceed across the conveyor belt.
The model has been annotated and the immediate effects of
some activities are outlined below.

• e1 = ∃s : Status
Knows(SortOfficer, Package, Status, s)

• e2 = ∃s : Status
Knows(SortOfficer, Package, Location,
Conveyor) ∧
Knows(SortOfficer, Package, Status, s) ∧
Knows(SortOfficer, Conveyor, Type, s) ∧
Knows(SortOfficer, Conveyor,Mode, Running)

• e3 = ∃s : Status
Knows(SortOfficer, Package, Status, s)

• e4 = Knows(RegulatoryAgent, Package,
Status, Held) ∧Has(RegulatoryAgent, Package)

• e5 = ∃s : Status
¬Has(RegulatoryAgent, Package) ∧
Knows(RegulatoryAgent, Package, Location,

Conveyor) ∧
Knows(RegulatoryAgent, Conveyor,Mode,
Running) ∧
Knows(RegulatoryAgent, Package, Status, s) ∧
Knows(SortOfficer, Package, Status, s)

In addition, the following rule is part of the Regulatory
Authority’s domain knowledge.

• R1 = ∀a1, a2 : Agent,
Has(a1, Package) ⇒
¬Knows(a2, Conveyor,Mode, Running)

This domain specific rule states that if an agent has a
package, the agent and any other agent must not know that
the conveyor the package is on is in mode ‘Running’.

Figure 3. A parallel Package Routing process.

Now, we apply the aforementioned accumulation proce-
dure and determine the following cumulative effects:

• E2 = E3 = ∃s : Status
Knows(SortOfficer, Package, Location,
Conveyor) ∧
Knows(SortOfficer, Package, Status, s) ∧
Knows(SortOfficer, Conveyor, Type, s) ∧
Knows(SortOfficer, Conveyor,Mode, Running)

• E4 = Knows(RegulatoryAgent, Package,
Status, Held) ∧Has(RegulatoryAgent, Package)

• E5
1 = Knows(RegulatoryAgent, Package,

Status, Held) ∧ ¬Has(RegulatoryAgent,
Package) ∧
∃s : Status
Knows(RegulatoryAgent, Package, Location,
Conveyor) ∧
Knows(RegulatoryAgent, Conveyor,
Mode, Running) ∧
Knows(RegulatoryAgent, Package, Status, s) ∧
Knows(SortOfficer, Package, Status, s)



We only describe one of the effect scenarios in this ex-
ample - the other would have been determined from the se-
quential accumulation of effects from ‘Identify Package’.

Now, at the e5 → e3 synchronization we can determine
that no inconsistencies exist between the given scenarios us-
ing our aforementioned criteria. However, given that cer-
tain activities may interleave during parallel interoperation,
we also need to test for conflicts that may exist between
parallel interoperating activities. If a conflict were to exist
between such activities, an effect that is required for some
subsequent activity, or even the process in general, may be
undone. Therefore, we pairwise compare the cumulative
effect scenarios of activities that may interleave to identify
any possible conflicts. In the example above, we can detect
an inconsistency between the cumulative effect of ‘Route
Package’:

• E2 |= Knows(SortOfficer, Conveyor,Mode,
Running),

and ‘Label Package’:

• E4 ∪R1 |= ∀a : Agent
¬Knows(a,Conveyor,Mode, Running).

Therefore, the interoperation in this case should be
deemed inconsistent. The inconsistency has highlighted the
violation of a rule requiring a shared object (the Conveyor)
to not be in mode Running if an agent has a package. If this
constraint were to be violated at some time, the safety of an
agent may be at risk. Given this inconsistency, a change
would need to occur to either the process design or imple-
mentation of the activities to remove the possibility of this
event.

4. Conclusion

In this paper, we have provided a simple and practical
approach to support the verification of interoperational busi-
ness process models. The outcome of applying this verifica-
tion technique to current business process design and analy-
sis has been illustrated. In order to progress from the current
state, we are pursuing tool support. Ideally this will uti-
lize theorem proving technology (e.g. SAT [19]) to provide
automated assistance during the propagation of effects and
analysis of consistency. The capability to propose minimal
alteration to a process model that introduces consistency is
also desirable.

References

[1] J. Becker, M. Indulska, M. Rosemann, and P. Green. Do
process modelling techniques get better? a comparative on-
tological analysis of bpmn. In B. C. J. Un-derwood and

D. Bunker, editors, Proceedings 16th Australasian Confer-
ence on Information Systems, Sydney, Australia, 2005.

[2] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh.
Co-ordinating distributed viewpoints: the anatomy of a con-
sistency check. Technical Report 94/7, Department of Com-
puting, Imperial College, London, 1994.

[3] D. A. Fisher. An emergent perspective on interoperation
in systems of systems. Technical Report CMU/SEI-2006-
TR-003, Carnegie Mellon Software Engineering Institute,
March 2006.

[4] N. E. Fuchs, U. Schwertel, and R. Schwitter. Attempto Con-
trolled English (ACE), Language Manual, Version 2.0. In-
stitut fur Informatik, Universitat Zurich, 1998.

[5] G. Grossman, M. Schrefl, and M. Stumptner. Verification
of business process integration operations. In Proc. 4th In-
ternational Conference on Business Process Management,
2006.

[6] V. Gruhn and R. Laue. Using timed model checking for
verifying workflows. In J. Cordeiro and J. Filipe, editors,
Proceedings of the 2nd Workshop on Computer Supported
Activity Coordination, pages 75–88. Insticc Press, 2005.

[7] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming 8, pages 231–274,
1987.

[8] D. Hollingsworth. The workflow reference model version
1.1. Technical Report TC00-1003, Workflow Management
Coalition, January 1995.

[9] W. Janssen, R. Mateescu, S. Mauw, and J. Springintveld.
Verifying business processes using spin. In E. N. G. Holz-
man and A. Serhrouchni, editors, Proceedings of the 4th
International SPIN Workshop, pages 21–36, Paris, France,
Nov 1998.

[10] W. Janssen, R. Mateescu, S. Mauw, P. van der Fennema, and
P. Stappen. Model checking for managers. In 5th and 6th
International SPIN Workshops, page 92107, 1999.

[11] J. Koehler, G. Tirenni, and S. Kumaran. From business pro-
cess model to consistent implementation: A case for formal
verification methods. In Proc. 6th IEEE International En-
terprise Distributed Object Computing Conference (EDOC),
pages 96–106, 2002.

[12] A. Krishna, A. Ghose, and A. Vranesevic. Agent-oriented
conceptual models to uml sequence diagrams via effect an-
notations. International Journal of Multi-Agent and Grid
Systems, Special Issue on Agent-Oriented Software Devel-
opment Methodologies, 2006.

[13] L. Kutvonen. Addressing interoperability issues in busi-
ness process management. In 2nd Interop Workshop at
EDOC2005, number B-2005-5 in B-Series. Dept. Computer
Science, University of Helsinki, September 2005.

[14] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Ana-
lyzing interacting bpel processes. In Proc. 4th International
Conference on Business Process Management, 2006.

[15] L. T. Ly, S. Rinderle, and P. Dadam. Correctness in adap-
tive process management systems. In Proc. 4th International
Conference on Business Process Management, 2006.

[16] T. Mitamura and E. H. Nyberg. Controlled english for
knowledge-based mt: Experiance with the kant system. In
Proceedings of the 6th International Conference on Theo-
retical and Methodological Issues in Machine Translation,
Leuven, Belgium, July, 5-7 1995.



[17] A. Paepcke, C.-C. K. Chang, H. Garcia-Molina, and
T. Winograd. Interoperability for digital libraries worldwide.
Communications of the ACM, 41(4):33–43, April 1998.

[18] D. Plaisted and S. Greenbaum. A structure-preserving
clause form translation. Journal of Symbolic Computation,
63(2):293–304, 1986.

[19] H. Samulowitz and F. Bacchus. Using sat in qbf. In Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP-2005), pages 578–592, 2005.

[20] R. Schwitter and N. Fuchs. Attempto - from specifications
in controlled natural language towards executable specifica-
tions. EMISA Workshop ‘Naturlichspraclicher Entwurf von
Informationssystemen’, May, 28-30 1996.

[21] J. F. Sowa. Common logic controlled english (draft). Techni-
cal report, http://www.jfsowa.com/clce/specs.htm, February
2004.

[22] W. van der Aalst. Verification of workflow nets. Lecture
Notes in Computer Science, 1248:407426, 1997.

[23] K. van Hee, N. Sidorova, L. Somers, and M. Voorho-
eve. Consistency in model integration. Data Knowl. Eng.,
56(1):4–22, 2006.

[24] A. van Lamsweerde, R. Darimont, and E. Letier. Man-
aging conflicts in goal-driven requirements engineering.
IEEE Transactions on Software Engineering, 24(11):908–
926, 1998.

[25] F. Weitl and B. Freitag. Checking semantic integrity con-
straints on integrated web documents. In ER (Workshops),
pages 198–209, 2004.

[26] S. White. Business process modeling notation (bpmn),.
Technical report, OMG Final Adopted Specification 1.0
(http://www.bpmn.org), February 2006.

[27] X. Zhao and C. Liu. Tracking over collaborative business
processes. In Proc. 4th International Conference on Busi-
ness Process Management, 2006.


	Verifying semantic business process models in inter-operation
	Recommended Citation

	Verifying semantic business process models in inter-operation
	Abstract
	Disciplines
	Publication Details

	tmp.1201656229.pdf.0PkTM

