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Abstract
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adherence to the sparsity and temporal criteria, before switching to the most appropriate criteria to
estimate each signal. This algorithm is shown to improve the real time separation performance of
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independence of signals. The improvement of SCAtemp over conventional BSS algorithms can be
attributed to the use of additional a priori knowledge of speech in the temporal short term.
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Blind Separation of Speech with a Switched
Sparsity and Temporal Criteria

Daniel Smith and Ian Burnett
School of Electrical, Computer and Telecommunication Engineering
University of Wollongong
Email: dvs02@uow.edu.au

Abstract— A Blind Signal Separation algorithm (SCAtemp)
that exploits both the sparse time-frequency representation and
temporal structure of speech is proposed. SCAtemp compares
each speech signal’s adherence to the sparsity and temporal
criteria, before switching to the most appropriate criteria to
estimate each signal. This algorithm is shown to improve the
real time separation performance of conventional BSS algorithms
exclusively exploiting either the temporal structure, sparsity or
statistical independence of signals. The improvement of SCAtemp
over conventional BSS algorithms can be attributed to the use
of additional a priori knowledge of speech in the temporal short
term.

I. INTRODUCTION

The application of Blind Signal Separation (BSS) to speech
is of considerable interest in the research community. This in-
terest is motivated by its use in developing adaptive, intelligent
solutions to the ‘cocktail party problem’, a problem in which
any speaker in an acoustic environment can be independently
retrieved (or made the focus of listening attention) amidst other
concurrent speakers and noise [1]. Consequently, BSS has the
potential to improve the performance of voice technologies
operating in noisy environments, such as teleconferencing and
hands free mobile telephony [2].

These voice technologies require real time processing, as
processing delays of 300ms or greater are considered intoler-
able in interactive two way communication [3]. In order for
BSS algorithms to operate in conjunction with these interactive
technologies, the algorithms must separate frames sized for
real time application. Therefore, the purpose of this work is
to improve real time separation of speech, by merging the
temporal [1], [4], [5] and Sparse Component Analysis (SCA)
[6]-[8] criteria of BSS into a single framework.

In order to separate speech mixtures, the algorithms in [1],
[4], [5] exploit the temporal structure of speech and the SCA
methods utilise the knowledge that the time-frequency (t-f)
representation of speech are approximately disjoint orthogonal
(non-overlapping) in the mixture [6]. Although the SCA and
temporal approaches generally adhere to the properties of
speech, there are occasions when short-time frames of speech
fail to comply to the assumptions of these BSS algorithms.
For instance, the t-f disjoint orthogonality assumption of SCA
will be violated for short stationary sections of the mixture
where formants of different speech signals overlap. Whilst, the
temporal algorithms will be violated across short time frames

0-7803-9752-5/06/$20.00 ©2006 IEEE

of mixed speech, which contain unvoiced or transient regions
that do not possess temporal structure [3].

In order to improve the modeling of speech within BSS, a
novel approach (SCAtemp) to combine the SCA and temporal
criteria is proposed. The SCAtemp framework specifically
exploits the sequential SCA algorithm proposed in [8] and
a temporal algorithm that jointly models speech production
mechanisms [5]. Estimates of each separation criteria are
compared and a switching mechanism is employed to retrieve
the signal estimate of the highest accuracy. Hence, it is
hypothesised that the separation performance of the unified
framework will become more robust, particularly across short
frames of speech with weaker conformance to either the SCA
or temporal criteria.

To demonstrate the improvement in data efficiency achieved
by merging the sparse and temporal structure of speech into
a single framework, the separation performance of SCAtemp
is compared to its constituent SCA [8] and temporal [5]
approaches, in addition to benchmark BSS algorithms ex-
ploiting Independent Component Analysis (ICA) [9], [10].
The analysis is conducted across mixtures of three moving
speakers.

II. FORMULATION OF THE BSS PROBLEM
The BSS problem can be formulated as follows: The vector
of sensor signals (X (£)) contain observations of the vector of
signals (S(t)) linearly mixed according to the system A:

X(t)=A-S(t) )

where X (t) = [z1(t)...xn(¢)]T is a N x 1 vector of mixed
observations, S(t) = [s1(t)....sar(£)]" is an unknown M x 1
vector of signals and A is an unknown N x M non-singular
matrix. In this approach it is assumed that A contains scalar
elements (instantaneous mixing) and the system is square i.e.
the number of signals is equal to the number of sensors (M =
N).

Given only mixed observations X (¢), an M x N separa-
tion matrix W (estimating A~') must be computed and then
multiplied by X (¢) in order to obtain a scaled, permutation
of the original signals ¢ - S(¢). In contrast to the majority
of BSS algorithms that simultaneously estimate the entire
separation matrix, the method presented in this paper is a
sequential approach. In a sequential approach, each column of
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the separation matrix (W;.) is individually estimated and then
employed to separate a single signal. This process is repeated
until all signals are separated.

ITII. ELEMENTS OF THE PROPOSED METHOD

The new SCAtemp architecture is comprised of two BSS
approaches that are detailed in this Section. The SCAtemp
algorithm compares these two BSS criteria, switching estima-
tion to the criteria that best conforms to the underlying speech
signals. The first criteria that is exploited by SCAtemp is a
sequential approach to SCA estimation proposed in [8]. The
second criteria used is a temporal approach [5] that employs a
joint model of speech production mechanisms. The deflation
process used to remove estimated signals from the mixture is
then outlined.

A. Sequential SCA Algorithm

This sequential SCA algorithm proposed in [8] (SeqTIF)
estimates the mixing column A; of each signal using the
TIme Frequency Ratio Of Mixtures (TIFROM) approach that
is detailed in [7]. The Short Time Fourier Transform (STFT)
is computed across the mixture X (¢) to form the t-f repre-
sentation X (m, k), centered on the short time window m and
frequency k. Ratios {(m, k) = [&(m, k)..En—1(m, k)] are
then computed between the corresponding t-f windows of the
Ist and jth mixed observation for j = 2 to N:

xj(m, k)

T 2
xy1(m, k) @
ajisi(m, k) + ...+ ajyusy(m, k)
ayysy(m, k) + ...+ ajprspr(m, k)

&-1(m. k)

where aj; are the elements of A. When s;(f) is the only
signal present in a t-f window (m, k), the ratios Aje
[1 &(m, k)] correspond to the mixing column of the signal
si(t).

In order to estimate the mixing column of each signal, the
following assumptions are necessary:

1) For each signal s; (where 7 € {1...M}), there exists
at least a series (T, k) of time-adjacent t-f windows
of mixed observations where either s; occurs alone or
where the energy of s; is far greater than all other
signals, This series is considered the most ‘visible’ in
the mixture.

2) Every t-f series (T, k) must always possess at least one
signal.

3) Signals should be non stationary across the t-f windows
(m, k) of the series (T, k).

Under the condition of the second and third assumptions,
when one signal is present across adjacent t-f windows (m, k),
the ratio £(m, k) is constant across these windows. However,
under the third assumption of non stationary signals, if there
is more than one signal present in the window set (m, k),
&(m, k) will vary across this set of windows.

As a consequence of this property, SeqTIF uses the variance
across a series of TF windows to estimate mixing columns.

The mean me(Y,, k) and variance var(T,, k) are computed
across series (T, k) of time adjacent windows of the ratio
&(m, k). The series with minimum var(YT,, k)i, is consid-
ered the most visible series (non-overlapping) in the mixture,
and hence, selected as the mixing column estimate A;. =
me(Ty, k).

The estimate A;. is then used to eliminate its corresponding
signal s;.(t) from the mixwre X (¢) as follows:

Tmod,j—1 (t) Ty (t) — Aie /E.'(t) &)
= (ayy-s1 +...+aip-sp)
a4
- (ajl 851+ ... tajm " SM)
4

2to N and i€ {1,.., M}

where j =

A mixing column is then estimated from the ‘cancelled’
mixture X 0q¢(t), before the signal associated with this mix-
ture estimate is again eliminated using (3). This process is
repeated until only one (least visible) signal remains in the
mixture, becoming the estimated signal s, (t).

B. Joint Model of Speech Production Mechanisms

BSS approaches, such as those presented in [1], have
demonstrated that a speech signal can be extracted from a
mixture by exploiting the following assumption:

(a) A single speaker has more temporal correlation than any
linear combination of mixed speakers

It is the temporal correlation generated by the production
mechanisms of speech that make assumption (a) hold true
[3]. The BSS approach developed in [5] (AR-FO algorithm),
exploits assumption (a), employing a more complete model
of speech production mechanisms than existing temporal
approaches. The AR-FO algorithm jointly models the AR
structure (short term correlation) and periodicity 75 (long term
correlation) of speech in the cost function C(W;,b;, B;):

(f(l"l’},bj: Bj) =
) =

where b; is the prediction filter, B; is the prediction gain
and X(t) = [X(t — 1)..X(t — P)]. The term X,(t) =
X(t)— X(t) b_f is the short term temporal prediction error
of the mixtures and X;(t) = X(t — £5) — X(t — &) - b] is
the short term, period delayed prediction error of the mixtures.
Therefore, the error function £(¢) jointly describes the short
and long term temporal prediction error of the estimated
speech. The first term in £(¢) (containing X, (¢)) represents the
short term prediction model and the second term (containing
Xi(t)) represents the long term prediction model.

This is a sequential approach to separation, using gradient
adaptation of the parameters W;, b; and Bj in order to estimate
a signal s,.(t) from the mixture. The learning rules of the
parameters are derived and then shown in [5].

1/2+ B[€? @
I-l-"JT - Xo(t) — B; - H’}T - Xo(t)
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TABLE 1
THIS TABLE SHOWS THE RESULT OF AN EMPIRICAL STUDY CONDUCTED TO DETERMINE EFFECT THAT THE THRESHOLD VALUE Ccomp HAS ON
SEPARATION PERFORMANCE. THE SCAtermnp ALGORITHM IS APPLIED TO A SET OF 20 STATIONARY MIXTURES AS €eomp 1S VARIED BETWEEN 0.004
AND 0.4. THE SN R PERFORMANCE (IN DECIBELS (dB)) IS SHOWN FOR A SUBSET OF ccomp VALUES FOR ANALYSIS BLOCKS SPANNING IN SIZE FROM
TOMS TO 0.568.

Size of Analysis Block (s)
Ceomp || 007 008 009 011 016 026 036 046 0.56
0.004 || 12.56 | 13.33 | 14.72 | 16,70 | 2094 | 25.70 | 27.93 | 29.29 | 30.04
0.02 || 17.86 | 18.42 | 19.73 | 21.04 | 23.70 | 26.67 | 28.52 | 29.63 | 30.17
0.04 18.19 | 19.07 | 20.04 | 21.39 | 24.06 | 26.76 | 28.52 | 29.63 | 30.17
0.06 || 17.37 | 17.98 | 1940 | 20.72 | 23.60 | 26.67 | 28.52 | 29.63 | 30.17
04 16.56 | 17.31 | 18.74 | 20.09 | 22.99 | 26.12 | 28.10 | 29.44 | 30.08

C. Deflation Technique

In a sequential approach to estimation, once a signal has
been estimated, it is necessary to permanently remove it from
the original mixture X (¢). The SeqTIF and AR-F0 algorithms
can only estimate s,.(¢) up to an undetermined scaling factor
of it’s original signal. Thus, a scaling factor g is required to
remove s..(t) from X(t), as follows:

X(f')u+1 — ‘X—(!')‘!.‘ — " Sre UJ (5)

In order to deflate s,.(f) from the mixture, the optimal
solution of g is obtained as the Minimum Mean Squared Error
(MMSE) of X (t)y41.

IV. THE PROPOSED UNIFIED METHOD

The new SCAtemp algorithm initially employs the SeqTIF
algorithm (outlined in Section III-A) and only switches to
the temporal AR-FO algorithm (outlined in Section III-B),
if the performance of SeqTIF is considered inadequate. This
initial application of SeqTIF can be justified as it provides
a more accurate measure of the estimation quality (A.) than
the AR-FO algorithm. Under the assumptions of Section III-
A, the var(Y,, k) of SeqTIF can be used to directly measure
the level of signal overlap in each t-f series, and hence, the
accuracy of mixing column estimates within each t-f series.
The war(Y,, k) is a true measure of the estimation quality
with var(T,, k) = 0 corresponding to perfect estimation of a
mixing column,

The AR-FO algorithm uses the C(Wj,b;, B;) from (4) to
measure the estimation quality. In contrast to var(Y,, k),
C(Wj, by, By) is not a true measure of separation perfor-
mance. C(Wj,b;, B;) is the error associated with modeling
a mixture of speech signals using (4) and does not necessarily
indicate the level of separation performance. For instance,
it was revealed in [11], that the modeling error of voiced
speech mixtures can still be small without achieving any
form of separation. However, the modeling error does usually
provide some indication of separation quality. In particular,
a large C(W;,b;, B;) corresponds to poor conformance to
the temporal model in (4), and hence, poor quality speech
estimates.

A. Comparing Separation Criteria

SCAtemp operates by comparing var(Y,, k)min of the
SeqTIF estimate to a pre defined threshold ¢;,:,. The thresh-
old, €min, 18 an upper bound of variance, below which the
quality of SeqTIF estimation is considered high enough to
avoid AR-FO estimation. However, when var(Yy. k)min >
Cmins it 18 considered that the separation performance of
SCAtemp may be substantially improved by incorporating
AR-FO estimation. In this case, it is unknown whether the
SeqTIF or AR-FO estimate provides superior separation. Con-
sequently, the wvar(Ty, k)min of the SeqTIF estimate and
C(W;, b, Bj)min of the AR-FO estimate are used to compare
separation performance. As C(Wj,b;, Bj)min is generally
larger than war( Yy, k)min. another heuristic ¢.omp is required
to provide a fair comparison between the var(Y,, k)m:, and
Ceomp * C(Wj,bj, Bj)min terms. This heuristic is chosen a
priori, and must ensure that SCAtemp consistently selects the
best quality estimate.

In order to determine a suitable c.omp threshold in this
experiment, an empirical study was conducted across a training
set of 20 stationary mixtures, each consisting of three different
speech signals. The size of the analysis blocks spanned from
70ms to 0.56s. The value of ccomp was varied between 0.004
and 0.4 to determine which value most consistently selected
the best estimate between the SeqTIF and AR-FO algorithms.
A subset of these results demonstrating the performance trend
are shown in Table I. Table I shows that a c.opnp value of
0.04 had the highest estimation quality, as it had exhibited a
maximum SN R (defined in (6)). The separation performance
degraded as the value of cqomp varied in either direction from
0.04. As coomp decreased in value from 0.04, SCAtemp was
more likely to employ SeqTIF estimates at the expense of AR-
FO estimates that were often of a higher quality. When the
value of ¢.omp became larger than 0.04, the reverse occurred.

The SCAtemp algorithm operates by switching between the
SCA and temporal criteria, as shown in the flow diagram in
Fig. 1.

V. EXPERIMENTAL RESULTS AND DISUCUSSION

An experiment was conducted to compare the separation
performance of the SCAtemp algorithm to the SeqTIF and
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Braak the mixtures {1 into

20ms overapped frames
and apply the STFT

Process adjacent 1 windows as seres (14
The var(), k) and me(T, k) are computed.

The mixing colurmn is estimated 4 =mi{T_ k)
where [Ty, b )= agivar(T, k) b

Isthe
SeqTIF mixing column
eslimate accurate?

Var(T, k) < Gy

Cancel the contribution AR-FO estimate of
of the signal associated the signal 5 {1}
with A using (3) obtained from (4)
New Modure
Xy 11, (U1 A, 1)
where j=2:N

than the AR-FO estimate?
o OOV b B) ST ),

Déflate the AR-FO
estimate s, {1}
from the mixture
using (5

New Mixture
Xft,, =X, 9.5,

Deflate the =X, 95,00
retrieved signal
from the
midure using (5

Fig. 1.  The SCAtemp algorithm is structured to switch between SeqTIF
and AR-FO estimation. The switching is based upon a comparison of each
criteria’s estimation quality, the variance of SeqTIF estimates and MMSE of
AR-F0 estimates, such that the highest quality estimate is chosen.

AR-FO algorithms of which it consists, in addition to two
benchmark BSS algorithms, Extended Infomax [10] and Fas-
tICA [9]. The experiment was conducted on 10 time varying
mixtures, each consisting of three different speech signals that
were 5s in length and sampled at 8000Hz. The mixing system
was generated under the assumption that the sound pressure
of each audio signal varied inversely with the distance to each
sensor. This mixing system was updated every 125ms and
produced an average SNR of 1.27dB between the mixtures
X(t) and original signals s;(¢). The physical path of the
speakers are shown in Fig. 2.

The performance of the algorithms were compared across
analysis blocks of the mixture ranging in size from 70ms to
0.56s. The SeqTIF approach further processed these analysis
blocks by breaking them into short time windows of 20ms with

>~ 1
1
1
]
1

sm : - — TS — ~—
- s

| - ~
1 rs ——— Y
1 / e "

+ I * { 1 P . 1

1T ] im Speaker 1 Speaker 2
1 L O Bsms 1.Smst
1
1 xa

am
L
sm l

1
1
1
I Speaker 3

-* 1 Zms-

Fig. 2. The physical path of the acoustic environment in which the mixing

system was generated. The first two speakers moved in a circular path at
constant velocities of 0.85ms~1 and 1.5ms 1. The third speaker moved
in a straight line at a constant velocity of 2ms~1. The microphones were
located at x1.x2 and x3.

50% overlap and then forming series (T, k) that consist of
6 time adjacent windows.

The criteria used to measure the separation performance was
the Signal to Noise Ratio (SN R). It is calculated between the
estimated signal s.(¢) and the corresponding original signal

8; (f) :

o2

E{(si(t) — sc(t))*}

where o is the variance of s;(¢). When calculating the
SNR, both s.(t) and s;(n) are normalized to a variance of
1, in order to avoid the scaling ambiguity of s.(n). Thus, the
SNR is simplified to —10 - logyo E{(si(t) — s.(t))?}, such
that a higher SN R corresponds to a smaller estimation error
of s.(t), and hence, better separation performance.

SNR = 10-logo dB (6)

2

A. A Comparison of the Unified and Single Criteria Algo-
rithms

Figure 3 compares the average SNR of the unified
SCAtemp algorithm, its constituent SeqTIF and AR-FO al-
gorithms, in addition to benchmark FastICA and Extended
Infomax algorithms in the analysis. All algorithms exhibit
a maximum SNR at a block size of 100ms, as this is the
longest analysis block that can estimate a constant mixing
system. As block sizes become longer than 125ms, estimation
performance will decrease as the blocks comprise of a change
in the mixing system.

It is evident from Fig. 3 that the separation performance of
the SCAtemp algorithm is superior to the algorithms which
exploit either the sparse t-f representation (SeqTIF algorithm)
or temporal structure of speech (AR-FO algorithm). In par-
ticular, the SCAtemp algorithm offers a substantial separation
advantage over the AR-F0 algorithm across all data sizes, with
the average SN R advantage ranging from 5.3dB to 7.8dB.
The advantage of the SCAtemp algorithm increases across
longer block sizes, as the level of conformance to the AR-
FO model in (4) declines across non stationary speech.
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Fig. 3. The separation performance (SNR) of the SCAtemp algorithm
is comapred to its constituent SeqTIF and AR-FO algorithms, along with
benchmark ICA (FastICA and Extended Infomax) algorithms for analysis
blocks that are sized from 70ms to 0.56s. The experimental set consisted
of 10 mixtures each consisting of three different speech signals. The mixtures
changed every 125ms, as shown by the dotted vertical line.

The SCAtemp algorithm exhibits a significantly smaller sep-
aration advantage over SeqTIF than the AR-F0 algorithm, with
the average SN R advantage ranging from 0dB to 0.91dB
(maximum 5% advantage). This smaller advantage can be
attributed to the superior quality of SeqTIF estimates over AR-
FO estimates, particularly across longer block sizes. As blocks
of speech become longer, more visible t-f series are obtained,
improving SeqTIF estimation. Simultaneously, the quality of
AR-FO estimation is reduced by the lack of conformance to the
temporal model, mentioned in the previous paragraph. There-
fore, as analysis blocks lengthen, the SCAtemp algorithm
exploits SeqTIF estimates more frequently. Most notably, the
SNR of the algorithms converge at a block size of 0.56s,
indicating SCAtemp only uses SeqTIF estimates at this block
size. As block sizes are reduced towards real time operation,
speech exhibits a higher level of compliance to the AR-FO
model. In this case, the SCAtemp algorithm exploits AR-
FO estimates with greater regularity (particularly in regions
without visible series) to improve upon SeqTIF estimation.

B. A Comparison of the Unified and ICA Algorithms

Fig. 3 indicates that the separation performance of the
unified SCAtemp approach is far superior to the FastICA
and Extended Infomax algorithms across all block sizes. The
SCAtemp algorithm achieves an average SN R advantage of
between 7.85dB and 9.54dB over the Extended Infomax
algorithm and an average SN R that is between 5.17dB and
6.97dB larger than FastICA.

The SeqTIF demonstrates superior separation performance
to both ICA algorithms in this analysis. The AR-FO algorithm
has a separation advantage over the Extended Infomax algo-
rithm, however, only a similar level of performance to FastiCA

across block sizes less than 160ms. The FastICA algorithm
shows a clear separation advantage (up to 0.89d4B) over the
AR-FO algorithm for block sizes greater than 160ms, due to the
degradation of AR-FO estimation across non stationary speech.

VI. CONCLUSIONS AND FUTURE WORK

A unified approach to BSS is proposed (SCAtemp), com-
bining the sparse t-f representation and temporal structure
of speech into a switched framework. This algorithm offers
a superior data efficiency in comparison with constituent
algorithms, which exploit either the temporal structure or
SCA criteria, exclusively. Furthermore, it exhibits a separation
advantage over two benchmark ICA algorithms. These results
suggest that modeling additional a priori knowledge of speech,
improves separation performance, particularly in the realm of
real time operation. In addition, the improved data efficiency
of SCAtemp enhances the tracking of time varying mixtures.

A limitation of this algorithm is the heuristic approach used
to select between the temporal and SCA estimates. Although
training of cqomp greatly reduces the likelihood of estimates
being incorrectly selected, there is still the possibility of the
weaker estimate being employed in SCAtemp. An avenue of
future work will involve improving the robustness of the selec-
tion criteria. Furthermore, the SCA and temporal approaches
will be incorporated into a unified framework to accommodate
reverberation within the environment (convolutive mixtures).
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