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NEURO-FUZZY ADMISSION CONTROL IN CELLUALR NETWORKS

Raad Raad, Ibrahim Raad

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong
Wollongong, Australia
{raad}, {ibrahim } @uow.edu.au

ABSTRACT

In this paper, a methodology is presented for designing an
adaptive fuzzy logic controller based on neural networks.
The Neuro-Fuzzy controller is first trained using data
from an approximate analytical model of a cellular
network then the controller is fine tuned and adapted to
the unique cell dwell time and call holding time
distributions of a particular cell in the network. Different
cell dwell time distributions are considered for training the
Neuro-Fuzzy Controller. A Neuro-Fuzzy method that only
relies on a limited amount of measured data for training
purposes is also presented.
1. INTRODUCTION

Neuro-fuzzy controllers have previously been shown
capable of capturing both high and low level
characteristics of complex systems [9]. This is due to the
fact that fuzzy sets allow systems to be described using
high-level linguistic terms while back-propagation neural
networks can capture the low-level characteristics of such
systems. In this paper a Neuro-Fuzzy controller is used to
perform adaptive channel reservation in micro-cellular
networks where handover rates are expected to be high
and non-Poissonian. Further, the Neuro-Fuzzy controller
is able to adapt to the correct number of reserved channels
when both the cell dwell time and call holding times have
a general distribution. The applicability of this proposed
approach is demonstrated for a micro-cellular mobile
network with lognormal and gamma distributed call
holding and cell dwell times.

The major advantage of adaptive channel reservation is its
ability to change the number of reserved channels
according to the dynamically changing traffic loads. Many
variants of adaptive channel reservation have been
proposed in the literature. Some schemes make use of
channel state information in adjacent cells [14], others use
direction and location prediction to adjust the amount of
reserved bandwidth in cells [15][2]. All such schemes
suffer from a major disadvantage wherein a large amount
of information needs to be transported around the network
in order to make reservation decisions. One solution that
avoids the problem of excessive data transfer between
cells is the use of local information at each based station.
This information includes the new call arrival rate, the
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handover arrival rate and the average channel holding
time. Methods that make use of local cell information
have been investigated in the literature, e.g. [12]. Most
available studies dealing with adaptive bandwidth
reservation assume that cell dwell times and call holding
times are exponentially distributed. While this assumption
holds when cell sizes are large, it has been shown both
through analytical studies and measurements in mobile
networks that this assumption is not accurate for micro-
cellular mobile networks. Zonoozi et al [16] through the
analysis of a mobility model have proposed a generalized
gamma distribution for cell dwell times. Traffic studies
have also shown that call holding times of current mobile
networks follow a lognormal distribution [7]. The
handover call arrival rate process is influenced by the cell
dwell time distribution. It has been shown that if new call
arrivals are poissonian and cell dwell times are
exponentially distributed then the handover arrival process
follows a Poissonian distribution [3]. If cell dwell times
follow a general distribution then this will affect the
handover rate process and the assumption that it is
Poissonian does not hold any longer. To date very few
studies have dealt with adapting the number of reserved
channels when call handovers are not poissonian. In [10]
the scheme is able to approximate non-poissonian
conditions, however, the authors only consider Poisson
arrivals and exponential cell dwell times. Non-exponential
cell dwell times lead to high complexity in analyzing
mobile networks.

Neuro-fuzzy controllers have the ability to deal with such
complex problems. A Neuro-Fuzzy controller is a model
free numerical estimator [9]. Neural networks make the
fuzzy system more robust and assuming that
representative data is available for training, they can
optimize the fuzzy system to correctly match the training
set [9]. When the Neuro-Fuzzy adaptive approach is
applied to mobile networks, each cell can have an
independent controller that will allow it to model its
unique behavior based on the mobility and geographical
characteristics of the cell. Hence correct quality of service
constraints in terms of new call and handover probabilities
can be maintained, while allowing better use of the
available bandwidth under changing call load conditions.



Fuzzy logic has previously been applied to adaptive
channel reservation for tuning the adaptation decision [8]
where exponential cell dwell and call holding times were
assumed. The approach taken in [8] is to choose the
membership functions heuristically without using Neuro-
Fuzzy techniques. Fuzzy logic has also been widely used
for handover decision detection (in a signal level
detector). In the latter case it 1s evident that the use of
fuzzy logic provides a significant improvement in terms of
correct handover detection [5]. Fuzzy logic has also been
applied to multi-layer mobile networks for making
decisions about which network layer a user should belong
to based on fuzzy descriptions of speed and distance [13].
Fuzzy logic has also been shown to yield significant
performance improvements in systems where the
dynamics of the system are partially known and when
there is unpredictability in the arrival conditions. For
example, Bonde and Gizh [1] have shown how a fuzzy
controller improves the utilization of an ATM buffer.
More recently other works have appeared in the literature
that use a Fuzzy inference engine. These include the work
by Ma et. al. [17], where the authors present a heuristic
design for a call admission controller. Shen er. al. [18]
presents a call admission controller for a wide band
CDMA cellular network. [18] uses the Fuzzy inference
engine to make a bandwidth estimation of the incoming
call. The work presented in this paper relies on a Neuro-
Fuzzy admission controller which is shown to be
applicable to more general distributions for the arrival and
cell dwell times of an incoming call.

The work presented in this paper allows the adaptation of
the correct amount of bandwidth that will guarantee a
certain Grade of Service (GoS) in terms of call dropping
probabilities for handover calls for mobile networks with
non-exponential call holding and cell dwell times. While
the fuzzy logic makes ‘soft’ decisions on the amount of
bandwidth reserved, the neural net adapts the membership
function parameters and the outputs of the fuzzy system.
As long as the data set is a realistic representation of the
cell behavior then the Neuro-Fuzzy controller will work
correctly. In the method propoesed in this paper, an initial
training table is generated based on the analytical model
of the micro-cellular mobile network with the exponential
assumptions. The training table is then used to generate a
Neuro-Fuzzy controller (NFC). The outputs of the Neuro-
Fuzzy controller are then tuned by an ‘expert’, or through
online data collection to account for non-exponential call
holding and cell dwell times. A method is also presented
that allows for the retraining of the NFC using a limited
amount of measured data.

This paper is organized as follows: Section 2 discusses the
details of the Neuro-Fuzzy logic controller (NFC) while
Section 3 presents an analytical model of the micro-
cellular network with bandwidth reservation based on the
exponential assumptions for cell dwell times and call

holding times. Section 4 describes an algorithm that
allows the application of the Neuro-Fuzzy controller when
cell and call holding times are not exponential. Section 5
presents simulation results of the Neuro-Fuzzy controller
for exponential and non-exponential models (lognormal
and gamma distributions). Section 6 presents a method for
training the NFC with a limited set of real data, while the
conclusion is presented in Section 7.

2. ADAPTIVE CHANNEL RESERVATION USING A
NEURO-FUZZY CONTROLLER

The structure of the proposed Neural-Fuzzy controller

(NFC) is shown in Figure 1. The NFC takes two inputs,

the new call rate A, and handover call rate 4;,. The

output y is the number of channels to reserve while z is
used in the training phase to feed back to the NFC the
correct output.

The NFC consists of 5 layers. Layer 1 consists of the input
nodes that pass on the inputs to layer 2. Layer 2 nodes
perform a fuzzification function [9]. The new and
handover call rates are described by the following
linguistic  variables (membership functions): Low,
Moderate and High input rates. There are six nodes in this
layer; each three nodes represent the 3 member functions
for each input. The fuzzification function used is a general
bell curve and is defined by:

Jiluy) = (1)

where u;is the input, ¢, is the center of the generalized
bell curve and a j, and b n are the slope parameters. This

particular function was chosen because it combines the
smooth slope of a bell curve with increased variance (a
stretched out bell curve), hence reducing the required
number of membership functions (if the bell curve alone
was used). Reducing the number of membership functions
significantly reduces the number of fuzzy rules resulting
in faster convergence in training. It was determined
through simulation that 3 membership functions were a
good compromise for the NFC. It was found that if only 2
functions are used per input (Low and High), the NFC
does not converge to the required output. Using 4 or more
membership functions per input resulted in slower training
times as well as local minima and maxima in the output
surface. It was observed that these (local maxima and
minima) are due to incomplete training data (small data
set). Using 3 membership functions resulted in an accurate
representation of the data set, as well as avoiding the
problems that resulted from choosing a larger number of
membership functions.
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Figure.1. Neuro-Fuzzy Controller Structure.

3. CELLULAR NETWORK MODEL
A uniform mobile network is considered as shown in
Figure 2. Mobile terminals have an equal probability of
handing over in all directions. All the cells are of equal
size and each one has a total capacity of N channels (units
of bandwidth). New calls have access to (N-h) channels,
while handover calls have access to all N channels. If cell
dwell times are assumed to be exponential, then the arrival
rate of handover calls is Poissonian [3]. Hence in this case

Figure 2. A uniform mobile network.

an analytical model can be used to solve for the new and
handover blocking probabilities.

Let oy be the handover load into each cell given by:

A
py =—- @)

and let the total load be given by:

A+ A
Ut ) “
i

where 1/u is the mean channel holding time and it is a
combination of the mean cell dwell time as well as the
mean call holding time. Using a Markov model. the
resulting handover call blocking probability and the new

call blocking probability are determined by equations 4
and 3 respectively:
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4. NON-EXPONENTIAL TRAINING OF THE NFC
As noted earlier, the NFC can model the underlying
characteristics of a system. For the case of adaptive
channel reservation, it is the number of channels to
reserve for a given new and handover call rates that will
result in a certain handover blocking probability.
Simulation experiments presented later on in Section 5
indicate that an initial training set could be generated
based on the exponential model and after several
adjustments to the outputs of the NFC, the correct output
for non-exponential models can be obtained. New call
arrivals are initially assumed to be Poissonian. The first
step in obtaining the equivalent exponential model is to
find the relationship between the handover rates for the
exponential and non-exponential cases (this is
demonstrated in Section 5 for the case of a lognormal cell
dwell time). The NFC is then trained with this initial data
set and an initial controller is generated. The outputs (but
not the membership functions) of the controller are finally
tuned until the correct number of channels that result in
obtaining the correct handover blocking probability
(which in all our simulations is assumed to be 0.002) are
reserved. This process is represented graphically in Figure
3 (The detailed process of making the adjustments is
presented in Figure 9).

5. SIMULATION RESULTS

Simulations were conducted over a ring network (of 20
identical cells) with mobile units having an equal
probability of handing over in two directions. The mean
cell dwell time was chosen to be 30 seconds and the mean
call holding time was chosen to be 100 seconds. These
values model a micro-cellular mobile network with a high
handover rate. The NFC was initially tested against an
exact exponential model as described in Section 3. The
NFC was then trained to adapt to lognormal cell dwell
times and exponential call holding times (Section 5.1).
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Figure 3. The Design Process of the NFC.

5.1 Testing the NFC against the Exponential Model

The analytical model of Section 3 was used to generate a
training data set that was subsequently used to train the
NFC. The trained NFC was then used in a mobile network
simulation and the results were compared to those
obtained from the exact model. A training table was
generated for the NFC using Equation 5. The table
consists of two inputs and one output. The inputs are the
new call rate and the handover call rate, while the output
is the number of reserved channels that result in a
handover blocking probability equal to or less than 0.002.
Figures 4(a) and 4(b) show the membership functions of
the new call rate before and after training respectively.
The corresponding membership functions for the
handover rate are shown in Figure 5(a) and 5(b).

The initial membership functions were chosen to cover the
desired range of inputs but it is clear that after training, the
membership functions have shifted as they converged
towards the training data. This is particularly evident in
Figure 5(b). The output surface of the NFC is shown in
Figure 6. The figure shows the number of channels that
should be reserved for a particular set of inputs. The error
in convergence could also be seen, as the surface dips
below zero. This was corrected by setting any output
below zero as equal to zero. Figure 7 shows that the NFC
is able to mimic the analytical model and correctly
perform the task of adapting the number of reserved
channels that result in the desired grade of service.

(a) {b)

Figure 4, Fuzzy Membership Functions: “New Call” Rate Before (a) and
after (b) Training.

Figure 5. Fuzzy Membership Functions for “Handover Call” Rate
Before (a) and afier (b) Training.
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Figure 6. The Neuro-Fuzzy Output Surface over all the Range of New
and Handover Call Rates.

5.2 Applying the NFC to Lognormal Cell Dwell Times
The cell dwell time was modified to reflect a more
realistic network situation where the cell dwell time
distribution is no longer exponential. The variance of the
cell dwell time distribution may depend on the
geographical features of the cell as well as on the user
mobility distribution. For this case study a lognormal
distribution was chosen as an example of a non-
exponential distribution. This distribution was applied to
cell dwell times so that the resulting call handover process
was no longer Poissonian. A mean cell dwell time of 30
seconds and a squared coefficient of variation of 3 were
used. The value for the squared coefficient of variation is
not critical and values less than 1 can be used as well
since the cell dwell time has also been suggested to follow
a gamma distribution [4].
By using the simulation with lognormal cell dwell times
the handover rates into the cells were measured and
compared to the values obtained when using the
exponential model of Section 3. It was found that a near
linear relationship existed between the constant relating
the two handover rates and the squared coefficient of
variation of lognormal cell dwell times as shown in Figure
8.
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Hence, by measuring the variance of the cell dwell times,
the squared coefficient of variation of cell dwell times can
be readily determined and this can be subsequently used to
get the equivalent Poissonian rate from the following

equation
’q'hpm = (%x)’q'h,tag (7

where A, og 18 the measured handover rate for the case of

lognormal cell dwell times and Ajp, is the equivalent
Poissonian handover rate. Having obtained the equivalent
Poissonian rate. the analytical model of Section 3 can then
be used to generate a new data set. This data set is then
used to generate the new fuzzy model. It is then possible
to adjust the output of the resulting model (so that its
outputs result in the correct grade of service ) in one of
two ways,

a) By heuristically adjusting the outputs of the fuzzy
system.

b) By collecting more data online and modifying the
training table, the retraining the NFC with the new data set
(Section 6).

Manual adjustments to the outputs in Layer 4 (Quiputl,
..., Output9) are made iteratively until the handover call
blocking requirements are met. This is not a long process
and it is possible to get an accurate result after the first or
second iteration. This is made possible by the inherent
characteristics of fuzzy logic, where upon by making one
adjustment, all other outputs in the relative region of the
output surface are adjusted in proportion to the
membership functions. The first step is to modify the most
significant oufput, this is the output (in Layer 4) that is
having the most impact on the overall output result (for a
particular set of inputs). The second adjustment is made to
the next significant output value, and so on until the
required output values (that result in the correct grade of
service) are reached. One possible way of making such
adjustments is shown below in Figure 9. It is possible to
over-adjust the outputs. This is avoided by checking all
the outputs after every adjustment.

1 2 2 4
&

Figure 8. Relationship between & and .

The results of the simulation are depicted in Figure 10 and
show the blocking performance of NFC-based bandwidth
reservation before and after output adjustment. Figure 10
also shows that the NFC outperforms fixed bandwidth
reservation (FR3, where 3 channels were reserved) as well
as Distributed Connection Admission Control (DCAC)
proposed in [10] which uses the number of ongoing calls
in adjacent cells to make admission decisions.

Figure 11 shows the relative cost of the above four
bandwidth reservation schemes. The relative cost
combines the two blocking probabilities into a single
function and penalizes the dropping of handover calls by
considering them to be some multiple of new calls. In the
literature this value is usually set to 10 although much
higher numbers have also been used [6]. Hence in our case
dropping one handover call is considered equivalent to
blocking 10 new calls. Equation 8 was used to calculate
the relative cost as follows:

c=tut 10* ny,

(8)
n;
where n,, n; and », are the number of new calls, number of
handover calls and total number of calls blocked or
dropped, respectively.
6. ONLINE TRAINING
The above algorithm used manual adjustments of the NFC
output to fine tune the controller. In this section, an
algorithm is investigated online results are re-entered into
the training set to correct for any errors in the fuzzy
admission controller. These online results could be
obtained after running the NFC in the field.
The method that is presented in this section assumes that
one can collect enough ‘real’ points and add them to the
training table to retrain the fuzzy logic admission
controller. In fact such an assumption is not realistic in a
real system, where the network operator dimensions the
bandwidth in order to avoid the edge conditions or in
other words where blocking of new and handover calls is
most likely to occur. It is much more likely that only few
instances of the edge conditions will be available to the
network operator.
In this algorithm, it is assumed that only very few points
are available to the network operator to retrain the fuzzy
logic admission controller. These few edge conditions are
extrapolated by the algorithm in order to generate more
data points. We refer to these points as pseudo



measurements. This is done to highlight the fact that they
are not real measurements, but approximations
extrapolated from very few real measurements. The main
assumption made by this algorithm is that the function that
it is trying to adapt to is monotonic for small distances
around these measured points. In the case of the blocking
probability that is clearly the case.
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Figure 10. Blocking Performance of Different Reservation strategies.
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Figure 11. Cost Function of Various Bandwidth Reservation Schemes.

The algorithm works by adjusting the training set of the
particular point of concern as well as the surrounding
points. If only the single point is actually used it will be

drowned out by all other points. If the same point is
replicated many times in the training set, it may result in
simply causing that particular section of the admission
controller to retrain and will not affect other arecas which
may be in error. This is more evident if many membership
functions are used to represent the data set.

6.1 The algorithm
Repeat steps 1 and 2 until all points are within the
acceptable value for the handover blocking probability.

Step 1: For the entire range of operating points
calculate the error between the simulated outputs and
desired outputs for both new and handover call blocking
probabilities. In this case the output that is being
controlled is the handover blocking probability. (This is
the same step as the previous algorithm).

Step 2: For the input range as specified around
the measured point adjust the original training set by
applying the retraining function.

For example the training range around a specific measured
point could be +/- 5% for all inputs. Hence all points
within this range will be modified by the retraining
function. The retraining function specifies the magnitude
of how the change will occur. For example three possible
training functions that could be applied are flat,
descending gradient or bell shape. In the case of a flat
function, the specific points that were chosen for
retraining will simply apply an equal adjustment to the
entire set of points in the range of values. For example if
the original training set specified that 10 channels should
be reserved for a specific set of inputs, but the measured
data indicated that 8 is a better fit, then all points within
the retraining range will have their values shifted down by
2.

If the gradient method is chosen, then the points of the
training set will be adjusted in proportion to how far they
lay away from the measure point. The closer the training
data point is to the measured one the more adjustment that
takes place. The further away it is, the less adjustment
takes place. This is the same for a bell type function that
will slowly decay away from the measured point.

6.2 Results

Figure 12 below shows the new and handover call
blocking probabilities for the new retraining algorithm as
well as the original and the membership function changing
algorithm presented in the previous section. The figure
shows that the measured or ‘real’ points (in this case 3)
that had been outside the allowable range had been
brought back in within the tolerance limit for the handover
blocking probability. Hence, the fuzzy logic admission
controller has been retrained to reflect the measured data,
but in this case only relying on 3 measured points from the
‘real’ system (which is the simulated system in this case).



The flat and the simplest retraining functions were used in
this case. Only one pass was made through the data as the
adjustments that needed to be made are small, and the
granularity of the single channel does not allow further
refinement.
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Figure 12. New and Handover blocking probability without error bars for
the original admission controller and the two adjustment algorithms.

Figures 13 shows the difference between the original and
retrained surfaces of the fuzzy logic admission controller.
It 1s clear that the surface has been adjusted appropriately
to reflect the new data. It seems that adjustments to the
training data at least in this case maybe more beneficial as
this results in a smooth adjustment of all the admission
decisions.

The conclusion can be drawn that one can successfully
correct for the original training performed using the
approximate poissonian model when actual results differ
from the desired outputs. This difference is due to the fact
the actual system has difference characteristics in terms of
arrival rates, call holding time and sell dwell times. These
simulation results show that it is quite possible to readily
automate the adjustment algorithm to correct for any
errors and two possible implementations of the algorithm
show some promising results.

7. CONCLUSION

A Neuro-Fuzzy controller was developed to carry out
adaptive channel reservation in micro-cellular networks
with general cell dwell times and call holding times. To
date the analysis of micro-cellular networks reported in
the literature has been restricted to the use of exponential
call holding and cell dwell times for tractability reasons.
The results presented in this chapter showed that the NFC
outperforms both DCAC and fixed bandwidth reservation.
Two algorithms for designing and training the NFC were
also presented. These algorithms were used and tested
through simulation in two case studies; One dealing with
lognormal cell dwell times and the second with lognormal
call holding and gamma cell dwell times. The results
showed that the NFC was able to meet the required GoS
constraints after one or two adjustments, making the
proposed method a practical solution to the problem of
improving bandwidth utilization whilst reducing the

possibility of a degraded user experience through call
drop-outs in mobile networks with a small cell size.

Figure 13. Difference between output surfaces for Fuzzy Logic
admission Controller between original and 2™ algorithm (another view).
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