University of Wollongong

Research Online

Faculty of Engineering and Information

Faculty of Informatics - Papers (Archive) Sciences

1-2-2007
Some new results of regular Hadamard matrices and SBIBD I

Tianbing Xia
University of Wollongong, txia@uow.edu.au

Mingyuan Xia
Central China Normal University, xiamy@mail.ccnu.edu.cn

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

6‘ Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Xia, Tianbing; Xia, Mingyuan; and Seberry, Jennifer: Some new results of regular Hadamard matrices and
SBIBD 11 2007.
https://ro.uow.edu.au/infopapers/515

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au


https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F515&utm_medium=PDF&utm_campaign=PDFCoverPages

Some new results of regular Hadamard matrices and SBIBD li

Abstract

In this paper we prove that there exist 4—{K%; Y% k(k-1); k(k-2)} SDS, regular Hadamard matrices of order
4k2, and SBIBD (4k2 212 + k, K+ k) for k=47,71,151, 167, 199, 263, 359, 439, 599, 631, 727,919, 5q1,
5@2N, 7q3, where q1, g2 and g3 are prime power such that q1 = 1(mod 4), g2 = 5(mod 8) and q3 = 3(mod

8), N= 223%2 a b=0o0r1,t= 0is an arbitrary integer. We find new SBIBD(4k2, 262+ k K + k) for 43
values of kless than 1000.

Disciplines
Physical Sciences and Mathematics

Publication Details

Xia, T., Xia, M. & Seberry, J. R. (2007). Some new results of regular Hadamard matrices and SBIBD II.
Australasian Journal of Combinatorics, 37 117-126.

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/515


https://ro.uow.edu.au/infopapers/515

Some new results of regular Hadamard matrices
and SBIBD II *

Tianbing Xia T, Mingyuan Xia ¥ and Jennifer Seberry T

I CCSR, School of ITACS,
University of Wollongong, NSW 2522, Australia
Email: [txia, j.seberry|@Quow.edu.au

I 'School of Mathematics & Statistics,
Central China Normal University,
Wuhan, Hubei 430079, China
Email: xiamy@mail.ccnu.edu.cn

Abstract

In this paper we prove that there exist 4—{k?; $k(k—1); k(k—2)} SDS,
regular Hadamard matrices of order 4k%, and SBIBD (4k?, 2k + k, k? + k)
for k = 47, 71, 151, 167, 199, 263, 359, 439, 599, 631, 727, 919, 5qi,
5goN, Tqs, where ¢1, g2 and g3 are prime power such that ¢ = 1(mod 4),
g2 = 5(mod 8) and ¢z = 3(mod 8), N = 2%3*#?, a,b=0o0r 1, ¢ # 0 is an
arbitrary integer. We find new SBIBD(4k?,2k? + k,k? + k) for 43 values
of k less than 1000.

1 Preliminaries

An n x n matrix H is called an Hadamard matrix (or H-matrix) if every entry
of the matrix is 1 or —1, and
HH" = nl,,

where I, is an n X n identity matrix. In this paper we use H” to denote the
transpose of a matrix H.
We denote the excess of a Hadamard matrix H = [a;;] by o(H), where

O'(H): Z a,-j.

1<4,j<n

*The research supported by the ARC (No. LX0560185).
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Let o(n) = max{o(H)}. The weight of a Hadamard matrix H, denoted by W (H),

is the number of ones in the H. We define W (n) = max{W (H)}. Note that the

maxima are taken over all Hadamard matrices H of order n. It is obvious that

o(H) =2W(H) —n? and o(n) = 2W(n) — n? (see [3], [4], [5], [6] for details).
M. R. Best [1] proved that

o(n) < ny/n. (1)

Definition 1 (Regular Hadamard Matriz) A reqular Hadamard matriz has the
sum of each column of the matriz and the sum of each row of the matriz constant.

Definition 2 (SBIBD) A symmetric balanced incomplete block design, called as
SBIBD(v,k,\), is defined by a v x v matriz M, which has every entry 0 or 1.
The sum of each column and the sum of each row of the matriz is k. For any
two columns c;, ¢; (and two rows r;, rj), 1 < i # j < w, the inner product of ¢;
and c; (r; and rj) is A (see [8]).

In 1989 J. Seberry proved the following theorem which is very useful for
constructing SBIBD(4k?,2k* + k, k* + k).

Theorem 1 (J. Seberry [6]) The following conditions are equivalent:

(1) There exists a Hadamard matriz of order 4k? with mazimum ezcess
8k3.

(ii) There ezists a reqular Hadamard matriz of order 4k
(iii) There exists an SBIBD(4k*,2k* + k, k*> + k).

Many regular Hadamard matrices of order 4k? and SBIBD(4k? 2k? + k, k? +
k) were given in [3, 7, 11]. In particular, there were 169 values of k less than 1000
for which the existence of SBIBD(4k? 2k* + k,k? + k) was still undetermined
(see the list of [11]).

2 Construct SBIBD from SDS

Definition 3 (SDS) Let G be an Abelian group of order v. We denote the group
operation by multiplication. Subsets Dy, ---, D, of G are called r—{v;| Dy |,---, |
D, |; A} supplementary difference sets (SDS), if for every nonidentity element g
in G there are exactly A ordered pairs (d,d ) in Dy x Dy, or Dy x Dy, ---, or
D, x D,, such that gd = d.

It is convenient to use the group ring Z[G] of the group G over the ring Z of
rational integers with addition and multiplication. Here the elements of Z[G] are
of the form

a191 + azgs + -+ avgy, a; € Z, g; €G.
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In Z[G] the addition + is given by the rule

Y alg)g+ Y blg)g= > (alg) +b(9))g.

e geaG g9eaG

The multiplication in Z[G] is given by the rule

> a(g)g)(ih: b(h)h) =D (- alg)b(h))k.

g k gh=k

For any subset A of G we define
> g€ Z[a),

gEA
and by abusing the notation we will denote it by A.
For any two subsets A, B C G, let ¢ be an integer. We define

B'=>beZG), AB'= > ab'eZG,

beB a€cA, beB

and denote
ANA=AA"', AN(A,B)=AB™' + BA™".
If A= ¢, then we have
Np =0, A(¢p,B)=0.
It is obviously that A(A, A) = 2AA.
With this convention Dy, Dy, ---, D, being r — {v;| Dy |,---,| D, |; A} SDS

are equivalent to
,

i=1

r=1
Ifky =--- =k, =k, we simplify Dy,---, D, to r — {v; k; A} SDS. When r = 1,
the single SDS becomes a difference set (DS) in the usual sense. When r = 4 and
A=Y} ki — v, we call Dy, Dy, D3, Dy type H—SDS.
In this paper special interest is devoted to the case: v = ¢%, k; = ky = kg =
ks = 3q(q—1) and A = g(g — 2) (see [6]).
To construct SBIBD from SDS we need the following theorem.

Theorem 2 (T. Xia, M.Y. Xia and J. Seberry [11]) If there exist 4 —{q?; %q(q—

1); ¢(g—2)} SDS on an Abelian group G of order q*, then there exist an SBIBD(4¢?, 2¢*+
2

44" +q).

In the following we assume p is an odd prime, r > 0, and
g=7p" =4m + 3.
Let g be a generator of GF(¢?)*. Put
E; = {g®8mthiti . s =0 ... 2m}, i=0,---,8m+7T. (2)



Lemma 1 (M.Y. Xia nd G. Liu [9]) In GF(¢?) the following equations hold:
(i) AE; = (2m+1) + m(E; + E; '),
(ii) A(E;, EfY) = (2m + 1) (B + E;),
(iii) A(E;,E;+ E;') =GF(¢*)" — (Ei+ E; "+ E; + E; 1),
where 0 < i # j < 8m+7, GF(¢*)* is the set of all nonzero elements of GF (¢?).
Let

U={a;: 0<a;<8m+7,i=0,---,2t},
V={b:0<bj<4dm+4, j=1,---,2m+1—1t},

where 0 <t < 2m + 1, such that
| {a(moddm +4): a € U} UV |=2m+2+1. (3)

The equation (3) means that a; # a;(mod 4m+4) for i # j and a; # b;j(mod 4m+
4) for any i, j.

Write
A= Ew, B={(EyU Epamsa) (4)
a€l beV
and set
D=AUB. (5)
Lemma 2 Under the condition (3) we have
AD= 2(2m+1-1)2m+1)+(2m+1)> -t )GF(¢*)*
—(2m+1-t)(A+AH)+ AA (6)
Proof. (6) follows from Lemma 1 by direct calculation. O

From (6) we can see that AD only depends on A and does not depend on the
particular choice of B. This is a very useful property in searching SDS.
Put

D; =¢™"V'D, i=0,1,2,3. (7)

We investigate when Dy, Dy, Dy and D3 defined as above can form 4 —{g¢?; %q(q—
1); q(¢ — 2)} SDS for some appropriate set A, i.e.,

S AD = ¢ +alg - DGF(), ®

1=1

When ¢ = 3(mod 8), many subsets in GF'(¢?) can be taken as the A that makes
(8) true [9, 10]. In other cases we know of no general answer so far. Fortunately,
when ¢ = 7(mod 16), we find many positive results.
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Lemma 3 For ¢ = 71, 151, 167, 199, 263, 359, 439, 599, 631, 727 and 919,
there exist subsets A of GF(q?) that make (8) true.

Concrete constructions for A in the above cases are given in the Appendix of
the paper. Using Lemma 1 and Lemma 2 one can check they satisfy (8). We
refer verification to the reader.

Lemma 3 is an attempt to search for 4 — {¢?% %q(q —1); q(¢ —2)} SDS when
g = 7(mod 8). From Lemma 3 it follows

Corollary 1 There exist SBIBD(4k?; 2k*+k; k*+ k) for k = 71, 151, 167, 199,
263, 359, 439, 599, 631, 727 and 919, respectively.

For ¢ = 7(mod 16) the first three gaps of k are 103, 311 and 487. The regular
Hadamard matrices of corresponding orders are unknown as yet. This means
that we can not use the method given to find solutions for all cases.

3 Construct SBIBD from SDS and T-matrices

Definition 4 (T—matriz) Let Ty, Ts, T3, T, be nxn matrices with entries (0, +1).
Then we call 11,15, T3, Ty T—matrices if

(ii) there exists an n x n monomial matriz R with RT = R, R? = I,,,
such that (T;R)T = T,R, i=1,2,3,4,

(iii) if T, = (£7), 1 < Gk < n, i=1,2304, thn St | ) =1,
i <j,k<n,

(iv) Y TTE =nl,.

We use condition (i) and (ii) to replace the condition of circulant 7’—matrices.
More details of T-matrices are discussed in [2]. In this paper we refer to the
paper [10]. The following theorem will be useful for constructing SBIBD.

Theorem 3 ([11]) If there exist 4 — {q*; 3q(q¢ — 1);q(q¢ — 2)} SDS D, D,, Ds,
Dy of order ¢? in an Abelian group G of order ¢*, and every element of G appears
an even number of times in Dy, Dy, D3, Dy, then there exist T-matrices T1, Ts,
T3, Ty that satisfy

o(T1) = ¢, o(Ty) = o(T3) = o(Ty) = 0. 9)



For convenience we write the prime power ¢ = 4m + 3 = 16n + 7. Since the
polynomial z? + 1 is irreducible over GF(q), the set of all elements ax + 3, a,
B € GF(q) modulo z? +1 is a finite field GF(¢?). In the following we will employ
this concrete representation of GF(¢?).

We know that there exist T—matrices 11, T», T3 and T, of order ¢? which
satisfy (9) when ¢ = 3(mod 8) [10]. Another example of T'—matrices satisfying
(9) is as follows:

Example 1 Let g =z + 1 in GF(5%) and
C; = {g** (mod 2* — 3, mod 5): 7=0,1,2}, i=0,1,---,7.

Take
D, ={0}uCyuUCiUCy, Dy={0}UCyuUC;UCs,
D3 ={0}UuCyUCyUCs, Dy={0}UCyUC;3UCs.

It is easy to verify that Dy, Do, D3 and Dy defined above are 4 —{25;10;15} SDS
and Theorem 3 holds for ¢ = 5. Consequently, there exist T—matrices of order
25 that satisfy (9).

Theorem 4 Suppose D1, Dy, D3 and Dy are 4 — {k* Lk(k — 1); k(k — 2)} SDS
such that
D;=D;' i=1,23,4. (10)

i

Then there exist SBIBD(4(kt)?, 2(kt)? + kt, (kt)* + kt) where t* is an order of
T—matrices satisfying (9).

Proof. From Theorem 3 of [11] the theorem holds. O

Example 2 In GF(7?) let g = z + 2 and set
S; = {g"¥ " (mod 2* +1, mod 7) : j=0,1,2,3}, i=0,1,---,11.
Take
D; = {0} U S313; U S543i U Seq3i U Sr43i U Sgy3i, @ =0,1,2,3.

It is easy to verify that Dy, Dy, Dy and D5 are 4—{49;21;35} SDS and D;! = D;,
i=0,1,2,3.

From Theorem 3, Theorem 4, Example 1, Example 2 we have the following
corollaries.

Corollary 2 There exist SBIBD(4k? 2k*+k, k*>+ k) for k = 35, 5g; and 5g,N,
where q1, qo are prime power, such that ¢g = 1(mod 4), ¢; = 5(mod 8), N =
20342 where a, b=0 or 1 and t # 0 any integer.

Corollary 3 There exist SBIBD(4k?, 2k* + k,k* + k) for k = Tqs where q3 =
3(mod 8) is a prime power.



4 Summary

4.1 Numerical results
Example 3 In GF(47%), let g = x + 2 and set

C; = {%: j=0,---,68},i=0,---,31,
E;, = {§"%": j=0,---,22},i=0,---,95.

Write I, = {0,1,3,6,8,13,15,18,28}, I, = {3,5, 11,12, 14, 15, 24, 25,26} and put

Ai — U Cj, BZ - U(E] U Ej+48)a

JEI; J

such that

Take D; = A; U B; and D; o = ¢8D;, i = 1,2. Then Dy, Dy, D3 and Dy are
4 — {2209;1081;2115} SDS. Thus we can construct a reqular Hadamard matriz
of order 8836.

From Example 3, Corollary 1, 2 and 3 one can assert that there are 43 new
values of k < 1000 for which there exist SBIBD(4k? 2k* + k,k* + k). They are
47, 71, 151, 167, 199, 263, 359, 439, 599, 631, 727, 919 (Corollary 1);

77(7-11), 133(7 - 19), 301(7 - 43), 413(7 - 59), 469(7 - 67), 581(7 - 83), 749(7 - 107),
917(7-131), 973(7 - 139) (Corollary 3);

265(5-53), 305(5-61), 365(5-73), 435(5-29-3), 445(5-89), 485(5-97), 505(5-101),
545(5 - 109), 555(5 - 37 - 3), 565(5 - 113), 585(5 - 13 - 9), 685(5 - 137), 745(5 - 149),
785(5 - 157), 795(5 - 53 - 3), 905(5 - 181), 915(5 - 61 - 3), 965(5 - 193), 985(5 - 197)
(Corollary 2);

459(3% - 17) (Theorem 3 of [11]); 681(227 - 3), 825(11 - 3 - 52) (Proposition 6 of
[11]). The last three values of k£ were missed from the list of [11].

4.2 Unknown cases

There are at most 126 values of k& < 1000 for which the existence of SBIBD(4k?, 2k?*+
k,k® + k) is undetermined. These values are:

79, 103, 127, 141, 191, 209, 213, 217, 223, 231, 237, 239, 253, 255, 271,279, 309,
311, 329, 341, 355, 357, 367, 369, 377, 381, 383, 385, 395, 399, 403, 423, 425, 431,
437, 453, 455, 463, 465, 473, 479, 481, 483, 487, 493, 497, 501, 503, 515, 517, 527,
553, 561, 573, 589, 595, 597, 607, 611, 615, 627, 629, 635, 639, 647, 649, 651, 657,
663, 665, 669, 689, 693, 697, 705, 711, 713, 715, 717, 719, 721, 737, 743, 751, 755,
759, 765, 775, 781, 789, 793, 799, 801, 805, 813, 817, 823, 833, 835, 837, 839, 861,
863, 869, 873, 887, 889, 893, 899, 901, 903, 911, 913, 923, 927, 933, 935, 949, 955,
967, 969, 983, 987, 989, 991, 995.



Appendix

Though D in (5) contains A and B, the expression of AD only depends on

A and does not depend on the particular choice of B. So at first we can ignore

B and just search A satisfying (8), then we can take B as in (4) satisfying (3).
Now put

Ci={g*":5=0,1,---,2n+1)(8n+3) -1}, i=0,1,---,15,

where g is a generator of GF(q¢?). It is clear that

2n
Ci: U E16j+z'a ’L'ZO,"',15,

j=0
where E; is defined in (2). The list of A is as follows:

q=T71, A=CoUCiUCyUC5U (%7, where g =2x + 8.

q=151, A=CyuUC;UCyUCgUC13, where g =2 4+ 9.
qg=167, A=CyUC;UC3UCyUC,, where g =1z + 2.

qg=199, A=CoUCyUC5UCsUCY;, where g =2z + 13.
q=263, A=CyUC;UCyUC3UC(C,, where g =x 4+ 2.
q=359, A=CyUC;UC3UCgUC43, where g =1z + 11.
q=439, A=ChuUC,UC,UC3UC,UCsgUCy, where g =x + 9.
qg=>599, A=CyUC;UC,UC3UC,, where g =z + 11.
q=0631, A=CuCiUC3UCgUC13, where g =x + 5.
q="727, A=CoUC;UC,UCLUC;UCi3UC4, where g =1z + 2.
qg=919, A=CyUC;UCyUC3UC(C49, where g =1z + 6.

Introducing cyclotomic classes C;, 0 < 7 < 16 simplifies the procedure of searching
for A in (5) satisfying (8) considerably. Further research will show this method
is suitable to obtain more values of ¢ which would lead to more new results.

References

[1] M. R. Best, The excess of a Hadamard matrix, Ind Math, 39 (1977), pp.
3507-361.

[2] G. Cohen, D. Rubie, C. Kouhouvinos, J. Seberry and M. Yamada, A survey
of base sequences, disjoint complementary sequences and OD(4t;t,t,t,t), J.
Comb. Math. Comb. Comp., 5 (1989), pp. 69-104.



[3] C. Koukouvinos, S. Koumias and J. Seberry, Further Hadamard matrices
with maximal excess and new SBIBD(4k?,2k* + k,k* + k), Utilitas Math-
ematica, 36 (1989), pp.135-150.

[4] S. Kounias and N. Farmakis, On the existence of Hadamard matrices with
maximum excess, Discrete Math., 68 (1988), pp. 59-69.

[6] K. W. Schmidt, The weight of Hadamard matrices, J. Comb. Theory(A), 23
(1977), pp. 257-263.

[6] J. Seberry, SBIBD(4k?* 2k*+k, k*+k) and Hadamard matrices of order 4k
with maximal excess are equivalent, Graphs and Combinatorics, 5 (1989),
pp- 373-383.

[7] J. Seberry, Existence of SBIBD(4k? 2k*+k, k?+k) and Hadamard matrices
with maximal excess, Australasian Journal of Combinatorics, 4 (1991), pp.
87-91.

[8] A.P. Street and D. J. Street, Combinatorics of Experimental Design, Oxford
University Press, Oxford, 1987.

[9] M. Xia and G. Liu, A new family of supplementary difference sets and
Hadamard matrices, J. Statist. Planning and Inference, 51 (1996), pp. 283-
201.

[10] M. Xia and T. Xia, A family of C-partitions and T-matrices, J. Combin.
Designs, 7 (1999), pp. 269-281.

[11] Tianbing Xia, Mingyuan Xia and Jennifer Seberry, Regular Hadamard ma-
trix, maximum excess and SBIBD, Australasian Journal of Combinatorics,
27 (2003), pp. 263-275.



	Some new results of regular Hadamard matrices and SBIBD II
	Recommended Citation

	Some new results of regular Hadamard matrices and SBIBD II
	Abstract
	Disciplines
	Publication Details

	tmp.1181611388.pdf.qlGx9

