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Construction of cubic homogeneous boolean bent
functions’

Jennifer Seberry, Tianbing Xia, Josef Pieprzyk

Centre for Computer Security Research,
University of Wollongong, NSW 2500, Australia
Email: [j.seberry, tx01, josef] @uow.edu.au

Abstract

We prove that cubic homogeneous bent functions f : \b, — GF(2) exist for all n >3
except for n = 4.

1 Introduction

The theory of S-boxes emerged as a branch of cryptography whose main aim is the
design of cryptographically strong Boolean functions or S-boxes. Typically the
strength of an S-box is quantified by a collection of cryptographic criteria. There is
an intimate relation between cryptographic attacks and this collection of
cryptographic criteria. A new criterion is added to the collection every time a new
cryptographic attack is invented. If an S-box satisfies the criterion, then the designer
may immunise a cryptographic algorithm against the attack by using the S-box. Bent
functions are basic algebraic constructions which enable designers of cryptographic
algorithms to make them immune against a variety of attacks including the linear
cryptanalysis.

We concentrate on homogenous bent functions. Homogeneousity becomes a highly
desirable property when efficient evaluation of the function is important. It was
argued in [5], that for cryptographic algorithms which are based on the structure of
MD4 and MDS5 algorithms, homogeneous Boolean functions can be an attractive
option; they have the property that they can be evaluated very efficiently by re-using
evaluations from previous iterations.

Let us summarise some arguments from [5] which can be used to justify our interest
in homogeneous functions. Note that in the MD-type hashing (such as MD4 or MD5
or HAVAL), a single Boolean function is used for a number of rounds (in MD4 and
MD?5 this number is 16, in HAVAL it is 32). In two consecutive rounds, the same
function is evaluated with all variables the same except one. More precisely, in the i-
th round the function f (x) is evaluated for (xy, ..., X,). In the (i + 1)-th round, the
same function is evaluated for f (X, ..., Xn, Y1) Where y; is a new variable generated in
the i-th round. Note that variables are rotated between two rounds. It can be proved
that evaluations from the i-th round can be re-used
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if f (x) = f(ROT(x)). These Boolean functions create a class of rotation-symmetric
functions. An important property of rotation-symmetric functions is that they can be
decomposed into one or more homogeneous parts. To keep a round function f (x)
short, one would prefer a homogeneous rotation-symmetric function.

In [4] we proved there do not exist homogeneous bent functions of degree n in
GF(2)* when n > 3. However the construction of high degree homogeneous bent
functions has remained an open problem. In this paper we show how to construct
cubic homogeneous bent functions in GF(2)*" where n >3 and n # 4.

2 Background

Let V, = GF(2)" be the set of all vectors with n binary co-ordinates. V, contains 2"
different vectors from o, = (0,0, ..., 0) to Oy, = (1, 1, ...,1). A boolean function

f: Vi — GF(2) assigns binary values to vectors from V,. Let x = (xy, ..., X,) and
vy = (y1, ..., Yu) be two vectors in GF(2)". Throughout the paper we use the following
notations:

e the inner product of x and y defined as

iy)=xoy=xy,®--@xy,=> %y,
i=1

where X = (X, ..., Xo) and y = (Y, ..., Yn);

e the inner addition of x and y given by

X(‘By:()ﬁ@yp“'axn@yn)’

where X = (X, ..., X,) and y = (yy, ..., ¥n). Note that inner addition is
equivalent to bit-by-bit XOR addition;

e the extension of vector x € V;, by a vector y € V,, is defined as
X ®y: (Xll ey an yli ey ym)-
The vector X ® y € Vium.

e the Hadamard product of vector a = (a,, ..., a,) and vector b = (by, ..., by)
given by

a * b = (ﬁlbll seny anbn)'
where the symbol “*” means transpose of the vector or matrix.

Definition 1 A boolean function f : V, — GF(2) is homogeneous of degree k if
it can be represented as

fx)= &

I<ij<<ip<n TUROM 'k

)

where x = (X, ..., X). Each term X ...X ,a, ; €GF(2) isa product of

M PR OV )

precisely k co-ordinates.



Let p, denote the set of all boolean functions in GF(2)". For f e p, we let deg(f) be
the degree of f. Define

R(m, n)={f e p,: deg(f) <m}.
If f € pan is a bent function, we call f+ R(1, 2n) a bent coset.

Let ~ denote the equivalence relation under the action of linear transformation. We
define for any nonsingular n x n matrix A and vector a € GF(n),

o(f) = f (XA ® a), where X=(Xy, ..., X)-
Let F fdenote the Fourier transform of f. Thus F fis defined as

Ff(o) =21—n 3 (-1) 00%txe) @

XeV,,
3 The Rank
ForO<t<n,let s be the set of all t-subsets of {1, ..., n}. Forany I = Stn , We write
X = Hjelxj- Lett, t,> 0 witht; +t,=t, and f=

z esr X € R(t,n)/R(t —1,n), where a e GF(2). We define an (:Jx(tj

1

matrix B{" () over GF(2) as follows:
1. The rows and columns of Bt(lt,'t:) (T)are labelled by the elements of S’
and the elements of St: , respectively.
2. a,=0forlc{1,..n}with 1] <t.
For F € R(t,n)/R(t-1, n), t> 1, let
r(F) = rank (Bl(ttfl) (F )) 3

If F € R(t, n), we define ry(F) = r((F @ R(t-1, n)).
Theorem 1 (Hou[3]) Let F be a cubic bent function in p,y’

1. Ifry(F) >0, then
F~ P(Xi,--| X2n—2) @ Xon-1%on (4)
where P is a cubic bent function in P,, 5.

2. If ry(F) <n, then ry(F) > 0.
3. Ifry(F) =nandr,(F) =0, then

F~ Q0 - X) @ D XX )
i=1

for some Q e py.



Theorem 2 Let f (x) be a boolean function in GF(2)" and g(y) be a boolean
function in GF(2)™. f(x) ® g(y) is a homogeneous bent function of degree k in
GF(2)™™ if and only if both f (x) and g(y) are homogeneous bent functions of degree
k.

Proof. If f(x) and g(y) are homogeneous bent functions of degree k, it is
easy to see H(z) = f(x; © g(y) is a homogeneous bent function of degree k where
Z=X®Y.

On the other hand, if H(z) = f(x} @ g(y) is a homogeneous bent function of degree k
where z = x ® y, we know f(x} and g(y) are bent functions, too. Obviously f(x} and
g(y) are homogeneous bent functions.

The proof is complete. u

4 The Equivalence

Definition 2 Let F(X) and G(X) be two bent functions in GF(2)*". If there exists
amatrix T € GL(2n, 2) and b € GF(2)?", such that

FXT) @ (X, by = G(X),
we say that F equivalent to G, and denote this by F ~ G.

Theorem 3 Let F(X) be a cubic bent function in GF(2)* and G(X) be a
homogeneous cubic bent function in GF(2)2”. If F~ G, then ry(F) = 0 and r3(F) > n.

Proof. Since F ~ G, from the results of the work[3] we know ri(F) =
ri(G), i = 2, 3. Because G is a homogeneous bent function, we have r,(G) = 0, r,(F)
=1,(G) = 0. From Theorem 1 we know r3(F) > n, which completes the proof. O

Lemma 1 Let A = (&;) be an n x n matrix, a;; € GF(2), 1 <i, j <n, and X be
a vector in GF(2)", Then XAX is a linear boolean function if and only if A = A’ .

Proof. If XAX is a linear boolean function, then there exists a vector b e
GF(2)", such that

XAX = (X, by (6)

for all X e GF(2)". As b = (by, ..., by), and X = (X, ..., X,), we can rewrite (6) in the
following form:

n n

zaijxixj :zblxi (M

ij=1 i=1

Forany fixedi,1<i<n,letx;=1and x;=0, j#1, 1 <j<n, then from (7) we have
aﬁ:bi,i:l, N 1 B (8)



Forany pairof i, j,i#J, I <i,j<n, letx;=x;=1,x=0,k=iand k#j, 1 <k<n,
then from (7) we have

aii +aj+ aj +a;; = b + by )
From (8) and (9) we have

aj=a; 1<i, j<n, (10)
and A=A,
Assume that A= A" . We obtain the following:

XAX = Zau X
ij=1

= Zau i ®Z Z(alj ®ajl)xlxj Zau i

i=1l j=i+1
is a linear boolean function. This completes the proof. o
5 The Matrix Representation of Cubic Bent Functions

Let F(X) be a cubic bent function in GF(2)*", r = r3(F) > n, ry(F) = 0, then
FO= D xx% @ D xX, (11)
(i,j.k)eE (u,v)eD

i#],j#k k=1, u=v.Suppose E is a collection of unordered triples, and further
suppose D is a collection of unordered pairs. Since r = r3(F), the cubic part of F(X)
can be represented as

1, e X) = D XXX (12)
(i,j.k)eE
We denote
X= (Xl, in) = X(l) ® X(z),
Xy =Xy o %)y Xy = (X, 2oy Xon). (13)
The quadratic part of F(X) can be represented as
g(Xli . XZn) - z X XV XQX(l) ’ (14)
(u,v)eD

where Q = (Q;) is @ 2n x r matrix with

1 i>jand(,j)eD,
g =

15
0, otherwise, (15)



where 1 <i<2n, 1 <j<r. It is known that r;(F) = r53(f). We can construct a matrix
Bl(fz’”( f) with r rows and @ columns. The rows of the matrix are ordered

1,2),...,(,1r),(2,3), ..., (2, 1), ..., (r-1, r), and the columns of the matrix are
ordered 1, ..., r. Then the ith row and (j, k)th column of the matrix is 1, if (i, j, k)
E,orisO,if(i,j,k) ¢ E.

Notation 1 Let T =(t;)), 1 <i<n, | <j<p. We denote the jth column of the
matrix by t, so T = (t,, ..., t,). Let
T = (1t oty ¥ty b ¥ty ety by ooyt ¥ E). (16)

Let X=(xy, ..., Xy) € V,, we denote
X = (XX, XX, ..., Xn-1%) (17)

T* is a matrix with n rows and @ columns. We denote

C=c(h=BS"(f). (18)
Then
f (%, . %) = Xy CXy (19)

where X, C, X{;, are defined as (13), (18), (17).

From (11), (12), (13), (14), and (19) we have

F(X) = X,CXpyy © XQX(y, (20)
Example 1 F(Xg ey X6) = XXXz D XXy X5 D XX D Xy Xg D XoXg D XaX5 @ XyXs. [
=r3(F) = 5. Xy = (X3, X2, ..., Xs), and
0 0001O0O0O0O0OTDO
01 000O0O0OO0TGO01
C'={1 000 0O0O0O0O0O O},
0 000O0O1O0O0TU 0
0 000O0O1O0O0O0OT O
0 00O0TO
10000
0 00O0TO
=1 0000
00110
01000

We have F(X) = X;,CX) © XQX(y .



Theorem 4 Let F(X) be the cubic bent function in GF(2)*" which is defined by
(20). The function F(X) possesses a cubic homogeneous equivalent if and only if
there exists a nonsingular 2n x 2n matrix T = Ty ® T, and

TwCO®TATy =Ty (Tw®TQ), (21)
where T is a matrix with 2n rows and r = r3(F) columns. Ty is defined by (16).

Proof. From formula (12) we have the cubic part of F(X):

(i,j,k)eE
We fix (i, j, k) € E, when Y= XT, T = (Ty, ..., Tan), Where T, is the uth column of
matrix T, and t,; denote the uth column and ith row of the matrix T, 1 <u, i <2n. y,,
Yj, Yk become XT;, XT;, XTi.

2n
Yiyiyk = XIXTJXTk = Z Xutuixvtvjxwtwk =50S, (23)
u,v,w=1
where
S = Z LuitutweXuXXn = 8ijk (24)

UV, VEW, WU

is a cubic homogeneous polynomial, and

S _( z ® z ® z ® Z ]tuitvjtwkxuxvxw

u=v+w Uu=w=#V U#V=W u=v=w

(( z ® z )®( z ® z )®( Z ® Z)]tuitvjtwkxuxvxw

u=v+w u=v=w Uu=w=Vv u=v=w U#v=w u=v=w

2n 2n 2n 2n 2n 2n
Ztuituj Xy thkxw ® Ztuitukxu Ztvj Xy ® Ztvjtvkxv Ztuixu
u=1 w=1 u=1 v=1 v=1 u=1

= X(Ti * T).XT @ X(Ti * Ti).XT; X(T; * T).XTi. (25)
So,
f(XTy)= 2  XTXTXT= > B
(i,j,k)eE (i,j,k)eE
@ ’ Zk:) _ (X(Ti * T).XTe @ X(Ti * TW).XT; @ X(T; * Ti). XTy)
i,i.K)e

s woff sl

(i,J,k)eE i=1\ (j,k)eE;
= Y 8i®XT uC(XTy)' . (26)
(i,j,k)eE



We define

HX) = > i (27)
(i, j,k)eE
Now we have
F(XT) = f(XT(l)) ® XTQ(XT(l))I = H(X) ® X(T(*l) Co® TQ)T('l)X. (28)

So the necessary and sufficient condition for F(X) ~ H(X) is that there exists a
nonsingular matrix T that makes X(T(I)C ® TQ)Ty X" be a linear function of X.

From Lemma 1, T(I)C ® TQ)Ty must be a symmetric matrix. The proof is now

completed. u
6 Cubic Homogeneous Bent Functions
Lemma 2 (Rothaus[l]) Let f(x, ..., X,) be a boolean function in GF(2)".
Then
n
F(X, oo Xon) = F(Xty ooy X0) © D XiXian (29)

i=1

is a bent function in GF(2)*".

Lemma 3 For any n > 3, there exist cubic bent functions with r; = n in
GF(2)™.

Proof. According to Lemma 2 we can easily construct cubic bent
functions in GF(2)** with r3(F) = n. u

Theorem 5 Let F(X) be a cubic bent function given by (29). We construct a
nonsingular 2n x 2n matrix T which has the following structure:

7=[! 0 30
_(A M]’ (30)

where | is a n x n identity matrix, 0 is a n x n zero matrix, M is a n x n nonsingular
matrix, A = (a;), ai; € GF(2), 1, j = 1, ..., n. Then F(XT) is a cubic homogeneous bent
function if and only if

AC=M, (31)
where C is defined in (18), and A” is defined as (16).
Proof. For an arbitrary cubic bent function F(X), it probably can be

represented in the form (20). When C and Q are uniquely defined, according to
theorem 4, there exists a matrix T, of the form (21). We define Q and T as

fel) e



then

Ty = ! *— 0 TQ = 0 33
{2 m-(3) -

F(X) ~ H(X) where H(X) is a cubic homogeneous function if and only if formula
(21) holds. Now

* 0
(TCO®TQ)Ty = (A*C ® M] (1, ~)

0 0
= (34)
A*C®M A*CA @ MA

The resulting matrix is symmetric iff A*C @ M = 0. The proof is completed. QO

Theorem 6 Let F(X) = f(xy, ..., %) @ Zi”:lxixi+n be a bent function in

GF(2)*" where f is a homogeneous cubic function of (x, ..., X,) and rs(f) = n. Then
there exists a nonsingular matrix T such that F(XT) is a cubic homogeneous bent
functior.

n
Proof. Let C be the nx ) matrix defined as in (18). Since rank(C) = n,

there are n rows of C, say, (ji, ki), ---, (jn, Kn), such that the matrix M which consists
of these n rows is a nonsingular matrix. We define A = (&;j)1<i_j<n as follows:

1, f =] j= 19 -
T e (35)
0, otherwise

I O
Let T = (A M] , where | is the n x n identity matrix, 0 is the n x n zero matrix.

Obviously, T is a nonsingular matrix. For any fixed i, 1 <i < n, in the ith row of A*,
aj1i2, ..., {13, ---, din.13in, ONly One component aj ay, = 1 and others are all 0. So
the matrix product of the ith row of A* with C gives the (ji, k)-th row of C. That is

A*C = M, so (31) holds and F(XT) is a cubic homogeneous bent function. The
theorem is proven. a

Let E be an unordered triple set: E = {(i, j, k) : 1 <14, j, k < r}, write E; =
{G,k): (i, j,k) eE}, 1<i<n.

Definition 3 (Regular unordered triplet set) The unordered triplet set E is
called regular if E/(UjE) #0, 1 <i,j<r.

Theorem 7 Let F(X) = Z(i‘j‘k)eE XXX + > XiXin s F3(F) = n be a boolean

function in GR2)?". If E is a regular unordered triple set, then there exists a square
matrix A which satisfies the equation (31) with M = 1, and F(XT) is a cubic
homogeneous bent function.



Proof. We expand the left side of (31). Hence we have

DajFag..., p.ajrac| =M, (36)
(i,k)ek; (jk)ek,
in which a;, 1 < i < nis the ith column of matrix A. Since E is regular,
E; /(u’}:1 Ej);t 0, so there exists at least one unordered pair (j,k) € E; /(u’}:1 Ej)
which makes
aik=aij=1, a; =0, j¢|¢k, I<I<n.

In this case, only ajjaix = 1, and if (u, v) # (j, k), ai,aiy = 0. Now the ith row of the left
i-1 n—i

side of (36) becomes 0,...,0,1,0,...,0, and this is identical with the ith row of right

side of (36). Hence equation (36) holds. Consequently, F(XT) is a cubic

homogeneous bent function. The proof is completed. u
Theorem 8 For all n > 3 and n = 4, there exist cubic homogeneous bent
functions in GR2)>".

Proof. There are three cases:

1. n=0(mod 3), we can write n = 3m for some positive integer m. Let

m 3m
F(X)= Z X3i_pXgi 1 X3i D Z % Xj43m - (37)
i-1 i=1

From Lemma 2 and we know that F(X) is a bent function. Now
E={(Bi-2,3i-1,3i):1<i<m}

is the regular un-ordered triple set and F(X) has the form of (29). Hence from
Theorem 5 we know that there exists a 2n x 2n nonsingular matrix T with the
form of (30) which makes (31) hold. So F(XT) is cubic homogeneous bent
function.

2. n=1(mod 3), write n = 3m + 1 for some positive integer m. Because
n=4,m22. Let

m 3m+l
F(X)= Z X3i_2X3i_1 X3 D XX X3, @ Z Xi Xi3me (38)
i=1 i=1

By Lemma 2 and we know it is a bent function. In this case, we have
E={@Bi-2,3i-1,3i):1<i<m}u{(l, 4, 3m+1)}, (39)

which is regular and F(X) has the form of (29), the conclusion of Theorem 8
is also valid.
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3. n=2(mod3), write n = 3m + 2 for some m. Let

3m+2

m
F(X) = Z X3i_5 X3i1 X35 D X Xy X3 D Z X Xi13me2 (40)

i=1 i=1
and we have
E={(Bi-2,3i-1,3):1<i<m}u{(l,3m+1,3m+2)} (41)
The proof of this case is the same as before.

Hence the statement of the theorem is true and the proof is completed. u
Example 2 Let F(X) = xpXX: @ Z; XiXi+3 be a cubic bent function in
GF(2)".
0 01 a1 A g
Wehave C'=|0 1 O|andsetA=(a,a,a3)=|a, a, a, |. Wecalculate
1 00 ag ag dgg
A*C =1 and get
011
A=l1 0 1
110
So
100000
010000
001000
T: 1
011100
101010
110001
and

FIXT) = XXz @ XXoXg @ XXoXs D XyXaXg @ X1 XaXe @ X XgXs D XyXgX @D
X1XsXs @ XoXaXs D XoXzXs D XoXaXs D XoXaXe D XoXsXg D X3XaXs D
X3XaXs D X3X5Xs,

is a cubic homogeneous bent function.

7 The Fourier Transform of Homogeneous Bent Functions

Lemma 4 LetZ=X® Y, where X= (Xy, ... , %)) € GF2)", Y= (Y}, ..., V) €
GF(2)", Tisa2n x 2n matrix and T = (; l\(jlj where L, A, M are n x n matrix and

L and M exist. f(Z) = P(X) @ (X, ) and g(2) = f(ZT) are bent functions in GF(2)*".
The Fourier transform of g(2) is:

. 2@ =P((Y®XALY M@ (YO X(ALY) M, XL, (42)

11



Proof. LetW=U® V, U= (W, ..., W), V= (Wp+1, ..., Wpy). From the
Fourier transform definition, we have

_ W)e(w,z)
Fg@ =2" > (-D°
WeGF (2)%"

o-n Z (-1) f (ULOVA)S(VLOVAVM)®(U , X)&(V Y)

U VeGF (2)"

o Z a 1)(V,Y>®(VA, )

VeGF(2)"

£ (VL &VA)S(VLAVAVM)@(VLeVA, XL’ L
o 31 ( )o{ )

UeGF(2)"

o Z(_l)(V,YGr)XL"lA' Z(_l)f(S)GJ(S,VM@XL"l)

VeGF(2)" SeGF(2)"

- Z(_l)f(s)ea(s,)(l_'*l) Z(_l)(V,YGr)XL"lA'@SM')

SeGF (2)" VeGF(2)"
fYOX(ALY )M hHe((yex (ALY )yM L XLt
= (-1 ( @)
[
Lemma5 Let {X) be a homogeneous function of degree 3 in GF(2)". g(2) =

f(X® YA) @ (X® YA, ) is a cubic homogeneous bent function, where Aisan x n
nonsingular matrix. When A= A, g(2) is a cubic homogeneous bent function, too.

Proof. Since A= A, from Lemma 4 we have
g(2) =f(Y® XA) ® (YD XA, X). (44)

Since g(2) is homogeneous bent function. The Fourier transform of g(2) is also a
bent function. We have

g(Z) =f (X ® YA) ® <X D YA, Y) = ]Sil<i2®<i35inaili2i3 Zi12i2 Zi3 !
where aili2i3 Zil Zi2 Zi3 eGF (2) .

Because Z = X ® Y, z, is either xcory,, 1 <j<3, 1<k £ <n.Wedefine
X =V, Y%, 1<i<n thenZ=Y® X g(2 is cubic homogeneous bent
function. Then

gD =F(YOXA)DYDOXA X =g(Y®X)
is a cubic homogeneous bent function. The proof is completed. u

Lemma 6 There exist cubic homogeneous bent functions g(X) in GF(2)*"
when n > 3, n # 4, and their Fourier transforms are also cubic homogeneous bent
functions.

12



8 Remark

Example 3 When n =5, we define the function F(X) = XXoX3 @ XXXq @ XXaXs
S Z;xi X.s , Which is a cubic bent function in GF(2)™°. r3(F) = 5, ry(F) = 0. Set

E={(1,223),(124),(13,9} E={(23),(24), G 5} E2={(1,3), (1,4},
Es={(L 2), (1, 5}, E.={(L 2)}, Es={(1, 3)}. We define

Ei = Ei/(Uj#i Ej), where 1 <, j <5,

and have E; = E;, E, = {(1,4)}, Es={(1,5)}, E,=Es=0.So E is not a regular
triple set. But there exists n x n nonsingular matrix

01 0

O B O O
O O O B+
= O O -
O B B O O

that makes A*C = I. So E regular is not a necessary condition for A*C = 1.
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