University of Wollongong

Research Online

September 2000

Construction of cubic homogeneous boolean bent functions

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au
Tianbing Xia
University of Wollongong, txia@uow.edu.au
J. Pieprzyk
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Seberry, Jennifer; Xia, Tianbing; and Pieprzyk, J.: Construction of cubic homogeneous boolean bent functions 2000.
https://ro.uow.edu.au/infopapers/510

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Construction of cubic homogeneous boolean bent functions

Abstract
We prove that cubic homogeneous bent functions $f: V 2 n \rightarrow G F(2)$ exist for all $n \geq 3$ except for $n=4$.

Disciplines

Physical Sciences and Mathematics

Publication Details

This article was originally published as Seberry, J, Xia, T and Pieprzyk, J, Construction of homogeneuous boolean bent functions, Australasian Journal of Combinatorics, 22, 2000, 233-245.

Construction of cubic homogeneous boolean bent functions ${ }^{1}$

Jennifer Seberry, Tianbing Xia, Josef Pieprzyk
Centre for Computer Security Research, University of Wollongong, NSW 2500, Australia
Email: [j.seberry, tx01, josef] @uow.edu.au

Abstract

We prove that cubic homogeneous bent functions $\mathrm{f}: \mathrm{V}_{2 \mathrm{n}} \rightarrow G F(2)$ exist for all $\mathrm{n} \geq 3$ except for $\mathrm{n}=4$.

\section*{1 Introduction}

The theory of S-boxes emerged as a branch of cryptography whose main aim is the design of cryptographically strong Boolean functions or S-boxes. Typically the strength of an S-box is quantified by a collection of cryptographic criteria. There is an intimate relation between cryptographic attacks and this collection of cryptographic criteria. A new criterion is added to the collection every time a new cryptographic attack is invented. If an S-box satisfies the criterion, then the designer may immunise a cryptographic algorithm against the attack by using the S-box. Bent functions are basic algebraic constructions which enable designers of cryptographic algorithms to make them immune against a variety of attacks including the linear cryptanalysis.

We concentrate on homogenous bent functions. Homogeneousity becomes a highly desirable property when efficient evaluation of the function is important. It was argued in [5], that for cryptographic algorithms which are based on the structure of MD4 and MD5 algorithms, homogeneous Boolean functions can be an attractive option; they have the property that they can be evaluated very efficiently by re-using evaluations from previous iterations.

Let us summarise some arguments from [5] which can be used to justify our interest in homogeneous functions. Note that in the MD-type hashing (such as MD4 or MD5 or HAVAL), a single Boolean function is used for a number of rounds (in MD4 and MD5 this number is 16 , in HAVAL it is 32). In two consecutive rounds, the same function is evaluated with all variables the same except one. More precisely, in the i th round the function $f(x)$ is evaluated for $\left(x_{1}, \ldots, x_{n}\right)$. In the (i+1)-th round, the same function is evaluated for $f\left(x_{2}, \ldots, x_{n}, y_{1}\right)$ where y_{1} is a new variable generated in the i-th round. Note that variables are rotated between two rounds. It can be proved that evaluations from the i-th round can be re-used

[^0]if $\mathrm{f}(\mathrm{x})=\mathrm{f}(\operatorname{ROT}(\mathrm{x}))$. These Boolean functions create a class of rotation-symmetric functions. An important property of rotation-symmetric functions is that they can be decomposed into one or more homogeneous parts. To keep a round function $f(x)$ short, one would prefer a homogeneous rotation-symmetric function.

In [4] we proved there do not exist homogeneous bent functions of degree n in $\mathrm{GF}(2)^{2 \mathrm{n}}$ when $\mathrm{n}>3$. However the construction of high degree homogeneous bent functions has remained an open problem. In this paper we show how to construct cubic homogeneous bent functions in $\mathrm{GF}(2)^{2 \mathrm{n}}$ where $\mathrm{n} \geq 3$ and $\mathrm{n} \neq 4$.

2 Background

Let $V_{n}=\operatorname{GF}(2)^{n}$ be the set of all vectors with n binary co-ordinates. V_{n} contains 2^{n} different vectors from $\alpha_{0}=(0,0, \ldots, 0)$ to $\alpha_{2^{n}-1}=(1,1, \ldots, 1)$. A boolean function $\mathrm{f}: \mathrm{V}_{\mathrm{n}} \rightarrow \mathrm{GF}(2)$ assigns binary values to vectors from V_{n}. Let $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two vectors in $G F(2)^{n}$. Throughout the paper we use the following notations:

- the inner product of x and y defined as

$$
\langle\mathrm{x}, \mathrm{y}\rangle=\mathrm{x} \circ \mathrm{y}=\mathrm{x}_{1} \mathrm{y}_{1} \oplus \cdots \oplus \mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}
$$

where $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$;

- the inner addition of x and y given by
$x \oplus y=\left(x_{1} \oplus y_{1}, \cdots, x_{n} \oplus y_{n}\right)$,
where $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$. Note that inner addition is equivalent to bit-by-bit XOR addition;
- the extension of vector $\mathrm{x} \in V_{n}$ by a vector $\mathrm{y} \in V_{m}$, is defined as
$\mathrm{x} \otimes y=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right)$.
The vector $\mathrm{x} \otimes y \in V_{n+m}$.
- the Hadamard product of vector $\mathrm{a}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)^{\prime}$ and vector $\mathrm{b}=\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)^{\prime}$ given by

$$
\mathrm{a} * \mathrm{~b}=\left(\mathrm{a} 1 \mathrm{~b} 1, \ldots, \mathrm{a}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}}\right)^{\prime}
$$

where the symbol "'" means transpose of the vector or matrix.
Definition $1 \quad$ A boolean function $\mathrm{f}: \mathrm{V}_{\mathrm{n}} \rightarrow \mathrm{GF}(2)$ is homogeneous of degree k if it can be represented as

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\underset{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n}{\oplus} \mathrm{a}_{\mathrm{i}_{1} \cdots i_{k}} \mathrm{X}_{\mathrm{i}_{1}} \ldots \mathrm{X}_{\mathrm{i}_{\mathrm{k}}} . \tag{1}
\end{equation*}
$$

where $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$. Each term $\mathrm{x}_{\mathrm{i}_{1}} \ldots \mathrm{x}_{\mathrm{i}_{\mathrm{k}}}, \mathrm{a}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathrm{k}}} \in \mathrm{GF}(2)$ is a product of precisely k co-ordinates.

Let p_{n} denote the set of all boolean functions in $\mathrm{GF}(2)^{\mathrm{n}}$. For $\mathrm{f} \in p_{n}$ we let $\operatorname{deg}(\mathrm{f})$ be the degree of f . Define

$$
\mathrm{R}(\mathrm{~m}, \mathrm{n})=\left\{\mathrm{f} \in p_{n}: \operatorname{deg}(\mathrm{f}) \leq \mathrm{m}\right\} .
$$

If $\mathrm{f} \in p_{2 n}$ is a bent function, we call $\mathrm{f}+\mathrm{R}(1,2 \mathrm{n})$ a bent coset.
Let \sim denote the equivalence relation under the action of linear transformation. We define for any nonsingular $\mathrm{n} \times n$ matrix A and vector $\alpha \in G F(\mathrm{n})$,

$$
\sigma(\mathrm{f})=\mathrm{f}(\mathrm{XA} \oplus \alpha) \text {, where } \mathrm{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) .
$$

Let F fdenote the Fourier transform of f . Thus F fis defined as

$$
\begin{equation*}
F f(\alpha)=\frac{1}{2^{n}} \sum_{X \in V_{2 n}}(-1)^{f(X) \oplus\langle X, \alpha\rangle} \tag{2}
\end{equation*}
$$

3 The Rank

For $0 \leq \mathrm{t} \leq \mathrm{n}$, let $\mathrm{s}_{\mathrm{t}}^{\mathrm{n}}$ be the set of all t -subsets of $\{1, \ldots, \mathrm{n}\}$. For any $\mathrm{I} \subset s_{t}^{n}$, we write $\mathrm{X}_{\mathrm{I}}=\prod_{j \in I} x_{j}$. Let $\mathrm{t}_{1}, \mathrm{t}_{2} \geq 0$ with $\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{t}$, and $\mathrm{f}=$
$\sum_{I \subset S_{t}^{n}} a_{1} X_{1} \in R(t, n) / R(t-1, n)$, where $a_{1} \in G F(2)$. We define an $\binom{n}{t_{1}} \times\binom{ n}{t_{2}}$ matrix $B_{t_{1}, t_{2}}^{(t, n)}$ (f) over $G F(2)$ as follows:

1. The rows and columns of $B_{t_{1}, t_{2}}^{(t, n)}(f)$ are labelled by the elements of $S_{t_{1}}^{n}$ and the elements of $S_{t_{2}}^{\mathrm{n}}$, respectively.
2. $\mathrm{a}_{\mathrm{I}}=0$ for $\mathrm{I} \subset\{1, \ldots, \mathrm{n}\}$ with $\|\mathrm{I}\|<\mathrm{t}$.

For $\mathrm{F} \in R(\mathrm{t}, \mathrm{n}) / \mathrm{R}(\mathrm{t}-1, \mathrm{n}), \mathrm{t} \geq 1$, let

$$
\begin{equation*}
\mathrm{r}_{\mathrm{t}}(\mathrm{~F})=\operatorname{rank}\left(\mathrm{B}_{1, \mathrm{t}-1}^{(\mathrm{t}, \mathrm{n})}(\mathrm{F})\right) \tag{3}
\end{equation*}
$$

If $\mathrm{F} \in R(t, n)$, we define $\mathrm{r}_{\mathrm{t}}(\mathrm{F})=\mathrm{r}_{\mathrm{t}}(\mathrm{F} \oplus R(\mathrm{t}-1, n))$.
Theorem 1 (Hou[3]) Let F be a cubic bent function in $\mathrm{p}_{2 \mathrm{n}}$.

1. $\operatorname{Ifr}_{2}(\mathrm{~F})>0$, then

$$
\begin{equation*}
\mathrm{F} \sim \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}, . ., \mathrm{x}_{2 \mathrm{n}-2}\right) \oplus x_{2 \mathrm{n}-1} \mathrm{x}_{2 \mathrm{n}} \tag{4}
\end{equation*}
$$

where P is a cubic bent function in $\mathrm{P}_{2 \mathrm{n}-2}$.
2. If $r_{3}(F)<n$, then $r_{2}(F)>0$.
3. If $r_{3}(F)=n$ and $r_{2}(F)=0$, then

$$
\begin{equation*}
\mathrm{F} \sim \mathrm{Q}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \oplus \sum_{i=1}^{n} x_{i} x_{n+i} \tag{5}
\end{equation*}
$$

for some $\mathrm{Q} \in p_{n}$.

Theorem 2 Let $\mathrm{f}(\mathrm{x})$ be a boolean function in $\mathrm{GF}(2)^{\mathrm{n}}$ and $\mathrm{g}(\mathrm{y})$ be a boolean function in $\mathrm{GF}(2)^{\mathrm{m}}$. $\mathrm{f}(\mathrm{x}) \oplus g(y)$ is a homogeneous bent function of degree k in $G F(2)^{n+m}$ if and only if both $f(x)$ and $g(y)$ are homogeneous bent functions of degree k.

Proof. If $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{y})$ are homogeneous bent functions of degree k , it is easy to see $\mathrm{H}(\mathrm{z})=\mathrm{f}(\mathrm{x}) \oplus g(y)$ is a homogeneous bent function of degree k where $\mathrm{z}=\mathrm{x} \otimes \mathrm{y}$.
On the other hand, if $\mathrm{H}(\mathrm{z})=\mathrm{f}\left(\mathrm{x}^{\prime}, \oplus g(y)\right.$ is a homogeneous bent function of degree k where $\mathrm{z}=\mathrm{x} \otimes y$, we know $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{y})$ are bent functions, too. Obviously $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{y})$ are homogeneous bent functions.
The proof is complete.

4 The Equivalence

Definition 2 Let $F(X)$ and $G(X)$ be two bent functions in $\mathbf{G F}(2)^{2 n}$. If there exists a matrix $\mathbf{T} \in G L(2 n, 2)$ and $b \in G F(2)^{2 n}$, such that

$$
F(X T) \oplus\langle X, b\rangle=G(X),
$$

we say that F equivalent to G, and denote this by $F \sim G$.
Theorem 3 Let $F(X)$ be a cubic bent function in $G F(2)^{2 n}$ and $G(X)$ be a homogeneous cubic bent function in $G F(2)^{2 n}$. If $F \sim G$, then $r_{2}(F)=0$ and $r_{3}(F) \geq n$.
Proof. Since F ~ G, from the results of the work[3] we know $\mathrm{r}_{\mathrm{i}}(\mathrm{F})=$ $r_{i}(G), i=2,3$. Because G is a homogeneous bent function, we have $r_{2}(G)=0, r_{2}(F)$ $=r_{2}(G)=0$. From Theorem 1 we know $r_{3}(F) \geq n$, which completes the proof.

Lemma 1 Let $\mathbf{A}=\left(\mathbf{a}_{\mathbf{i j}}\right)$ be an $\mathbf{n} \times n$ matrix, $a_{i j} \in G F(2), 1 \leq i, j \leq n$, and X be a vector in $G F(2)^{n}$, Then $X A X$ ' is a linear boolean function if and only if $A=A^{\prime}$.
Proof. If XAX is a linear boolean function, then there exists a vector $b \in$ $G F(2)^{n}$, such that

$$
\begin{equation*}
\mathrm{XAX}=\langle X, b\rangle \tag{6}
\end{equation*}
$$

for all $\mathrm{X} \in G F(2)^{n}$. As $\mathrm{b}=\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$, and $\mathrm{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, we can rewrite (6) in the following form:

$$
\begin{equation*}
\sum_{\mathrm{ij}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~b}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \tag{7}
\end{equation*}
$$

For any fixed $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$, let $\mathrm{x}_{\mathrm{i}}=1$ and $\mathrm{x}_{\mathrm{j}}=0, \mathrm{j} \neq i, 1 \leq \mathrm{j} \leq \mathrm{n}$, then from (7) we have

$$
\begin{equation*}
a_{i \mathrm{ii}}=b_{i}, i=1, \ldots, n . \tag{8}
\end{equation*}
$$

For any pair of $\mathrm{i}, \mathrm{j}, \mathrm{i} \neq j, \mathrm{l} \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$, let $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{j}}=1, \mathrm{x}_{\mathrm{k}}=0, \mathrm{k} \neq \mathrm{i}$ and $\mathrm{k} \neq \mathrm{j}, 1 \leq \mathrm{k} \leq \mathrm{n}$, then from (7) we have

$$
\begin{equation*}
\mathrm{a}_{\mathrm{ii}}+\mathrm{a}_{\mathrm{jj}}+\mathrm{a}_{\mathrm{ij}}+\mathrm{a}_{\mathrm{ji}}=\mathrm{b}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}} . \tag{9}
\end{equation*}
$$

From (8) and (9) we have

$$
\begin{equation*}
\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ji}} 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}, \tag{10}
\end{equation*}
$$

and $A=A^{\prime}$.
Assume that $A=A^{\prime}$. We obtain the following:

$$
\begin{aligned}
X A X & =\sum_{\mathrm{ij}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}} \mathrm{x}_{\mathrm{i}}^{2} \oplus \sum_{\mathrm{i}=1}^{\mathrm{n}-1} \sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{ij}} \oplus \mathrm{a}_{\mathrm{ji}}\right) \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ii}} \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

is a linear boolean function. This completes the proof.

5 The Matrix Representation of Cubic Bent Functions

Let $\mathrm{F}(\mathrm{X})$ be a cubic bent function in $\mathrm{GF}(2)^{2 \mathrm{n}}, \mathrm{r}=\mathrm{r}_{3}(\mathrm{~F}) \geq \mathrm{n}, \mathrm{r}_{2}(\mathrm{~F})=0$, then

$$
\begin{equation*}
\mathrm{F}(\mathrm{X})=\sum_{(\mathrm{i}, \mathrm{j}, \mathrm{k}) \in \mathrm{E}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{k}} \oplus \sum_{(\mathrm{u}, \mathrm{v}) \in \mathrm{D}} \mathrm{x}_{\mathrm{u}} \mathrm{x}_{\mathrm{v}}, \tag{11}
\end{equation*}
$$

$\mathrm{i} \neq j, \mathrm{j} \neq k, \mathrm{k} \neq i, \mathrm{u} \neq v$. Suppose E is a collection of unordered triples, and further suppose D is a collection of unordered pairs. Since $r=r_{3}(F)$, the cubic part of $F(X)$ can be represented as

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right)=\sum_{(\mathrm{i}, \mathrm{j}, \mathrm{k}) \in \mathrm{E}} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \mathrm{x}_{\mathrm{k}} . \tag{12}
\end{equation*}
$$

We denote

$$
\begin{align*}
& X=\left(x_{1}, \ldots, x_{2 n}\right)=X_{(1)} \otimes X_{(2)}, \\
& X_{(1)}=\left(x_{1}, \ldots, x_{r}\right), \quad X_{(2)}=\left(X_{r+1}, \ldots, x_{2 n}\right) . \tag{13}
\end{align*}
$$

The quadratic part of $F(X)$ can be represented as

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{(u, v) \in D} x_{u} x_{v}=X Q X_{(1)}^{\prime}, \tag{14}
\end{equation*}
$$

where $\mathrm{Q}=\left(\mathrm{Q}_{\mathrm{ij}}\right)$ is a $2 \mathrm{n} \times r$ matrix with

$$
\mathrm{q}_{\mathrm{ij}}=\left\{\begin{array}{lc}
1, & \mathrm{i}>\mathrm{j} \text { and }(\mathrm{i}, \mathrm{j}) \in \mathrm{D}, \tag{15}\\
0, & \text { otherwise }
\end{array}\right.
$$

where $1 \leq \mathrm{i} \leq 2 \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{r}$. It is known that $\mathrm{r}_{3}(\mathrm{~F})=\mathrm{r}_{3}(\mathrm{f})$. We can construct a matrix $\mathrm{B}_{1,2}^{(3, \mathrm{r})}(\mathrm{f})$ with r rows and $\frac{r(r-1)}{2}$ columns. The rows of the matrix are ordered $(1,2), \ldots,(1, r),(2,3), \ldots,(2, r), \ldots,(r-1, r)$, and the columns of the matrix are ordered $1, \ldots, r$. Then the ith row and (j, k) th column of the matrix is 1 , if $(i, j, k) \in$ E, or is 0 , if $(\mathrm{i}, \mathrm{j}, \mathrm{k}) \notin E$.

Notation $1 \quad$ Let $T=\left(t_{i j}\right), 1 \leq i \leq n, 1 \leq \mathrm{j} \leq \mathrm{p}$. We denote the j th column of the matrix by t_{j}, so $\mathrm{T}=\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{p}}\right)$. Let

$$
\begin{equation*}
\mathrm{T}^{*}=\left(\mathrm{t}_{1} * \mathrm{t}_{2}, \ldots \mathrm{t}_{1} * \mathrm{t}_{\mathrm{p}}, \mathrm{t}_{2} * \mathrm{t}_{3}, \ldots, \mathrm{t}_{2} * \mathrm{t}_{\mathrm{p}}, \ldots, \mathrm{t}_{\mathrm{p}-1} * \mathrm{t}_{\mathrm{p}}\right) \tag{16}
\end{equation*}
$$

Let $\mathrm{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in V_{n}$, we denote

$$
\begin{equation*}
X^{*}=\left(x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{n-1} x_{n}\right) \tag{17}
\end{equation*}
$$

T^{*} is a matrix with n rows and $\frac{p(p-1)}{2}$ columns. We denote

$$
\begin{equation*}
\mathrm{C}=\mathrm{C}(\mathrm{f})=B_{1,2}^{(3, r)}(f)^{\prime} . \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right)=\mathrm{X}_{(1)}^{*} \mathrm{CX}_{(1)}^{\prime} \tag{19}
\end{equation*}
$$

where $X_{(1)}, C, X_{(1)}^{\prime}$ are defined as (13), (18), (17).
From (11), (12), (13), (14), and (19) we have

$$
\begin{equation*}
\mathrm{F}(\mathrm{X})=\mathrm{X}_{(1)}^{*} \mathrm{CX}_{(1)}^{\prime} \oplus \mathrm{XQX}_{(1)}^{\prime} \tag{20}
\end{equation*}
$$

Example $1 \quad \mathrm{~F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}\right)=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \oplus x_{2} \mathrm{x}_{4} \mathrm{x}_{5} \oplus x_{1} \mathrm{X}_{2} \oplus x_{1} \mathrm{x}_{4} \oplus x_{2} \mathrm{x}_{6} \oplus x_{3} \mathrm{x}_{5} \oplus x_{4} \mathrm{X}_{5} . \mathrm{r}$ $=r_{3}(F)=5 . X_{(1)}=\left(x_{1}, x_{2}, \ldots, x_{5}\right)$, and

$$
\begin{aligned}
& \mathrm{C}^{\prime}=\left(\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \mathrm{Q}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We have $\mathrm{F}(\mathrm{X})=\mathrm{X}_{(1)}^{*} \mathrm{CX}_{(1)}^{\prime} \oplus \mathrm{XQX}_{(1)}^{\prime}$.

Theorem 4 Let $\mathrm{F}(\mathrm{X})$ be the cubic bent function in $\mathrm{GF}(2)^{2 \mathrm{n}}$ which is defined by (20). The function $F(X)$ possesses a cubic homogeneous equivalent if and only if there exists a nonsingular $2 \mathrm{n} \times 2 \mathrm{n}$ matrix $T=T_{(1)} \otimes T_{(2)}$, and

$$
\begin{equation*}
\left(\mathrm{T}_{(1)}^{*} \mathrm{C} \oplus T Q\right) \mathrm{T}_{(1)}^{\prime}=\mathrm{T}_{(1)}\left(\mathrm{T}_{(1)}^{*} \oplus T Q\right)^{\prime} \tag{21}
\end{equation*}
$$

where $T_{(1)}$ is a matrix with 2 n rows and $\mathrm{r}=\mathrm{r}_{3}(\mathrm{~F})$ columns. $\mathrm{T}_{(1)}$ is defined by (16).
Proof. From formula (12) we have the cubic part of $\mathrm{F}(\mathrm{X})$:

$$
\begin{equation*}
f\left(X_{(1)}\right)=\sum_{(i, j, k) \in E} x_{i} x_{j} x_{k} \tag{22}
\end{equation*}
$$

We fix $(\mathrm{i}, \mathrm{j}, \mathrm{k}) \in E$, when $\mathrm{Y}=\mathrm{XT}, \mathrm{T}=\left(\mathrm{T}_{1}, \ldots, \mathrm{~T}_{2 \mathrm{n}}\right)$, where T_{u} is the uth column of matrix T, and $t_{u i}$ denote the uth column and ith row of the matrix $T, 1 \leq u, i \leq 2 n . y_{i}$, $\mathrm{y}_{\mathrm{j}}, \mathrm{y}_{\mathrm{k}}$ become $\mathrm{XT}_{\mathrm{i}}, \mathrm{XT}_{\mathrm{j}}, \mathrm{XT}_{\mathrm{k}}$.

$$
\begin{equation*}
\mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}} \mathrm{y}_{\mathrm{k}}=\mathrm{XT}_{\mathrm{i}} \mathrm{XT}_{\mathrm{j}} \mathrm{XI}_{\mathrm{k}}=\sum_{u, v, w=1}^{2 n} \mathrm{x}_{\mathrm{u}} \mathrm{t}_{\mathrm{ui}} \mathrm{X}_{\mathrm{v}} \mathrm{t}_{\mathrm{vj}} \mathrm{X}_{\mathrm{w}} \mathrm{t}_{\mathrm{wk}}=\mathrm{S}_{1} \oplus S_{2}, \tag{23}
\end{equation*}
$$

where
$\mathrm{S}_{1}=\sum_{u \neq v, v \neq w, w \neq u} \mathrm{t}_{\mathrm{ui}} \mathrm{t}_{\mathrm{vj}} \mathrm{t}_{\mathrm{wk}} \mathrm{x}_{\mathrm{u}} \mathrm{X}_{\mathrm{v}} \mathrm{x}_{\mathrm{w}}=\delta_{\mathrm{ijk}}$
is a cubic homogeneous polynomial, and

$$
\begin{align*}
\mathrm{S}_{2} & =\left(\sum_{u=v \neq w} \oplus \sum_{u=w \neq v} \oplus \sum_{u \neq v=w} \oplus \sum_{u=v=w}\right) t_{u i} t_{v j} t_{w k} x_{u} x_{v} x_{w} \\
& =\left(\left(\sum_{u=v \neq w} \oplus \sum_{u=v=w}\right) \oplus\left(\sum_{u=w \neq v} \oplus \sum_{u=v=w}\right) \oplus\left(\sum_{u \neq v=w} \oplus \sum_{u=v=w}\right)\right) \mathrm{t}_{\mathrm{ui}} \mathrm{t}_{\mathrm{vj}} \mathrm{t}_{\mathrm{wk}} \mathrm{X}_{\mathrm{u}} \mathrm{X}_{\mathrm{v}} \mathrm{X}_{\mathrm{w}} \\
& =\sum_{\mathrm{u}=1}^{2 \mathrm{n}} \mathrm{t}_{\mathrm{ui}} \mathrm{t}_{\mathrm{uj}} \mathrm{x}_{\mathrm{u}} \sum_{\mathrm{w}=1}^{2 \mathrm{n}} \mathrm{t}_{\mathrm{wk}} \mathrm{X}_{\mathrm{w}} \oplus \sum_{\mathrm{u}=1}^{2 \mathrm{n}} \mathrm{t}_{\mathrm{ui}} \mathrm{t}_{\mathrm{uk}} \mathrm{X}_{\mathrm{u}} \sum_{\mathrm{v}=1}^{2 \mathrm{n}} \mathrm{t}_{\mathrm{vj}} \mathrm{X}_{\mathrm{v}} \oplus \sum_{\mathrm{v}=1}^{2 \mathrm{n}} \mathrm{t}_{\mathrm{vj}} \mathrm{t}_{\mathrm{vk}} \mathrm{X}_{\mathrm{v}} \sum_{\mathrm{u}=1}^{2 \mathrm{n}} \mathrm{t}_{\mathrm{ui}} \mathrm{X}_{\mathrm{u}} \\
& =\mathrm{X}\left(\mathrm{~T}_{\mathrm{i}} * \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{XT}_{\mathrm{k}} \oplus X\left(\mathrm{~T}_{\mathrm{i}} * \mathrm{~T}_{\mathrm{k}}\right) \cdot \mathrm{XT}_{\mathrm{j}} \mathrm{X}\left(\mathrm{~T}_{\mathrm{j}} * \mathrm{~T}_{\mathrm{k}}\right) \cdot \mathrm{XT}_{\mathrm{i}} . \tag{25}
\end{align*}
$$

So,

$$
\begin{align*}
\mathrm{f}\left(\mathrm{XT}_{(1)}\right)= & \sum_{(i, j, k) \in E} \mathrm{XT}_{\mathrm{i}} \mathrm{XT}_{\mathrm{j}} \mathrm{XT}_{\mathrm{k}}=\sum_{(i, j, k) \in E} \delta_{\mathrm{ijk}} \\
& \oplus \sum_{(i, j, k) \in E}\left(\mathrm{X}\left(\mathrm{~T}_{\mathrm{i}} * \mathrm{~T}_{\mathrm{j}}\right) \cdot \mathrm{XT}_{\mathrm{k}} \oplus X\left(\mathrm{~T}_{\mathrm{i}} * \mathrm{~T}_{\mathrm{k}}\right) \cdot \mathrm{XT}_{\mathrm{j}} \oplus X\left(\mathrm{~T}_{\mathrm{j}} * \mathrm{~T}_{\mathrm{k}}\right) \cdot \mathrm{XT}_{\mathrm{i}}\right) \\
= & \sum_{(i, j, k) \in E} \delta_{\mathrm{ijk}} \oplus \sum_{i=1}^{r}\left(\sum_{(j, k) \in E_{i}} X\left(T_{j} * T_{k}\right)\right) X T_{i} \\
= & \left.\sum_{(i, j, k) \in E} \delta_{\mathrm{ijk}} \oplus X T_{(1)}^{*} \mathrm{C}^{*}\left(\mathrm{XT}_{(1)}\right)\right)^{\prime} . \tag{26}
\end{align*}
$$

We define

$$
\begin{equation*}
\mathrm{H}(\mathrm{X})=\sum_{(i, j, k) \in E} \delta_{i j k} . \tag{27}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\mathrm{F}(\mathrm{XT})=\mathrm{f}\left(\mathrm{XT}_{(1)}\right) \oplus X T Q\left(\mathrm{XT}_{(1)}\right)^{\prime}=\mathrm{H}(\mathrm{X}) \oplus X\left(\mathrm{~T}_{(1)}^{*} \mathrm{C} \oplus T Q\right) \mathrm{T}_{\left({ }^{\prime} 1\right)} \mathrm{X}^{\prime} . \tag{28}
\end{equation*}
$$

So the necessary and sufficient condition for $F(X) \sim H(X)$ is that there exists a nonsingular matrix T that makes $X\left(T_{(1)}^{*} \mathrm{C} \oplus T Q\right) \mathrm{T}_{(1)}^{\prime} \mathrm{X}^{\prime}$ be a linear function of X .

From Lemma 1, $\left.\mathrm{T}_{(1)}^{*} \mathrm{C} \oplus \mathrm{TQ}\right) \mathrm{T}_{(1)}^{\prime}$ must be a symmetric matrix. The proof is now completed.

6 Cubic Homogeneous Bent Functions

Lemma 2 (Rothaus[l]) Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a boolean function in $\operatorname{GF}(2)^{n}$.
Then

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{n}}\right)=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \oplus \sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+\mathrm{n}} \tag{29}
\end{equation*}
$$

is a bent function in $\mathrm{GF}(2)^{2 \mathrm{n}}$.
Lemma 3 For any $n \geq 3$, there exist cubic bent functions with $r_{3}=n$ in $\mathrm{GF}(2)^{2 \mathrm{n}}$.

Proof. According to Lemma 2 we can easily construct cubic bent functions in $\mathrm{GF}(2)^{2 \mathrm{k}}$ with $\mathrm{r}_{3}(\mathrm{~F})=\mathrm{n}$.

Theorem 5 Let $\mathbf{F}(X)$ be a cubic bent function given by (29). We construct a nonsingular $2 \mathrm{n} \times 2 \mathrm{n}$ matrix T which has the following structure:

$$
T=\left(\begin{array}{cc}
I & 0 \tag{30}\\
A & M
\end{array}\right),
$$

where I is a $\mathrm{n} \times n$ identity matrix, 0 is a $\mathrm{n} \times n$ zero matrix, M is a $\mathrm{n} \times n$ nonsingular matrix, $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right), \mathrm{a}_{\mathrm{ij}} \in G F(2), \mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{n}$. Then $\mathrm{F}(\mathrm{XT})$ is a cubic homogeneous bent function if and only if

$$
\begin{equation*}
\mathrm{A}^{*} \mathrm{C}=\mathrm{M}, \tag{31}
\end{equation*}
$$

where C is defined in (18), and A^{*} is defined as (16)
Proof. For an arbitrary cubic bent function $\mathrm{F}(\mathrm{X})$, it probably can be represented in the form (20). When C and Q are uniquely defined, according to theorem 4, there exists a matrix $\mathrm{T}_{(1)}$ of the form (21). We define Q and $\mathrm{T}_{(1)}$ as

$$
\begin{equation*}
Q=\binom{0}{I}, \quad T_{1}=\binom{I}{A}, \tag{32}
\end{equation*}
$$

then

$$
\begin{equation*}
T_{(1)}^{*}=\binom{I}{A}^{*}=\binom{0}{A^{*}}, \quad T Q=\binom{0}{M} . \tag{33}
\end{equation*}
$$

$\mathrm{F}(\mathrm{X}) \sim \mathrm{H}(\mathrm{X})$ where $\mathrm{H}(\mathrm{X})$ is a cubic homogeneous function if and only if formula (21) holds. Now

$$
\begin{align*}
\left(\mathrm{T}_{(1)}^{*} \mathrm{C} \oplus \mathrm{TQ}\right) \mathrm{T}_{(1)}^{\prime} & =\binom{0}{\mathrm{~A}^{*} \mathrm{C} \oplus \mathrm{M}}\left(\mathrm{I}, \mathrm{~A}^{\prime}\right) \\
& =\left(\begin{array}{cc}
0 & 0 \\
A^{*} C \oplus M & A^{*} C A^{\prime} \oplus M A^{\prime}
\end{array}\right) \tag{34}
\end{align*}
$$

The resulting matrix is symmetric iff $\mathrm{A} * \mathrm{C} \oplus \mathrm{M}=0$. The proof is completed.
Theorem 6 Let $\mathrm{F}(\mathrm{X})=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \oplus \sum_{i=1}^{n} x_{i} x_{i+n}$ be a bent function in $\operatorname{GF}(2)^{2 n}$ where f is a homogeneous cubic function of $\left(\mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $\mathrm{r}_{3}(\mathrm{f})=\mathrm{n}$. Then there exists a nonsingular matrix T such that $\mathrm{F}(\mathrm{XT})$ is a cubic homogeneous bent function.

Proof. Let C be the $\mathrm{n} \times{ }_{2}^{\mathrm{n}}$ matrix defined as in (18). Since $\operatorname{rank}(\mathrm{C})=\mathrm{n}$, there are n rows of C , say, $\left(\mathrm{j}_{1}, \mathrm{k}_{1}\right), \ldots,\left(\mathrm{j}_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}\right)$, such that the matrix M which consists of these n rows is a nonsingular matrix. We define $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ as follows:

$$
\mathrm{a}_{\mathrm{ij}}=\left\{\begin{array}{lc}
1, & \text { if } \mathrm{j}=\mathrm{j}_{\mathrm{i}} \text { or } \mathrm{j}=\mathrm{k}_{\mathrm{i}}, \quad i=1, \ldots, \mathrm{n} . \tag{35}\\
0, & \text { otherwise }
\end{array}\right.
$$

Let $T=\left(\begin{array}{cc}I & 0 \\ A & M\end{array}\right)$, where I is the $\mathrm{n} \times n$ identity matrix, 0 is the $\mathrm{n} \times n$ zero matrix.
Obviously, T is a nonsingular matrix. For any fixed $i, 1 \leq i \leq n$, in the ith row of A*, $\mathrm{a}_{\mathrm{il}} \mathrm{a}_{\mathrm{i} 2}, \ldots, \mathrm{a}_{\mathrm{i} 1} \mathrm{a}_{\mathrm{in}}, \ldots, \mathrm{a}_{\mathrm{in}-1} \mathrm{a}_{\mathrm{in}}$, only one component $\mathrm{a}_{\mathrm{ij}_{\mathrm{i}}} \mathrm{a}_{\mathrm{ik}_{\mathrm{i}}}=1$ and others are all 0 . So the matrix product of the ith row of A^{*} with C gives the $\left(j_{i}, k_{i}\right)$-th row of C. That is $A^{*} C=M$, so (31) holds and $F(X T)$ is a cubic homogeneous bent function. The theorem is proven.

Let E be an unordered triple set: $E=\{(i, j, k): 1 \leq i, j, k \leq r\}$, write $E_{i}=$ $\{(\mathrm{j}, \mathrm{k}):(\mathrm{i}, \mathrm{j}, \mathrm{k}) \in E\}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
Definition 3 (Regular unordered triplet set) The unordered triplet set E is called regular if $\mathrm{E}_{\mathrm{i}} /\left(\cup_{\mathrm{j} \neq \mathrm{i}} \mathrm{E}_{\mathrm{j}}\right) \neq 0,1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{r}$.

Theorem $7 \quad$ Let $F(X)=\sum_{(i, j, k) \in E} x_{i} x_{j} x_{k}+\sum_{i=1}^{n} x_{i} x_{i+n}, r_{3}(F)=n$ be a boolean function in $\operatorname{GF}(2)^{2 n}$. If E is a regular unordered triple set, then there exists a square matrix A which satisfies the equation (31) with $M=I$, and $F(X T)$ is a cubic homogeneous bent function.

Proof. We expand the left side of (31). Hence we have

$$
\begin{equation*}
\left(\sum_{(\mathrm{j}, \mathrm{k}) \in \mathrm{E}_{1}} \mathrm{a}_{\mathrm{j}} * \mathrm{a}_{\mathrm{k}}, \ldots, \sum_{(\mathrm{j}, \mathrm{k}) \in \mathrm{E}_{\mathrm{n}}} \mathrm{a}_{\mathrm{j}} * \mathrm{a}_{\mathrm{k}}\right)=\mathrm{M}, \tag{36}
\end{equation*}
$$

in which $\mathrm{a}_{\mathrm{i}}, 1 \leq i \leq n$ is the ith column of matrix A. Since E is regular, $E_{i} /\left(\cup_{j=1}^{n} E_{j}\right) \neq 0$, so there exists at least one unordered pair $(j, k) \in E_{i} /\left(\cup_{j=1}^{n} E_{j}\right)$ which makes

$$
\mathrm{a}_{\mathrm{ik}}=\mathrm{a}_{\mathrm{ij}}=1, \mathrm{a}_{\mathrm{il}}=0, \mathrm{j} \neq l \neq k, l \leq l \leq n .
$$

In this case, only $\mathrm{a}_{\mathrm{ij}} \mathrm{a}_{\mathrm{ik}}=1$, and if $(\mathrm{u}, \mathrm{v}) \neq(\mathrm{j}, \mathrm{k}), \mathrm{a}_{\mathrm{iu}} \mathrm{a}_{\mathrm{iv}}=0$. Now the ith row of the left side of (36) becomes $\overbrace{0, \ldots, 0}^{i-1}, 1, \overbrace{0, \ldots, 0}^{n-i}$, and this is identical with the ith row of right side of (36). Hence equation (36) holds. Consequently, $\mathrm{F}(\mathrm{XT})$ is a cubic homogeneous bent function. The proof is completed.
Theorem $8 \quad$ For all $\mathbf{n} \geq 3$ and $\mathrm{n} \neq 4$, there exist cubic homogeneous bent functions in $\mathrm{GF}(2)^{2 \mathrm{n}}$.

Proof. There are three cases:

1. $\mathrm{n} \equiv 0(\bmod 3)$, we can write $\mathrm{n}=3 \mathrm{~m}$ for some positive integer m . Let

$$
\begin{equation*}
\mathrm{F}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{x}_{3 \mathrm{i}-2} \mathrm{x}_{3 \mathrm{i}-1} \mathrm{x}_{3 \mathrm{i}} \oplus \sum_{\mathrm{i}=1}^{3 \mathrm{~m}} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}+3 \mathrm{~m}} . \tag{37}
\end{equation*}
$$

From Lemma 2 and we know that $\mathrm{F}(\mathrm{X})$ is a bent function. Now

$$
\mathrm{E}=\{(3 \mathrm{i}-2,3 \mathrm{i}-1,3 \mathrm{i}): 1 \leq i \leq m\}
$$

is the regular un-ordered triple set and $\mathrm{F}(\mathrm{X})$ has the form of (29). Hence from Theorem 5 we know that there exists a $2 \mathrm{n} \times 2 \mathrm{n}$ nonsingular matrix T with the form of (30) which makes (31) hold. So F(XT) is cubic homogeneous bent function.
2. $\mathrm{n} \equiv 1(\bmod 3)$, write $\mathrm{n}=3 \mathrm{~m}+1$ for some positive integer m . Because $n \neq 4, m \geq 2$. Let

$$
\begin{equation*}
F(X)=\sum_{i=1}^{m} x_{3 i-2} x_{3 i-1} x_{3 i} \oplus x_{1} x_{4} x_{3 m+1} \oplus \sum_{i=1}^{3 m+1} x_{i} x_{i+3 m+1} \tag{38}
\end{equation*}
$$

By Lemma 2 and we know it is a bent function. In this case, we have

$$
\begin{equation*}
\mathrm{E}=\{(3 \mathrm{i}-2,3 \mathrm{i}-1,3 \mathrm{i}): 1 \leq i \leq m\} \cup\{(1,4,3 \mathrm{~m}+1)\}, \tag{39}
\end{equation*}
$$

which is regular and $\mathrm{F}(\mathrm{X})$ has the form of (29), the conclusion of Theorem 8 is also valid.
3. $n \equiv 2(\bmod 3)$, write $n=3 m+2$ for some m. Let

$$
\begin{equation*}
\mathrm{F}(\mathrm{X})=\sum_{i=1}^{m} x_{3 i-2} x_{3 i-1} x_{3 i} \oplus x_{1} x_{3 m+1} x_{3 m+2} \oplus \sum_{i=1}^{3 m+2} x_{i} x_{i+3 m+2} \tag{40}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\mathrm{E}=\{(3 \mathrm{i}-2,3 \mathrm{i}-1,3 \mathrm{i}): 1 \leq i \leq m\} \cup\{(1,3 \mathrm{~m}+1,3 \mathrm{~m}+2)\} . \tag{41}
\end{equation*}
$$

The proof of this case is the same as before.
Hence the statement of the theorem is true and the proof is completed.
Example 2 Let $\mathbf{F}(X)=X_{1} x_{2} x_{3} \oplus \sum_{i=1}^{3} x_{i} x_{i+3}$ be a cubic bent function in GF(2) ${ }^{6}$.

We have $C^{\prime}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ and set $A=\left(a_{1}, a_{2}, a_{3}\right)=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$. We calculate $A^{*} C=I$ and get

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

So

$$
\mathrm{T}=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right),
$$

and

$$
\begin{aligned}
\mathrm{F}(\mathrm{XT})= & \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \oplus x_{1} \mathrm{x}_{2} \mathrm{x}_{4} \oplus x_{1} \mathrm{x}_{2} \mathrm{x}_{5} \oplus x_{1} \mathrm{x}_{3} \mathrm{x}_{4} \oplus x_{1} \mathrm{x}_{3} \mathrm{x}_{6} \oplus x_{1} \mathrm{x}_{4} \mathrm{x}_{5} \oplus x_{1} \mathrm{x}_{4} \mathrm{x}_{6} \oplus \\
& x_{1} \mathrm{x}_{5} \mathrm{x}_{6} \oplus x_{2} \mathrm{x}_{3} \mathrm{x}_{5} \oplus x_{2} \mathrm{x}_{3} \mathrm{x}_{6} \oplus x_{2} \mathrm{x}_{4} \mathrm{x}_{5} \oplus x_{2} \mathrm{x}_{4} \mathrm{x}_{6} \oplus x_{2} \mathrm{x}_{5} \mathrm{x}_{6} \oplus x_{3} \mathrm{x}_{4} \mathrm{x}_{5} \oplus \\
& x_{3} \mathrm{x}_{4} \mathrm{x}_{6} \oplus x_{3} \mathrm{x}_{5} \mathrm{x}_{6},
\end{aligned}
$$

is a cubic homogeneous bent function.

$7 \quad$ The Fourier Transform of Homogeneous Bent Functions

Lemma 4 Let $\mathrm{Z}=\mathrm{X} \otimes Y$, where $\mathrm{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in G F(2)^{\mathrm{n}}, \mathrm{Y}=\left(\mathrm{y}_{\mathrm{l}}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \in$ $G F(2)^{\mathrm{n}}, \mathrm{T}$ is a $2 \mathrm{n} \times 2 \mathrm{n}$ matrix and $\mathrm{T}=\left(\begin{array}{cc}L & 0 \\ A & M\end{array}\right)$, where $\mathrm{L}, \mathrm{A}, \mathrm{M}$ are $\mathrm{n} \times n$ matrix and L^{-1} and M^{-1} exist. $\mathrm{f}(\mathrm{Z})=\mathrm{P}(\mathrm{X}) \oplus(\mathrm{X}, \mathrm{Y})$ and $\mathrm{g}(\mathrm{Z})=\mathrm{f}(\mathrm{ZT})$ are bent functions in $\mathrm{GF}(2)^{2 \mathrm{n}}$. The Fourier transform of $g(Z)$ is:
$. F g(\mathrm{Z})=\mathrm{P}\left(\left(\mathrm{Y} \oplus X\left(\mathrm{AL}^{-1}\right)^{\prime}\right) \mathrm{M}^{1-1} \oplus\left\langle\left(\mathrm{Y} \oplus X\left(\mathrm{AL}^{-1}\right)^{\prime}\right) \mathrm{M}^{-1}, \mathrm{XL}^{\prime-1}\right\rangle\right.$.

Proof. Let $\mathrm{W}=\mathrm{U} \otimes V, \mathrm{U}=\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right), \mathrm{V}=\left(\mathrm{w}_{\mathrm{n}+1}, \ldots, \mathrm{w}_{2 \mathrm{n}}\right)$. From the Fourier transform definition, we have

$$
\begin{align*}
\operatorname{Fg}(\mathrm{Z})= & 2^{-n} \sum_{W \in G F(2)^{2 n}}(-1)^{9^{(W) \oplus(W, Z)}} \\
= & 2^{-n} \sum_{U, V \in G F(2)^{n}}(-1)^{f(U L \oplus V A) \oplus(V L \oplus V A, V M\rangle \oplus(U, X\rangle \oplus\langle V, Y\rangle} \\
= & 2^{-n} \sum_{V \in G F(2)^{n}}(-1)^{\langle V, Y) \oplus\left\langle V A, X L^{\prime-1}\right\rangle} \\
& \Theta \sum_{U \in G F(2)^{n}}(-1)^{f(V L, \oplus V A) \oplus\langle V L \oplus V A, V M\rangle \oplus\left|V L \oplus V A, X L^{\prime-1}\right\rangle} \\
= & 2^{-n} \sum_{V \in G F(2)^{n}}(-1)\left\langle V, Y \oplus X L^{\prime-1} A^{\prime} \sum_{S \in G F(2)^{n}}(-1)^{f(S) \oplus\left\langle S, V M \oplus X L^{\prime-1}\right\rangle}\right. \\
= & 2^{-n} \sum_{S \in G F(2)^{n}}(-1)^{f(S) \oplus\left\langle S, X L^{\prime-1}\right\rangle} \sum_{V \in G F(2)^{n}}(-1)\left\langle V, Y \oplus X L^{\prime-1} A^{\prime} \oplus S M^{\prime}\right\rangle \\
= & (-1)^{f\left(\left(Y \oplus X\left(A L^{-1}\right)^{\prime}\right) M^{\prime-1}\right) \oplus\left\langle\left(Y \oplus X\left(A L^{-1}\right)^{\prime}\right) M^{\prime-1}, X L^{\prime-1}\right\rangle} \tag{43}
\end{align*}
$$

Lemma $5 \quad$ Let $f(X)$ be a homogeneous function of degree 3 in $G F(2)^{n} . g(Z)=$ $\mathrm{f}(\mathrm{X} \oplus Y A) \oplus(\mathrm{X} \oplus Y A, \mathrm{Y})$ is a cubic homogeneous bent function, where A is a $\mathrm{n} \times n$ nonsingular matrix. When $\mathrm{A}=\mathrm{A}, \digamma g(\mathrm{Z})$ is a cubic homogeneous bent function, too.

Proof. Since A = A', from Lemma 4 we have

$$
\begin{equation*}
\digamma g(\mathrm{Z})=\mathrm{f}(\mathrm{Y} \oplus X A) \oplus\langle Y \oplus X A, \mathrm{X}\rangle \tag{44}
\end{equation*}
$$

Since $g(Z)$ is homogeneous bent function. The Fourier transform of $g(Z)$ is also a bent function. We have
$\mathrm{g}(\mathrm{Z})=\mathrm{f}(\mathrm{x} \oplus Y A) \oplus\langle X \oplus Y A, \mathrm{Y}\rangle=\underset{1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\mathrm{i}_{3} \leq \mathrm{i}_{\mathrm{n}}}{\oplus} \mathrm{a}_{\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{i}_{3}} \mathrm{z}_{\mathrm{i}_{1}} \mathrm{z}_{\mathrm{i}_{2}} \mathrm{z}_{\mathrm{i}_{3}}$,
where $\mathrm{a}_{\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{i}_{3}} \mathrm{z}_{\mathrm{i}_{1}} \mathrm{z}_{\mathrm{i}_{2}} \mathrm{z}_{\mathrm{i}_{3}} \in \mathrm{GF}(2)$.
Because $\mathrm{Z}=\mathrm{X} \otimes Y, \quad \mathrm{z}_{\mathrm{i}_{\mathrm{j}}}$ is either x_{k} or $\mathrm{y}_{\ell}, \quad 1 \leq j \leq 3, \quad 1 \leq k, \quad \ell \leq n$. We define $\mathrm{x}_{\mathrm{i}} \rightarrow \mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}} \rightarrow \mathrm{x}_{\mathrm{i}}, \quad 1 \leq i \leq n$, then $\mathrm{Z}=\mathrm{Y} \otimes X, \mathrm{~g}(\mathrm{Z})$ is cubic homogeneous bent function. Then

$$
F g(\mathrm{Z})=\mathrm{f}(\mathrm{Y} \oplus X A) \oplus\langle Y \oplus X A, \mathrm{X}\rangle=\mathrm{g}(\mathrm{Y} \otimes X)
$$

is a cubic homogeneous bent function. The proof is completed.
Lemma 6 There exist cubic homogeneous bent functions $\mathbf{g}(X)$ in $G F(2)^{2 n}$ when $n \geq 3, n \neq 4$, and their Fourier transforms are also cubic homogeneous bent functions.

8

Remark

Example $3 \quad$ When $\mathrm{n}=5$, we define the function $\mathrm{F}(\mathrm{X})=\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \oplus x_{1} \mathrm{X}_{2} \mathrm{x}_{4} \oplus x_{1} \mathrm{X}_{3} \mathrm{X}_{5}$ $\oplus \sum_{i=1}^{5} x_{i} x_{i+5}$, which is a cubic bent function in $G F(2)^{10} . r_{3}(F)=5, r_{2}(F)=0$. Set $\mathrm{E}=\{(1,2,3),(1,2,4),(1,3,5)\}, \mathrm{E}_{1}=\{(2,3),(2,4),(3,5)\}, \mathrm{E}_{2}=\{(1,3),(1,4)\}$, $E_{3}=\{(1,2),(1,5)\}, E_{4}=\{(1,2)\}, E_{5}=\{(1,3)\}$. We define

$$
\hat{E}_{i}=E_{i} /\left(\cup_{j \neq 1} E_{j}\right), \text { where } 1 \leq i, j \leq 5,
$$

and have $\hat{\mathrm{E}}_{1}=\mathrm{E}_{1}, \hat{\mathrm{E}}_{2}=\{(1,4)\}, \hat{\mathrm{E}}_{3}=\{(1,5)\}, \hat{\mathrm{E}}_{4}=\hat{\mathrm{E}}_{5}=0$. So E is not a regular triple set. But there exists $\mathrm{n} \times n$ nonsingular matrix

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

that makes $A^{*} \mathrm{C}=\mathrm{I}$. So E regular is not a necessary condition for $\mathrm{A}^{*} \mathrm{C}=\mathrm{I}$.

References

[1] O.S.Rothaus, On "bent" functions, Journal of Combinatorial Theory, Ser. A, 20, (1976), pp. 300-305.
[2] Chengxin Qu, Jennifer Seberry, Josef Pieprzyk, On the symmetric property of homogeneous boolean functions, Information Security and Privacy, ACISP'99, Lecture Notes in Computer Science, vol. 1587, Springer-Verlag Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo, 1999. pp. 26-35.
[3] Xiang-dong Hou, Cubic bent functions, Discrete Mathematics, 189, (1998), pp. 149-161.
[4] Tianbing Xia, Jennifer Seberry, Josef Pieprzyk, and Chris Charnes. A new upper bound on the degree of homogeneous boolean bent functions. (Submitted).
[5] Josef Pieprzyk, Chenxin Qu, Rotate symmetric functions and fast hashing, Information Security and Privacy, ACISP'98, Lecture Notes in Computer Science, vol. 1438, Springer-Verlag Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo, 1998. pp. 169-180.

[^0]: ${ }^{1}$ Published in Australasian Journal of Combinatorics 22(2000), pp 233-245

