
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

1-9-2006

Using assumptions in service composition context Using assumptions in service composition context

Z. Lu
University of Wollongong, lu@uow.edu.au

Aditya K. Ghose
University of Wollongong, aditya@uow.edu.au

P. Hyland
University of Wollongong, phyland@uow.edu.au

Y. Guan
University of Wollongong, yguan@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Lu, Z.; Ghose, Aditya K.; Hyland, P.; and Guan, Y.: Using assumptions in service composition context 2006.
https://ro.uow.edu.au/infopapers/502

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages

Using assumptions in service composition context Using assumptions in service composition context

Abstract Abstract
Service composition aims to provide the efficient and accurate model of a service, based on which the
global service oriented architecture (SOA) can be realized, allowing the value-added services to be
generated on the fly. Because of distributed responsibilities, ownership, and control, often, it is not
feasible to acquire all information needed for the service composition, thus there might be no guarantee
that the service execution has an anticipated effect. In this paper, we are going to extend current
Semantic Web Service Description by introducing the concept of "Service Assumption" which allows
reasoning with incomplete information. Furthermore, together with the proposed service assumption, a
sequence of rules is developed to describe all permitted behaviors in service composition context.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
This article was originally published as: Lu, Z, Ghose, A, Hyland, P & Guan, Y, Using assumptions in service
composition context, IEEE International Conference on Services Computing (SCC '06), Chicago, USA,
September 2006, 289-292. Copyright IEEE 2006.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/502

https://ro.uow.edu.au/infopapers/502

Using Assumptions in Service Composition Context

Zheng Lu, Aditya Ghose, Peter Hyland, Ying Guan
School of IT & Computer Science

University of Wollongong, Australia
{zl07, aditya, phyland, yg32}@uow.edu.au

Abstract

Service composition aims to provide the efficient and ac-
curate model of a service, based on which the global service
oriented architecture (SOA) can be realized, allowing the
value-added services to be generated on the fly. Because of
distributed responsibilities, ownership, and control, often, it
is not feasible to acquire all information needed for the ser-
vice composition, thus there might be no guarantee that the
service execution has an anticipated effect. In this paper, we
are going to extend current Semantic Web Service Descrip-
tion by introducing the concept of “Service Assumption”
which allows reasoning with incomplete information. Fur-
thermore, together with the proposed service assumption,
a sequence of rules is developed to describe all permitted
behaviors in service composition context.

1 Introduction

OWL Web Ontology Language for Services (OWL-
S [1]) leverages the rich expressive power of OWL [4] to-
gether with its well-defined semantics to provide richer de-
scriptions of Web Services. Service ontologies can be used
to map service functional descriptions and domain proper-
ties into a standardized logic so that they can be machine
understandable and interpretable. Recently, semantic web
rules language (SWRL) [2] has been proposed to define ser-
vice precondition and effect, process control conditions and
their contingent relationships in OWL-S. Though OWL-S is
endowed with more expressive power and reasoning options
when combined with SWRL, the description provided by a
combination of OWL-S and SWRL about service composi-
tion is still only a partial picture of the real world. Most of
what we know about the world, when formalized, will yield
an incomplete theory precisely because we cannot know ev-
erything - there are gaps in our knowledge [7]. The ontol-
ogy of services, on the other hand, is finite and incomplete.
Thus, a service composition specified by OWL-S has to deal
with partial or incomplete knowledge. The inability to deal

with incomplete knowledge may translate into an inability
to deal with exceptions

In this paper, we are going to bridge the gap between the
semantic service description and multiple operational do-
mains involved by introducing the concept of “service as-
sumptions”. Currently, OWL-S has no mechanism for han-
dling the explicit description of service assumptions and no
method for reasoning about their side-effects. We will ex-
tend the current OWL-S and try to define a formal mecha-
nism to reason about incomplete knowledge in the dynamic
service composition context.

The paper is structured as follows: in Section 2, we ex-
plain the semantics of an extended atomic service and a
composite service in general. In Section 3, we define the
basic semantics for planning-based service composition do-
main. Then in Section 4, we present a framework for rea-
soning about incomplete knowledge in service composition
context. Finally, we present our conclusions in Section 5.

2 Atomic Service and Service Selection

2.1 Atomic Service

Currently, there is no way for OWL-S to describe the
various assumptions about the multiple independent appli-
cation domains involved in service composition. By adopt-
ing the service assumptions into OWL-S, we can conduct
reasoning about what is known in the composite service ex-
ecution context against various domain assumptions. Thus
the ontology for Web service becomes more complete and
closer to the real world. We propose to add the assumptions
as the properties of service process, which allows reasoning
with incomplete information.

An atomic service only performs a single function. An
extended atomic service ws is described by a tuple ws =
〈p, e, a〉, where p represents service precondition which
must be true for the service ws to be invoked, e represents
the change of the world state, i.e. the effect after service ws
completes and a represents the service assumptions. Note
that p and a are different. It must be able to establish that

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

p is true for ws to be invoked. On the other hand, we only
need to establish that a is consistent with what is known, i.e.
nothing is known that contradicts a. p is the strong condi-
tion which must be true in order to execute the service ws,
while a is a weak condition. Initially we assume a to be
true, unless we get additional information which is explic-
itly contradictory to a.

2.2 Service Selection

The process of dynamic Web Service composition over
that of software component composition holds some addi-
tional critical issues, such as service matching, selection and
retrieval. In this proposed framework,

• wsi represents an atomic service.

• WS is the set of all Web Services, wsi ∈ WS.

• all Web Service descriptions are held in their corre-
sponding categories {cat1, cat2, . . . , catn}. cati is a
tangible areas split from the service registry, for exam-
ple downloadable Multimedia.

• CAT is the set of all service categories cati ∈ CAT ,
cati ∈ WS, cati = {ws1, . . . , wsm}.

• Service selection function sel : CAT → WS which
takes a certain service category as its input and give
us an atomic service based on the service matching i.e.
sel(cati) = ws.

Every atomic service in the rest of this paper refers to the
Web Service which is produced by the service selection de-
fined above.

2.3 Composite Service

Intuitively, a composite Web Service which performs
combined functions may include multiple atomic services.
A composite service CompWS is the combination of
the multiple atomic services wsi , where 0 < i < n.
CompWS can be represented as:

CompWS = {sel(cat1), . . . , sel(catn)}
Because participants of the service composition do not

necessarily share the same objectives and background, con-
flicts easily arise in a dynamic service composition environ-
ment.

3 Service Composition as Planning

It is often assumed that a business process or application
is associated with some explicit business goal definition that

can guide a planning-based composition tool to select the
right service [6]. Typically, classical planners presuppose
complete and correct information about the world. How-
ever, in terms of the service composition, this simplified as-
sumption is not suitable and unrealistic. Each service node
is designed, owned, or operated by different parties, thus
the planning agent may not have a complete view about the
world. To make more precise service description in a dy-
namic service composition environment, we have extended
the current semantic Web Service description OWL-S by in-
troducing the service assumption. The service assumptions
together with states of knowledge, preconditions, effects,
and goals are specified in Description Logic L [3].

Now we are prepared to define the semantics of a ser-
vice composition domain. A state S is a snapshot which
describes the partial state with respect to the service com-
position context. The state S is extensionally defined as a
set of positive or negative ground atomic formulas (atoms).
In addition, the initial state S0 here is a partial description
about the world, i.e. a partial state. A goal G is a set of con-
junctions of atoms which need to hold in a desired state or
say final state. A state transition t is represented as a tuple
t = 〈S, ws, S

′〉, where S, S
′

are states and ws is an atomic
service. A service composition plan for a goal is a sequence
of state transitions which lead from an initial state to a fi-
nal state where all ground atomic formulas in the goal are
true. In rest of the paper, we will use symbol |= to represent
logical entail.

In the process of service composition planning, there
are three types of knowledge produced by state transitions
about the current world. Let SENi denote a set of sen-
tences used to change the state Si. This set of sentences can
be partitioned into three categories, namely state invariants,
expansion and update, which is defined as:

SENi = {Invi | Expi | Updi}
1. State invariant Invi denotes a set of sentences which

can be entailed by the knowledge in the previous state,
defined as: Si−1 |= Invi

2. State expansion Expi denotes a set of sentences which
cannot be entailed by the knowledge in the previous
state and its negation also cannot be entailed by the
knowledge in the previous state, defined as:

Si−1 � Expi and Si−1 � ¬Expi

3. State update Updi denotes a set of sentences whose
negation can be entailed by the knowledge in the pre-
vious state, defined as: Si−1 |= ¬Updi

Let wsi be an atomic service, WS be the set of all Web
Services, E be the set of all service effects, P be the set of
all service preconditions, we define the following extraction
functions:

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

1. Effect extraction function fe : WS → E which takes
an arbitrary atomic service wsi as an input, and ex-
tracts the effect ei of wsi as its output. ei is a set of
primitive effects of wsi and every primitive effect is a
partition with the state invariant, expansion and update,
i.e. fe(wsi) = ei and ei = {eInvi | eExpi | eUpdi}
in which eInvi, eExpi, eUpdi denote state invariant,
expansion and update respectively.

2. Precondition extraction function fp : WS → P which
takes arbitrary atomic service wsi as an input, and
extracts the precondition pi of wsi as its output, i.e.
fp(wsi) = pi. Similar to the effect extraction func-
tion: pi = {pInvi | pExpi | pUpdi}.

Following the definitions we gave above, we can define the
generic state transition operator as:

Si = Δ(pUpdi, eUpdi, Si−1) + eExpi + pExpi

which means the state transition from Si−1 to Si is com-
pleted by means of applying pUpdi and eUpdi to the state
Si−1 orderly, then add the two types of expansion of knowl-
edge (eExpi, pExpi) to the state Si−1 . Note that the order
of applying state update must be strictly followed.

4 Defeasible Reasoning in Service
Composition

Typically, a dynamic service composition does not have
a predefined boundary, based on which the problems of
uncertainty and incompleteness of information could be
resolved. A changing environment complicates dynamic
service composition in many ways. Inspired by Non-
monotonic logic [5], the following subsection will attempt
to provide a formal framework for reasoning about incom-
plete knowledge in service composition context.

4.1 Defeasible Reasoning Framework

In this work, the reasoning about incomplete information
in the process of service composition planning works with
three kinds of rules, namely absolute rule, defeasible rule
and defeater [5]. The absolute rule which is interpreted in
the classical sense means whenever the premises are indis-
putable then so is the conclusion. On the other hand, the de-
feasible rule is that whose conclusion is normally true when
its premises are, but certain conclusions may be defeated in
the face of new information. Defeasible rules can be de-
feated by contrary evidence or by defeaters. Defeaters rep-
resent knowledge which is to prevent defeasible inference
from taking place. We use the operator ⇒ for the absolute
rule, ∼> for the defeasible rule and �→ for the defeater.

Let wsi represent an atomic service which is produced
by the service selection function (see section 2.2), ai repre-
sent the assumption of wsi, pi represent the precondition of
wsi, ei represent the effect of wsi and isV alid(wsi) rep-
resent the atomic service whose preconditions can be satis-
fied. Inspired by Nute’s defeasible reasoning [5],

Absolute rule: pi ⇒ isV alid(wsi) (Rule A)
which means only precondition holds, and then the service
is a valid candidate service to participate in service compo-
sition.

Defeasible rule: isV alid(wsi) ∼> ei (Rule B)
which means normally ei is the conclusion of a valid candi-
date service wsi, but this ei may be defeated in the face of
new information.

Defeater: ¬ai �→ ¬ei (Rule C)
which means given an assumption ai, if the negation of the
assumption is entailed by a given state of knowledge, it will
prevent the Rule B from making the conclusion ei.

4.2 Outdated Assumptions and
Assumption Database

If the negation of all sentences in ei is entailed by any
state Sj , where ei is the effect of an atomic service wsi and
j > i, (i.e ∀x ∈ ei,∃j > i such that ¬x ∈ Cn(Sj), where
Cn(Sj) denotes logical closure of Sj), then the assumption
ai associated with ei is called the outdated assumption.
The outdated assumptions are not allowed to participate in
defeasible reasoning. A simple example of an outdated as-
sumption is: a book borrowing service assumes that the bor-
rower is in same city as the library. When the borrowed
book is returned, we say this assumption is outdated.

To conduct the defeasible reasoning about the partial
state of knowledge, it is necessary to describe and record
various assumptions generated during the service composi-
tion planning. In this framework, we maintain an assump-
tion database Dα to store these assumptions and their rele-
vant effects as a pair 〈ai : ei〉 . Same as preconditions and
effects, assumptions are represented as ground literals.

4.3 Defeasible Reasoning Process

Service composition planning can be viewed as a pro-
cess of resolving conflicts and gradually refining a partially
specified plan, until it is transformed into a complete plan
that satisfies the goal. Service composition planning is sim-
ilar to the classical planning in that each state is represented
by a conjunction of literals and each Web Service is related
to a transition between those states. However, unlike clas-
sical AI planning techniques, in this proposed framework,
the planner is the rule based system which allows making
tentative conclusions and revising them in the face of addi-
tional information. In other words, the planner is endowed

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

Figure 1. Defeasible Reasoning Process

with the ability to reason about incomplete information in
the service composition context.

For any state Si−1, Web Service wsi is not applicable to
the state until certain minimal criteria are met. wsi is speci-
fied in terms of the precondition pi, effect ei and assumption
ai, where pi must be satisfied for wsi to be valid (Rule A),
the effect may be concluded (Rule B) and the negation of ai

plays the role of being the defeaters(Rule C).
A state in our framework is not a complete view of the

world. Usually, an agent is forced to perform sensing oper-
ations which is aiming at finding out the information which
could satisfy the precondition pi. Like ”1” showed in the fig
1, the sensing operation may lead to knowledge expansion
and update of the state Si−1. When the sensing operations
complete, if pi is satisfied, we can conclude that wsi is ap-
plicable to the current state (Rule A). Due to the expansion
and update of knowledge to state Si−1, before the transition
to state Si, we get an intermediate state S′

i−1 which holds
the current knowledge of the state after the agent’s sensing
operation. Following the sensing operations, effect ei is ap-
plied to the current state to simulate the action (Rule B).
Again, the effect ei may expand and update the knowledge
of the current state. This process can be presented as the
generic state transition operation as we defined in Section
3.

One of the main features in this proposed framework is
the ability to describe various service assumptions and sup-
port defeasible reasoning with these assumptions. The as-
sumptions generated from the service composition planning
are represented as a set of ground literals stored in the as-
sumption database Dα. After the effect is applied to the
current state, the knowledge in the state may be expanded or
updated. For the new state of knowledge, the planner needs
to carefully perform the checking to see whether any out-
dated assumption is in Dα. Because the outdated assump-
tions are not allowed to participate the defeasible reason-
ing, all outdated assumptions are deleted from Dα. Next,
it is to find the defeaters by the mean of checking whether

any negation of assumptions can be entailed by the current
state. The negation of service assumption which is not out-
dated plays the role of being a defeater, which prevents the
effect associated with this service assumption being applied
to the state (Rule C). Up to now, the process of state transi-
tion from Si−1 to Si is completed. We have illustrated that
how the new state is reached in the presence of possibly
conflicting rules.

5 Conclusions

The goal of dealing with incomplete information in the
service composition context is certainly a challenging task.
The proposed framework is an attempt at tackling the prob-
lem of how to achieve consistent service composition when
information available is insufficient.

In this work, we have extended the OWL-S to a richer
service description representation schema by introducing
the concept of service assumption. We also adopted defeasi-
ble rules for reasoning with various assumptions. We illus-
trated how knowledge based planning could reason about
incomplete knowledge in service composition context and
construct the service composition plan. During the pro-
cess of the service composition, we showed that absolute
rules could be used for service precondition satisfaction, es-
pecially defeasible rules and defeaters could be employed
to make tentative conclusions based on the information at
hand, and to detect potential conflicts when further infor-
mation about the problem is available.

References

[1] OWL Services Coalition. OWL-S: Semantic markup for
Web Services, OWL-S White Paper. 2005.
http://www.daml.org/services/owl-s/1.1/overview/#1

[2] “Semantic Web Rule Language”, May 21, 2004
http://www.w3.org/Submission/2004/03/.

[3] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P. F., Eds. The Description Logic Hand-
book:Theory, Implementation and Applications. Cambridge
University Press. 2003.

[4] Dean, M. and Schreiber G. “OWL Web Ontology Lan-
guage”. Reference W3C Recommendation,
http://www.w3.org/tr/owl-ref/. Feb 2004.

[5] Donald Nute. “Defeasible logic.” In D. Gabbay and C. Hog-
ger (eds.), Handbook of Logic for Artificial Intelligence and
Logic Programming, Oxford University Press, 1994. Vol.
III:353-395.

[6] S. McIlraith and T. C. Son. Adapting Golog for composi-
tion of Semantic Web Services. In Proceedings of the 8th
International Conference on Knowledge Representation and
Reasoning (KR2002), Toulouse, France, April 2002.

[7] Reiter R. “ON REASONING BY DEFAULT”, Proceedings
of the theoretical issues in natural language processing-2
July 1978

IEEE International Conference on Services Computing (SCC'06)
0-7695-2670-5/06 $20.00 © 2006

	Using assumptions in service composition context
	Recommended Citation

	Using assumptions in service composition context
	Abstract
	Disciplines
	Publication Details

	untitled

