University of Wollongong
Research Online

Faculty of Engineering and Information

Faculty of Informatics - Papers (Archive) Sciences

21-11-2005

Collaborative editing using an XML protocol

S. J. Davis
University of Wollongong, stdavis@uow.edu.au

I. S. Burnett
University of Wollongong, ianb@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Cf Part of the Physical Sciences and Mathematics Commons

Recommended Citation
Davis, S. J. and Burnett, I. S.: Collaborative editing using an XML protocol 2005.
https://ro.uow.edu.au/infopapers/499

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages

Collaborative editing using an XML protocol

Abstract

XML is a popular approach to interoperable exchange of data between a wide range of devices. This
paper explores the use of the Remote XML Exchange Protocol as a mechanism to provide efficient
interaction with complex XML documents to users with limited complexity devices and/or limited
bandwidth connections. The interactive mechanisms provided by the protocol allow users to navigate,
edit and download XML even when delivery of the full XML document is impossible. The paper examines
the use of the protocol to enable multiple users to collaboratively edit remote XML documents. Further,
the paper explores the combination of the protocol, collaborative editing and recently released Word
processor/Office suite XML schema formats.

Disciplines
Physical Sciences and Mathematics

Publication Details

This article was originally published as: Davis, S. J. & Burnett, I. S., Collaborative editing using an XML
protocol, IEEE International Region 10 Conference (TENCON 2005), Melbourne, November 21-24 2005,
1-5. Copyright 2005 IEEE.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/499

https://ro.uow.edu.au/infopapers/499

Collaborative Editing using an XML Protocol

Stephen J Davis' and Ian S Burnett

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong, Australia

Abstract— XML is a popular approach to interoper-
able exchange of data between a wide range of devices.
This paper explores the use of the Remote XML Ex-
change Protocol as a mechanism to provide efficient in-
teraction with complex XML documents to users with
limited complexity devices and/or limited bandwidth
connections. The interactive mechanisms provided by
the protocol allow users to navigate, edit and download
XML even when delivery of the full XML document is
impossible. The paper examines the use of the protocol
to enable multiple users to collaboratively edit remote
XML documents. Further, the paper explores the com-
bination of the protocol, collaborative editing and re-
cently released Word processor/Office suite XML
schema formats.

Index Terms—XML, Protocol, Collaborative Editing

I. INTRODUCTION

XML [1] has become increasingly popular for represent-
ing and exchanging data. However, whilst XML provides
interoperability amongst devices, this comes at a cost of
increasing the raw data transmitted; this is primarily caused
by the process of surrounding data with tags. XML and
XML Schema [2] are also now being used in office suites
such as OpenOffice (which uses the Open Document For-
mat for Office Applications (OpenDocument) standardized
by OASIS [3]) and Microsoft Office [4]. Thus, there is in-
creasing interest in mechanisms which allow all users to
interact with XML documents.

Often, many authors contribute to the creation and edit-
ing of a document. One approach is to edit a file and email
it to the next author(s) but there is always the danger of
different versions of a document being edited at the same
time. For users with limited bandwidth transmitting many
revisions of very large documents is not even feasible and
there are thus many reasons to consider collaborative edit-
ing solutions.

Collaborative editing solutions usually retain a central
copy of a document such that authors can “update” their
version before editing. Further time and bandwidth savings
can be achieved, if only altered sections of documents are

! Partially funded by the Smart Internet Technology CRC

<Media xmIns="mediaNS:2004">
<Music>
<Song id="0071">
<Title>Hit.1</Title>
<Description>Theme song</Description>
<Artist>A. Artist</Artist>
<Format>MP3</Format>
<Length>02:23</Length>
</Song>
<Song id="0328">
<Title>Hit.2</Title>
<Description>Song 2</Description>
<Artist>B. Artist</Artist>
<Format>0OGG</Format>
<Length>03:46</Length>
</Song>
</Music>
</Media>

Fig. 1. Example XML

uploaded and users can download only the document sec-
tions of interest.

Techniques such as those described in [5] and MPEG-B
[6] provide partial solutions to efficient collaborative edit-
ing of XML documents, but do not provide a detailed solu-
tion. Thus, in this paper, we demonstrate the use of a com-
plete two way protocol known as Remote XML Exchange
Protocol to allow devices to download and edit remote
fragments of XML documents efficiently in both com-
pressed and non-compressed form.

II. REMOTE XML EXCHANGE PROTOCOL

The Remote XML Exchange Protocol (RXEP) is de-
signed to handle the underlying delivery of XML Frag-
ments. MPEG-B provides a solution for delivery of XML
fragments as part of its set of standard Binary tools for
XML, however, the fragment size and delivery are decided
purely by the sending device, with the client-side user hav-
ing no control over transmissions. In contrast, RXEP ex-
tends the MPEG-B solution by allowing users to control
which fragments are to be delivered, the fragment size, and
the timing of fragment delivery. In general, this technique
requires the server to “listen” to requests and dynamically
create fragments tailored to each peer. However, caching of
requests is a possible option.

Clients which implement RXEP requests are able to

<FRU>
<XPath location="/Media/Music/Song[1]">
</FRU>

Fig. 2. Example RXEP FRU

<RXEP>
<ADD location="/Media/Music /Song[1]">
<Title>Hit. 1</Title>
<Description>Theme song</Description>
<Artist>A. Artist</Artist>
<Format>MP3</Format>
<Length>02:23</Length>
</ADD>
<RXEP>

Fig. 3. Example RXEP FUU result from the FRU as in Fig. 2

query and browse (navigate) through remote XML docu-
ments, retrieving only relevant document fragments. This
introduces significant savings as it avoids the user retriev-
ing the entire XML document if only a small section of that
document was desired. RXEP commands are defined and
implemented using XML Schema in two parts: upstream
commands (RXEP Fragment Request Units) and down-
stream commands (RXEP Fragment Update Units).

A. Fragment Request Units

Fragment Request Units (FRUs) are created by the users
to request fragments of XML from a remote XML docu-
ment. The FRUs are created in XML (valid to the FRU
Schema) from a selection of RXEP commands. Briefly,
basic FRU commands are as follows:

e Get — this requests a remote XML Document to begin

browsing/navigating (similar to a HTTP get request);

e XPath — Delivers an XPath expression to the remote
server to evaluate on the XML document, and deliver
back the results;

e XMLPull — Provides a node-by-node navigation inter-
face to the client allowing navigation commands such
as: Next, Up, Back and Expand; and

e Stream — Allows fragments (determined by the server)
to be streamed to the client.

FRUs are capable of requesting any fragment (based on
fragment size and location), thus providing clients with
random access into the XML. This allows a client to jump
into any node in an XML document, or to simply, “navigate
backwards” if previous XML fragments have not been
cached.. A sample RXEP FRU requesting the child nodes of
the /Media/Music/Song[1] node (see Fig. 1) is illustrated in
Fig. 2.

B. Fragment Update Units
Fragment Update Units (FUUs) are commands in XML
which instructs the client to update parts of an XML
Document. FUUs define commands such as:
e Add - add the fragment to the specified location de-
fined by an XPath locator;
e Delete — deleted the branch specified by the XPath lo-
cator;

Transport
s Medium Client
erver i.e. Internet
XML Document
Update #
Metadata Document Request Client Local
Unit XML Document
- RXEP RGP
Mn uery Engine Engine
="\ [
\-/_\ Navigation Result
P

Fig. 4. Interaction of FRUs and FUUs

e Update - updates the fragment specified by the XPath

locator; and

e Insert — Inserts a node before the specified XPath loca-

tor.

RXEP FUUs are implemented in XML Schema and thus
differ from the FUUs that appear in MPEG-B, as they pro-
vide the additional flexibility of allowing 3" party applica-
tions to extend the schema. An example of an RXEP FUU,
as a response to the RXEP FRU in Fig. 2, is illustrated in
Fig. 3. This FUU demonstrates addition of the XML under
the ADD node to the location specified by the XPath loca-
tor, in this case /Media/Music/Song[1]

C. Overall System

This section considers the overall combination of RXEP
FRUs and RXEP and is illustrated in Fig. 4. Clients first
initiate a connection to the sending peer and request an
XML document; the received XML is then a ‘partial skele-
ton’ of the complete XML document. The client can then
construct extra FRUs to request further fragments of the
remote XML document. These FRUs may simply contain
navigation commands, or in more ‘intelligent’ cases, XPath
queries to retrieve multiple fragments. The server peer de-
codes the FRUs and generates fragments customised to the
individual client. The following examples refer to the XML
shown in Fig. 1.

1) Navigation Example

Imagine a portable device with a small screen (which
displays 10 lines of text) and limited memory. A FRU re-
quests an XML Document, and receives the root node, Me-
dia. The User issues a RXEP XMLPull Expand command,
which returns the first child, Music. The user issues another
expand and receives the first song node. This is not the
node required and the user issues an XMLPull Next com-
mand, receiving the next sibling. The user decides this is
the node and expands the node, followed by continued
navigation or, perhaps, requests for that entire branch.

2) Query Example
A user connects to a remote server and requests an XML
document. The user wishes to select all songs from the Me-
dia collection. The user thus creates an FRU with the XPath
expression (i.e. \Song to request all Song nodes), and re-
ceives an FUU with multiple ADD commands each con-

2,500

2,000
@ Txt Upload
«» 1,500
] W Txt Download
> .
@ 1,000 1 OBin Upload
O Bin Download

500

Othello PhotoAlbum

250,000

200,000

150,000 —— @ Original size

m Compressed

Bytes

100,000

50,000

0

Othello PhotoAlbum

Fig 5. Comparison of upload and download of tests

taining a fragment in response to the query. Thus, from
one, simple FRU the user has received all information
without retrieving the whole XML document.

D. BinRXEP

Binary RXEP (BinRXEP) [7] is the compressed binary
representation of the RXEP XML which applies to both the
FRUs and FUUs. Compression exploits the tree-based struc-
ture of the XML as well as a priori knowledge from the
XML schemas. Although the compression technique is
highly dependent on the structure of the Schemas, signifi-
cant savings arise from elimination of the need to encode
the full XML tag names. For example, a node in the
Schema defines a choice of four children, thus, only two
bits are required to represent a choice of any one child.

One advantage of this method of compression is that the
binary file still retains the same structure as the original
text XML. This allows sections of a binary XML file to be
added or read, without the need to decompress the entire
file (which is the case with non-XML aware character re-
dundancy compression techniques).

Through extension of the RXEP Schemas (i.e. adding
extra nodes to the original schema), additional information,
vital to the Binarisation process of the XML document, can
be delivered to the client. This includes the Namespace in-
formation (to allow a client to retrieve and load the correct
Schema used in the compression), and most importantly,
the code indicating the global element of the original XML
document. This global element code allows the client to
select the root XML node to commence decompression.

III. COLLABORATIVE EDITING

Collaborative editing is a process that occurs on a day-to-
day basis and increasingly there are multiple authors edit-
ing a single document. One example is the popularity of
‘Wikis’ [8], which have become accepted for collaborative
editing on the Internet. Applications of Wikis range from
software documentation/howtos to online encyclopedias
(such as Wikipedia). Programmers also regularly collabora-
tively edit software code using versioning software such as
CVS [9]. This allows an author to check for updates, com-
pare against their local version before making modifica-
tions, to ensure they have the latest version of file.

Office document formats, such as OASIS OpenDocument
and Microsoft Office documents have begun using XML as

Fig 6. Comparison of text and binary compression

the container to store data. It is thus possible to utilize stan-
dard XML tools and collaborative editing techniques on
these office documents.

RXEP becomes an ideal candidate for managing the de-
livery and request of XML documents. This is beneficial
since often the entire document is not desired. Additionally,
features of RXEP such as add, delete, update and insert
provide collaborative editing functionality.

Using RXEP, a client may download parts (or all) of a
document, make changes locally, and only upload the parts
that have been changed (upload entire fragment or just a
diff). For example, a User who wishes to revise a document
can create FRUs and navigate through the document. On
finding an error in the document they can make changes
and only those changed fragments of XML need be relayed
back to the server as an FUU to update the original docu-
ment.

RXEP also provides additional functionality for users on
portable devices. For example, users may only wish to re-
trieve one paragraph at a time to reduce storage require-
ments, bandwidth usage, or download waiting times. RXEP
can thus be used to make browsing of large documents con-
venient and practical.

Strict collaborative editing rules may utilize the tree
based structure of the XML. Branches of the tree can be
locked (so no other authors can edit), whilst allowing the
other branches to be edited; this allows separate portions of
the document to be edited at the same time, while prevent-
ing others updating the sections that are being worked on.

IV. RESULTS

To demonstrate the effectiveness of RXEP for collabora-
tive editing and delivery, we consider some practical exam-
ples. These were evaluated using an implementation of
RXEP and BinRXEP in JAVA. These examples are aimed
at investigating the amount of data transferred in the proc-
ess of viewing/editing particular documents. For the Binari-
sation, FUUs are used to indicate to the client which
Schema and associated Namespaces are used for Binarisa-
tion of the XML document.

A. Receive XML Documents with RXEP

The first set of results examines RXEP’s efficiency when
downloading only sections of data. Here textual and binary

25,000 1y

20,000 +—

@ OpenOffice Upload

15,000 1— m OpenOffice Download

10,000 +— O Microsoft Upload

O Microsoft Download

5,000 +

0 “alll

DIA WD

Draft Paper

Fig. 7. RXEP using Openoffice and Microsoft

representations are compared to the original document size
and results are taken from the upload and download traffic
totals from the client’s device.

The first text file for comparison is an XML version of
Shakespeare’s Othello. This file contains little structure and
mostly string text, with an original file size of 248,777
bytes. The test was performed by navigating to Act 8-
>Scenel->1* speaker and changing the speaker name, and
uploading the alteration. The text mode resulted in a 1,176
bytes upload and 1,598 bytes download while the binary
mode resulted in a 50 bytes upload and 1,349 bytes
download. To Stream the text to that position (i.e.
downloading the whole file to that point) would have re-
quired 207,030 bytes; this demonstrates the savings by
skipping the unwanted parts of a file.

The second example consists of a photo album repre-
sented by a MPEG-21 Digital Item. Initially, this XML file
is of length 21,040 bytes. The test navigated to the level of
photo descriptors and altered the description of a photo.
The text mode resulted in a 1,409 bytes upload and 1,914
bytes download while the binary method results in a 54
bytes upload and 1,307 bytes download. To stream to the
chosen location in text would require 3,997 bytes.

Fig. 5 graphically illustrates the comparison of RXEP and
BinRXEP with the simple examples while Fig. 6. illustrates
the comparison of text and binary representation of the
complete test files. Since these are very simple examples,
and navigation skips most of the unnecessary structure in-
formation, the text and binary download results are not sig-
nificant. However, more complex examples, involving more
navigation through the structure would see further im-
provements; such as the savings seen in Fig. 6. The results
show that using BinRXEP the uploaded data is very small
and is a minimal cost for the flexibility afforded by RXEP.

B. Comparison of Office XML Documents with RXEP

This section will examine how the office XML docu-
ments, OpenOffice and MS Word, compare when used in
conjunction with RXEP. These results are shown in Fig. 7.

The first test document (DIA WD) consists of a MPEG-21
Digital Item Adaptation working draft document. The
document was converted into xml using both software
packages. The test consisted of navigate to the third section,
then navigate to a paragraph, where as mistake is present.
The new fragment containing the correction was then up-
loaded. OpenOffice XML required 27,742 bytes download
and 836 bytes upload. The MS Word XML required 3,282
bytes download and 2,108 bytes upload.

<w:wordDocument >

<w:body>
<wx:sect>
<w:p>
<W:r>
<w:t>This is a Test sentence.</w:t>
</w:r>
</w:p>
<w:p/>
<w:p/>
<w:sectPr>
<w:pgSz w:w="12240" w:h="15840"/>
<w:pgMar w:top="1440" w:right="1800"
w:bottom="1440" w:left="1800"
w:header="708" w:footer="708"
w:gutter="0"/>
<w:cols w:space="708"/>
<w:docGrid w:line-pitch="360"/>
</w:sectPr>
</wx:sect>
</w:body>
</w:wordDocument>

Fig. 8. Sample of a Wordprocessing ML document

The second file (Draft Paper) consisted of the first draft
of this paper, converted using both packages. The test in-
volved navigating to the RXEP section and modifying the
second paragraph. OpenOffice XML required 7,529 bytes
download and 3,723 bytes upload. The Microsoft (MS)
Word XML required 6,787 bytes download and 2,910 bytes
uploaded.

Interestingly, it was found that in the first example, the
OpenOffice XML used a much flatter document structure,
where many elements occurred at the body node level, re-
quiring significantly more download as compared to the
MS Word XML. In the second example, the file had fewer
major sections than the first file, and the differences were
not as significant. Furthermore, the OpenOffice XML was
much harder to navigate due to the flatter structure than the
MS Word XML. Overall, this demonstrates that document
structure can adversely affect RXEP’s efficiency.

It should be noted that binarisation was not tested for
the OpenDocument since the Schemas are written in Relax-
NG, which is not supported by the current version of the
compression code. Additionally, the MS Wordprocess-
ingML documents could not take full advantage of the tree-
based compression, as discussed in the next Section.

C. Discussion

It was found that the Microsoft Office XML documents
cannot be fully compressed using tree-based techniques.
The problem arises in our example after the wx:sect node.
Fig. 8. illustrates a portion of the WordprocessingML test
document concentrating on the body of the document. The
corresponding Schema for this node is shown in Fig. 9. As
can be seen in Fig. 9, the sectElt type (which is the type of
the sect node) has a sequence of a sub-section or an any
node. Additionally, the sub-section type also contains an
any node in its sequence.

<xsd:element name="sect" type="sectEIt">
</xsd:element>

<xsd:complexType name="sectEIt">
<xsd:sequence>
<xsd:element name="sub-section"
type="subsectionElt"
minOccurs="0" maxOc-
curs="unbounded">
</xsd:element>
<xsd:any namespace="##other"
processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="subsectionElt">
<xsd:sequence>
<xsd:any namespace="##other"
processContents="lax" minOccurs="0"
maxQOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

Fig. 9. Relevant portion of the Wordprocessing ML Schemas

The any node in this case uses the “lax” processing di-
rective which allows any “well-formed” XML to be present,
and validation is done on a “can do” basis [2]. Whilst the
any node allows for flexibility, this has the unfortunate ex-
pense of limiting its compressibility. The problem is that
tree-based encoding relies on knowledge of the possible
nodes that can be present after the current node. Unfortu-
nately, the compressor cannot easily determine what node
must come next after an any node with the lax processing
directive.

One solution is to restrict nodes following an any node
to be global elements from a known namespace. In terms of
binary, one bit would be used to indicate if the node is valid
to a Namespace and the following bits to select the Name-
space and the selected Node within that Namespace. With-
out this, it is not possible to determine the next node, in
relation to the schema, and to continue compression using
the Schema tree-based technique. If the schema node can-
not be determined, then the contents of all XML under that
node will be compressed with a standard character redun-
dancy compression technique, such as zlib [10]. This ap-
proach is less flexible and achieves reduced compression
efficiency as compared to the tree-based compression [11,
12]. One further disadvantage is the inability to directly
‘edit’ small portions the binary data, when using zlib, while
the schema binarisation approach retains that possibility.
For example, if the document is stored in binary, then to
simply insert some data into the document (under the any
node branch), the entire branch needs to be decompressed
before the addition can be made, then recompression is re-
quired. Where tree-based compression is used, the new data

can easily be inserted, without the need to decompress the
entire branch.

In this example (see Fig. 9.), since the Section element
is an any node and the following paragraph p element is not
a global element of the corresponding Namespace, thus
efficient, schema based compression is not feasible.

V. CONCLUSION

The common office suites are moving towards XML
documents for file storage and this emphasizes the need for
a standard approach to XML collaborative editing. This
paper has demonstrated that RXEP is a good candidate for
receiving and editing remote XML documents. Using the
binary, compressed for of the protocol, we have shown that
upstream data transmissions are negligible and the advan-
tages of minimizing downstream data transmissions far
outweigh any disadvantages of a small upstream data
transmission. The paper has also highlighted that some of
the current office suites do not produce ideal XML in term
of compression and that there is still a lack of uniformity in
the choice of schema standards. Given that there is progress
on these issues, it is expected that XML tools such as RXEP
will provide versatile mechanisms for standard XML-based
office suite collaboration.

REFERENCES

[1] W3C, "Extensible Markup Language (XML)," [online docu-
ment] http://www.w3.org/XML/.

[2] W3C, [online document]
http://www.w3.org/XML/Schema

[3] OASIS, “Open Document Format for Office Applications
(OpenDocument)”, [online document] http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=office

[4] Microsoft, “Office 2003 XML Reference Schemas”, [online
document]
http://www.microsoft.com/office/xml/default.mspx

[5] S. Boettcher and A. Turling, “XML Fragment Caching for
Small Mobile Internet Devices,” Web, Web-Services, and Da-
tabase Systems, NODe 2002 Web and Database-Related
Workshops, Erfurt, Germany, pp. 268-279, October 7-10
2002.

[6] Information technology, “MPEG B -- Part 1: Binary MPEG
format for XML,” ISO/TEC 23001-1:2005.

[71 S. Davis and L. Burnett, “Exchanging XML Multimedia Con-
tainers using A Binary XML Protocol,” IEEE ICME 05, 2005

[8] “Wikipedia”, http://en.wikipedia.org/wiki/Main_Page

[9] “Concurrent Versions System”, [online documen]
https://www.cvshome.org

[10] “zlib”, [online document] http://www.gzip.org.zlib

[11] S. Davis and L. Burnett, “Efficient Delivery in the MPEG-21
Framework™, to be published, I* International Conference
on Automated Production of Cross Media Content for Multi-
channel Distribution (AXMEDIS)

[12] M. Cokus and D. Winkowski, "XML Sizing and Compres-
sion Study For Military Wireless Data," XML Conference
and Exposition 2002, Baltimore convention center, Balti-
more, MS USA, December 8-13 2002.

"XML Schema,"

	Collaborative editing using an XML protocol
	Recommended Citation

	Collaborative editing using an XML protocol
	Abstract
	Disciplines
	Publication Details

	Collaborative Editing using an XML Protocol

