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The invariance principle for linear processes with applications

Abstract

Let Xt be a linear process defined by [refer paper], where [refer paper] is greater than or equal to 0 is a
sequence of real numbers and (ek, k = 0, plus or minus 1, plus or minus 2, ...) is a sequence of random
variables. Two basic results, on the invariance principle of the partial sum process of the Xt converging to
a standard Wiener process on [0,1], are presented in this paper. In the first result, we assume that the
innovations ek are independent and identically distributed random variables but do not restrict [refer
paper]. We note that, for the partial sum process of the Xt converging to a standard Wiener process, the
condition [refer paper] or stronger conditions are commonly used in previous research. The second result
is for the situation where the innovations ek form a martingale difference sequence+ For this result, the
commonly used assumption of equal variance of the innovations ek is weakened+ We apply these general
results to unit root testing. It turns out that the limit distributions of the Dickey—Fuller test statistic and
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test statistic still hold for the more general models under
very weak conditions.
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THE INVARIANCE PRINCIPLE
FOR LINEAR PROCESSES
WITH APPLICATIONS

QiYING WANG, YAN-XIA LIN, AND CHANDRA M. GULATI
University of Wollongong

Let X; be a linear process defined My = X1~ o€, Where{yn,k = 0} is a
sequence of real numbers afel, k = 0,+1,£2,...} is a sequence of random
variables Two basic resultson the invariance principle of the partial sum pro-
cess of theX; converging to a standard Wiener procesq @], are presented in
this paperIn the first result we assume that the innovatioagare independent
and identically distributed random variables but do not resfigt || < oo.

We note thatfor the partial sum process of thg converging to a standard Wiener
processthe conditionX s |#| < co or stronger conditions are commonly used
in previous researciThe second result is for the situation where the innovations
ek form a martingale difference sequen€er this resultthe commonly used as-
sumption of equal variance of the innovatiogsis weakenedWe apply these
general results to unit root testing turns out that the limit distributions of the
Dickey—Fuller test statistic and Kwiatkowskhillips, Schmidf and Shin(KPS9
test statistic still hold for the more general models under very weak conditions

1. INTRODUCTION

Let {X;,t = 1} be a sequence of random variables such E¥t= 0. Let

S, = }n‘, X; and of=Var(s,).
t=1

We denote by= the weak convergence of probability measure®|if,1], where
D[0,1] is the space of all right continuous real-valued functions having finite
left limits on [0,1] endowed with the sup nornUnder appropriate conditions

it is well known that

S wi, o=t=1, ®
On

whereW(t) is a standard Wiener process [@)1] and[nt] denotes the integer
part of thent. The result of form(1) is commonly called the invariance princi-
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120 QIYING WANG ET AL.

ple or the functional limit theorenit is quite useful in characterizing the limit
distribution of various statistics arising from the inference in economic time
series To elaboratglet us consider a stochastic process generated according to

yt:ay[—l+xtv t:1727"'7 (2)

wherey, is a constant with probability one or has a certain specified distri-
bution Denote the ordinary least squaré@LS) estimator ofa by a, =
S ViVt / 2, Y2 .. To testa = 1 againsta < 1, a key step is to derive
the limit distribution of the well-known DFDickey—Fullej test statistid Dickey
and Fuller 1979:

n(a,—1) = {nl 21 Yeo1(Ye — yt—l)}/{nz 21 Yt2—1}~ 3

As shown by Phillipg1987), in null hypothesisx = 1, the asymptotic proper-
ties of the DF test statistic relied heavily on the invariance principle of the
form (1).

In past decadesunder different assumptions ofy, there are many articles
that discuss the invariance principle of the fofi. Herg we cite two basic
textbooks Billingsley (1968 and Hall and Heyd¢€1980, for the collections of
related articles for independent random variables and martingale difference se-
guencesthe review paper for mixing sequence given by Peligie@86; and
also Peligrad’s recent worlPeligrad 1998. For more general mixingale se-
guenceswe refer to Mcleish(1975 1977 and Truong-var{1995.

In this paperwe restrict our attention to linear processas important case
in economic time seriesn what follows we always assume that

X = 2 Y€ ks 4)
k=0

where {is,k = 0} is a sequence of real numbers and innovatiegk =
0,£1,+2,..., are random variables specialized later

On the invariance principle of the foritl) for linear processeshis paper
establishes two basic resulta the first result we assume that the innovations
€ are independent and identically distributed.d.) random variablesbut the
condition Xy || < oo (or stronger conditions commonly used in previous
research given by Hanngi979, Stadtmiiller and Trautn€d985, and Phil-
lips and Solo(1992 (also see Tanakd 996 and also by Yokoyamél995), is
weakenedOnly finite second moments feg, are required in this papdt gives
an essential improvement of the previous similar results given by Davydov
(1970. The second result is for the situation where the innovatirferm a
martingale difference sequenda this result the commonly used assumption
the innovations, having the same varianciss weakenedThis will be of in-
terest to researchers from the viewpoint of practice
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We give the statements of main theorems and detailed remarks on the previ-
ous results in the next sectiom Section 3 the applications to the Dickey—
Fuller test statistic and KwiatkowskPhillips, Schmidf and Shin(KPS9 test
statistic are discusse@/e find these important statistics still have similar limit
distributions for the more general models under quite weak conditiorsec-
tion 4, some general conclusions are drawimally in Section 5we give the
proofs of the main theorems

2. MAIN RESULTS AND REMARKS

For brevity we denote lim_,.a,/b, — 1 by a, ~ b,,, andA, with or without
subscriptis for positive constant

In Theorem 21, which follows we assume that the innovatioggare ii.d.
random variables buto cover some interesting cas#ise s, are rather general
Write, for j =1,2,3,...,

-1 n
— 2 2
v, —kzol/fk and sh—zlvJ
- i<

THEOREM 21. Lete,k = 0,+1,+2,..., be i.i.d. random variables with
Eeo = 0 and Ee§ = 1. Assume thaf, # 0O,

1 1/2
— max|y| ->0 and 2(2%) =0(s,). (5)

Sh 1=j=n 0\ k=j
Under these assumptions, we have that

kn(t)
gnElXj:W(t), 0=t=1, (6)
i<

where k(t) = sup{m: s? = ts?}.
In particular, if ¢ = k™1 (k), where (0)/0 = 1 and the positive function
I (k) is slowly varying at infinity satisfyin@—, kI (k) = oo, then
1 Kq (1)
Ex::wm 0o=t=1, (7)
xFE k(K

where k(t) is defined as in (6).
If 0 < |[Siloth| < oo and Il kyf < oo or Zloley| < oo and
koot # 0, then
1 [nt]
— 2 X =>W(t), 0=t=1 (8)
]

nj=1

whereo?? = n(Sp_oth)?.
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Remark 21. It follows from Hall (1992 p. 118) that

n n 2
ar?:Var(ZXj) ~n<2 kll(k)>,

j=1 k=1
provided ¢, = k™ (k) and X,k (k) = co. Hence we can replace
Vn3n_ k7 U(k) by o, in (7). It is unclear whether or nos, in (6) can be
replaced byo,.

Remark 22. Let ¢ = k™%, where3 < a < 1. It is easy to show that the
second condition of(5) fails to hold In this case we also know that
(1/o,) ZjeY X, fails to converge tow(t). In fact by applying Liu (1998
(also see Marinucci and Robinsot998), (1/an)21[2t} X; converges to a frac-
tional Brownian motion withd = 1 — «. Therefore to make the partial sum
process of theX; converge to a standard Wiener proges® condition(5) is
close to the necessary condition

Remark 23. The conditions given in this theorem are different from those
given by Davydov(1970. Specifically Theorem 21 abolishes the condition
Eeg < oo, which is an essential improvement of Davydov’s result for the mo-
ment condition

In the next theoremthe ii.d. assumption for the innovations is weak-
ened to being a martingale difference sequennethis case an excellent
result is given by Hannaii1979, where it is required thaEe? = o2 and
lim, . E(e?|F_n) = o2 as. (F is defined as in Theorem.2 which fol-
lows) for all k. In Theorem 22, these conditions are moderat&ur Corollary
2.1, which follows Theorem 2, also improves Theorem.15 in Phillips and
Solo (1992, where the authors assum@_ k|| < oo and{e} is a su.i.
(strongly uniformly integrablethe definition can be found in Billingsley968
p. 32) martingale difference sequence

THEOREM 22. Let ), satisfy

bOEEka#O’ 2|l,[/k|<00, and zkl/fk2<°°
k=0 k=0 k=1

Let ¢, be random variables such that
E(e] o) =0, as k=0,+1+2,...,

whereFy is theo-field generated byej,j = k}. If

12 12
sup= >, Ee? < oo, inf = > EeZ > 0; 9)

n=1Nk="n n=1N =1
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and as n— oo,

1 n
- > (e2 — Ee?) — 0, in probability; (10)
k=1

1 n
- Ee2l .. 1=svm — 0, foranys >0, (11)
n, (lex|=8~/n)
then

kn (1)
— 2 X =>W(t), 0=t=1 (12)
On j=1

whereo;2 = b231_, EeZ and K:(t) = sup{j: Sk 1 EeZ = t S, EeZ}.
From Theorem 2, we obtain the following corollaty

COROLLARY 21. If conditions (9)—(11) in Theorem 2.2 are replaced by
one of the following conditions (a)—(c), then (12) still holds.

(a) {e2} is uniformly integrable and E&2|F._,) = 02 > O for all k = 1;
(b) {2} is s.u.i. and(1/n) > p_; E(e2| Fr_1) = o2 > 0, in probability;
(c) E(sup.e?) < oo and (1/n)>p_1 E(eZ| F_y) — o2 > 0, in probability.

Proof If condition (a) holds thenEe? = E(e2| F_;) = o2 Condition(12)
follows immediately from Theorem.2 by using Lemma 5 (from Section 5.
If condition (b) holds it follows from Lemma 55 that

n 1 n
- > E€?l(=svm — 0 and - > €2 — o2 in probability (13)
k=—n k=1

On the other handit is known that{(1/n)>r_,€?} is su.i. if {€Z} is su.i.
(Chow and Teicherl988 p. 102). This fact together with the second relation
of (13), implies that(Chow and Teicherl988 p. 100

n
- > EeZ > o2 (14)
Ng=1
In terms of(13) and(14), it is easy to check that all conditions in Theorer@ 2
are satisfied and hend¢&2) holds

Finally, if condition (c) holds (12) follows obviously because
E(supe?) < oo implies that{e?} is su.i. u

3. APPLICATIONS

In this section we discuss the applications of this paper to time sewds
first, we assume that the procesg} is generated by2) with o = 1. Phillips
(1987 investigated the limit behavor of the DF test statigticy, — 1) de-
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fined by (3) provided {X;} is a strong mixing sequence with appropriate
mixing conditions Here we assume thaiX,} satisfies(4), i.e, {X;} forms a
linear processUnder quite general conditions fgg ande, in (4), it is shown
that the DF test statistin(a,, — 1) has a similar distribution as that in Phillips
and Xiao(1998, where the authors obtained the limit distributionngfy,, — 1)
provided 3% o kM2 |y | < oo.

THEOREM 31. Let ¢,k = 0,£1,%£2,..., be i.i.d. random variables
with Eep = 0 and B2 = 2. If 0 < [ o] < o0 and X kyy? < oo or
Dol ] < o0 and o4 # 0, then as n— oo,

(@) (I/n?) S, y2 1 = o?bgfy W(r)2dr;

(b) (/ML 1YoV — Yi1) = (0705/2)(W(D)? — y);

(©) n(én —1) = (3)(W(1)2 = y)/fg W(r)dr;

(d) &, — 1, in probability;

(€) t.= Gy Y2)(W(1)2 — y)A Sy W(r)2dr}¥/2,

where

bo= St ¥= 3 UE/BE,

l n
oy = 21)/t Yi-1 2 Y1, 83 H 21(% — @ Yi-1)? and
t t=

As in Phillips(1987), the proof of Theorem.2 may be obtained by applying
Theorem 2L. The details are omitted

The limit distribution given in Theorem.B depends on the unknown
parameter

As in Phillips (1987, p. 285), we can construct an estimate pfas follows
1 n
v =6.2/62, wheregr?= - > X?
t=1

and 62 = (I/n) S X2 + /M3, S 1 X X, . Here and subsequently
{l,,n = 1} denotes a sequence of positive real numbEng following theorem
shows thaty is a consistent estimate offor any |, satisfyingl, = o(n) and
I, — oo.
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THEOREM 32. Let ¢,k = 0,+1,%+2,..., be i.i.d. random variables with
Eeo = 0and &2 = o2,

(@) If Zilod < oo, thendy?/o? — Ziloii, as.
(b) If 2Zolth] < oo, then for any } satisfying | = o(n) and I, = o, 62/02 —
(Srzoth)?, in probability.

Proof Noting that{X,,t = 1} is a stationary ergodic sequence dBd; =

0?2 oh? < oo, it follows from the stationary ergodic theore(@tout 1974
p. 181 that4,? — 02> o2, as. This proves parta).

It is well known that(Brockwell and Davis1987, p. 212
1 n 2 10 2
n (tzl ‘> n g "

— n o) 2
53 oo oot (Su). a9

This fact together with parta), implies that to proved,2/o? — (Se_oti)? in
probability it suffices to show that

—Z Z (X X—, — EX; X,_,) = 0, in probability, (16)
r=1t=r+1
1 n—1 n
2 2 EXX -0 17

n,= I t1lt=r+1
The proofs of(16) and(17) appear in the Appendix |

If X r_o i = oo, the results differ from those in Theorent3In this casewe
find that the limit distribution of the DF test statisti¢&,, — 1) is free from the
unknown parameters bty diverges toco in probability Explicitly, we obtain
the following theorem

THEOREM 33. Let ¢,k = 0,£1,£2,..., be i.i.d. random variables with
Eeo = 0and &2 = 2. If . = k1 (k), where (0)/0 = 1 and positive function
I (k) is slowly varying at infinity satisfyin® ., k=2 (k) = oo, then

(@) () 231, y2 1 = o[y W(r)2dr;

(b) (Nnv,) 221 Y1V — Yee1) = (0% 2)W(D1)?;
(©) n(én —1) = (WD [y W(r)2dr;

(d) t, — oo, in probability,

wherev,, = >n_, kI (K), &,, and t, are defined as in Theorem 3.1.
Proof Recall

n
=2, ky(t) = sup[m: 2 = ts?}

i=1
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and the procesfy,} is defined by(2). If « =1, theny, = 2}:1Xj (without loss
of generality here and subsequenthye assume/, = 0), and hence

2 2,2 /[ Ka(r) 2

S5 [s/s

Vo= > X | dr.
Ut J2 85\ =1

Therefore we obtain that

n U2 n 1 1
2 _ t,2
EVH—E—ZVFGLE T 5 |Vt
t=1 t=1 Un t=1\ VUt n
2 n 2,2 [ Ky(r) 2
Sh SC/sh
== X; | dr +R,, say
Unt=1Js21/85\ j=1

It follows from Theorem 2L and the continuous mapping theorésee Bill-
ingsley 1968 Sect 5) that

1/1 kn(r) 2 1
f <— > XJ-> dr:azj W(r)2dr.
0\ S j=1 0

This fact together with Theorem.4.1 given by Billingsley(1968 p. 25), im-
plies that par{a) follows if

n
1
s?= > vP~m? and —— R,—0, in probability (18)
j=1 n“vy

Becausev, = >r_; k (k) is still a slowly varying functionthe first rela-
tion of (18) follows from Bingham Goldie, and Teugel$1987, p. 26).

By noting thatEy? ~ tv? (recalling Remark 2), we have that

. 1 1 2 1
> Ey,~= and > vPEYZ , ~ 5

2,2 2,4
N“vp =1 2 NV =1

by using the slowly varying properties of. Hence by notingv, T, ast T oo, it
follows that

1

nzvﬁ

E[R,[ =

n
2 2
> 2 Uy E}/t_l 4 0.
n t=1

1 n
n?v2 V2 gl By -
The second relation of18) follows from Markov’s inequality The proof of
part(a) is complete
The proof of par{b) follows directly from Theorem 2 and par{a) of Theo-
rem 32 by notingZ{_; Yi_1(Y; — Yi-1) = 3¥7 — 2i-1 X (see Phillips 1987,
Appendix.
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The proof of pari(c) is straightforward by applying partg) and(b) and the
continuous mapping theorem
To prove part(d), we rewrite

1 n
53 = - 2 (Yy — &nyt—l)z
Ni=1

2(a,—1) & (a,— 1% O
- : Z Vior Xi + : 2 Y& 1.
t=1

t=1 n

1n
= = X2
nz‘lt

Becausen v, — 0, for any 8 > 0 (see Fellgr1971, p. 277), andv,, — oo, it
follows from parts(a)—(c) that fore > 0, asn — oo,

Gy—1 8 )
P n Dy X| =€) =Pnla,— 1| = ev,)
t=1
1 n
+P( |2 VX =m?) =0, (19)
nvn t=1
Y _12 n
P<(ann : 2YIZ—lZ'f)SP(n&n—HEevn)
t=1
1 n
+P| 53 2 v2i=mpt) =0 (20)
N"vy =1

In terms 0of(19), (20), and part(a) of Theorem 3, we have that
82 = 02D Y2 < oo, inprobability
k=0

Therefore part (d) follows easily by applying partéa) and (c). The proof of
Theorem 3 is complete u

Next we discuss another application of the present resudtsus consider
the model

Vi = ¢+ 1+ 74, t=212,...,n (21)
Herey is a constantz, is a stationary errgiandr, is a random walk
e ="re 1+ U with o= 0, (22)

where theu, are ii.d. random variables witfEu, = 0 andEu? = o2 To test
o2 =0, i.e, to test whether the data generating process is statiptiarycom-
monly used statisticknown as the KPSS test statigtis
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n t
flu=n"7?> §/s°(l,), where§ =2 g, (23)
t=1 =1
) 1 n ) 2 In n
Pl ==-2e+=-2> X aes
ni; Ns=1t=s+1

ande =y, — (1/n) X, y; is the residual from the regressionybn intercept
. Kwiatkowski, Phillips, Schmidt and Shin(1992 discussed the asymptotic
distribution of then, providedz, satisfies thgstrong mixing regularity condi-
tions given by Phillips and Perrof1988 p. 336) or the linear process condi-
tions given by Phillips and Sol@992 Theorems 3} and 315). One of Phillips
and Solo’s conditions i¥ o k¥?|yy| < co. In this paperwe only require that
Sreol | < co. In particular we only need,, satisfyingl,, = o(n) andl, — oo,
which, in practice provides more choice fa2(l,). Therefore our result is an
extension of theirs

THEOREM 34. Let e,k =0,£1,%2,..., be i.i.d. random variables with
Eeo = 0 and E2 = ¢2. Assume that the data generating process is given by
(21) with

=X = 2 € k-
k=0

If Yol < o0 and 2o # 0, then for any ) satisfying |, = o(n) and
I, — oo,

1
= f V(r)2dr, where Mr) =W(r) — rw(1). (24)
0
Proof Under the hypothesigr? = 0, it is well known thate, = X, —
(1/n) =, X;. By applying Theorem 2, we have thatfor any 0=r <1,
1 [nr] &

1
;n %nr] - 2 Xt

> Xe= W(r) — rw(1) = V(r),

On t=1

whereg? = naz(EE’:Ozpk)z. Hence it follows from the continuous mapping
theorem that

n 1 1 [*s) 2 1
-2 2 _ 2 0_2 2
n t:ZlS = nfo Sondr = <k§_‘,0¢k> fo V(r)2dr. (25)

On the other handve have that

s?(l,) = —Zet + = EltZHetet s
= _EXt + = 2 2 tht S+R1nv (26)

s=1t=s+1
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where after a simple calculatign

4|n n 2 2 Ih n n
|R1n‘5_2 ZXJ- +_2 2 E (Xt+xtfs) Exj
n= \j=1 N% | s=1t=st+1 i=1
Cln n 2
<" X
n* (2 J)

By noting (15), Markov's inequality implies that for anl, = o(n), |Ry,| — 0
in probability Therefore by using part(b) of Theorem 2, we obtain that for
any |, satisfyingl, = o(n) andl, — oo,

2

s2(l,) = o? < i ¢k> in probability (27)
k=0

Thus (24) follows immediately from(25) and(27). The proof of Theorem .3
is complete |

Remark 31. In terms of Theorem .2, Theorems 3., 3.3, and 34 still hold
for stationary ergodic martingale difference sequence provilgg|y,| < oo
and> o # 0. We omitted the details here

4. CONCLUSION

This paper derives two basic results on the invariance principle for the partial
sum process of a linear proced3se first result assumes that the innovations
are Li.d. random variablgsbut absolute summability of coefficients for the
linear procesqi.e, X olth] < o) is weakenedThis relaxation of condi-
tions is interesting because some linear processes do not have absolutely sum-
mable coefficients Especially a linear process withly, = k™1l (k) where

S ok (k) = oo is important because it is expressed by neither a finite-
order autoregressive moving average process nor a fractional protessec-

ond result is for the situation where the innovations form a martingale difference
sequenceFor this resultthe commonly used assumption of equal variance is
removed This is of interest to researchers from a practical point of view
We apply these general results to unit root testing and stationarity te#ting
turns out the limit distributions of the Dickey—Fuller test statistic and
KPSS test statistic still hold for the more general models under very weak
conditions This paper also shows that the “long-run variahce?, can be
consistently estimated by a nonparametric method with a lag-truncation param-
eterl, of o(n). In previous researglht was usually assumed to be ofn/?),

This provides more choice for the estimation @f, and it is theoretically
interesting
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5. PROOFS OF MAIN RESULTS
5.1. Some Preliminary Lemmas

In this sectionwe provide some lemmas that will be needed in the proofs of
the main resultsSome of these lemmas are also interesting in their own.right

LEMMA 5.1. Let{n,,k = 0} be a sequence of arbitrary random variables
and{b;,i = 0} a sequence of real numbers. Assume that

[oe] 1 n
1//§+Ekz/1k2<oo, sup—Ebi2<oo
k=1

n=1 Ni=o

and there exists a positive constant A such that
[} 2 %)

E< > l/fj+k77k> =AY YPbE, forj=0. (28)
k=0 k=0

Then, as n— oo,

1 m oo
— max -
VN ommen 2‘ gol/fﬁ—knk

Proof By usingE|Y| = (EY?)Y2 for any random variabl¥, it follows from
(28) that

— 0, in probability. (29)

m

2 lﬂj+k7)k

E max

0=m=n

o n
E ]+k77 2
k=0 i=o

Pute; = 2 o5 «bé. For any 0= | = m, we have that

n /o 1/2
SA§<Z¢J+kbk> . (30)

j=0 k=0

m oo

2| o = El > PZbE
i= i=

k=0

0 min{k, m} 1 k )
LY bk,—<§gi2 >E(k+1)¢k2.

This inequality implies that

(B (5 8]
N (o e
=l )+ £

[vn] n
SZ([\/ﬁ] > a+n > a]->

j=0 j=[~/n]

<2<Sup Zb2><[\/_]§:(k+1)¢fk+n 2 (k+1)l//k>

k=[/n]
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Now (29) follows from Markov’s inequality (30), and the bound established
earlier The proof of Lemma 3 is complete u

LEMMA 5.2. Let{n,, F»,S = n =t} be a martingale difference sequence.
Then there exists a constant K such that for any constant sequgnce

n 2 t
E max( > aknk> =K afEn?. (31)
k=s

sS=n=t k=s

Proof Apply Doob and Burkholder’s inequalitisee e.g., Hall and Heyde
198Q pp. 15 and 23respectively. [ ]

LEMMA 5.3. Let {n,, F,,—c0 < n < oo} be a martingale difference se-
quence satisfyingupel(l/k)Eik_,kEni2 < oco. Assume that

[e'e)

Sl <o and D k2 < co.
k=0 k=1
Then, for anys > 0,

2 u(I)

i=

=s5Vn } (32)

lim lim supP{ max

|50 noe 1=m=n
H_

Wheretﬁ = 2 dmj-xand 1= —1.

Proof We first note tha,” o ¢y« < oo, @s, for every fixedj = 1; i.e,

u'" is well defined In fact, by applying Lemma 2, there exists a constaht
such that forany = m=m’,

n 2 m’
E max <k2 lﬂkﬂj—k) 2 771 K
_— K=m

(sup > &) 3 (ks v @)

k=1 k i=—k

From (33) and Markov’s inequalityit follows that for anys > 0, asn — oo,

P(sup
i=1

So we conclude by the Cauchy criterion th8f_ omj—k converges almost
surely, i.e., for every fixedj = 1, 2,2 o ¢hymj_k < o0, as.

In terms of X7 o¢am— < oo, @s, it is easy to show(let Z, , = 0 for
| =0)thatform=1+ 1,

n+i

> hemj—«

k=n

1 k o
= 8) =2K§? <supE > Eni2> > k2 — 0.
k=n

k=1 K j=—k
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m | m j—(I+1)
Euj(): > > Ui kM
-1 [ ——
m j—(+1) m 0 0
(23423 -3 3 Jua
2112 k=1 jolke—oo  j=1k=j
m—(1+1) m—k m o I1=j
= D> M X D D ik — 22¢1+k77k
D e iZ1k=0 T1k=
= AGL+ ARy + AG,  say (34)

WhereA(,'n)3 = 0 forl = 0 and—1. Now (32) follows if for any 6 > 0,

lim lim supP{ max |A(')| = 8\/_} 0, t=123. (35)

>0 nsoeo

For every fixedj = O, it follows from the Fatou lemma and Lemma25hat

%) 2 2
E<k§:01/fj+k77k> = E lim (Z hem;— )

—><>okJ

n—oo

2 0
= lim E<2 hm;- ) = KkE_‘/’sz’?jka
=i

K k}_‘,o ¢12+|< ETIEK-

By applying Lemma & (choosingb? = EnZ,), (35) holds fort = 2
To prove(35) fort = 1, put S = S, n; andS = 0. We obtain that

| m—(1+1) m—k m—(1+1)
A = 2 (S-Se) 3 o= 3 dmaS
j=1+1 k=1
and hencg

n
1)
max [Am| = 3 |¢il max|S,|.
1=m= k=141 1=m=n

Again, it follows from Markov’s inequality and Lemma.5 that

n 2
P{ max | A | >8\/n} 582n1< > |¢:k|> E max S?
1=m=n

1=m=n k=1+1

o 2
SK52< 2 |¢k|) Sup ZEnl'
k=1+1 k>1 i=0
Because ol < oo, we conclude that35) holds fort = 1.
That(35) holds fort = 3 is obvious and omitted’he proof of Lemma 3 is
complete ]



INVARIANCE PRINCIPLE FOR LINEAR PROCESSES 133

LEMMAS 4. Let{n,k=0,£1,+2,...} be a sequence of arbitrary random
variables. Assume that, as-» oo, positive constant series, &> oo and

1 n
P kE Enél(jp, =54, — 0, foranys > 0.
n k=—n

Then,
1 . -
— max |n] — 0, in probability.
dn —n=k=n
Proof By applying(36) in Phillips and Sold1992), we obtain that
1 12 5 5
P - maXn|T)k‘ 25 = P d_ZkE nkl("’lk|25dn)26 .

dn —n=k= n k=—n
Using Markov’s inequalitythe result follows u

LEMMAS5 5. Let{n,k=0,£1,+2,...} be a sequence of arbitrary random
variables. 1f{»Z} is uniformly integrable,

(i) forany s > 0, (1/n) Zk-—nEnil(pi=s~vm — 0;
(i) (2/vn)ymax_p—x=nlmy| — 0O, in probability;
(iii) (1/n)Zp_1(nE — E(nE| R 1) — 0, in probability, whereF is theo-field gen-
erated by{n;,j = k}.

By definition of uniform integrabilityit follows that sup E77|3|(\7,k|25n> -0,
for any 8,, — oo. Therefore the proof of Lemma 5 is straightforwardand
details are omitted

5.2. Proofs of Results
In this sectionwe provide the proofs of the main results

Proof of Theorem 2. According to(34) (for | = —1), forany 0=t = 1,
kn(t) Kn(t)  kn(t)—k

kn(t) oo
DX =D e X it X D ke
-1 P i=o =1 k=0

1

Similar to (30), we have that

o]

n 1/2
SA21<2 wf) =0(sy)-
=

k=]

E sup

O=t=1

kn(t)
j=1

[e'e]
2 ll’j+k'5—k
k=0

This, together with Markov’s inequalitymplies that

o0
E l//j+kf—k

— 0, in probability.
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On the other handt is well known (noting that thee, are ii.d. random vari-
ables that forany 0=t = 1,

kn(t)  Kky(H)—k g kn(t) k-1
PIREDIEIDINIPINT (36)
k=1 =0 k=1 =0

where2 denotes the same in distributiorherefore by applying Theorem 4.1
given in Billingsley (1968 p. 25), (6) follows if

1 Kn(t) k—1
— Y eaXy=>W1, 0=t=L 37)
Shk=1 j=0

Recall thaty, = E}‘;& ;. Because max=n|v¢|/s, — 0, we see that for any

0 >0,

1 n
— 2 2
2 KEER] (uenl=os) = Ber ! (lesi=ss,/ max fud) = 0. (38)

é”

It follows from Lemma %4 that

sin lmax |veex] — 0, in probability (39)
In terms of (38) and (39), (37) follows from Prokhorov’s theorentsee Rap
1984 p. 343). This completes the proof db).

If Y = k~(k), where positive functiori(k) is slowly varying at infinity
it is easy to check that;_,k I (k) still is slowly varying at infinity When
S ok (k) = oo, we obtain(see Bingham et al1987, p. 26) that

n -1 2 n 2
s§=2(2 klmo) ~n<2 kl|<k>),
j=1\ k=0 k=1

n o0 1/2 n
> (2 k%k)) ~ X i7Y2(j) ~ 202 (n) = o(s).
i=0 j

Hence(7) follows from (6).
IfO0 < Xk ol < oo andXy k2 < oo, by applying Lemma 3 and the
similar method of the proof used i), it suffices to show that

[nt] k—1 )
Nk=1 j=o i=0
By noting

[nt] [nt] [

[nt] k—1 o0
Esz b = <2 ‘ﬁj)ZEk_ > &> s
k=1 j=0 j=0

k=1 k=1 j=—k
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(40) follows from Donsker’s theorenisee Billingsley 1968 p. 137), and as
n — oo,

[nt] 9] n <) 2
<sup > e 2 e ><C(62n) 1E(Z Ek2¢j>
0=t=1|k=1 =k k=1 j=k
C e}
=3 2 o
N =1\ =k

where we use the estimal”, ; — 0 ask — oo.

If S olth] < oo and X, ¢ # 0, the result follows from Hannaf979.
The proof of Theorem .2 is complete u

Proof of Theorem 2. Generally speaking36) fails to hold for martingale
differencesTo prove Theorem .2, we need a new method
For every fixed = 1, put

(I) Elﬂkfl x and Z(I) E V€ -

k=I+1

From Fuller(1996 p. 320, we obtain that for anyn = 1,

EZ(” = 2 2 €k
j=1k=0
m | | -1
= E 2 2 2 E €m-s 2 ‘yb]
k=0 =1 s=1 J=s s=0 j=s+1
m
= 2 E +R(m,1), say
Therefore it follows that for every fixed = 1,
1 kn(t) kn(t) 1 1 kn(t)
e E ( 2 wk) 3 g+ ZRlGOD+ 3 Zy). (41)
On j=1 n k=0 j n ji=1

Noting EL ot — by, asl — oo, and existing positive constangs and A,
such thatA;n = 0.2 = A,n, by applying Theorem 4.1 given in Billingsley
(1968 p. 25), we only need to show for any > 0,

K ()

2 Z(')

i=

>5xF}= 0; (42)

lim lim supP{ sup

=00 nsoo o=t=1

n—oo o=t=1

lim supp{ sup |R(Kx(t),1)] = 5\/ﬁ} =0, (43)
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for every fixedl = 1; and

kn(t)
%EGjiW(t), 0o=t=1, (44)
i=1

wheres;? = 3, Eef.

In fact, (42) follows from Lemma 53 becausde,, F,,—00 < n < oo} is a
martingale difference sequence

In terms of Lemma 3, we have that

1
NG —Tsfjiénk” — 0, in probability (45)

By (45), (43) holds becausg& ;| ¥ < co and hence

1 1 | | |
7 SUPIR(G(1),Dl = = rlrl?gnlejlgo(zlel + 2 It//j|>

o=t=1 j=st+1
— 0, in probability

Finally, (44) follows Brown (1971 (see also Tanakd 996 p. 80) by using
(10) and(11). The proof of Theorem .2 is complete u
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APPENDIX

Proof of (16). Recalling(4), we have thatnoting thatEe; = 0 for all j)

In n

1
An =-E 2 2 (thtfr - EX{thr)

n r=1t=r+1
1 oo} [ee} In n

=-E E Z ‘!’k‘lst E (€ k€ rs— E€ k€ o)
N |k=o0s=0 r=1t=r+1
l [ee] [} n 5 5

= =2 D WWlE| X (€2~ Eel )
N k=o0s=0 t=1

1 ° In n
+ E E 2 “/’kd’s'E 2 Z €t—k€t—r—s|s
k=0s=0

r#k—s t=r+1
r=
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whereA = max{2,k — s + 1}. By Markov’s inequality it suffices to show thaf, — 0,
asn — oo. This follows from

In

1 n
Bo= sup —E| D> D € _re_rs =0, (A.1)
ks=0 N |rtk—st=r+1
=
wherel, = o(n); and
l n
Co= sup ~E| X (2~ Ee? )| -0, (A.2)
ks=0 N |t=2a

whereA = max{2,k — s+ 1}.
Because, are ii.d. random variables witle, = 0 andEe2 < oo, it follows that

r#k—st=r+1 r#k—st=r+1
r=11, r=1

n 2 In n
E( E E 6tk61rs) = 2 E EelszftzfrfsSnln(EEg)%

Hence (A.1) follows from, asn — oo,

In

1 n 2\1/2
B, = E ksup E z 2 Etketrs) )

, =0 r#k—st=r+1
r=1
= (I,/n)"?(Ee§)? — 0.
To prove(A.2), for everyj, let
— 2 2 — 2 2
€1) = € 1(g1=nvt) ~ Bl i=ne) aNd €35 = €71 1=na) — B€f (g =n14).
After some algebrawve obtain
n 4
lhis=E E k| = A{nZ(E53|(\eo\snl/4))2 + nEfg'(\e,)\gnlf“)}- (A.3)
t=A

The relation(A.3) implies thaf asn — oo,

Hy= sup —E

1
- sup (In )™ = A{n"Y*4(Eed)? + n ¥8Eed} — 0,
k,s=0

I

where we use the following estimatg| X| = (EX*)Y* for any X. Thereforg it follows
that asn — oo,

1
C,= sup — E

k, s=0 n

n
E (fitfk + Eg,t—k)
t=A

= Hnl + 2EE§I(\EO\>HU4) — 0.

The proof of(16) is complete u
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Proof of (17). BecauseEeje, = 0 for j # k, we have that

n—1 n o n n
2 z EXtX, = Z 2 lvllkl/fs 2 2 Eetfketfrfs
r=l,+1lt=r+1 k=0s=0 r=l,+1lt=r+1
e} el n
= 2 E hiihs 2 Eel .

t=k—s+1

sEef(éﬁl )(im)

The proof of(17) is complete

Therefore asn — oo,

1 n—1 n

2 2 EX X

n r=l,+1t=r+1
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