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THE INVARIANCE PRINCIPLE
FOR LINEAR PROCESSES

WITH APPLICATIONS

QIIIYYYIIINNNGGG WAAANNNGGG, YAAANNN-XIIIAAA LIIINNN, AAANNNDDD CHHHAAANNNDDDRRRAAA M. GUUULLLAAATTTIII
University of Wollongong

Let Xt be a linear process defined byXt 5 (k50
` cket2k, where$ck, k $ 0% is a

sequence of real numbers and$ek, k 5 0,61,62, + + + % is a sequence of random
variables+ Two basic results, on the invariance principle of the partial sum pro-
cess of theXt converging to a standard Wiener process on@0,1# , are presented in
this paper+ In the first result, we assume that the innovationsek are independent
and identically distributed random variables but do not restrict(k50

` 6ck6 , `+
We note that, for the partial sum process of theXt converging to a standard Wiener
process, the condition(k50

` 6ck6 , ` or stronger conditions are commonly used
in previous research+ The second result is for the situation where the innovations
ek form a martingale difference sequence+ For this result, the commonly used as-
sumption of equal variance of the innovationsek is weakened+ We apply these
general results to unit root testing+ It turns out that the limit distributions of the
Dickey–Fuller test statistic and Kwiatkowski, Phillips, Schmidt, and Shin~KPSS!
test statistic still hold for the more general models under very weak conditions+

1. INTRODUCTION

Let $Xt , t $ 1% be a sequence of random variables such thatEXt 5 0+ Let

Sn 5 (
t51

n

Xt and sn
2 5 Var~Sn!+

We denote byn the weak convergence of probability measures inD@0,1# , where
D@0,1# is the space of all right continuous real-valued functions having finite
left limits on @0,1# endowed with the sup norm+ Under appropriate conditions,
it is well known that

S@nt#

sn

n W~t !, 0 # t # 1, (1)

whereW~t ! is a standard Wiener process on@0,1# and@nt# denotes the integer
part of thent+ The result of form~1! is commonly called the invariance princi-
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ple or the functional limit theorem+ It is quite useful in characterizing the limit
distribution of various statistics arising from the inference in economic time
series+ To elaborate, let us consider a stochastic process generated according to

yt 5 a yt21 1 Xt , t 5 1,2, + + + , (2)

wherey0 is a constant with probability one or has a certain specified distri-
bution+ Denote the ordinary least squares~OLS! estimator ofa by [an 5

(t51
n yt yt210(t51

n yt21
2 + To testa 5 1 againsta , 1, a key step is to derive

the limit distribution of the well-known DF~Dickey–Fuller! test statistic~Dickey
and Fuller, 1979!:

n~ [an 2 1! 5 Hn21 (
t51

n

yt21~ yt 2 yt21!JYHn22 (
t51

n

yt21
2 J + (3)

As shown by Phillips~1987!, in null hypothesisa 5 1, the asymptotic proper-
ties of the DF test statistic relied heavily on the invariance principle of the
form ~1!+

In past decades, under different assumptions onXt , there are many articles
that discuss the invariance principle of the form~1!+ Here, we cite two basic
textbooks, Billingsley ~1968! and Hall and Heyde~1980!, for the collections of
related articles for independent random variables and martingale difference se-
quences; the review paper for mixing sequence given by Peligrad~1986!; and
also Peligrad’s recent work~Peligrad, 1998!+ For more general mixingale se-
quences, we refer to Mcleish~1975, 1977! and Truong-van~1995!+

In this paper, we restrict our attention to linear processes, an important case
in economic time series+ In what follows, we always assume that

Xt 5 (
k50

`

cket2k, (4)

where $ck, k $ 0% is a sequence of real numbers and innovationsek, k 5
0,61,62, + + + , are random variables specialized later+

On the invariance principle of the form~1! for linear processes, this paper
establishes two basic results+ In the first result, we assume that the innovations
ek are independent and identically distributed~i+i+d+! random variables, but the
condition(k50

` 6ck6 , ` ~or stronger conditions!, commonly used in previous
research given by Hannan~1979!, Stadtmüller and Trautner~1985!, and Phil-
lips and Solo~1992! ~also see Tanaka, 1996! and also by Yokoyama~1995!, is
weakened+ Only finite second moments forek are required in this paper+ It gives
an essential improvement of the previous similar results given by Davydov
~1970!+ The second result is for the situation where the innovationsek form a
martingale difference sequence+ In this result, the commonly used assumption,
the innovationsek having the same variance, is weakened+ This will be of in-
terest to researchers from the viewpoint of practice+
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We give the statements of main theorems and detailed remarks on the previ-
ous results in the next section+ In Section 3, the applications to the Dickey–
Fuller test statistic and Kwiatkowski, Phillips, Schmidt, and Shin~KPSS! test
statistic are discussed+We find these important statistics still have similar limit
distributions for the more general models under quite weak conditions+ In Sec-
tion 4, some general conclusions are drawn+ Finally in Section 5, we give the
proofs of the main theorems+

2. MAIN RESULTS AND REMARKS

For brevity, we denote limnr`an0bn r 1 by an ; bn, andA, with or without
subscript, is for positive constant+

In Theorem 2+1, which follows, we assume that the innovationsek are i+i+d+
random variables but, to cover some interesting cases, theck are rather general+
Write, for j 5 1,2,3, + + + ,

yj 5 (
k50

j21

ck and sn
2 5 (

j51

n

yj
2+

THEOREM 2+1+ Let ek, k 5 0,61,62, + + + , be i.i.d. random variables with
Ee0 5 0 and Ee0

2 5 1. Assume thatc0 Þ 0,

1

sn

max
1#j#n

6yj 6r 0 and (
j50

n S(
k5j

`

ck
2D102

5 o~sn!+ (5)

Under these assumptions, we have that

1

sn
(
j51

kn~t !

Xj n W~t !, 0 # t # 1, (6)

where kn~t ! 5 sup$m: sm
2 # tsn

2% .
In particular, if ck 5 k21l ~k! , where l~0!00 [ 1 and the positive function

l ~k! is slowly varying at infinity satisfying(k51
` k21l ~k! 5 ` , then

1

Mn(
k51

n

k21l ~k!
(
j51

kn~t !

Xj n W~t !, 0 # t # 1, (7)

where kn~t ! is defined as in (6).
If 0 , 6(k50

` ck6 , ` and (k51
` kck

2 , ` or (k50
` 6ck6 , ` and

(k50
` ck Þ 0, then

1

sn
(
j51

@nt#

Xj n W~t !, 0 # t # 1, (8)

wheresn
2 5 n~(k50

` ck!2 .
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Remark 2+1+ It follows from Hall ~1992, p+ 118! that

sn
2 5 VarS(

j51

n

XjD; nS(
k51

n

k21l ~k!D2

,

provided ck 5 k21l ~k! and (k51
` k21l ~k! 5 `+ Hence, we can replace

Mn (k51
n k21l ~k! by sn in ~7!+ It is unclear whether or notsn in ~6! can be

replaced bysn+

Remark 2+2+ Let ck 5 k2a , where 1
2
_ , a , 1+ It is easy to show that the

second condition of~5! fails to hold+ In this case, we also know that
~10sn!(j51

kn~t ! Xj fails to converge toW~t !+ In fact, by applying Liu ~1998!
~also see Marinucci and Robinson, 1998!, ~10sn!(j51

@nt# Xj converges to a frac-
tional Brownian motion withd 5 1 2 a+ Therefore, to make the partial sum
process of theXj converge to a standard Wiener process, the condition~5! is
close to the necessary condition+

Remark 2+3+ The conditions given in this theorem are different from those
given by Davydov~1970!+ Specifically, Theorem 2+1 abolishes the condition
Ee0

4 , `, which is an essential improvement of Davydov’s result for the mo-
ment condition+

In the next theorem, the i+i+d+ assumption for the innovationsek is weak-
ened to being a martingale difference sequence+ In this case, an excellent
result is given by Hannan~1979!, where it is required thatEek

2 5 s2 and
limnr` E~ek

26Fk2n! 5 s2, a+s+ ~Fk is defined as in Theorem 2+2, which fol-
lows! for all k+ In Theorem 2+2, these conditions are moderated+ Our Corollary
2+1, which follows Theorem 2+2, also improves Theorem 3+15 in Phillips and
Solo ~1992!, where the authors assumed(k50

` k6ck6 , ` and $ek% is a s+u+i+
~strongly uniformly integrable; the definition can be found in Billingsley, 1968,
p+ 32! martingale difference sequence+

THEOREM 2+2+ Let ck satisfy

b0 [ (
k50

`

ck Þ 0, (
k50

`

6ck6 , `, and (
k51

`

kck
2 , `+

Let ek be random variables such that

E~ek6Fk21! 5 0, a+s+ k 5 0,61,62, + + + ,

whereFk is thes-field generated by$ej , j # k% . If

sup
n$1

1

n (
k52n

n

Eek
2 , `, inf

n$1

1

n (
k51

n

Eek
2 . 0; (9)
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and as nr ` ,

1

n (
k51

n

~ek
2 2 Eek

2! r 0, in probability; (10)

1

n (
k52n

n

Eek
2 I~6ek6$dMn! r 0, for anyd . 0, (11)

then

1

sn
* (

j51

kn
*~t !

Xj n W~t !, 0 # t # 1, (12)

wheresn
*2 5 b0

2 (k51
n Eek

2 and kn
*~t ! 5 sup$ j :(k51

j Eek
2 # t (k51

n Eek
2% .

From Theorem 2+2, we obtain the following corollary+

COROLLARY 2+1+ If conditions (9)–(11) in Theorem 2.2 are replaced by
one of the following conditions (a)–(c), then (12) still holds.

(a) $ek
2% is uniformly integrable and E~ek

26Fk21! 5 s2 . 0 for all k $ 1;
(b) $ek

2% is s.u.i. and~10n!(k51
n E~ek

26Fk21! r s2 . 0, in probability;
(c) E~supk ek

2! , ` and ~10n!(k51
n E~ek

26Fk21! r s2 . 0, in probability.

Proof+ If condition ~a! holds, thenEek
2 5 E~ek

26Fk21! 5 s2+ Condition ~12!
follows immediately from Theorem 2+2 by using Lemma 5+5 ~from Section 5!+

If condition ~b! holds, it follows from Lemma 5+5 that

1

n (
k52n

n

Eek
2 I~6ek6$dMn! r 0 and

1

n (
k51

n

ek
2 r s2, in probability+ (13)

On the other hand, it is known that $~10n!(k51
n ek

2% is s+u+i+ if $ek
2% is s+u+i+

~Chow and Teicher, 1988, p+ 102!+ This fact, together with the second relation
of ~13!, implies that~Chow and Teicher, 1988, p+ 100!

1

n (
k51

n

Eek
2 r s2+ (14)

In terms of~13! and~14!, it is easy to check that all conditions in Theorem 2+2
are satisfied and hence~12! holds+

Finally, if condition ~c! holds, ~12! follows obviously because
E~supk ek

2! , ` implies that$ek
2% is s+u+i+ n

3. APPLICATIONS

In this section, we discuss the applications of this paper to time series+ At
first, we assume that the process$ yt % is generated by~2! with a 5 1+ Phillips
~1987! investigated the limit behavor of the DF test statisticn~ [an 2 1! de-
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fined by ~3! provided $Xt % is a strong mixing sequence with appropriate
mixing conditions+ Here, we assume that$Xt % satisfies~4!, i+e+, $Xt % forms a
linear process+ Under quite general conditions forck andek in ~4!, it is shown
that the DF test statisticn~ [an 2 1! has a similar distribution as that in Phillips
and Xiao~1998!, where the authors obtained the limit distribution ofn~ [an 2 1!
provided(k50

` k102 6ck6 , `+

THEOREM 3+1+ Let ek, k 5 0,61,62, + + + , be i.i.d. random variables
with Ee0 5 0 and Ee0

2 5 s2. If 0 , 6(k50
` ck6 , ` and (k51

` kck
2 , ` or

(k50
` 6ck6 , ` and(k50

` ck Þ 0, then as nr ` ,

(a) ~10n2!(t51
n yt21

2 n s2b0
2*0

1 W~r !2dr;
(b) ~10n!(t51

n yt21~ yt 2 yt21! n ~s2b0
202!~W~1!2 2 g! ;

(c) n~ [an 2 1! n ~ 1
2
_!~W~1!2 2 g!0*0

1 W~r !2dr;
(d) [an r 1, in probability;
(e) ta n ~ 1

2
_g2102!~W~1!2 2 g!0$*0

1 W~r !2dr%102 ,

where

b0 5 (
k50

`

ck, g 5 (
k50

`

ck
20b0

2,

[an 5 (
t51

n

yt yt21Y(
t51

n

yt21
2 , dn

2 5
1

n (
t51

n

~ yt 2 [an yt21!2, and

ta 5 S(
t51

n

yt21
2 D102

~ [an 2 1!0dn+

As in Phillips~1987!, the proof of Theorem 3+1 may be obtained by applying
Theorem 2+1+ The details are omitted+

The limit distribution given in Theorem 3+1 depends on the unknown
parameter

g 5 (
k50

`

ck
2YS(

k50

`

ckD2

+

As in Phillips ~1987, p+ 285!, we can construct an estimate ofg as follows:

[g 5 [sn
*20 [sn

2, where [sn
*2 5

1

n (
t51

n

Xt
2

and [sn
2 5 ~10n!(t51

n Xt
2 1 ~20n!(r51

ln (t5r11
n Xt Xt2r + Here and subsequently,

$l n, n $ 1% denotes a sequence of positive real numbers+ The following theorem
shows that [g is a consistent estimate ofg for any l n satisfying l n 5 o~n! and
l n r `+
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THEOREM 3+2+ Let ek, k 5 0,61,62, + + + , be i.i.d. random variables with
Ee0 5 0 and Ee0

2 5 s2.

(a) If (k50
` ck

2 , ` , then [sn
*20s2 r (k50

` ck
2, a+s+

(b) If (k50
` 6ck6 , ` , then for any ln satisfying ln 5 o~n! and ln r ` , [sn

20s2 r

~(k50
` ck!2 , in probability+

Proof+ Noting that$Xt , t $ 1% is a stationary ergodic sequence andEX1
2 5

s2 (k50
` ck

2 , `, it follows from the stationary ergodic theorem~Stout, 1974,
p+ 181! that [sn

*2 r s2 (k50
` ck

2, a+s+ This proves part~a!+
It is well known that~Brockwell and Davis, 1987, p+ 212!

1

n
ES(

t51

n

XtD2

5
1

n (
t51

n

EXt
2 1

2

n (
r51

n21

(
t5r11

n

EXt Xt2r r s2S(
k50

`

ckD2

+ (15)

This fact, together with part~a!, implies that, to prove [sn
20s2 r ~(k50

` ck!2 in
probability, it suffices to show that

1

n (
r51

ln

(
t5r11

n

~Xt Xt2r 2 EXt Xt2r ! r 0, in probability; (16)

1

n (
r5ln11

n21

(
t5r11

n

EXt Xt2r r 0+ (17)

The proofs of~16! and~17! appear in the Appendix+ n

If (k50
` ck 5`, the results differ from those in Theorem 3+1+ In this case, we

find that the limit distribution of the DF test statisticn~ [an 2 1! is free from the
unknown parameters butta diverges tò in probability+ Explicitly, we obtain
the following theorem+

THEOREM 3+3+ Let ek, k 5 0,61,62, + + + , be i.i.d. random variables with
Ee0 5 0 and Ee0

2 5 s2. If ck 5 k21l ~k! , where l~0!00 [ 1 and positive function
l ~k! is slowly varying at infinity satisfying(k51

` k21l ~k! 5 ` , then

(a) ~nyn!22 (t51
n yt21

2 n s2*0
1 W~r !2dr;

(b) ~Mnyn!22 (t51
n yt21~ yt 2 yt21! n ~s202!W~1!2;

(c) n~ [an 2 1! n ~ 1
2
_!W~1!20*0

1 W~r !2dr;
(d) ta r `, in probability,

whereyn 5 (k51
n k21l ~k! , [an, and ta are defined as in Theorem 3.1.

Proof+ Recall

sn
2 5 (

j51

n

yj
2, kn~t ! 5 sup$m: sm

2 # tsn
2%
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and the process$ yt % is defined by~2!+ If a 5 1, thenyt 5 (j51
t Xj ~without loss

of generality, here and subsequently, we assumey0 5 0!, and hence

yt21
2 5

sn
2

yt
2 E

st21
2 0sn

2

st
20sn

2S (
j51

kn~r !

XjD2

dr+

Therefore, we obtain that

(
t51

n

yt21
2 5 (

t51

n yt
2

yn
2 yt21

2 1 (
t51

n S 1

yt
2 2

1

yn
2Dyt

2yt21
2

5
sn

2

yn
2 (

t51

n E
st21

2 0sn
2

st
20sn

2S (
j51

kn~r !

XjD2

dr 1 Rn, say,

5
sn

4

yn
2 E

0

1S 1

sn
(
j51

kn~r !

XjD2

dr 1 Rn+

It follows from Theorem 2+1 and the continuous mapping theorem~see Bill-
ingsley, 1968, Sect+ 5! that

E
0

1S 1

sn
(
j51

kn~r !

XjD2

dr n s2E
0

1

W~r !2dr+

This fact, together with Theorem 1+4+1 given by Billingsley~1968, p+ 25!, im-
plies that part~a! follows if

sn
2 5 (

j51

n

yj
2 ; nyn

2 and
1

n2yn
2 Rn r 0, in probability+ (18)

Becauseyn 5 (k51
n k21l ~k! is still a slowly varying function, the first rela-

tion of ~18! follows from Bingham, Goldie, and Teugels~1987, p+ 26!+
By noting thatEyt

2 ; tyt
2 ~recalling Remark 2+1!, we have that

1

n2yn
2 (

t51

n

Eyt21
2 ;

1

2
and

1

n2yn
4 (

t51

n

yt
2Eyt21

2 ;
1

2

by using the slowly varying properties ofyt + Hence, by notingyt F, ast F `, it
follows that

1

n2yn
2 E6Rn6 5

1

n2yn
2 (

t51

n

Eyt21
2 2

1

n2yn
4 (

t51

n

yt
2Eyt21

2 r 0+

The second relation of~18! follows from Markov’s inequality+ The proof of
part ~a! is complete+

The proof of part~b! follows directly from Theorem 2+1 and part~a! of Theo-

rem 3+2 by noting(t51
n yt21~ yt 2 yt21! 5 1

2
_yn

2 2 (t51
n Xt

2 ~see Phillips, 1987,
Appendix!+
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The proof of part~c! is straightforward by applying parts~a! and~b! and the
continuous mapping theorem+

To prove part~d!, we rewrite

dn
2 5

1

n (
t51

n

~ yt 2 [an yt21!2

5
1

n (
t51

n

Xt
2 2

2~ [an 2 1!

n (
t51

n

yt21 Xt 1
~ [an 2 1!2

n (
t51

n

yt21
2 +

Becausen2dyn r 0, for any d . 0 ~see Feller, 1971, p+ 277!, andyn r `, it
follows from parts~a!–~c! that for ∀ e . 0, asn r `,

PS* [an 2 1

n (
t51

n

yt21 Xt* $ eD # P~n6 [an 2 16$ eyn!

1 PS 1

nyn
2 *(

t51

n

yt21 Xt* $ nyn
23Dr 0, (19)

PS ~ [an 2 1!2

n (
t51

n

yt21
2 $ eD # P~n6 [an 2 16$ eyn!

1 PS 1

n2yn
2 (

t51

n

yt21
2 $ nyn

24Dr 0+ (20)

In terms of~19!, ~20!, and part~a! of Theorem 3+2, we have that

dn
2 r s2 (

k50

`

ck
2 , `, in probability+

Therefore, part ~d! follows easily by applying parts~a! and ~c!+ The proof of
Theorem 3+3 is complete+ n

Next we discuss another application of the present results+ Let us consider
the model

yt 5 c 1 rt 1 zt , t 5 1,2, + + + , n+ (21)

Herec is a constant, zt is a stationary error, andrt is a random walk:

rt 5 rt21 1 ut with r0 5 0, (22)

where theut are i+i+d+ random variables withEut 5 0 andEut
2 5 su

2+ To test
su

2 5 0, i+e+, to test whether the data generating process is stationary, the com-
monly used statistic~known as the KPSS test statistic! is
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[hu 5 n22 (
t51

n

St
20s2~ln!, whereSt 5 (

j51

t

ej , (23)

s2~ln! 5
1

n (
t51

n

et
2 1

2

n (
s51

ln

(
t5s11

n

et et2s,

andet 5 yt 2 ~10n!(t51
n yt is the residual from the regression ofy on intercept

c+ Kwiatkowski, Phillips, Schmidt, and Shin~1992! discussed the asymptotic
distribution of the [hu providedzt satisfies the~strong mixing! regularity condi-
tions given by Phillips and Perron~1988, p+ 336! or the linear process condi-
tions given by Phillips and Solo~1992, Theorems 3+4 and 3+15!+ One of Phillips
and Solo’s conditions is(k50

` k102 6ck6 , `+ In this paper, we only require that

(k50
` 6ck6 , `+ In particular, we only needl n satisfyingl n 5 o~n! andl n r `,

which, in practice, provides more choice fors2~l n!+ Therefore, our result is an
extension of theirs+

THEOREM 3+4+ Let ek, k 5 0,61,62, + + + , be i.i.d. random variables with
Ee0 5 0 and Ee0

2 5 s2. Assume that the data generating process is given by
(21) with

zt 5 Xt 5 (
k50

`

cket2k+

If (k50
` 6ck6 , ` and (k50

` ck Þ 0, then for any ln satisfying ln 5 o~n! and
ln r ` ,

[hu n E
0

1

V~r !2dr, where V~r ! 5 W~r ! 2 rW~1!+ (24)

Proof+ Under the hypothesissu
2 5 0, it is well known that et 5 Xt 2

~10n!(t51
n Xt + By applying Theorem 2+1, we have that, for any 0# r # 1,

1

sn

S@nr# 5
1

sn
(
t51

@nr#

Xt 2
@nr#

nsn
(
t51

n

Xt n W~r ! 2 rW~1! 5 V~r !,

wheresn
2 5 ns2~(k50

` ck!2+ Hence, it follows from the continuous mapping
theorem that

n22 (
t51

n

St
2 5

1

n
E

0

1

S@nr#
2 dr n s2S(

k50

`

ckD2E
0

1

V~r !2dr+ (25)

On the other hand, we have that

s2~ln! 5
1

n (
t51

n

et
2 1

2

n (
s51

ln

(
t5s11

n

et et2s

5
1

n (
t51

n

Xt
2 1

2

n (
s51

ln

(
t5s11

n

Xt Xt2s 1 R1n, (26)
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where, after a simple calculation,

6R1n6 #
4ln

n2 S(
j51

n

XjD2

1
2

n2 *(
s51

ln

(
t5s11

n

~Xt 1 Xt2s!* *(
j51

n

Xj *
#

Cln
n2 S(

j51

n

XjD2

+

By noting ~15!, Markov’s inequality implies that for anyl n 5 o~n!, 6R1n6 r 0
in probability+ Therefore, by using part~b! of Theorem 3+2, we obtain that for
any l n satisfyingl n 5 o~n! and l n r `,

s2~ln! r s2S(
k50

`

ckD2

, in probability+ (27)

Thus, ~24! follows immediately from~25! and~27!+ The proof of Theorem 3+4
is complete+ n

Remark 3+1+ In terms of Theorem 2+2, Theorems 3+1, 3+3, and 3+4 still hold
for stationary ergodic martingale difference sequence provided(k50

` 6ck6 , `
and(k50

` ck Þ 0+ We omitted the details here+

4. CONCLUSION

This paper derives two basic results on the invariance principle for the partial
sum process of a linear process+ The first result assumes that the innovations
are i+i+d+ random variables, but absolute summability of coefficients for the
linear process~i+e+, (k50

` 6ck6 , `! is weakened+ This relaxation of condi-
tions is interesting because some linear processes do not have absolutely sum-
mable coefficients+ Especially, a linear process withck 5 k21l ~k! where

(k50
` k21l ~k! 5 ` is important because it is expressed by neither a finite-

order autoregressive moving average process nor a fractional process+ The sec-
ond result is for the situation where the innovations form a martingale difference
sequence+ For this result, the commonly used assumption of equal variance is
removed+ This is of interest to researchers from a practical point of view+
We apply these general results to unit root testing and stationarity testing+ It
turns out the limit distributions of the Dickey–Fuller test statistic and
KPSS test statistic still hold for the more general models under very weak
conditions+ This paper also shows that the “long-run variance,” s2, can be
consistently estimated by a nonparametric method with a lag-truncation param-
eter l n of o~n!+ In previous research, it was usually assumed to be ofo~n102!+
This provides more choice for the estimation ofs2, and it is theoretically
interesting+
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5. PROOFS OF MAIN RESULTS

5.1. Some Preliminary Lemmas

In this section, we provide some lemmas that will be needed in the proofs of
the main results+ Some of these lemmas are also interesting in their own right+

LEMMA 5 +1+ Let $hk, k $ 0% be a sequence of arbitrary random variables
and $bi , i $ 0% a sequence of real numbers. Assume that

c0
2 1 (

k51

`

kck
2 , `, sup

n$1

1

n (
i50

n

bi
2 , `

and there exists a positive constant A such that

ES(
k50

`

cj1khkD2

# A (
k50

`

cj1k
2 bk

2, for j $ 0+ (28)

Then, as nr ` ,

1

Mn
max

0#m#n*(j50

m

(
k50

`

cj1khk* r 0, in probability+ (29)

Proof+ By usingE6Y6# ~EY2!102 for any random variableY, it follows from
~28! that

E max
0#m#n*(j50

m

(
k50

`

cj1khk* # (
j50

n

E* (
k50

`

cj1khk* # A (
j50

n S(
k50

`

cj1k
2 bk

2D102

+ (30)

Put aj 5 (k50
` cj1k

2 bk
2+ For any 0# l # m, we have that

(
j5l

m

aj 5 (
j5l

m

(
k50

`

cj1k
2 bk

2

5 (
k5l

`

ck
2 (

j5l

min$k,m%

bk2j
2 # Ssup

k$1

1

k (
i50

k

bi
2D(

k5l

`

~k 1 1!ck
2+

This inequality implies that

S(
j50

n

aj
102D2

5 HS (
j50

@Mn#

1 (
j5@Mn#11

n Daj
102J2

# M2HS (
j50

@Mn#

aj
102D2

1S (
j5@Mn#

n

aj
102D2J

# 2S@Mn# (
j50

@Mn#

aj 1 n (
j5@Mn#

n

ajD
# 2Ssup

k$1

1

k (
i50

k

bi
2DS@Mn# (

k50

`

~k 1 1!ck
2 1 n (

k5@Mn#

`

~k 1 1!ck
2D+

5 o~n!+

130 QIYING WANG ET AL.



Now ~29! follows from Markov’s inequality, ~30!, and the bound established
earlier+ The proof of Lemma 5+1 is complete+ n

LEMMA 5 +2+ Let $hn,Fn,s # n # t % be a martingale difference sequence.
Then there exists a constant K such that for any constant sequenceak,

E max
s#n#t

S(
k5s

n

akhkD2

# K (
k5s

t

ak
2Ehk

2+ (31)

Proof+ Apply Doob and Burkholder’s inequality~see, e+g+, Hall and Heyde,
1980, pp+ 15 and 23, respectively!+ n

LEMMA 5 +3+ Let $hn,Fn,2` , n , `% be a martingale difference se-
quence satisfyingsupk$1~10k!(i52k

k Ehi
2 , ` . Assume that

(
k50

`

6ck6 , ` and (
k51

`

kck
2 , `+

Then, for anyd . 0,

lim
lr`

lim sup
nr`

PH max
1#m#n*(j51

m

uj
~l !* $ dMnJ 5 0, (32)

where uj
~l ! 5 (k5l11

` ckhj2k and l $ 21.

Proof+ We first note that(k50
` ckhj2k , `, a+s+, for every fixedj $ 1; i+e+,

uj
~l ! is well defined+ In fact, by applying Lemma 5+2, there exists a constantK

such that for anyj # m # m' ,

E max
m#n#m'

S(
k5m

n

ckhj2kD2

# K (
k5m

m'

ck
2Ehj2k

2

# KSsup
k$1

1

k (
i52k

k

Ehi
2D (

k5m

`

~k 1 1!ck
2+ (33)

From ~33! and Markov’s inequality, it follows that for anyd . 0, asn r `,

PSsup
i$1

* (
k5n

n1i

ckhj2k* $ dD # 2Kd22Ssup
k$1

1

k (
i52k

k

Ehi
2D(

k5n

`

kck
2 r 0+

So we conclude by the Cauchy criterion that(k50
n ckhj2k converges almost

surely; i+e+, for every fixedj $ 1, (k50
` ckhj2k , `, a+s+

In terms of(k50
` ckhj2k , `, a+s+, it is easy to show~let (j51

l 5 0 for
l # 0! that for m $ l 1 1,
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(
j51

m

uj
~l ! 5 (

j51

m

(
k52`

j2~l11!

cj2khk

5 S (
j5l12

m

(
k51

j2~l11!

1 (
j51

m

(
k52`

0

2 (
j51

l

(
k5j2l

0 Dcj2khk

5 (
k51

m2~l11!

hk (
j5l11

m2k

cj 1 (
j51

m

(
k50

`

cj1kh2k 2 (
j51

l

(
k50

l2j

cj1kh2k

5 Dm1
~l ! 1 Dm2

~l ! 1 Dm3
~l ! , say, (34)

whereDm3
~l ! [ 0 for l 5 0 and21+ Now ~32! follows if for any d . 0,

lim
lr`

lim sup
nr`

PH max
1#m#n

6Dmt
~l ! 6 $ dMnJ 5 0, t 5 1,2,3+ (35)

For every fixedj $ 0, it follows from the Fatou lemma and Lemma 5+2 that

ES(
k50

`

cj1kh2kD2

5 E lim
nr`

S(
k5j

n

ckhj2kD2

# lim
nr`

ES(
k5j

n

ckhj2kD2

# K (
k5j

`

ck
2Ehj2k

2

5 K (
k50

`

cj1k
2 Eh2k

2 +

By applying Lemma 5+1 ~choosingbk
2 5 Eh2k

2 !, ~35! holds for t 5 2+
To prove~35! for t 5 1, put Sk 5 (i51

k hi andS0 5 0+ We obtain that

Dm1
~l ! 5 (

k51

m2~l11!

~Sk 2 Sk21! (
j5l11

m2k

cj 5 (
k51

m2~l11!

cm2kSk

and hence,

max
1#m#n

6Dm1
~l ! 6 # (

k5l11

n

6ck6 max
1#m#n

6Sm6+

Again, it follows from Markov’s inequality and Lemma 5+2 that

PH max
1#m#n

6Dm1
~l ! 6 $ dMnJ # d22n21S (

k5l11

n

6ck6D2

E max
1#m#n

Sm
2

# Kd22S (
k5l11

`

6ck6D2

sup
k$1

1

k (
i50

k

Ehi
2+

Because(k50
` 6ck6 , `, we conclude that~35! holds for t 5 1+

That ~35! holds fort 5 3 is obvious and omitted+ The proof of Lemma 5+3 is
complete+ n
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LEMMA 5 +4+ Let $hk, k 5 0,61,62, + + + % be a sequence of arbitrary random
variables. Assume that, as nr ` , positive constant series dn r ` and

1

dn
2 (

k52n

n

Ehk
2 I~6hk6$ddn! r 0, for anyd . 0+

Then,

1

dn

max
2n#k#n

6hk6r 0, in probability+

Proof+ By applying~36! in Phillips and Solo~1992!, we obtain that

PS 1

dn

max
2n#k#n

6hk6 $ dD5 PS 1

dn
2 (

k52n

n

hk
2 I~6hk6$ddn! $ d2D+

Using Markov’s inequality, the result follows+ n

LEMMA 5 +5+ Let $hk, k 5 0,61,62, + + + % be a sequence of arbitrary random
variables. If$hk

2% is uniformly integrable,

(i) for any d . 0, ~10n!(k52n
n Ehk

2 I~6hk6$dMn! r 0;
(ii) ~10Mn!max2n#k#n6hk6 r 0, in probability;

(iii) ~10n!(k51
n ~hk

2 2 E~hk
26Fk21

* !! r 0, in probability, whereFk
* is thes-field gen-

erated by$hj , j # k% .

By definition of uniform integrability, it follows that supk Ehk
2 I~6hk6$dn! r 0,

for any dn r `+ Therefore, the proof of Lemma 5+5 is straightforward, and
details are omitted+

5.2. Proofs of Results

In this section, we provide the proofs of the main results+

Proof of Theorem 2+1+ According to~34! ~for l 5 21!, for any 0# t # 1,

(
j51

kn~t !

Xj 5 (
k51

kn~t !

ek (
j50

kn~t !2k

cj 1 (
j51

kn~t !

(
k50

`

cj1ke2k+

Similar to ~30!, we have that

E sup
0#t#1

* (
j51

kn~t !

(
k50

`

cj1ke2k* # A (
j51

n S(
k5j

`

ck
2D102

5 o~sn!+

This, together with Markov’s inequality, implies that

1

sn

sup
0#t#1

* (
j51

kn~t !

(
k50

`

cj1ke2k* r 0, in probability+
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On the other hand, it is well known ~noting that theek are i+i+d+ random vari-
ables! that for any 0# t # 1,

(
k51

kn~t !

ek (
j50

kn~t !2k

cj 5
d

(
k51

kn~t !

ek (
j50

k21

cj , (36)

where5
d

denotes the same in distribution+ Therefore, by applying Theorem 1+4+1
given in Billingsley~1968, p+ 25!, ~6! follows if

1

sn
(
k51

kn~t !

ek (
j50

k21

cj n W~t !, 0 # t # 1+ (37)

Recall thatyk 5 (j50
k21 cj + Because max1#k#n6yk60sn r 0, we see that for any

d . 0,

1

sn
2 (

k51

n

yk
2Eek

2 I~6ykek6$dsn! # Ee1
2 IS6e16$dsn0 max

1#k#n
6yk6D r 0+ (38)

It follows from Lemma 5+4 that

1

sn

max
1#k#n

6ykek6r 0, in probability+ (39)

In terms of ~38! and ~39!, ~37! follows from Prokhorov’s theorem~see Rao,
1984, p+ 343!+ This completes the proof of~6!+

If ck 5 k21l ~k!, where positive functionl ~k! is slowly varying at infinity,
it is easy to check that(k50

n k21l ~k! still is slowly varying at infinity+ When

(k50
` k21l ~k! 5 `, we obtain~see Bingham et al+, 1987, p+ 26! that

sn
2 5 (

j51

n S(
k50

j21

k21l ~k!D2

; nS(
k51

n

k21l ~k!D2

,

(
j50

n S(
k5j

`

k22l 2~k!D102

; (
j51

n

j 2102l ~ j ! ; 2n102l ~n! 5 o~sn!+

Hence~7! follows from ~6!+
If 0 , 6(k50

` ck6 , ` and(k51
` kck

2 , `, by applying Lemma 5+1 and the
similar method of the proof used in~6!, it suffices to show that

1

Mn (
k51

@nt#

ek (
j50

k21

cj n S(
j50

`

cjDW~t !, 0 # t # 1+ (40)

By noting

(
k51

@nt#

ek (
j50

k21

cj 5 S(
j50

`

cjD(
k51

@nt#

ek 2 (
k51

@nt#

ek (
j5k

`

cj ,
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~40! follows from Donsker’s theorem~see Billingsley, 1968, p+ 137!, and, as
n r `,

PS sup
0#t#1

* (
k51

@nt#

ek (
j5k

`

cj * $ dMnD # C~d2n!21ES(
k51

n

ek (
j5k

`

cjD2

#
C1

n (
k51

n S(
j5k

`

cjD2

r 0,

where we use the estimate(j5k
` cj r 0 ask r `+

If (k50
` 6ck6 , ` and(k51

` ck Þ 0, the result follows from Hannan~1979!+
The proof of Theorem 2+1 is complete+ n

Proof of Theorem 2+2+ Generally speaking, ~36! fails to hold for martingale
differences+ To prove Theorem 2+2, we need a new method+

For every fixedl $ 1, put

Z1j
~l ! 5 (

k50

l

ckej2k and Z2j
~l ! 5 (

k5l11

`

ckej2k+

From Fuller~1996, p+ 320!, we obtain that for anym $ 1,

(
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cj 2 (
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em2s (
j5s11

l

cj

5 (
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l

ck (
j51

m

ej 1 R~m, l !, say+

Therefore, it follows that for every fixedl $ 1,

1

sn
* (

j51

kn
*~t !

Xj 5 S 1

sn
* (

k50

l

ckD (
j51

kn
*~t !

ej 1
1

sn
* R~kn

*~t !, l ! 1
1

sn
* (

j51

kn
*~t !

Z2j
~l ! + (41)

Noting (k50
l ck r b0, as l r `, and existing positive constantsA1 andA2

such thatA1n # sn
*2 # A2n, by applying Theorem 1+4+1 given in Billingsley

~1968, p+ 25!, we only need to show for anyd . 0,

lim
lr`

lim sup
nr`

PH sup
0#t#1

* (
j51

kn
*~t !

Z2j
~l !* $ dMnJ 5 0; (42)

lim sup
nr`

PH sup
0#t#1

6R~kn
*~t !, l !6 $ dMnJ 5 0, (43)
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for every fixedl $ 1; and

1

sn
* (

j51

kn
*~t !

ej n W~t !, 0 # t # 1, (44)

wheresn
*2 5 (j51

n Eej
2+

In fact, ~42! follows from Lemma 5+3 because$ek,Fn,2` , n , `% is a
martingale difference sequence+

In terms of Lemma 5+4, we have that

1

Mn
max

2n#j#n
6ej 6r 0, in probability+ (45)

By ~45!, ~43! holds because(k50
` 6ck6 , ` and hence

1

Mn
sup

0#t#1
6R~kn

*~t !, l !6 #
1

Mn
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2l#j#n
6ej 6(

s50

l S(
j5s

l

6cj 61 (
j5s11

l

6cj 6D
r 0, in probability+

Finally, ~44! follows Brown ~1971! ~see also Tanaka, 1996, p+ 80! by using
~10! and~11!+ The proof of Theorem 2+2 is complete+ n
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APPENDIX

Proof of (16). Recalling~4!, we have that~noting thatEej 5 0 for all j !

An [
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wherel 5 max$2, k 2 s1 1%+ By Markov’s inequality, it suffices to show thatAn r 0,
asn r `+ This follows from

Bn [ sup
k, s$0

1

n
E* (

rÞk2s
r51

ln

(
t5r11

n

et2ket2r2s* r 0, (A.1)

wherel n 5 o~n!; and

Cn [ sup
k, s$0

1

n
E*(

t5l

n

~et2k
2 2 Eet2k

2 !* r 0, (A.2)

wherel 5 max$2, k 2 s 1 1%+
Becauseek are i+i+d+ random variables withEe0 5 0 andEe0

2 , `, it follows that
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rÞk2s

r51

ln

(
t5r11

n
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2 # nln~Ee0
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Hence, ~A+1! follows from, asn r `,
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n
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# ~ln0n!102~Ee0
2!2 r 0+

To prove~A+2!, for every j, let

e1, j
* 5 ej

2 I~6ej 6#n104! 2 Eej
2 I~6ej 6#n104! and e2, j

* 5 ej
2 I~6ej 6.n104! 2 Eej

2 I~6ej 6.n104! +

After some algebra, we obtain

In, k,s [ ES(
t5l

n

e1, t2k
* D4

# A$n2~Ee0
4 I~6e06#n104! !

2 1 nEe0
8 I~6e06#n104! %+ (A.3)

The relation~A+3! implies that, asn r `,

Hn1 [ sup
k, s$0

1

n
E*(

t5l

n

e1, t2k
* *

#
1

n
sup
k,s$0

~In, k,s!
104 # A$n2104~Ee0

2!2 1 n2308Ee0
2% r 0,

where we use the following estimate: E6X6 # ~EX4!104 for anyX+ Therefore, it follows
that, asn r `,

Cn 5 sup
k, s$0

1

n
E*(

t5l

n

~e1, t2k
* 1 e2, t2k

* !* # Hn1 1 2Ee0
2 I~6e06.n104! r 0+

The proof of~16! is complete+ n
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Proof of (17). BecauseEej ek 5 0 for j Þ k, we have that

(
r5ln11

n21

(
t5r11

n

EXt Xt2r 5 (
k50

`

(
s50

`

ckcs (
r5ln11

n

(
t5r11

n

Eet2ket2r2s

5 (
s50

`

(
k5s1ln

`

ckcs (
t5k2s11

n

Eet2k
2 +

Therefore, asn r `,

1

n * (
r5ln11

n21

(
t5r11

n

EXt Xt2r * # Ee1
2S(

k5ln

`

6ck6DS(
s50

`

6cs6Dr 0+

The proof of~17! is complete+ n
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