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Low-Complexity Generation of Scalable Complete
Complementary Sets of Sequences

Darryn Lowe and Xiaojing Huang
School of Electrical, Computer and Telecommunications Engineering

University of Wollongong
Wollongong, Australia, 2522

Email: {darrynl, huang}@uow.edu.au

Abstract— This paper presents extremely low-complexity
boolean logic for the generation of coefficients suitable for
filtering or correlation of scalable complete complementary sets
of sequences (SCCSS). As the unique auto- and cross-correlation
properties of SCCSS are of broad interest, the simplicity of the
proposed coefficient generation technique allows arbitrarily long
SCCSS to be used in resource constrained applications.

I. INTRODUCTION

Spreading sequences are fundamental to numerous signal
processing applications such as spread-spectrum communica-
tion systems and image processing. Although the quality of
a given spreading sequence is largely dependent on its auto-
correlation and cross-correlation functions, the computational
effort needed to generate the sequence is also an important
consideration. For example, even though an evolutionary al-
gorithm can find sequences that asymptotically meet almost
any arbitrary requirement [1], resource constraints force many
applications to use general-purpose sequences such as Walsh-
Hadamard, Gold or Kasami sequences.

Spreading sequences are usually applied via a digital corre-
lator or filter. To minimize gate count, it is often desirable
to pool hardware for these kinds of expensive operations.
For example, a single bank of hardware multipliers may
realize different filters at different times to avoid unnecessarily
duplicating logic.

With a goal of minimizing the cost needed to parameterize a
shared filter or correlator, this paper shows how coefficients for
powerful scalable complete complementary sets of sequences
(SCCSS) [2] can be generated using as little as one or two
boolean operations per filter tap. This is significant since low-
complexity low-power applications are often unable to store
large codesets in read-only memory (ROM).

As well as having very attractive auto- and cross-correlation
functions, as detailed below, SCCSS have three other dis-
tinguishing characteristics. First, scalability means that each
set includes all sets of smaller size. This is of particular
benefit to communications systems as it can provide adapt-
able user-specific process gains. Second, completeness makes
SCCSS more efficient than randomly generated sequences. For
example, a SCCSS-based spread-spectrum mobile telephony
system could offer higher data rates and/or support more
users. Thirdly, the complementary property makes it possible
to design novel synchronization algorithms that exploit the
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Fig. 1. Comparison of worst-case auto-correlation for length 64 sequences.
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Fig. 2. Comparison of worst-case cross-correlation for length 64 sequences.

periodic zeros in the cross-correlation and auto-correlation
functions for faster convergence.

Fig. 1 and Fig. 2 show respective examples of the auto-
correlation and cross-correlation functions of a SCCSS rela-
tive to sequences derived from Walsh-Hadamard and pseudo-
random number generators (PRNGs).

Both examples use codesets comprised of 8 sequences of
64 chips each. Worst-case results are considered by taking
the highest correlation for a given offset n over all 8 codes.
It can be observed that while SCCSS and Walsh-Hadamard
sequences are perfectly orthogonal at n = 0, the PRNG
sequences are only ever approximately orthogonal. Further,



when n > 0, we see that the Walsh-Hadamard sequences
have significant sidelobes that are much higher than those
of SCCSS. The complementary nature of SCCSS, further
discussed in Section II, is also apparent by virtue of how the
auto-correlation and cross-correlations are perfectly orthogonal
about all offsets that are integer multiples of 8.

This paper is organized as follows. In Section II, we begin
by reviewing the construction and properties of SCCSS. Then,
in Section III, we derive novel combinatorial logic that can
generate coefficients appropriate for use in reconfigurable
finite impulse response (FIR) filters. Using a VHDL example,
we evaluate the complexity of the proposed scheme in Section
IV. Finally, Section V concludes the paper and identifies future
work.

II. THEORY

A Hadamard matrix of order N is a square {−1,+1} matrix
of dimension N ×N that satisfies

HNHT
N = NIN (1)

where IN denotes the N×N identity matrix and HT
N denotes

the transpose of Hadamard matrix HN . Further, a Golay-
paired Hadamard matrix is defined by [2] as

H2N =

[
HN H̃N

HN −H̃N

]
. (2)

When H1 = 1 and H̃N = HN , (2) defines the well-known
Walsh-Hadamard family of matrices. Alternatively, when H̃N

is constructed by commutating the upper- and lower-halves of
HN , we have the basis to build sets of mutually orthogonal
Golay-paired Hadamard matrices.

Golay-paired Hadamard matrices can also be generated
through a closed-form expression [2]. Specifically, the value
at row i and column j of the kth matrix in a set of order
N = 2n is denoted by

H(k)
2n (i, j) = (−1)Γ (3)

where

Γ =
n−2∑
r=0

(jr+1 ⊕ ir ⊕ kr) jr ⊕ (in−1 ⊕ kn−1) jn−1 (4)

and kr denotes the rth bit in the radix-2 expression1 of k as
per

k ≡ (kn−1, kn−2, ..., k0)2 =
n−1∑
r=0

2rkr (5)

and likewise for jr and ir.

1All radix-2 notations are written MSB to LSB

For example, the k = 0 Golay-paired Hadamard matrix in
the set of order N = 4 is

H(0)
4 =


H(0)

4 (0, 0) H(0)
4 (0, 1) H(0)

4 (0, 2) H(0)
4 (0, 3)

H(0)
4 (1, 0) H(0)

4 (1, 1) H(0)
4 (1, 2) H(0)

4 (1, 3)
H(0)

4 (2, 0) H(0)
4 (2, 1) H(0)

4 (2, 2) H(0)
4 (2, 3)

H(0)
4 (3, 0) H(0)

4 (3, 1) H(0)
4 (3, 2) H(0)

4 (3, 3)



=


+1 +1 +1 −1
+1 −1 +1 +1
+1 +1 −1 +1
+1 −1 −1 −1

 (6)

A complete set of N mutually orthogonal Golay-paired
Hadamard matrices of dimension N × N denotes a SCCSS
of order N = 2n with each sequence in the SCCSS 22n

chips in length. For example, when n = 3, we can construct
2n = 8 mutually orthogonal Golay-paired Hadamard matrices
of dimension 8× 8 via (3) with each matrix forming a single
sequence in the SCCSS. If we denote the kth sequence of a
SCCSS of order 2n as c

(k)
2n (t), then we can denote each chip

in the sequence as

c
(k)
2n (t) = c

(k)
2n (i + 2nj) = H(k)

2n (i, j) (7)

where 0 ≤ i < N and 0 ≤ j < N .
The complementary property that distinguishes SCCSS

means that each sequence in the set is orthogonal to all other
sequences in the set about shifts of integer multiples of the
set size. For example, if we choose two sequences c

(x)
2n (t) and

c
(y)
2n (t) such that x 6= y, we can state that the normalized

auto-correlation and cross-correlation are respectively

φ
c
(x)
2n ,c

(x)
2n

(m) =

{
1 if m = 0
0 if m = K2n

(8)

and
φ

c
(x)
2n ,c

(y)
2n

(m) = 0 if m 6= {0,K2n} (9)

where K = {1, 2, ..., 2n − 1}.

III. DIGITAL SEQUENCE GENERATION

As the realization of a digital filter can greatly increase a
design’s total gate count, it is often desirable to have mutually
exclusive processes share hardware. In other words, rather than
duplicate the filter logic, it can be more efficient to use a single
digital filter with variable filter coefficients [3].

Fig. 3a shows a portion of a generic FIR filter where
incoming data samples d(0) through d(t) are respectively
multiplied by the filter coefficients c(0) through c(t), with
the results added together to create the output y. Digital
implementations of this filter structure are well understood
[4][5] and it can be easily seen that N multiplications and
N − 1 additions will be required for N taps. If the filter
coefficients c(t) are limited to {1,−1}, as is the case when
correlating binary spreading codes like SCCSS, multiplication
by c(t) is equivalent to addition and subtraction for c(t) = 1
and c(t) = −1 respectively.
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Fig. 3. Parallel FIR filter with a) General Architecture, b) 2-Port Adder/-
Subtractor, c) 2-Port Adder/Subtractor Hierarchy

Since efficient pipelined digital adder/subtractors are limited
to two inputs, as shown in Fig. 3b, the large N port adder of
Fig. 3a must be converted into an adder-tree with log2 N levels
as shown in Fig. 3c. Modified filter coefficients ĉ(t) = 0, 1
determine how each adder/subtractor is used. In other words,
an adder/subtractor implements R = A + B if ĉ(t) = 0 and
R = A−B if ĉ(t) = 1. Note that there is no loss of generality
by limiting each adder/subtractor to A±B rather than ±A±B
[6].

With the cost of the shared filter hardware amortized over
multiple operations, we can further reduce the gate count by
storing each set of filter coefficients in as few gates as possible.
In addition to their other properties, SCCSS are extremely
attractive in this regard since it is possible to generate the
modified 2-port adder/subtractor coefficients ĉ(t) used in Fig.
3c through simple combinatorial logic.

With the full derivation provided in the appendix, modified
2-port adder/subtractor coefficients for a SCCSS of order 2n

can be denoted as

ĉ
(k)
2n (t) =


tl+n 0 ≤ l ≤ n− 1
tl+1 ⊕ kl−n n ≤ l ≤ 2n− 2
kl−n l = 2n− 1
0 otherwise

(10)

where l is the index of the least significant non-zero bit in the
radix-2 representation of t. For example, consider the filter
coefficient at t = 34 for code k = 5 in a set of order
n = 3. Here, t = 34 = (100010)2 and k = 5 = (101)2.
The least significant non-zero bit in t is second from the
right. Therefore, by substituting l = 1 into (10) we find that
ĉ
(k)
2n (t) = ĉ

(5)
8 (34) = tl+n = t1+3 = t4 = 0.

An example of a VHDL realization of an SCCSS generator
appropriate for the FIR filter of Fig. 3c is provided in Listing

l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 .ALL ;

e n t i t y t o p i s
port ( c l k : in s t d l o g i c ;

t : in s t d l o g i c v e c t o r (5 downto 0 ) ;
k : in s t d l o g i c v e c t o r (2 downto 0 ) ;
c : out s t d l o g i c ) ;

end t o p ;

a r c h i t e c t u r e r t l of t o p i s
begin

p r o c e s s ( c l k )
begin

i f ( c l k = ’1 ’ and c lk ’ e v e n t ) then
i f t ( 0 ) = ’1 ’ then c <= t ( 3 ) ;
e l s i f t ( 1 ) = ’1 ’ then c <= t ( 4 ) ;
e l s i f t ( 2 ) = ’1 ’ then c <= t ( 5 ) ;
e l s i f t ( 3 ) = ’1 ’ then c <= t ( 4 ) xor k ( 0 ) ;
e l s i f t ( 4 ) = ’1 ’ then c <= t ( 5 ) xor k ( 1 ) ;
e l s i f t ( 5 ) = ’1 ’ then c <= k ( 2 ) ;
e l s e c <= ’ 0 ’ ;
end i f ;

end i f ;
end p r o c e s s ;

end r t l ;

Listing 1. VHDL to generate filter coefficients for a SCCSS of length 64.

1. The complexity of this generator is very low; the modified
filter coefficients are calculated via simple boolean logic and
no internal counters are needed. However, despite the low
complexity, this component is functionally equivalent to a 22n-
bit wide ROM 2n words deep that is preloaded with modified
SCCSS-coefficients.

IV. RESULTS AND ANALYSIS

In this section, we compare the complexity of the modified
SCCSS-coefficient generator of Listing 1 to that of ROMs
and PRNGs. In all comparisons, logic utilization figures were
obtained from Synplify Pro and the application specific inte-
grated circuit (ASIC) gate count estimates were calculated as
per [7].

Pseudo-random sequences, as well as derivatives like Gold
codes, can be very efficiently implemented in digital hardware
[8], [9] since a pseudo-random sequence 2n chips long requires
a linear-feedback shift-register (LFSR) with only n flip-flops.
Although codes produced in this way are not perfectly or-
thogonal, the ease with which very long sequences can be
generated makes this approach very common. Table I shows
how a PRNG compares to the SCCSS generator. Although
both techniques are low cost, the guaranteed orthogonality,
scalability, and completeness of the SCCSS more than justifies
its marginally higher complexity. Further, another weakness
of LFSR-based codeset generation is that the code chips must
be generated recursively. In other words, it is not possible
to obtain the nth chip without first calculating the (n − 1)
preceding chips. The SCCSS generator does not have this
limitation since it uses a single counter, the cost of which



SCCSS PRNG
Code Length 64 256 1024 64 256 1024
Flip-Flops 10 13 16 6 8 10
4-Input LUTs 17 24 31 1 1 1
ASIC Gates 182 248 321 54 70 120

TABLE I
COMPARISON OF COMPLEXITY OF SCCSS AND PRNG GENERATION

is included in the comparison, to identify the desired chip.
Another alternative to dynamically generating the codeset

is to pre-calculate the coefficients and store them in a ROM.
Although this allows for sequences with arbitrary auto- and
cross-correlation functions, the storage is grossly inefficient
since roughly 23n ASIC gates are required to store 2n se-
quences of length 22n. For example, in the case of an order
2n = 32 SCCSS, where each sequence is 1024 chips long,
a 32kb ROM would be needed. This is several orders of
magnitude more gates than needed for the SCCSS generator.

V. CONCLUSION

An extremely efficient boolean expression to calculate FIR
filter coefficients for SCCSS were derived. Since SCCSS
have auto-correlation and cross-correlation functions that are
superior to pseudo-random and Walsh-Hadamard sequences in
several ways, devices such as spread-spectrum communication
transceivers can exploit SCCSS for improved end-to-end per-
formance with nominal increase in computational complexity.
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APPENDIX

The relationship between the original coefficients c(t) and
the modified 2-port adder/subtractor coefficients ĉ(t) can be

derived by equating the Y outputs in Fig. 3a and 3c as per

N−1∑
t=0

d(t)c(t) = (11)

d(0)(−1)ĉ(0)

+ d(1)(−1)ĉ(1)⊕ĉ(0)

+ d(2)(−1)ĉ(2)⊕ĉ(0)

+ d(3)(−1)ĉ(3)⊕ĉ(2)⊕ĉ(0)

+ d(4)(−1)ĉ(4)⊕ĉ(0)

+ d(5)(−1)ĉ(5)⊕ĉ(4)⊕ĉ(0)

+ d(6)(−1)ĉ(6)⊕ĉ(4)⊕ĉ(0)

+ d(7)(−1)ĉ(7)⊕ĉ(6)⊕ĉ(4)⊕ĉ(0)

Note that this equivalence is valid only for binary sequences,
i.e. for original filter coefficients c(t) = {+1,−1} and
modified filter coefficients ĉ(t) = {0, 1}.

The like-terms of d(t) can be equated and the resulting
simultaneous equations solved to yield the modified filter
coefficients ĉ(t). By expressing the index t in radix-2 notation,
we can state that

(−1)ĉ(0002) = c(0002)
(−1)ĉ(0012) = c(0012)c(0002)
(−1)ĉ(0102) = c(0102)c(0002)
(−1)ĉ(0112) = c(0112)c(0102)
(−1)ĉ(1002) = c(1002)c(0002)
(−1)ĉ(1012) = c(1012)c(1002)
(−1)ĉ(1102) = c(1102)c(1002)
(−1)ĉ(1112) = c(1112)c(1102)

Through induction, we can therefore denote the general case
as

(−1)ĉ(t) =
{

c(t) t = 0
c(t)c(m) t 6= 0 (12)

where m is equivalent to t with the least significant non-zero
bit flipped.

When the filter coefficients denote a SCCSS, i.e. c(t) =
c
(k)
2n (t), the modified filter coefficients can be calculated using

simple boolean logic. We begin this derivation by observing
that the least significant n bits of the radix-2 expression of t
denote the row i while the most significant n bits denote the
column j. In other words,

i =
n−1∑
r=0

2rtr = (tn−1, tn−2, ..., t0)2 (13)

and

j =
2n−1∑
r=n

2r−ntr = (t2n−1, t2n−2, ..., tn)2 (14)

By substituting (3), (13) and (14) into (12) we obtain five
distinct cases that are delineated by the index t.



A. Case 1: t=0

The first modified filter coefficients, where t = i = j = 0,
of any sequence in a SCCSS is

ĉ(t) = log−1 c(t)

= log−1 c
(k)
2n (t)

= log−1 H(k)
2n (i, j)

=
n−2∑
r=0

(jr+1 ⊕ ir ⊕ kr) jr ⊕ (in−1 ⊕ kn−1) jn−1

=
n−2∑
r=0

(0⊕ 0⊕ kr) 0⊕ (0⊕ kn−1) 0

= 0 (15)

We conclude that the first modified filter coefficient for all
SCCSS sequences is 1.

B. Case 2: 0 ≤ l ≤ n− 2

For all chips t > 0, the modified filter coefficients can be
denoted

ĉ(t) = log−1 c(t)c(m)

= log−1 H(k)
2n (i, j)H(k)

2n (i′, j′) (16)

where the values of i′ and j′ depend on the location of the
least significant ‘1’ bit in the radix-2 representation of t. We
now expand (16) into (22) by substituting (3).

By definition, this requires the least significant ‘1’ bit in
t to be in the lower half of the radix-2 representation. This
places the focus on the row index i since i′ will differ from i
by exactly one bit whereas the column indices are equivalent
with j′ = j. We denote the changed bit as il = 1 and i′l = 0,
which allows us to simplify (22) to

ĉ(t) =
n−2∑
r=0

[(jr+1 ⊕ ir ⊕ kr) jr ⊕ (jr+1 ⊕ i′r ⊕ kr) jr]

= (jl+1 ⊕ 1⊕ kl) jl ⊕ (jl+1 ⊕ 0⊕ kl) jl

= jl (17)

As the radix-2 representation of j is a subset of the radix-2
representation of t as per (14), we conclude that

ĉ(t) = tl+n (18)

C. Case 3: l = n− 1
Beginning again with (22), we note that this case is similar

to the previous one since i′r = ir = 0 and j′r = jr for all
0 ≤ r < n−1. The same logic also reveals that in−1 = 1 and
i′n−1 = 0, allowing us to conclude

ĉ(t) = (in−1 ⊕ kn−1)jn−1 ⊕ (i′n−1 ⊕ kn−1)jn−1

= (1⊕ kn−1)jn−1 ⊕ (0⊕ kn−1)jn−1

= jn−1

= tl+n. (19)

Since the simplified expression is unchanged from the previous
case, we can combine them to yield a single expression ĉ(t) =
tl+n for all 0 ≤ l ≤ n− 1.

D. Case 4: n ≤ l ≤ 2n− 2
We have now, by a process of elimination, established that

the least significant ‘1’ bit in t must be in the upper half of
its radix-2 representation. This means that the row indices are
equivalent, with i′ = i = 0, and the column indices differ,
with j′n−1 = jn−1. We therefore simply (22) to

ĉ(t) =
n−2∑
r=0

[
(jr+1 ⊕ kr) jr ⊕

(
j′r+1 ⊕ kr

)
j′r

]
= (jl−n+1 ⊕ kl−n) jl−n ⊕

(
j′l−n+1 ⊕ kl−n

)
j′l−n

= jl−n+1 ⊕ kl−n

= tl+1 ⊕ kl−n (20)

E. Case 5: l = 2n− 1
In this final case, i′ = i = 0 and j′r = jr = 0 for r < n−1.

With the least significant ‘1’ bit forced to be the MSB, we can
conclude that jn−1 = 1 and j′n−1 = 0. Eq. (22) is therefore
simplified to

ĉ(t) = kn−1 (21)

ĉ(t) =
n−2∑
r=0

[
(jr+1 ⊕ ir ⊕ kr) jr ⊕

(
j′r+1 ⊕ i′r ⊕ kr

)
j′r

]
⊕ (in−1 ⊕ kn−1) jn−1 ⊕

(
i′n−1 ⊕ kn−1

)
j′n−1 (22)
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