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Soliton evolution and radiation loss for the sine-Gordon equation

Noel F. Smyth*
Department of Mathematics and Statistics, The King’s Buildings, University of Edinburgh, Edinburgh, Scotland,

United Kingdom, EH9 3JZ

Annette L. Worthy
School of Mathematics and Applied Statistics, University of Wollongong, Northfields Avenue, Wollongong,

New South Wales 2522, Australia
�Received 20 January 1999�

An approximate method for describing the evolution of solitonlike initial conditions to solitons for the
sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters
in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine
ordinary differential equations governing the evolution of the pulse parameters. The pulse evolves to a steady
soliton by shedding dispersive radiation. The effect of this radiation is determined by examining the linearized
sine-Gordon equation and loss terms are added to the variational equations derived from the averaged La-
grangian by using the momentum and energy conservation equations for the sine-Gordon equation. Solutions
of the resulting approximate equations, which include loss, are found to be in good agreement with full
numerical solutions of the sine-Gordon equation. �S1063-651X�99�10508-7�

PACS number�s�: 41.20.Jb, 52.35.Mw, 02.60.Lj

I. INTRODUCTION

The sine-Gordon equation

�2u

�t2
�

�2u

�x2
�sin u�0 �1�

is one of a number of equations describing nonlinear wave
motion, which can be solved by the inverse scattering
method �1�. This equation arises in a diverse range of areas
of physics, for example, crystal dislocation theory �1�, self-
induced transparency �1�, laser physics �1�, and particle
physics �2�. A related equation, the sinh-Gordon equation,
for which the sin u term is replaced by sinh u, arises in black-
hole theory in connection with Hawking radiation �3,4�. The
inverse scattering solution shows that any initial condition
�with suitably bounded derivative at infinity� will evolve into
a finite number of soliton solutions plus dispersive radiation.
The soliton solutions of the sine-Gordon equation are

u��4 tan�1exp� �
x�Ut

�1�U2� . �2�

Inverse scattering gives that the solitons formed from a given
initial condition are determined by the discrete spectrum of a
linear eigenvalue problem, and so are, in principle, easily
calculated. However, the dispersive radiation shed as the ini-
tial condition evolves is given by the solution of a linear
integral equation, this solution being nontrivial. Therefore,
while it is straightforward to determine the final steady state
for a given initial condition, the actual time evolution to this
steady state is difficult to determine.

In the present paper an alternative to using the inverse
scattering method to describe the evolution of an initial con-
dition for the sine-Gordon equation into solitons plus disper-
sive radiation will be developed. This approximate method is
based on using a trial function in the Lagrangian for the
sine-Gordon equation. The effect of the shed dispersive ra-
diation on the evolving soliton is determined by an appropri-
ate solution of the linearized sine-Gordon �Klein-Gordon�
equation and the momentum and energy conservation equa-
tions for the sine-Gordon equation. A similar approach has
been found to be successful for the nonlinear Schrödinger
equation �5�, which also has an inverse scattering solution
�6�. Momentum and energy conservation equations have
been used to derive approximate ordinary differential equa-
tions describing pulse evolution for the Korteweg–de Vries
�7� and Kadomtsev-Petviashvili �KP� �8� equations, both of
which also have inverse scattering solutions �6�. One advan-
tage of using approximate methods to derive equations de-
scribing pulse evolution is that they can be extended to equa-
tions that do not possess an inverse scattering solution, for
example, the mKdV equation �9� and coupled nonlinear
Schrödinger equations �10�.

The Lagrangian method for deriving approximate ordi-
nary differential equations describing pulse evolution for the
sine-Gordon equation, which is developed in the present pa-
per, has similarities to that for the nonlinear Schrödinger
equation �5�. This is not unexpected as the inverse scattering
solutions for the sine-Gordon and nonlinear Schrödinger
equations are similar �1�. Solutions of the approximate equa-
tions are compared with full numerical solutions of the sine-
Gordon equation and good agreement is found. An advan-
tage of the approximate method developed in the present
paper is that it can be extended to analyze pulse evolution for
perturbed sine-Gordon equations that do not possess an in-
verse scattering solution, such as those arising in particle
physics �2�. Such extensions will be the subject of future
work.*Electronic address: noel@maths.ed.ac.uk
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II. APPROXIMATE EQUATIONS

In the present paper the evolution of the initial condition

u�4 tan�1exp� �
x�U0t

w0
� �3�

will be considered since it represents a simple initial condi-
tion for which the calculations involved in obtaining the ap-
proximate equations are straightforward. The relation be-
tween this initial condition and soliton solution �2� is easily
seen.

The sine-Gordon equation �1� has the Lagrangian

L� 1
2 ut

2� 1
2 ux

2�cos u . �4�

An application of Nöther’s theorem �11� using this Lagrang-
ian shows that sine-Gordon equation �1� has the momentum
conservation equation

�

�t
�utux��

�

�x � 1

2
ut

2�
1

2
ux

2�cos u ��0 �5�

and the energy conservation equation

�

�t � 1

2
ut

2�
1

2
ux

2�cos u ��
�

�x
�utux��0. �6�

To obtain approximate equations describing the evolution
of initial condition �3� we assume the form

u�4 tan�1exp� �
x��� t �

w� t � � �7�

for the time evolution of u. This type of approximate solution
is widely used in field theory, where it is called a collective
coordinates solution �a standard reference is Rajaraman
�12��. It can be seen that this approximate solution is a vary-
ing solitonlike pulse, which can evolve from initial condition
�3� to steady soliton �2�. The velocity of the pulse is U
���(t). From initial condition �3� it can be seen that w(0)
�w0 and U(0)�U0. The derivative ux of assumed form �7�
has a pulselike shape with amplitude a��2/w .

The approximate equations for the pulse parameters w(t)
and U(t) are obtained from variations of the averaged La-
grangian

L��
��

�

L dx . �8�

By substituting approximate solution �7� into Lagrangian �4�
it is found that the averaged Lagrangian is

L�
	2

3

w�2

w
�4

U2

w
�

4

w
�4w . �9�

Taking variations of this averaged Lagrangian with respect
to w and � gives the ordinary differential equations govern-
ing the pulse parameters as


w:
2	2

3w

d2w

dt2
�

	2

3w2 � dw

dt � 2

�4
U2

w2
�

4

w2
�4�0,

�10�


�:
d

dt � U

w ��0. �11�

The velocity equation shows that U/w�U0 /w0. Variational
equation �10� for the width w then has the fixed point

w f�
1

�1�� U0

w0
� 2

, �12�

so that the fixed point for the velocity is

U f�
U0

w0�1�� U0

w0
� 2

. �13�

This fixed point is soliton solution �2�. However, since varia-
tional equations �10� and �11� do not contain any damping
terms, the pulse cannot evolve to this steady state. The ex-
tension of these equations to include the effect of the disper-
sive radiation shed as the pulse evolves is considered in the
next section.

Momentum and energy conservation equations �5� and �6�
can also be averaged to give the momentum and energy con-
servation integrals

d

dt���

�

utux dx�0 �14�

and

d

dt���

� � 1

2
ut

2�
1

2
ux

2�cos u � dx�0, �15�

respectively. Substituting trial solution �7� into the momen-
tum conservation integral yields variational equation �11�,
while the energy conservation integral yields the energy con-
servation equation

d

dt
� 	2

3

w�2

w
�

4U2

w
�

4

w
�4w � �0, �16�

which can be reduced to variational equation �10�. It is,
therefore, apparent that the variational equations yield the
equations for momentum and energy conservation. Energy
conservation equation �16� can be integrated to give the ex-
act solution for the width of the pulse as

w�
w0�U0

2�1�w0
2�

2�w0
2�U0

2�
�

w0�U0
2�1�w0

2�

2�w0
2�U0

2�

�cos� 2�3

	
�1�

U0
2

w0
2

t � . �17�
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The width w of the pulse and the amplitude a��2/w of the
derivative ux then oscillate about a mean value. Similar os-
cillatory behavior also occurs for evolving pulses for the
nonlinear Schrödinger equation �5�. Full numerical solutions
of the sine-Gordon equation show that the pulse oscillates to
a steady state �see Fig. 2�b��. To enable the approximate
solution to approach a steady state the effect of the dispersive
radiation shed as the pulse evolves must be included, this
being the subject of the next section.

III. DISPERSIVE RADIATION

Figure 1 shows the full numerical solution of sine-Gordon
equation �1� for ux at t�50 for the initial condition �3� with
w0�0.6 and U0�0. It can be seen that dispersive radiation
of small amplitude is shed by the evolving pulse. Now far
ahead of the pulse, u˜0 and far behind the pulse, u˜2	 .
Therefore, the shed dispersive radiation is governed by the
linearized sine-Gordon equation

�2u

�t2
�

�2u

�x2
�u�0, �18�

which is the Klein-Gordon equation �13�. This equation is
hyperbolic with characteristic velocities �1. The resulting
wave fronts at x��t can be clearly seen in Fig. 1.

Let us consider the case of a pulse with zero velocity U
�0 first. It can be seen from Fig. 1 that the radiation in the
vicinity of the pulse ux is flat. This is to be expected as the
group velocity cg�k/�1�k2 for the Klein-Gordon equation
shows that waves of low wave number have low group ve-
locity. The radiation in the vicinity of the pulse can then be
approximated by u�g(t)x , where g is to be determined. On
noting that there is no radiation at t�0, Klein-Gordon equa-
tion �18� can be solved using Laplace transforms to give

u���
x

t

J0���2�x2�g� t���d� �19�

for x�0 and a symmetric solution for x
0. Here J0(x) is
the Bessel function of order zero. In obtaining this solution
the edge of the radiation has been set at x�0 for simplicity,

so that ux(0,t)�g(t). Since the dispersive radiation spreads
as t increases, this is a valid approximation for large time.
The effect of the dispersive radiation on the evolution of the
pulse can now be found from this solution and the momen-
tum and energy conservation equations. Differentiating lin-
ear solution �19� gives

ut���
x

t

J0���2�x2�g�� t���d�

��g� t�x ���
x

t �

��2�x2
J1���2�x2�g� t���d� ,

�20�

ux�g� t�x ���
x

t x

��2�x2
J1���2�x2�g� t���d� ,

�21�

on noting that g(0)�0 as there is no radiation initially.
The linearized forms of momentum and energy conserva-

tion equations �5� and �6� for the sine-Gordon equation are

�

�t
�utux��

1

2

�

�x
�ut

2�ux
2�u2��0 �22�

and

1

2

�

�t
�ut

2�ux
2�u2��

�

�x
�utux��0, �23�

respectively. Integrating linearized energy conservation
equation �23� from the pulse x�0 to the front x�t gives the
energy lost to the radiation propagating into x�0 as

d

dt

1

2�0

t

�ut
2�ux

2�u2�dx�g2� t ��g� t ��
0

t

J1���g� t���d� .

�24�

Using the symmetry of the solution for the radiation, the total
energy flux from the pulse to the dispersive radiation is,
therefore,

dH

dt
��2g2� t ��2g� t ��

0

t

J1���g� t���d� . �25�

Here H refers to the energy density in energy conservation
equation �6�. To complete the modification of variational
equations �10� and �11� to include loss to dispersive radia-
tion, the parameter g is now related to the pulse width w.

Let us expand the energy density H about the fixed point
w�w f (U f�0 in the case under consideration�. Setting w
�w f�w1, where �w1� is small, the energy density in energy
equation �6� becomes

H�H f�
H�
8

w f
�

	2

3

�w1��2

w f
�4

w1
2

w f
3

. �26�

FIG. 1. Full numerical solution for ux at t�50 for initial condi-
tion �3� with w0�0.6 and U0�0.
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Using exact solution �17� w1 can be replaced by w1� to give
the perturbed Hamiltonian as


H�
	2

3

�w1��2

w f
�

	2

12

	2

3
w f�w1��2. �27�

Note that in replacing w1 by w1� , the term

6

	2 � U0
2

w0
�

1

w0
�w0�

2

w f
� �28�

has been ignored since only the derivative of the Hamil-
tonian matters in the calculation of the energy loss due to the
dispersive radiation. The relation between w and g will now
be obtained by equating 
H to the energy shed to the disper-
sive radiation. From linearized energy conservation equation
�23� the energy in the radiation shed to the right of the pulse
is given by

1

2�0

t

�ut
2�ux

2�u2�dx �29�

with the radiation u given by Laplace transform solution
�19�. The integrals in energy expression �29� are difficult to
evaluate using this Laplace transform solution, so approxi-
mations for large time will now be made. These large time
approximations are consistent with expanding the energy
about the fixed point.

For large time, solution �19� for u(0,t) is

u�0,t ����
0

�

J0���g� t���d� . �30�

If g were a constant, this could be further reduced to

u�0,t ���g�
0

�

J0���d���g , �31�

on noting that the integral from x�0 to x�� of J0(x) is 1
�14�. Now it will be found that g is a slowly decaying oscil-
latory function of t. Therefore, Eq. �31� is a valid approxi-
mation for u(0,t) for large t if g is taken as the slowly vary-
ing mean value of these oscillations. In a similar manner,
expression �20� for ut(0,t) can be approximated for large t
by

ut�0,t ���g�. �32�

Integral �29� for the energy in the radiation shed to the right
of the pulse is now approximated by the trapezoidal rule
using Eq. �21� for ux(0,t), Eq. �31� for u(0,t) and Eq. �32�
for ut(0,t), noting that u, ux , and ut are all zero at the front
x�t . Symmetry then finally gives that the total energy in the
dispersive radiation is given by the approximation

Hr�
1

2��t

t

�ut
2�ux

2�u2�dx�g2t�
1

2
g�2t �33�

for large t.

Comparing expression �33� for the energy in the radiation
to expression �27� for the perturbed Hamiltonian of the pulse
near the fixed point, it can be seen that we can equate

g2�
	2

3

�w1��2

w ft
�

	2

3

�w��2

wt
�34�

and

g�2�
	2w f

6

	2

3

�w1��2

t
�

	2

6

	2

3

�w��2

wt
. �35�

These expressions for g and g� do not quite agree, but are in
approximate agreement as 	/�6�1.28 . . . �1 �note that
w f�1 for U0�0). A similar slight disagreement in the dis-
persive radiation term was found for the nonlinear Schrö-
dinger equation �5�.

The preceding derivation of the energy lost to the disper-
sive radiation was for the case U�0. When U�0 the radia-
tion is given by the solution of a moving boundary problem
for Klein-Gordon equation �18�, the moving boundary being
at the pulse position x�� . This moving boundary problem is
difficult to solve. However if U�0 were a constant, then by
the Galilean invariance of the sine-Gordon equation the en-
ergy loss to the radiation would still be given by Eq. �25�. It
can be further shown from momentum equation �22� for the
Klein-Gordon equation that for U taken as a constant, the
momentum loss to the radiation is given by

dP

dt
�

d

dt��t

t

utuxdx

��2U�g2� t ��g� t ��
0

t

J1���g� t���d�� . �36�

If U were slowly varying, then this expression would give
the momentum loss to the dispersive radiation. It will be
found in the next section from full numerical solutions of the
sine-Gordon equation that for large time U does not vary
greatly. Therefore, we shall use this expression for the mo-
mentum loss when U is not constant.

Adding energy-loss expression �25� to variational equa-
tion �10� for w and momentum-loss expression �36� to varia-
tional equation �11� for U, we finally have that the equations,
including momentum and energy loss, governing the evolu-
tion of the pulse are

2	2

3w

d2w

dt2
�

	2

3w2 � dw

dt � 2

�4
U2

w2
�

4

w2
�4

��
2	2

3wt

dw

dt
�

2	2

3�wt
�

0

t

J1� t���
w����

��w���
d� �37�

and

d

dt � U

w ��
	2U

12

dw

dt � 1

wt

dw

dt
�

1

�wt
�

0

t

J1� t���
w����

��w���
d�� .

�38�
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In the next section solutions of these approximate equations
will be compared with full numerical solutions of sine-
Gordon equation �1�. The approximate equations were
solved numerically using a fourth-order Runge-Kutta scheme
with the integrals on the right-hand side of the equations
evaluated using the trapezoidal rule.

IV. COMPARISON WITH NUMERICAL SOLUTIONS

Sine-Gordon equation �1� was solved numerically using
second-order centered differences in space and time. This
scheme was tested by propagating soliton solution �2�, which
was found to propagate without change of form to within
less than a percent error. The solutions obtained from this
numerical scheme will now be compared with numerical so-
lutions of approximate equations �37� and �38�.

In Fig. 2 the amplitude a of ux as given by the solution of
the approximate equations and by the full numerical solution
of the sine-Gordon equation is shown for the initial condi-
tions w0�0.9 and w0�0.6 with U0�0, so that U�0. Figure
2�a� shows the amplitude for the initial condition near the
soliton solution and Fig. 2�b� shows the amplitude for the
initial condition far from the steady soliton. It can be seen
that the agreement between the two solutions is excellent for
both initial conditions, with the major disagreement being a
constant phase difference. It is noted that the approximate

method does not yield the phase of the solution. The decay
rate of the approximate solution is in excellent agreement
with the numerical decay rate for large time. The agreement
for small times is not so good, but this is expected from the
derivation of the radiation loss for the approximate equa-
tions. Since the radiation loss terms were derived under the
assumption that U�0, the good agreement shown in the fig-
ures is to be expected.

Figure 3 shows amplitude and position comparisons for
the initial conditions w0�0.9 and U0�0.2. It can again be
seen that there is good agreement between the approximate
and numerical solutions. The period of the approximate so-
lution is slightly smaller than the numerical period and the
decay rate is slightly larger. The agreement between the peak
position � as given by the two solutions is also good. Good
agreement between the approximate and numerical solutions
continues up to U0�0.4. Figure 4 shows amplitude and po-
sition comparisons for the initial conditions w0�0.8 and
U0�0.5. While the agreement between the positions is good,
the agreement between the amplitudes is only fair. The ra-
diation loss terms in the approximate equations were derived
under the assumption that U was a constant. It is clear that as
U0 increases this assumption becomes less valid. It can be
seen from Fig. 4�a� that the amplitude oscillations as given
by the approximate equations have an anharmonic compo-

FIG. 2. Amplitude a of ux as a function of t for initial condition
�3�. Full numerical solution, —; solution of approximate equations,
– – – . �a� w0�0.9 and U0�0 and �b� w0�0.6 and U0�0.

FIG. 3. Pulse evolution for initial condition �3� with w0�0.9
and U0�0.2. Full numerical solution, —; solution of approximate
equations, – – – . �a� Amplitude a of ux and �b� position � of pulse
minus position of pulse with velocity U0.
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nent. This is due to a mismatch between the periods of J1
and w in the integral term of the radiation damping terms in
the approximate equations. For large x, J1(x) has period
2	�6.283 . . . �14�. For U�0 exact solution �17� has pe-
riod 	2/�3�5.698, so that J1 and w have nearly the same
period. However, as U0 increases it can be seen from exact
solution �17� that the period of w becomes shorter than the
period of J1. This suggests that to correct the anharmonic
behavior the argument of J1 should be adjusted to make the
periods of J1 and w similar for large t. Upon doing this
approximate equations �37� and �38� become

2	2

3w

d2w

dt2
�

	2

3w2 � dw

dt � 2

�4
U2

w2
�

4

w2
�4

��
2	2

3wt

dw

dt
�

2	2

3�wt
�

0

t

�J1„�1��U0 /w0�2 � t���… w����

��w���
d� �39�

and

d

dt � U

w ��
	2U

12

dw

dt � 1

wt

dw

dt
�

1

�wt

��
0

t

J1„�1��U0 /w0�2 � t���… w����

��w���
d�� .

�40�

Since the radiation loss terms were derived under the as-
sumption that U0�0, these equations are as justified as Eqs.
�37� and �38� for U0�0.

Figure 5 shows comparisons between the full numerical
solution of the sine-Gordon equation and the solution of fre-
quency adjusted equations �39� and �40� for the amplitude a
of ux . It can be seen that the anharmonic component of the
approximate amplitude oscillation has now disappeared. Fig-
ure 5�a� shows the comparison for the initial parameter val-
ues w0�0.8 and U0�0.5, as for Fig. 4�a�. The comparison
between the numerical and approximate solutions is now rea-
sonable, with the damping of the approximate solution being
slightly stronger than that of the numerical solution and the
period of the approximate solution being somewhat shorter.
Figure 5�b� shows the same comparison for the initial values
w0�0.5 and U0�0.8. The period of the approximate solu-
tion is now significantly shorter than the numerical period

FIG. 4. Pulse evolution for initial condition �3� with w0�0.8
and U0�0.5. Full numerical solution, —; solution of approximate
equations, – – – . �a� Amplitude a of ux and �b� position � of pulse
minus position of pulse with velocity U0.

FIG. 5. Pulse evolution using approximate equations �39� and
�40�. Full numerical solution, —; solution of approximate equa-
tions, – – – . �a� Amplitude a of ux for w0�0.8 and U0�0.5 and
�b� amplitude a of ux for w0�0.5 and U0�0.8.
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and the decay significantly stronger. However, the agreement
between the final steady states is good.

V. CONCLUSIONS

The evolution of solitonlike initial conditions to soliton
solutions for the sine-Gordon equation has been examined. It
has been shown that in order to obtain good agreement with
full numerical solutions, the effect of the dispersive radiation
shed as the pulse evolves must be included. The effect of this

dispersive radiation was found by using a suitable solution of
the linearized sine-Gordon equation �the Klein-Gordon equa-
tion� in conjunction with the momentum and energy conser-
vation equations for the sine-Gordon equation. While the ex-
act inverse scattering solution of the sine-Gordon equation
provides this information in principle, in practice it is diffi-
cult to explicitly obtain it. Furthermore, the approximate
method outlined in the present paper can be extended to
sine-Gordon-type equations for which there are no inverse
scattering solutions. These extensions will be the subject of
further work.
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