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1 Introduction

In [3] the authors introduce Legendre sequences and generalised Legendre
pairs (GL–pairs). They show how to construct an Hadamard matrix of order
2` + 2 from a GL–pair of length `. This Hadamard matrix is constructed via
two circulant matrices. The authors review the known constructions for GL–
pairs and use the discrete Fourier transform (DFT) and power spectral density
(PSD) to complete an exhaustive search for GL–pairs for lengths ` ≤ 45 and
partial results for other `. In this paper we introduce Hadamard ideals for two
circulant cores as a means of applying computational algebra techniques in
the aforementioned Hadamard matrix construction.

2 Hadamard matrices with two circulant cores

An Hadamard matrix of order n is an n × n matrix with elements ±1 such
that HHT = HT H = nIn, where In is the n×n identity matrix and T stands
for transposition. For more details see the books of Jennifer Seberry cited in
the bibliography. An Hadamard matrix of order 2` + 2 which can be written
in one of the two equivalent forms

H2`+2 =

− − + · · · + + · · · +

− + + · · · + − · · · −
+ +
...

... A B

+ +

+ −
...

... BT −AT

+ −

or

1 1
... A B

1 1

1 −
... BT −AT

1 −
− − 1 · · · 1 1 · · · 1
− 1 1 · · · 1 − · · ·−

(1)

where A = (aij), B = (bij) are two circulant matrices of order ` i.e. aij =
a1,j−i+1(mod `), bij = b1,j−i+1(mod `), is said to have two circulant cores, see [3].
The following matrix is an example of a Hadamard matrix of order 8 with two
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circulant cores of order ` = 3 each:



- - 1 1 1 1 1 1

- 1 1 1 1 - - -

1 1 1 1 - 1 1 -

1 1 - 1 1 - 1 1

1 1 1 - 1 1 - -

1 - 1 - 1 - 1 -

1 - 1 1 - - - 1

1 - - 1 - 1 - -




where − stands for −1 to conform with the customary notation for Hadamard
matrices. The two forms are equivalent as described in section 2.1. In this
paper we use the first form as described in section 3.

The two circulant matrices A and B satisfy the matrix equation

AAT + BBT = (2` + 2)I` − 2J` (2)

where I` is the identity matrix or order ` and J` is a matrix of order ` whose
elements are all equal to 1.

Since 2` + 2 must be equal to a multiple of 4 we have that ` must be an odd
integer for this construction to yield a Hadamard matrix.

Georgiou, Koukouvinos and Seberry [6] point out that GL-pairs, which can
be used to construct Hadamard matrices of order 2` + 2 with two circulant
cores, exist for many cases. We group these results as a theorem

Theorem 1 (Two Circulant Cores Hadamard Construction Theorem)

An Hadamard matrix of order 2` + 2 with with two circulant cores can be
constructed if

(1) ` is a prime (see for example [3]);
(2) 2`+1 is a prime power (these arise from Szekeres difference sets, see for

example [3] or [7]);
(3) ` = 2k − 1, k ≥ 2 (two Galois sequences are a GL-pair, see for example

[12]);
(4) ` = p(p + 2) where p and p + 2 are both primes (two such sequences are

a GL-pair,see for example, [14,17]);
(5) ` = 49, 57 (these have been found by a non-exhaustive computer search

that uses generalized cyclotomy and master-switch techniques, see [7,8]);
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(6) ` = 3, 5, . . . , 45 (these have been found and classified by exhaustive com-
puter searches, see [3]);

(7) ` = 47, 49, 51, 53 and 55 (these have been found and classified by partial
computer searches, see [3]);

(8) ` = 143 (also verified the results for ` = 3, 5, 7, 11, 13, 15, 17, 19, 23,
25, 31, 35, 37, 41, 43, 53, 59, 61, 63 see [5]).

GL-pairs do not exist for even lengths. It is indicated in [3] that the following
lengths ` ≤ 200 are unresolved: 77, 85, 87, 91, 93, 115, 117, 121, 123, 129, 133,
145, 147, 159, 161, 169, 171, 175, 177, 185, 187 and 195.

We note here that a GL-pair for length ` = 143 is constructed easily since
143 = 11 · 13 is a product of twin primes.

2.1 Equivalent Hadamard matrices

Two Hadamard matrices H1 and H2 are called equivalent (or Hadamard equiv-
alent, or H-equivalent) if one can be obtained from the other by a sequence
of row negations, row permutations, column negations and column permuta-
tions. More specifically, two Hadamard matrices are equivalent if one can be
obtained by the other by a sequence of the following transformations:

• Multiply rows and/or columns by -1.
• Interchange rows and/or columns.

For a detailed presentation of Hadamard matrices and their constructions see
[7], [16], [13] and for inequivalent Hadamard matrices see [6] and [4].

Remark 1 For a given set X of Hadamard matrices of arbitrary but fixed di-

mension n, the relation of H-equivalence (noted
H∼ here) is an equivalence

relation. Indeed, H-equivalence is reflexive (H
H∼ H, ∀H ∈ X) symmetric

(H1
H∼ H2 implies H2

H∼ H1 ,∀H1, H2 ∈ X) and transitive (H1
H∼ H2 and

H2
H∼ H3 imply H1

H∼ H3, ∀H1, H2, H3 ∈ X). Therefore, one can study the
equivalence classes and define representatives for each class.

To define
H∼ more formally, suppose P and Q are two monomial matrices of

order n (monomial means elements 0, +1,−1 and only one non zero entry in
each row and column) where PP T = QQT = In. Then two Hadamard matrices
of order n are said to be equivalent if A = PBQ.
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3 Hadamard ideals

We detail the construction of Hadamard matrices with circulant core with
an eye to producing a set of nonlinear polynomial equations and study the
structure of the associated ideal which we will call a Hadamard Ideal. See
[2], [15] for detailed presentations of the concepts of an ideal in a polynomial
ring, the corresponding system of polynomial equations and the associated
variety.

Consider two vectors of ` unknowns each (a1, . . . , a`) and (b1, . . . , b`). These
two vectors generate two circulant `× ` matrices A` and B`:

A` =




a1 a2 . . . a`

a` a1 . . . a`−1

...
...

...
...

a2 a3 . . . a1




, B` =




b1 b2 . . . b`

b` b1 . . . b`−1

...
...

...
...

b2 b3 . . . b1




Once we have constructed the two circulant matrices A` and B`, the Fletcher-
Gysin-Seberry construction of Hadamard matrices with two circulant cores
(see [3], [11]) stipulates that an Hadamard matrix of order 2` + 2 is obtained
by supplementing these matrices and their transposes by rows and columns of
1s and half 1s and −1s, as in (1):

H2`+2 =




−1 −1 1 . . . 1 1 . . . 1

−1 1 1 . . . 1 −1 . . . −1

1 1 a1 . . . a` b1 . . . b`

1 1 a` . . . a`−1 b` . . . b`−1

...
...
...

...
...

...
...

...

1 1 a2 . . . a1 b2 . . . b1

1 −1 b1 . . . b2 −a1 . . . −a2

1 −1 b2 . . . b3 −a2 . . . −a3

...
...
...

...
...

...
...

...

1 −1 b` . . . b1 −a` . . . −a1




.

The additional constraints {a1, . . . , a`, b1, . . . , b`} ⊂ {−1, +1}2` arise from the
fact that the elements of a Hadamard matrix are required to be ±1. A succinct
algebraic description of these quadratic constraints given above is provided by
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the following set of 2` algebraic equations:

a2
1 − 1 = 0, . . . , a2

` − 1 = 0, b2
1 − 1 = 0, . . . , b2

` − 1 = 0.

Another way to express this, is to say that we want to target some elements
of the variety which are located inside the subvariety defined by

{−1, +1} × . . .× {−1, +1}︸ ︷︷ ︸
2` terms

.

Let a = a1 + . . . + a` and b = b1 + . . . + b`. Then the matrix equation (2)
implies the equation

a2 + b2 = 2,

which has the 4 integer solutions: (a, b) = (1, 1), (a, b) = (1,−1), (a, b) =
(−1, 1), (a, b) = (−1,−1).

The matrix equation H2`+2 = (2`+2)I2`+2 gives rise to the following categories
of equations:

• a set of quadratic equations whose precise structure will be detailed in the
forthcoming definition of Hadamard ideals;

• the equation of the form

a2
1 + . . . + a2

` + b2
1 + . . . + b2

` = 2`

which is satisfied trivially, since a2
1 = . . . = a2

` = b2
1 = . . . = b2

` = 1;
• the two equations

∑̀

i=1

ai =
∑̀

i=1

bi and
∑̀

i=1

ai +
∑̀

i=1

bi = 2

which imply the simpler equations:

∑̀

i=1

ai = 1 and
∑̀

i=1

bi = 1.

To systematize the study of the system of polynomial equations that arise
in the Fletcher-Gysin-Seberry construction of Hadamard matrices with two
circulant cores, we introduce the notion of Hadamard Ideal. This allows us
to apply numerous tools of computational algebra to the study of Hadamard
matrices with two circulant cores. This connection between an important com-
binatorial problem and ideals in multivariate polynomial rings is exploited in
this paper from both the theoretical and the computational points of view.

Hadamard Ideals are also defined for other constructions of Hadamard ma-
trices based on the concept of circulant core [9]. The ideals that arise in all
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of these constructions share numerous similar characteristics and this justifies
using the term Hadamard Ideal to describe all of them. When it is not clear
which construction we are referring to, the name of the construction may be
mentioned explicitly, to remove any potential ambiguities.

Definition 1 For any odd natural number ` = 3, 5, 7, . . . set m = (` − 1)/2.
Then the `-th Hadamard ideal H` (associated with the two circulant cores
construction by Fletcher, Gysin and Seberry) is defined by:

H` = 〈s1, . . . sm, a1+. . .+a`−1, b1+. . .+b`−1, a2
1−1, . . . , a2

`−1, b2
1−1, . . . , b2

`−1〉

where s1, . . . sm are quadratic equations defined by:

s1 = 2 +
∑̀

i=1

(
aia(i+1) mod ` + bib(i+1) mod `

)

...
...

...

sm = 2 +
∑̀

i=1

(
aia(i+m) mod ` + bib(i+m) mod `

)
(3)

Remark 2 H` is generated by m + 2 + 2` polynomials.

Remark 3 From the 4 solutions in (a, b) of the equation a2 + b2 = 1, we have
elected to include in the definition of the Hadamard ideal only the two linear
equations corresponding to the solution (a, b) = (1, 1). There are three reasons
that justify this choice:

• Once we know a solution of the system corresponding to the Hadamard ideal
as defined above with (a, b) = (1, 1) then we can generate a solution corre-
sponding to the case (a, b) = (1,−1) simply by multiplying the unknowns
b1, . . . , b` by −1. Similarly, we can generate two more solutions correspond-
ing to the cases (a, b) = (−1, 1), (a, b) = (−1,−1).

• The presence of the two linear equations is useful in applying combinatorial
optimization techniques such as pruning in binary trees.

• The presence of the two linear equations allows us to establish un upper
bound on the number of solutions of the system corresponding to the Hadamard
ideal.

The symbol V (H`) will denote the affine algebraic variety corresponding to
the Hadamard ideal H`, that is the set of solutions of the system of polynomial
equations corresponding to the Hadamard ideal H`.

Property 1 H` is a zero-dimensional ideal. (This is evident, because all points
in H` are also points of {−1, +1}2` which is in turn, a finite set). In particular
the number of solutions of the system corresponding to the Hadamard ideal H`
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is bounded by above by 22`,

| V (H`) |≤ 22`.

A better upper bound for the number of solutions is given in the lemma below,
using the two linear equations in the definition of the Hadamard ideal.

Lemma 1 The number of solutions of the system corresponding to the Hadamard
ideal H` is bounded by above from the square of a binomial coefficient,

| V (H`) |≤
(

`
`+1
2

)2

.

Proof
Consider a specific solution a1, . . ., a`, b1, . . ., b`. This solutions must satisfy the
linear equations a1 + . . .+a` = 1, b1 + . . .+ b` = 1 and since ai, bi ∈ {−1, +1},
we see that we must have exactly `+1

2
of the ai being equal to 1 (the remaining

`−1
2

of the ai being equal to −1) and exactly `+1
2

of the bi being equal to 1

(the remaining `−1
2

of the bi being equal to −1). There are
(

`
`+1
2

)
possible ways

to choose `+1
2

out of the ` ai to be equal to 1 and similarly for bi. Each such
configuration of the ai is combined with each such configuration of the bi and
therefore an upper bound on the number of solutions is given by the square
of this binomial coefficient. 2

Remark 4 The binomial coefficient
(

`
`+1
2

)
(and therefore the upper bound in

the above lemma) can be expressed is terms of Catalan numbers:

(
`

`+1
2

)
= `C `−1

2

where the Catalan numbers Cn are defined by:

Cn =
1

n + 1

(
2n

n

)
, n = 0, 1, 2, . . . .

Remark 5 Since 1 + 1 mod ` = 2 and ` + 1 mod ` = 1, equation s1 starts
with the term a1a2 and finishes with the term a`a1 (and the analogous b-terms).

Remark 6 The quadratic equations s1, . . ., sm are composed from 2` terms
plus the constant term 2. The 2` quadratic terms are divided into two decou-
pled classes with ` terms each. One class contains quadratic monomials in the
ai alone and the other class contains quadratic monomials in the bi alone. The
decoupled form of these equations, is exploited to yield an important optimiza-
tion in the exhaustive search computations in the sequel.
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Denote by ea
2 the second elementary symmetric function in the unknowns

a1, . . . , a`. Denote by eb
2 the second elementary symmetric function in the

unknowns b1, . . . , b`. In general, the second elementary symmetric function e2

in ` variables contains
(

`
2

)
= `(`−1)

2
terms and therefore the sum ea

2 + eb
2 will

contain 2
(

`
2

)
= `(`− 1) terms.

The m equations (3) (resp. some of the the generators of the `-th Hadamard
ideal H`) are not algebraically independent. A particular syzygy is given in
the next lemma, whose proof is trivial.

Lemma 2 For any odd natural number ` = 3, 5, 7, . . . set m = (`−1)/2. Then
we have that

s1 + . . . + sm = ea
2 + eb

2 + 2m.

4 Structure of the variety V (H`)

We summarize in the following table the computational results obtained using
the Hadamard idealsH3, . . .,H25: (the symbol | V (H`) | stands for the number
of solutions of the system corresponding to the Hadamard ideal H`).

` matrix order | V (H`) |
3 8 9 = 1× 32

5 12 50 = 2× 52

7 16 196 = 4× 72

9 20 972 = 12× 92

11 24 2, 904 = 24× 112

13 28 7, 098 = 42× 132

15 32 38, 700 = 172× 152

17 36 93, 058 = 322× 172

19 40 161, 728 = 448× 192

21 44 433, 944 = 984× 212

23 48 1, 235, 744 = 2336× 232

25 52 2, 075, 000 = 3320× 252





exhaustive

searches
(4)

It is worthwhile to point out that the above tables contain exhaustive search
results for Hadamard matrices with two circulant cores for the twelve orders
8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48 and 52.

Moreover, the fact that the sequence of the integer proportionality constants
(for ` = 3, . . . , 23) is strictly increasing, suggests the following:
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Conjecture 1 (Kotsireas-Koukouvinos-Seberry, 2003) For every odd ` =
3, . . . there exists a Hadamard matrix of order 2`+2 with two cicrculant cores.

Since the set {2` + 2, ` odd} covers the full range of multiples of 4, a solution
to the above conjecture would settle the general Hadamard conjecture.

The next theorem clarifies a basic fact about the number of solutions of the
system corresponding to the Hadamard ideal H`:

Theorem 2 For any odd ` ≥ 3, the total number of solutions of the system
corresponding to the Hadamard ideal H` is proportional to `2. In symbols

| V (H`) |= h` · `2,

where h` is an integer proportionality constant.

Proof
Consider a specific solution a1, . . ., a`, b1, . . ., b` and decompose it as two
finite sequences, the ais and the bis, of lengths ` each. Consider the ` cyclic
permutations of the a1, . . ., a` and the ` cyclic permutations of the b1, . . ., b`.
Combining each of the ` permutations of the ai with each of the ` permutations
of the bi, gives a solution of the system. Therefore, each solution gives rise to
`2 solutions, which implies that the total number of solutions of the system is
proportional to `2. 2

In view of lemma (1) and remark (4) we deduce immediately the following
upper bound on the integer proportionality constant h`:

Lemma 3 For every odd ` = 3, . . . , we have

h` ≤ C2
`−1
2

.

In light of theorem (2) and since Hadamard ideals provide a means of per-
forming exhaustive searches for the associated Hadamard matrices, the com-
putational results of table 4 can be stated concisely as:

Theorem 3 For the first twelve values ` = 3, . . . , 25, the resolution of the
polynomial system arising from the Hadamard ideal H` indicates that the cor-
responding proportionality constants h` are given by the sequence of integers
1, 2, 4, 12, 24, 42, 172, 322, 448, 984, 2336, 3320.
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5 Inequivalent Hadamard matrices with two circulant cores

Based on the exhaustive searches for Hadamard matrices with two circu-
lant cores, performed using the Hadamard ideals H3, . . ., H25 and on partial
searches performed using the Hadamard idealsH27,H29,H31,H33 we analyzed
the corresponding solution sets with Magma V2.11 to search for inequivalent
Hadamard matrices. See [1] for a full description of Magma V2.11 available
functionality for Hadamard matrices. We used the profile criterion to distin-
guish between inequivalent Hadamard matrices. The profile criterion is a suf-
ficient (but not necessary) condition for Hadamard inequivalence. Hadamard
matrices with unequal profiles are inequivalent. However, Hadamard matrices
with equal profiles may or may not be inequivalent. See [10] for mode details
on the profile criterion. In this section we report on search results for inequiv-
alent Hadamard matrices with two circulant cores of orders 44, 48, 52, 56, 60,
64, 68. Based on our searches for new inequivalent Hadamard matrices of these
seven orders we established new lower bounds for the number of inequivalent
Hadamard matrices for the seven orders 44, 48, 52, 56, 60, 64, 68. All the in-
equivalent Hadamard matrices described below are available in the web page
http://www.cargo.wlu.ca/hi.

5.1 Inequivalent Hadamard matrices with two circulant cores of orders 44,
48, 52, 56, 60, 64, 68

Lower bounds for the number of inequivalent Hadamard matrices of orders
up to (and including) 40 have been established by various authors. Using our
algebraic formalism we were able to locate many new inequivalent Hadamard
matrices of orders 44, 48, 52, 56, 60, 64 and 68. We contributed (and continue
to contribute) these matrices to the Magma Hadamard Database, which is
integrated into Magma V2.11, see [1].

The Hadamard ideals H21, H23, and H25 indicate that there are 433, 944,
1, 235, 744 and 2, 075, 000 Hadamard matrices (exhaustive searches) with two
circulant cores of orders 44, 48 and 52 respectively. Using Magma V2.11 we
were able to process all these matrices for inequivalence check using the profile
criterion and identify:

• 37 inequivalent Hadamard matrices of order 44. This raised the lower bound
of inequivalent Hadamard matrices of order 44 to 500;

• 53 inequivalent Hadamard matrices of order 48. This raised the lower bound
of inequivalent Hadamard matrices of order 48 to 55;

• 76 inequivalent Hadamard matrices of order 52. This raised the lower bound
of inequivalent Hadamard matrices of order 52 to 638.
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The Hadamard ideals H27, H29, H31 and H33 produce Hadamard matrices
(partial searches) with two circulant cores of orders 56, 60, 64 and 68 re-
spectively. Using Magma V2.11 we were able to process all these matrices for
inequivalence check using the profile criterion and identify:

• 203 inequivalent Hadamard matrices of order 56. This raised the lower
bound of inequivalent Hadamard matrices of order 56 to 205;

• 253 inequivalent Hadamard matrices of order 60. This raised the lower
bound of inequivalent Hadamard matrices of order 60 to 256;

• 394 inequivalent Hadamard matrices of order 64. This raised the lower
bound of inequivalent Hadamard matrices of order 64 to 395;

• 338 inequivalent Hadamard matrices of order 68. This raised the lower
bound of inequivalent Hadamard matrices of order 68 to 340;

The inequivalent Hadamard matrices with two circulant cores that we com-
puted, are inequivalent with the Hadamard matrices of the corresponding or-
ders in the Magma database. This is taken into account, in the improvement
of lower bounds above.
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7 Conclusion

In this paper we introduce the concept of Hadamard ideals to the study of
Hadamard matrices with two circulant cores for the construction of Fletcher,
Gysin and Seberry. Hadamard ideals are used to perform exhaustive searches
for Hadamard matrices with two circulant cores, for the first twelve orders
8, . . . , 52. Finally, we use the Hadamard ideal formalism to improve the lower
bounds for the number of inequivalent Hadamard matrices for the seven orders
44, 48, 52, 56, 60, 64, 68.
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