1-1-2006

Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes

Y. Zhao
University of Wollongong, yue_zhao@uow.edu.au
Jennifer Seberry
University of Wollongong, jennie@uow.edu.au
Tianbing Xia
University of Wollongong, txia@uow.edu.au
Y. Wang
University of Wollongong
Beata J. Wysocki
University of Wollongong, bjw@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Zhao, Y.; Seberry, Jennifer; Xia, Tianbing; Wang, Y.; Wysocki, Beata J.; Wysocki, Tadeusz A.; and Tran, Le Chung: Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes 2006.
https://ro.uow.edu.au/infopapers/358

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes

Abstract

New amicable orthogonal designs $\operatorname{AODs}(8 ; 1 ; 1 ; 1 ; 2 ; 2 ; 2)$, $\operatorname{AODs}(8 ; 1 ; 1 ; 4 ; 1 ; 2 ; 2)$, $\operatorname{AODs}(8 ; 1 ; 2 ; 2 ; 2 ; 2 ; 4)$, AODs $(8 ; 1 ; 2 ; 2 ; 1 ; 2 ; 4)$, AODs $(8 ; 1 ; 1 ; 2 ; 1 ; 2 ; 4)$, $\operatorname{AODs}(8 ; 1 ; 2 ; 4 ; 2 ; 2 ; 2)$, $\operatorname{AODs}(8 ; 1 ; 1 ; 4 ; 1 ; 1 ; 2 ; 2)$, AODs(8 ; $2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2)$ and $\operatorname{AODs}(8 ; 1 ; 1 ; 1 ; 2 ; 1 ; 2 ; 2 ; 2)$ are found by applying a new theorem or by an exhaustive search. Also some previously undecided cases of amicable pairs are demonstrated to be nonexistent after a complete search of the equivalence classes for orthogonal designs.

Keywords

2000 Mathematics subject classification (Amer. Math. Soc.): 05B30, 15A36.

Disciplines

Physical Sciences and Mathematics

Publication Details

This article was originally published as Zhao, Y, Seberry, J, Xia, T, Wang, Y, Wysocki, BJ, Wysocki, TA and Tran, LC, Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes, Australasian Journal of Combinatorics, 34, 2006, 137-144.

Authors

Y. Zhao, Jennifer Seberry, Tianbing Xia, Y. Wang, Beata J. Wysocki, Tadeusz A. Wysocki, and Le Chung Tran

Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes

Ying Zhao ${ }^{1}$, Jennifer Seberry ${ }^{1}$, Tianbing Xia ${ }^{1}$, Yejing Wang ${ }^{1}$,
Beata J. Wysocki ${ }^{2}$, Tadeusz A. Wysocki ${ }^{2}$, Le Chung Tran ${ }^{2}$
${ }^{1}$ School of Information Technology and Computer Science University of Wollongong, Wollongong, NSW, 2522, Australia
${ }^{2}$ School of Electrical, Computer and Telecommunications Engineering University of Wollongong, Wollongong, NSW, 2522, Australia
Corresponding Author's Email: yz03@uow.edu.au

Abstract

New amicable orthogonal designs $A O D s(8 ; 1,1,1 ; 2,2,2), \operatorname{AODs}(8 ; 1,1,4 ; 1,2,2), \operatorname{AODs}(8 ; 1,2$, $2 ; 2,2,4), \operatorname{AODs}(8 ; 1,2,2 ; 1,2,4), \operatorname{AODs}(8 ; 1,1,2 ; 1,2,4), \operatorname{AODs}(8 ; 1,2,4 ; 2,2,2), \operatorname{AODs}(8 ; 1,1,4 ;$ $1,1,2,2), \operatorname{AODs}(8 ; 2,2,2,2 ; 2,2,2,2)$ and $\operatorname{AODs}(8 ; 1,1,1,2 ; 1,2,2,2)$ are found by applying a new theorem or by an exhaustive search. Also some previously undecided cases of amicable pairs are demonstrated to be non-existent after a complete search of the equivalence classes for orthogonal designs.

2000 Mathematics subject classification (Amer. Math. Soc.): 05B30, 15A36.

1 Motivation

Complex orthogonal space-time block codes(STBCs) based on Amicable Orthogonal Designs(AODs) [1] are known for relatively simple receiver structure and minimum processing delay when dealing with complex signal constellations. The simplest complex STBCs is an Alamouti code [8] for two transmit antennas, which is based on an amicable orthogonal design of order 2. The complex STBCs for more than two transmit antennas cannot achieve rate one [7], but they can still provide full diversity. To date, only the complex STBCs based on full(i.e., no zeros) designs of order two and four have been proposed [5][8]. The known complex STBCs for higher number of transmit antennas, e.g.
eight, have zeros in the code matrices that results in the waste of several time slots when no useful information is being transmitted from a given antenna. Moreover, those zeros make implementation of the transmitter rather difficult at high symbol rates, as it requires the transmitter to be switched on and off frequently. It has been shown that by utilizing some amicable pairs, especially the new $A O D s(8 ; 2,2,2,2 ; 2,2,2,2)$ which is the only full design with 4 variables of order 8 , the new complex codes have much better error performance than the conventional ones [9][10].

2 Introduction and Basic Definitions

Definition 2.1 Let $x_{1}, x_{2}, \cdots, x_{t}$ be commuting indeterminates. An orthogonal design X of order n and type $\left(s_{1}, s_{2}, \cdots, s_{t}\right)$ denoted $O D\left(n ; s_{1}, \cdots, s_{t}\right)$, where s_{i} are positive integers, is a matrix of order n with entries from $\left\{0, \pm x_{1}, \cdots, \pm x_{t}\right\}$, such that

$$
X X^{T}=\left(\sum_{i=1}^{t} s_{i} x_{i}^{2}\right) I_{n}
$$

where X^{T} denotes the transpose of X and I_{n} is the identity matrix of order n.

Alternatively, each row of X has s_{i} entries of the type $\pm x_{i}$ and the rows are pairwise-orthogonal under the Euclidean inner product [1]. The above description of X applies to the columns of X as well.

Definition 2.2 Let X be an $O D\left(n ; u_{1}, \cdots, u_{s}\right)$ on the variables $\left\{x_{1}, \cdots, x_{s}\right\}$ and Y an $O D\left(n ; v_{1}, \cdots, v_{t}\right)$ on the variables $\left\{y_{1}, \cdots, y_{t}\right\}$. It is said that X and Y are amicable orthogonal designs $A O D s\left(n ; u_{1}, \cdots, u_{s}\right.$; $\left.v_{1}, \cdots, v_{t}\right)$ if $X Y^{T}=Y X^{T}$.

In the complex multiple antenna communication systems, each transmitted complex symbol contains both real and imaginary part. Hence, the concept of complex orthogonal designs used for STBCs is different from the definition introduced in Geramita-Geramita [2].

Definition 2.3 A complex orthogonal design for STBC (CODSTBC, throughout this paper referred as COD for short) Z of order n is an $n \times n$ matrix on the complex indeterminates s_{1}, \cdots, s_{t}, with entries chosen from $0, \pm s_{1}, \cdots, \pm s_{t}$, their conjugates $\pm s_{1}^{*}, \cdots, \pm s_{t}^{*}$, or their product with $i=\sqrt{-1}$ such that

$$
\begin{equation*}
Z^{H} Z=\left(\sum_{i=1}^{t}\left|s_{i}\right|^{2}\right) I_{n} \tag{1}
\end{equation*}
$$

where Z^{H} denotes the conjugate transpose of Z and I_{n} is the identity matrix of order n.
Given an orthogonal design over s variables, we can get new designs of the same order but different types by setting variables equal to one another or zero. The concept of "Equating and Killing variables" was first stated as Lemma 4.4 in [1].

Definition 2.4 Let X be an $O D\left(n ; u_{1}, \cdots, u_{s}\right)$ on the variables $\left\{x_{1}, \cdots, x_{s}\right\}$, then there exists $O D\left(n ; u_{1}, \cdots, u_{i}+u_{j}, \cdots, u_{s}\right)$ and $O D\left(n ; u_{1}, \cdots, u_{i-1}, u_{i+1}, \cdots, u_{s}\right)$ on $s-1$ variables.

The description of Equating and Killing variables applies as well to amicable orthogonal designs.
Example 2.1 Given an $\operatorname{AODs}(8 ; 1,1,2,2 ; 1,1,2,2)$, if we set $u_{3}^{\prime}=u_{3}+u_{4}$ for one of the amicable pair, then we get a new $\operatorname{AODs}(8 ; 1,1,4 ; 1,1,2,2)$ with same order but different type. We can also get new designs $A O D s(8 ; 1,1,2 ; 1,1,2,2), A O D s(8 ; 1,2,2 ; 1,1,2,2)$ by killing variables.

The existence and non-existence results for AODs are established by using the theory of quadratic forms. For future reference, a detailed description about the linkage between quadratic forms and amicable orthogonal designs can be found in Street's Thesis [3].

3 Theorems and Examples

In this section, two previously known theorems will be quoted for constructing AODs. The first contribution is due to Wolfe [4] and the second one can be found in Street's thesis [3]. An example of Street's theorem is given followed by a new construction theorem.

Theorem 3.1 (Wolfe, 1975). If there exist a pair of AODs $\left(n ; a_{1}, \ldots, a_{s} ; b_{1}, \ldots, b_{t}\right)$ and a pair of AODs $\left(m ; c_{1}, \ldots, c_{u} ; d_{1}, \ldots, d_{v}\right)$, then there exists a pair of $A O D s\left(m n ; b_{1} c_{1}, \ldots, b_{1} c_{u-1}, a_{1} c_{u}, \ldots, a_{s} c_{u} ; b_{1} d_{1}, \ldots, b_{1} d_{v}\right.$, $\left.b_{2} c_{u}, \ldots, b_{t} c_{u}\right)$.

The observation of Wolfe's theorem leads to the following corollary.

Corollary 3.1 If there exist a pair of amicable orthogonal designs $A O D s\left(n ; a_{1}, \ldots, a_{s} ; b_{1}, \ldots, b_{t}\right)$, then there exists a pair of amicable orthogonal designs of type
a) $A O D s\left(2 n ; a_{1}, \ldots, a_{s}, a_{s} ; b_{1}, \ldots, b_{t}, a_{s}\right)$,
b) $A O D s\left(2 n ; a_{1}, a_{1}, 2 a_{2} \ldots, 2 a_{s} ; 2 b_{1}, \ldots, 2 b_{t}\right)$, c) $A O D s\left(2 n ; a_{1}, a_{1}, a_{2} \ldots, a_{s} ; b_{1}, \ldots, b_{t}\right)$.

Proof. Let $X=\sum_{i=1}^{s} A_{i} x_{i}$ and $Y=\sum_{j=1}^{t} B_{j} y_{j}$ are the amicable designs in order n.
a) Let one pair be $\operatorname{AODs}(2 ; 1,1 ; 1,1)$ in Theorem 2.1.
b) Let weighing matrices $M=\left[\begin{array}{ll}0 & 1 \\ - & 0\end{array}\right], N=\left[\begin{array}{ll}1 & 1 \\ 1 & -\end{array}\right]$ and construct the matrices

$$
\begin{equation*}
P=\left(A_{1} \otimes I_{2}\right) p_{1}+\left(A_{1} \otimes M\right) p_{2}+\sum_{i=2}^{s}\left(A_{i} \otimes N\right) p_{i+1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\sum_{j=1}^{t}\left(B_{j} \otimes N\right) q_{j} \tag{3}
\end{equation*}
$$

c) Same as b), only set $N=\left[\begin{array}{ll}1 & 0 \\ 0 & -\end{array}\right]$.

Here \otimes denotes the Kronecker product and the p_{i} 's and q_{i} 's are distinct commuting indeterminates. It's obvious that all the coefficient matrices P_{i} 's and Q_{i} 's satisfy the conditions in (2) because the weighing matrices M and N have the following properties: $M=-M^{t}, N=N^{t}$, and $M N^{t}=N M^{t}$.

Theorem 3.2 (Street, 1981). Suppose (A, B) and (C, D) are both AODs $\left(n ; a_{1}, \ldots, a_{s} ; b_{1}, \ldots, b_{t}\right)$. Suppose further that there exists a weighing matrix $W(n, k)$ such that

$$
A W^{T}=W C^{T}, B W^{T}=-W D^{T}
$$

Then there exist AODs $\left(2 n ; k, a_{1}, \ldots, a_{s} ; k, b_{1}, \ldots, b_{t}\right)$.

Example 3.1 Given $W(4,4), A O D s(4 ; 1,1,1 ; 1,1,1)$, we use Theorem 3.2 to construct $A O D s(8 ; 1,1,1,4$; $1,1,1,4)$. We have

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
x_{1} & 0 & x_{3} & x_{2} \\
0 & x_{1} & -x_{2} & x_{3} \\
-x_{3} & x_{2} & x_{1} & 0 \\
-x_{2} & -x_{3} & 0 & x_{1}
\end{array}\right] ; B=\left[\begin{array}{cccc}
y_{1} & 0 & y_{2} & y_{3} \\
0 & y_{1} & y_{3} & -y_{2} \\
y_{2} & y_{3} & -y_{1} & 0 \\
y_{3} & -y_{2} & 0 & -y_{1}
\end{array}\right], C=\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & 0 \\
-x_{2} & x_{1} & 0 & x_{3} \\
-x_{3} & 0 & x_{1} & -x_{2} \\
0 & -x_{3} & x_{2} & x_{1}
\end{array}\right] ; \\
& D=\left[\begin{array}{cccc}
-y_{3} & -y_{2} & -y_{1} & 0 \\
-y_{2} & y_{3} & 0 & -y_{1} \\
-y_{1} & 0 & y_{3} & y_{2} \\
0 & -y_{1} & y_{2} & -y_{3}
\end{array}\right] \text { and } W=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right] .
\end{aligned}
$$

The above matrices satisfy the conditions of Theorem 3.2 and give $\operatorname{AODs}(8 ; 1,1,1,4 ; 1,1,1,4)$. Such an amicable pair can be used to construct $\operatorname{COD}(8 ; 1,1,1,4 ; 1,1,1,4)$ for 8 transmitter antennas communication system. The pair of AODs is given below (we use $\overline{x_{1}}$ for $-x_{1}, \overline{x_{2}}$ for $-x_{2}$ and so on).

$$
X:\left[\begin{array}{cccccccc}
x_{1} & 0 & x_{3} & x_{2} & x_{4} & x_{4} & x_{4} & x_{4} \\
0 & x_{1} & \overline{x_{2}} & x_{3} & x_{4} & \overline{x_{4}} & x_{4} & \overline{x_{4}} \\
\overline{x_{3}} & x_{2} & x_{1} & 0 & x_{4} & x_{4} & \overline{x_{4}} & \overline{x_{4}} \\
\overline{x_{2}} & \overline{x_{3}} & 0 & x_{1} & x_{4} & \overline{x_{4}} & \overline{x_{4}} & x_{4} \\
\overline{x_{4}} & \overline{x_{4}} & \overline{x_{4}} & \overline{x_{4}} & x_{1} & x_{2} & x_{3} & 0 \\
\overline{x_{4}} & x_{4} & \overline{x_{4}} & x_{4} & \overline{x_{2}} & x_{1} & 0 & x_{3} \\
\overline{x_{4}} & \overline{x_{4}} & x_{4} & x_{4} & \overline{x_{3}} & 0 & x_{1} & \overline{x_{2}} \\
\overline{x_{4}} & x_{4} & x_{4} & \overline{x_{4}} & 0 & \overline{x_{3}} & x_{2} & x_{1}
\end{array}\right] ;\left[\begin{array}{cccccccc}
y_{1} & 0 & y_{2} & y_{3} & y_{4} & y_{4} & y_{4} & y_{4} \\
0 & y_{1} & y_{3} & \overline{y_{2}} & y_{4} & \overline{y_{4}} & y_{4} & \overline{y_{4}} \\
y_{2} & y_{3} & \overline{y_{1}} & 0 & y_{4} & y_{4} & \overline{y_{4}} & \overline{y_{4}} \\
y_{3} & \overline{y_{2}} & 0 & \overline{y_{1}} & y_{4} & \overline{y_{4}} & \overline{y_{4}} & y_{4} \\
y_{4} & y_{4} & y_{4} & y_{4} & \overline{y_{3}} & \overline{y_{2}} & \overline{y_{1}} & 0 \\
y_{4} & \overline{y_{4}} & y_{4} & \overline{y_{4}} & \overline{y_{2}} & y_{3} & 0 & \overline{y_{1}} \\
y_{4} & y_{4} & \overline{y_{4}} & \overline{y_{4}} & \overline{y_{1}} & 0 & y_{3} & y_{2} \\
y_{4} & \overline{y_{4}} & \overline{y_{4}} & y_{4} & 0 & \overline{y_{1}} & y_{2} & \overline{y_{3}}
\end{array}\right]
$$

Let $\left\{X_{i}\right\}$ and $\left\{Y_{i}\right\}$ be coefficient matrices and $\left\{s_{i}=s_{i}^{R}+i s_{i}^{I}\right\}_{i=1}^{4}$ be a set of complex symbols. then the corresponding complex orthogonal space-time block code, by using equation $Z=\sum_{i=1}^{4} X_{i} s_{i}^{R}+$ $i \sum_{i=1}^{4} Y_{i} s_{i}^{I}$, is

$$
\left[\begin{array}{cccccccc}
s_{1} & 0 & s_{3}^{R}+i s_{2}^{I} & s_{2}^{R}+i s_{3}^{I} & \frac{s_{4}}{2} & \frac{s_{4}}{2} & \frac{s_{4}}{2} & \frac{s_{4}}{2} \\
0 & s_{1} & -s_{2}^{R}+i s_{3}^{I} & s_{3}^{R}-i s_{2}^{I} & \frac{s_{4}}{2} & -\frac{s_{4}}{2} & \frac{s_{4}}{2} & -\frac{s_{4}}{2} \\
-s_{3}^{R}+i s_{2}^{I} & s_{2}^{R}+i s_{3}^{I} & s_{1}^{*} & 0 & \frac{s_{4}}{2} & \frac{s_{4}}{2} & -\frac{s_{4}}{2} & -\frac{s_{4}}{2} \\
-s_{2}^{R}+i s_{3}^{I} & -s_{3}^{R}-i s_{2}^{I} & 0 & s_{1}^{*} & \frac{s_{4}}{2} & -\frac{s_{4}}{2} & -\frac{s_{4}}{2} & \frac{s_{4}}{2} \\
-\frac{s_{4}^{*}}{2} & -\frac{s_{4}^{*}}{2} & -\frac{s_{4}^{*}}{2} & -\frac{s_{4}^{*}}{2} & s_{1}^{R}-i s_{3}^{I} & s_{2}^{*} & s_{3}^{R}-i s_{1}^{I} & 0 \\
-\frac{s_{4}^{*}}{2} & \frac{s_{4}^{*}}{2} & -\frac{s_{4}^{*}}{2} & \frac{s_{4}^{*}}{2} & -s_{2} & s_{1}^{R}+i s_{3}^{I} & 0 & s_{3}^{R}-i s_{1}^{I} \\
-\frac{s_{4}^{*}}{2} & -\frac{s_{4}^{*}}{2} & \frac{s_{4}^{*}}{2} & \frac{s_{4}^{2}}{2} & -s_{3}^{R}-i s_{1}^{I} & 0 & s_{1}^{R}+i s_{3}^{I} & -s_{2}^{*} \\
-\frac{s_{4}^{*}}{2} & \frac{s_{4}^{*}}{2} & \frac{s_{4}^{*}}{2} & -\frac{s_{4}^{*}}{2} & 0 & -s_{3}^{R}-i s_{1}^{I} & s_{2} & s_{1}^{R}-i s_{3}^{I}
\end{array}\right]
$$

We now give a new theorem and all six new amicable designs derived from this theorem can be found in Table 4.3.

Theorem 3.3 If there exist a pair of amicable orthogonal designs $A O D s\left(n ; a_{1}, \ldots, a_{s} ; b_{1}, \ldots, b_{t}\right)$, then there exists a pair of amicable orthogonal designs $\operatorname{AODs}\left(2 n ; e_{1} a_{1}, e_{2} a_{2} \ldots, e_{s} a_{s} ; k_{1} b_{1}, k_{2} b_{2}, \ldots, k_{t} b_{t}\right)$ for every $e_{i}, k_{j} \in\{1,2\}$.

Proof. Let $X=\sum_{i=1}^{s} A_{i} x_{i}$ and $Y=\sum_{j=1}^{t} B_{j} y_{j}$ are the amicable designs in order n.
Let $C_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $C_{2}=\left[\begin{array}{cc}1 & 1 \\ 1 & -\end{array}\right]$, they have the following properties: $C_{1} C_{1}^{t}=I_{2}, C_{2} C_{2}^{t}=2 I_{2}$, and $C_{1} C_{2}^{t}=C_{2} C_{1}^{t}$. Construct the matrices

$$
\begin{equation*}
P=\sum_{i=1}^{s}\left(A_{i} \otimes C_{e_{i}}\right) p_{i} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\sum_{j=1}^{t}\left(B_{j} \otimes C_{k_{j}}\right) q_{j} \tag{5}
\end{equation*}
$$

Some new amicable orthogonal designs including $\operatorname{AODs}(8 ; 2,2,2,2 ; 2,2,2,2)$ and $A O D s(8 ; 1,2,2,2 ; 1,1$, $1,2)$ of order 8 are found as part of a complete search of the equivalence classes for orthogonal designs. A detailed description about the search method can be found in [11].

Example 3.2 For the $\operatorname{AODs}(8 ; 2,2,2,2 ; 2,2,2,2)$ given in [11], the corresponding $C O D(8 ; 2,2,2,2 ; 2,2$, 2,2) is a full(i.e., no zeros) complex orthogonal design which results in no wasted time slots and efficient implementation.

$$
\left[\begin{array}{cccccccc}
\frac{s_{1}}{\sqrt{2}} & \frac{s_{1}}{\sqrt{2}} & \frac{s_{2}}{\sqrt{2}} & \frac{s_{2}}{\sqrt{2}} & \frac{s_{3}}{\sqrt{2}} & \frac{s_{4}}{\sqrt{2}} & \frac{s_{3}}{\sqrt{2}} & \frac{s_{4}}{\sqrt{2}} \\
\frac{s_{1}}{\sqrt{2}} & -\frac{s_{1}}{\sqrt{2}} & \frac{s_{2}}{\sqrt{2}} & -\frac{s_{2}}{\sqrt{2}} & \frac{s_{4}^{*}}{\sqrt{2}} & -\frac{s_{3}^{*}}{\sqrt{2}} & \frac{s_{4}^{*}}{\sqrt{2}} & -\frac{s_{3}^{*}}{\sqrt{2}} \\
\frac{s_{2}^{*}}{\sqrt{2}} & \frac{s_{2}^{*}}{\sqrt{2}} & -\frac{s_{1}^{*}}{\sqrt{2}} & -\frac{s_{1}^{*}}{\sqrt{2}} & \frac{s_{3}}{\sqrt{2}} & \frac{s_{4}}{\sqrt{2}} & -\frac{s_{3}}{\sqrt{2}} & -\frac{s_{4}}{\sqrt{2}} \\
\frac{s_{2}^{*}}{\sqrt{2}} & -\frac{s_{2}^{*}}{\sqrt{2}} & -\frac{s_{1}^{*}}{\sqrt{2}} & \frac{s_{1}^{*}}{\sqrt{2}} & \frac{s_{4}^{*}}{\sqrt{2}} & -\frac{s_{3}^{*}}{\sqrt{2}} & -\frac{s_{4}^{*}}{\sqrt{2}} & \frac{s_{3}^{*}}{\sqrt{2}} \\
\frac{-s_{4}^{R}+i s_{3}^{I}}{\sqrt{2}} & \frac{-s_{3}^{R}+i s_{4}^{I}}{\sqrt{2}} & \frac{-s_{4}^{R}+i s_{3}^{I}}{\sqrt{2}} & \frac{-s_{3}^{R}+i s_{4}^{I}}{\sqrt{2}} & \frac{s_{2}^{R}-i s_{1}^{I}}{\sqrt{2}} & \frac{s_{2}^{R}-i s_{1}^{I}}{\sqrt{2}} & \frac{s_{1}^{R}-i s_{2}^{I}}{\sqrt{2}} & \frac{s_{1}^{R}-i s_{2}^{I}}{\sqrt{2}} \\
\frac{-s_{3}^{R}-i s_{4}^{I}}{\sqrt{2}} & \frac{s_{4}^{R}+i s_{3}^{I}}{\sqrt{2}} & \frac{-s_{3}^{R}-i s_{4}^{I}}{\sqrt{2}} & \frac{s_{4}^{R}+i s_{3}^{I}}{\sqrt{2}} & \frac{s_{2}^{R}-i s_{1}^{I}}{\sqrt{2}} & \frac{-s_{2}^{R}+i s_{1}^{I}}{\sqrt{2}} & \frac{s_{1}^{R}-i s_{2}^{I}}{\sqrt{2}} & \frac{-s_{1}^{R}+i s_{2}^{I}}{\sqrt{2}} \\
\frac{-s_{4}^{R}+i s_{3}^{I}}{\sqrt{2}} & \frac{-s_{3}^{R}+i s_{4}^{I}}{\sqrt{2}} & \frac{s_{4}^{R}-i s_{3}^{I}}{\sqrt{2}} & \frac{s_{3}^{R}-i s_{4}^{I}}{\sqrt{2}} & \frac{s_{1}^{R}+i s_{2}^{I}}{\sqrt{2}} & \frac{s_{1}^{R}+i s_{2}^{I}}{\sqrt{2}} & \frac{-s_{2}^{R}-i s_{1}^{I}}{\sqrt{2}} & \frac{-s_{2}^{R}-i s_{1}^{I}}{\sqrt{2}} \\
\frac{-s_{3}^{R}-i s_{4}^{I}}{\sqrt{2}} & \frac{s_{4}^{R}+i s_{3}^{I}}{\sqrt{2}} & \frac{s_{3}^{R}+i s_{4}^{I}}{\sqrt{2}} & \frac{-s_{4}^{R}-i s_{3}^{I}}{\sqrt{2}} & \frac{s_{1}^{R}+i s_{2}^{I}}{\sqrt{2}} & \frac{-s_{1}^{R}-i s_{2}^{I}}{\sqrt{2}} & \frac{-s_{2}^{R}-i s_{1}^{I}}{\sqrt{2}} & \frac{s_{2}^{R}+i s{ }_{1}^{I}}{\sqrt{2}}
\end{array}\right]
$$

4 Amicable Pairs with Order Eight

Given an $\operatorname{AOD} s\left(8 ; u_{1}, \cdots, u_{s} ; v_{1}, \cdots, v_{t}\right)$, then the maximum achievable value for $s+t$ is 8 according to Corollary 5.32 in [1]. We summarize all existence and non-existence results of AODs which are of $4-4$-variables type, $3-4$-variables type or 3 - 3 -variables type in Table 4.1, Table 4.2 and Table 4.3 respectively. In these tables
\star denotes such an AODs is newly constructed (remains undecided in Street's paper [6]),
\times denotes such an AODs does not exist,
\otimes denotes such an AODs is newly found non-existent (remains undecided in Street's paper [6]),
U denotes such an AODs remains unknown,
\diamond denotes such an AODs can be constructed using Equating and Killing variables concept,
C denotes such an AODs can be constructed using Corollary 3.1,
T1 denotes such an AODs can be constructed using Theorem 3.1 (Wolfe),
T2 denotes such an AODs can be constructed using Theorem 3.2 (Street),
T3 denotes such an AODs can be constructed using Theorem 3.3.
S denotes such an AODs is found by exhaustive search.

	1111	1114	1122	2222	1112	1124	1222	1113	1223	1115	1123	1133
1111	C	\otimes	\otimes	\times								
1114		T2	U	\times								
1122			T1	\times								
2222				\star S	\times							
1112					T1	\times	\star S	\times	\times	\times	\times	\times
1124						\times						
1222							U	\times	\times	\times	\times	\times
1113								U	\times	\times	\times	\times
1223									\times	\times	\times	\times
1115										\times	\times	\times
1123											\otimes	\times
1133												\times

Table 4.1 4-4-variables type of AODs

	1111	1114	1122	2222	1112	1124	1222	1113	1223	1123	1115	1133
111	\diamond	\diamond	U	\times	\diamond	\times	U	U	\times	\times	\times	\times
114	\otimes	\diamond	$\star \diamond$	\times	U	\times	U	U	\times	\times	\times	\times
122	\otimes	U	\diamond	\times	\diamond	\times	U	U	\times	\times	\times	\times
224	\times	\times	U	C	\times	C	U	\times	\times	\times	\times	\times
112	\diamond	U	\diamond	\times	\diamond	\times	$\star \mathrm{S}$	\times	\times	\otimes	\times	\times
124	\otimes	\diamond	U	\times	U	\times	U	\times	\times	\otimes	\times	\times
222	\otimes	U	\diamond	$\times \diamond$	U	U	U	\times	\times	\otimes	\times	\times
113	\times	\times	\times	\times	\diamond	\times	U	U	\times	\otimes	\times	\times
134	\times											
223	\times	\times	\times	\times	\times	\times	U	\times	\times	\otimes	\times	\times
123	\otimes	U	\diamond	\times	\times	\times	\times	U	\times	\otimes	\times	\times
115	\otimes	\diamond	U	\times	\times	\times	\times	\times	U	\otimes	\times	\times
133	\times	T 1	\times	\times								
116	\times											
125	\times											
233	\times											

Table 4.2 3-4-variables type of AODs

	111	114	122	224	112	124	222	113	223	134	123	115	133	116	125	233
111	\diamond	\diamond	T3	\times	T3	\diamond	*T3	\diamond	U	\times	U	\diamond	U	\times	\times	\times
114		T3	*T3	T3	T3	T3	T3	U	U	\times	\diamond	\diamond	U	\times	\times	U
122			T3	*T3	T3	*T3	T3	\diamond	U	\times	\diamond	U	U	\times	\times	U
224				T3	T3	T3	T3	\times	U	\diamond	U	\times	U	\diamond	\diamond	C
112					T3	*T3	T3	\diamond	* \diamond	\times	\diamond	U	\diamond	\times	\times	U
124						T3	*T3	U	U	\times	U	\diamond	\diamond	\times	\times	U
222							T3	U	U	U	\diamond	U	U	U	U	U
113								\diamond	U	\times	U	U	\diamond	\times	\times	\times
223									U	\times	U	U	\diamond	\times	\times	U
134										\times						
123											\diamond	U	\diamond	\times	\times	U
115												\diamond	\diamond	\times	\times	\times
133													\diamond	\times	\times	\times
116														\times	\times	\times
125															\times	\times
233																U

Table 4.3 3-3-variables type of AODs

It is worth mentioning that amicable orthogonal designs are also important in the construction of orthogonal designs. Using our new designs $\operatorname{AODs}(8 ; 2,3 ; 1,1,1,3)$ given in [11], $A O D s(8 ; 1,1,2 ; 1,2,2,2)$ and Theorem 5.97 in [1] gives us the following new orthogonal designs in order 32: $O D(32 ; 1,1,2,2,2,2$, $3,6,6), O D(32 ; 2,2,2,3,7,9), O D(32 ; 1,1,1,1,2,2,2,3,6)$ and $O D(32 ; 1,1,1,2,2,2,3,9)$.

References

[1] A.V.Geramita and J.Seberry, Orthogonal Designs,Quadratic Forms and Hadamard Matrices, ser. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York and Basel, vol.43, 1979.
[2] A.V.Geramita and J.M.Geramita, Complex orthogonal designs, J.Combinatorial Theory, ser.A,vol.25, pp.211-225, 1978.
[3] D.J.Street, Cyclotomy and designs, Ph.D.Dissertation, University of Sydney, N.S. W, 1981.
[4] W.W.Wolfe, Orthogonal designs-amicable orthogonal designs-some algebraic and combinatorial techniques, Ph.D.Dissertation, Queen's University, Kingston, Ontario,1975.
[5] V.Tarokh, H.Jafarkhani, and A.R.Calderbank, Space-time block codes from orthogonal designs, IEEE Trans.Inform.Theory, vol.45, pp.1456-1467, July 1999.
[6] D.J.Street, Amicable orthogonal designs of order eight, Journal of Australian Mathematical So$\operatorname{ciety}(\mathrm{A}), 33(1982)$, pp.23-29.
[7] X.B.Liang, Orthogonal designs with maximal rates, IEEE Trans. Inform.Theory, Vol.49, No.10, pp.2468-2503, Oct. 2003.
[8] S.M.Alamouti, A simple transmit diversity scheme for wireless communications, IEEE J. Select. Areas Commun., Vol.16, pp.1451-1458, Oct.1998.
[9] L.C.Tran, J.Seberry, B.J.Wysocki, T.A.Wysocki, T.Xia and Y.Zhao, Two new complex orthogonal space-time codes for 8 transmit antennas, IEE Electronics Lett., Vol.40, No.1, pp.55-56, Jan. 2004.
[10] J.Seberry, L.C.Tran, Y.Wang, B.J.Wysocki, T.A.Wysocki, T.Xia and Y.Zhao, New complex orthogonal space-time block codes of order eight, Signal Processing for Telecommunications and Multimedia, Ser.Multimedia Systems and Applications., Vol.27, pp.173-182, Springer, New York, 2004.
[11] Y.Zhao, Y.Wang and J.Seberry, On amicable orthogonal designs of order 8, Australasian. J. Combin., (to appear).

