University of Wollongong

Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

1-1-2006

Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes

Y. Zhao University of Wollongong, yue_zhao@uow.edu.au

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Tianbing Xia University of Wollongong, txia@uow.edu.au

Y. Wang University of Wollongong

Beata J. Wysocki University of Wollongong, bjw@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Zhao, Y.; Seberry, Jennifer; Xia, Tianbing; Wang, Y.; Wysocki, Beata J.; Wysocki, Tadeusz A.; and Tran, Le Chung: Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes 2006. https://ro.uow.edu.au/infopapers/358

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes

Abstract

New amicable orthogonal designs AODs(8; 1; 1; 1; 2; 2; 2), AODs(8; 1; 1; 4; 1; 2; 2), AODs(8; 1; 2; 2; 2; 2, 2, 4), AODs(8; 1; 2; 2; 1; 2; 4), AODs(8; 1; 1; 2; 1; 2; 4), AODs(8; 1; 2; 2; 2; 2), AODs(8; 1; 1; 4; 1; 1; 2; 2), AODs(8; 2; 2; 2; 2; 2; 2; 2; 2; 2) and AODs(8; 1; 1; 1; 2; 1; 2; 2) are found by applying a new theorem or by an exhaustive search. Also some previously undecided cases of amicable pairs are demonstrated to be non-existent after a complete search of the equivalence classes for orthogonal designs.

Keywords

2000 Mathematics subject classification (Amer. Math. Soc.): 05B30, 15A36.

Disciplines

Physical Sciences and Mathematics

Publication Details

This article was originally published as Zhao, Y, Seberry, J, Xia, T, Wang, Y, Wysocki, BJ, Wysocki, TA and Tran, LC, Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes, Australasian Journal of Combinatorics, 34, 2006, 137-144.

Authors

Y. Zhao, Jennifer Seberry, Tianbing Xia, Y. Wang, Beata J. Wysocki, Tadeusz A. Wysocki, and Le Chung Tran

Amicable Orthogonal Designs of Order 8 for Complex Space-Time Block Codes

Ying Zhao¹, Jennifer Seberry¹, Tianbing Xia¹, Yejing Wang¹, Beata J. Wysocki², Tadeusz A. Wysocki², Le Chung Tran²
¹School of Information Technology and Computer Science University of Wollongong, Wollongong, NSW, 2522, Australia
²School of Electrical, Computer and Telecommunications Engineering University of Wollongong, Wollongong, NSW, 2522, Australia
²School of Wollongong, Wollongong, NSW, 2522, Australia

Abstract

New amicable orthogonal designs AODs(8; 1, 1, 1; 2, 2, 2), AODs(8; 1, 1, 4; 1, 2, 2), AODs(8; 1, 2, 2; 2, 2, 4), AODs(8; 1, 2, 2; 1, 2, 4), AODs(8; 1, 1, 2; 1, 2, 4), AODs(8; 1, 2, 4; 2, 2, 2), AODs(8; 1, 1, 4; 1, 1, 2, 2), AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) and AODs(8; 1, 1, 1, 2; 1, 2, 2, 2) are found by applying a new theorem or by an exhaustive search. Also some previously undecided cases of amicable pairs are demonstrated to be non-existent after a complete search of the equivalence classes for orthogonal designs.

2000 Mathematics subject classification (Amer. Math. Soc.): 05B30, 15A36.

1 Motivation

Complex orthogonal space-time block codes(STBCs) based on Amicable Orthogonal Designs(AODs) [1] are known for relatively simple receiver structure and minimum processing delay when dealing with complex signal constellations. The simplest complex STBCs is an Alamouti code [8] for two transmit antennas, which is based on an amicable orthogonal design of order 2. The complex STBCs for more than two transmit antennas cannot achieve rate one [7], but they can still provide full diversity. To date, only the complex STBCs based on full(i.e., no zeros) designs of order two and four have been proposed [5][8]. The known complex STBCs for higher number of transmit antennas, e.g. eight, have zeros in the code matrices that results in the waste of several time slots when no useful information is being transmitted from a given antenna. Moreover, those zeros make implementation of the transmitter rather difficult at high symbol rates, as it requires the transmitter to be switched on and off frequently. It has been shown that by utilizing some amicable pairs, especially the new AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) which is the only full design with 4 variables of order 8, the new complex codes have much better error performance than the conventional ones [9][10].

2 Introduction and Basic Definitions

Definition 2.1 Let x_1, x_2, \dots, x_t be commuting indeterminates. An orthogonal design X of order *n* and type (s_1, s_2, \dots, s_t) denoted $OD(n; s_1, \dots, s_t)$, where s_i are positive integers, is a matrix of order *n* with entries from $\{0, \pm x_1, \dots, \pm x_t\}$, such that

$$XX^T = (\sum_{i=1}^t s_i x_i^2) I_n,$$

where X^T denotes the transpose of X and I_n is the identity matrix of order n.

Alternatively, each row of X has s_i entries of the type $\pm x_i$ and the rows are pairwise-orthogonal under the Euclidean inner product [1]. The above description of X applies to the columns of X as well.

Definition 2.2 Let X be an $OD(n; u_1, \dots, u_s)$ on the variables $\{x_1, \dots, x_s\}$ and Y an $OD(n; v_1, \dots, v_t)$ on the variables $\{y_1, \dots, y_t\}$. It is said that X and Y are *amicable orthogonal designs* $AODs(n; u_1, \dots, u_s; v_1, \dots, v_t)$ if $XY^T = YX^T$.

In the complex multiple antenna communication systems, each transmitted complex symbol contains both real and imaginary part. Hence, the concept of complex orthogonal designs used for STBCs is different from the definition introduced in Geramita-Geramita [2].

Definition 2.3 A complex orthogonal design for STBC (CODSTBC, throughout this paper referred as COD for short) Z of order n is an $n \times n$ matrix on the complex indeterminates s_1, \dots, s_t , with entries chosen from $0, \pm s_1, \dots, \pm s_t$, their conjugates $\pm s_1^*, \dots, \pm s_t^*$, or their product with $i = \sqrt{-1}$ such that

$$Z^{H}Z = (\sum_{i=1}^{t} |s_{i}|^{2})I_{n},$$
(1)

where Z^H denotes the conjugate transpose of Z and I_n is the identity matrix of order n.

Given an orthogonal design over s variables, we can get new designs of the same order but different types by setting variables equal to one another or zero. The concept of "Equating and Killing variables" was first stated as Lemma 4.4 in [1].

Definition 2.4 Let X be an $OD(n; u_1, \dots, u_s)$ on the variables $\{x_1, \dots, x_s\}$, then there exists $OD(n; u_1, \dots, u_i + u_j, \dots, u_s)$ and $OD(n; u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_s)$ on s-1 variables.

The description of Equating and Killing variables applies as well to amicable orthogonal designs.

Example 2.1 Given an AODs(8; 1, 1, 2, 2; 1, 1, 2, 2), if we set $u'_3 = u_3 + u_4$ for one of the amicable pair, then we get a new AODs(8; 1, 1, 4; 1, 1, 2, 2) with same order but different type. We can also get new designs AODs(8; 1, 1, 2; 1, 1, 2, 2), AODs(8; 1, 2, 2; 1, 1, 2, 2) by killing variables.

The existence and non-existence results for AODs are established by using the theory of quadratic forms. For future reference, a detailed description about the linkage between quadratic forms and amicable orthogonal designs can be found in Street's Thesis [3].

3 Theorems and Examples

In this section, two previously known theorems will be quoted for constructing AODs. The first contribution is due to Wolfe [4] and the second one can be found in Street's thesis [3]. An example of Street's theorem is given followed by a new construction theorem.

Theorem 3.1 (Wolfe, 1975). If there exist a pair of AODs $(n; a_1, ..., a_s; b_1, ..., b_t)$ and a pair of AODs $(m; c_1, ..., c_u; d_1, ..., d_v)$, then there exists a pair of AODs $(mn; b_1c_1, ..., b_1c_{u-1}, a_1c_u, ..., a_sc_u; b_1d_1, ..., b_1d_v, b_2c_u, ..., b_tc_u)$.

The observation of Wolfe's theorem leads to the following corollary.

Corollary 3.1 If there exist a pair of amicable orthogonal designs $AODs(n; a_1, ..., a_s; b_1, ..., b_t)$, then there exists a pair of amicable orthogonal designs of type

- $a)AODs(2n; a_1, ..., a_s, a_s; b_1, ..., b_t, a_s),$
- $b)AODs(2n; a_1, a_1, 2a_2..., 2a_s; 2b_1, ..., 2b_t),$
- $c)AODs(2n; a_1, a_1, a_2..., a_s; b_1, ..., b_t).$

Proof. Let $X = \sum_{i=1}^{s} A_i x_i$ and $Y = \sum_{j=1}^{t} B_j y_j$ are the amicable designs in order n. a) Let one pair be AODs(2; 1, 1; 1, 1) in Theorem 2.1.

b) Let weighing matrices $M = \begin{bmatrix} 0 & 1 \\ - & 0 \end{bmatrix}$, $N = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$ and construct the matrices

$$P = (A_1 \otimes I_2)p_1 + (A_1 \otimes M)p_2 + \sum_{i=2}^s (A_i \otimes N)p_{i+1}$$
(2)

and

$$Q = \sum_{j=1}^{t} (B_j \otimes N) q_j \tag{3}$$

c) Same as b), only set $N = \begin{bmatrix} 1 & 0 \\ 0 & - \end{bmatrix}$.

Here \otimes denotes the Kronecker product and the p_i 's and q_i 's are distinct commuting indeterminates. It's obvious that all the coefficient matrices P_i 's and Q_i 's satisfy the conditions in (2) because the weighing matrices M and N have the following properties: $M = -M^t$, $N = N^t$, and $MN^t = NM^t$.

Theorem 3.2 (Street, 1981). Suppose (A, B) and (C, D) are both AODs $(n; a_1, ..., a_s; b_1, ..., b_t)$. Suppose further that there exists a weighing matrix W(n, k) such that

$$AW^T = WC^T, BW^T = -WD^T$$

Then there exist AODs $(2n; k, a_1, ..., a_s; k, b_1, ..., b_t)$.

Example 3.1 Given W(4, 4), AODs(4; 1, 1, 1; 1, 1), we use Theorem 3.2 to construct AODs(8; 1, 1, 1, 4; 1, 1, 1, 4). We have

$$A = \begin{bmatrix} x_1 & 0 & x_3 & x_2 \\ 0 & x_1 & -x_2 & x_3 \\ -x_3 & x_2 & x_1 & 0 \\ -x_2 & -x_3 & 0 & x_1 \end{bmatrix}; B = \begin{bmatrix} y_1 & 0 & y_2 & y_3 \\ 0 & y_1 & y_3 & -y_2 \\ y_2 & y_3 & -y_1 & 0 \\ y_3 & -y_2 & 0 & -y_1 \end{bmatrix}, C = \begin{bmatrix} x_1 & x_2 & x_3 & 0 \\ -x_2 & x_1 & 0 & x_3 \\ -x_3 & 0 & x_1 & -x_2 \\ 0 & -x_3 & x_2 & x_1 \end{bmatrix};$$
$$D = \begin{bmatrix} -y_3 & -y_2 & -y_1 & 0 \\ -y_2 & y_3 & 0 & -y_1 \\ -y_1 & 0 & y_3 & y_2 \\ 0 & -y_1 & y_2 & -y_3 \end{bmatrix} and W = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & - & 1 & - \\ 1 & 1 & - & - \\ 1 & - & - & 1 \end{bmatrix}.$$

The above matrices satisfy the conditions of Theorem 3.2 and give AODs(8; 1, 1, 1, 4; 1, 1, 1, 4). Such an amicable pair can be used to construct COD(8; 1, 1, 1, 4; 1, 1, 1, 4) for 8 transmitter antennas communication system. The pair of AODs is given below (we use \bar{x}_1 for $-x_1$, \bar{x}_2 for $-x_2$ and so on).

	x_1	0	x_3	x_2	x_4	x_4	x_4	x_4		y_1	0	y_2	y_3	y_4	y_4	y_4	y_4
	0	x_1	$\bar{x_2}$	x_3	x_4	$\bar{x_4}$	x_4	$\bar{x_4}$		0	y_1	y_3	$\bar{y_2}$	y_4	$\bar{y_4}$	y_4	$\bar{y_4}$
	$\bar{x_3}$	x_2	x_1	0	x_4	x_4	$\bar{x_4}$	$\bar{x_4}$		y_2	y_3	$\bar{y_1}$	0	y_4	y_4	$\bar{y_4}$	$\bar{y_4}$
X:	$\bar{x_2}$	$\bar{x_3}$	0	x_1	x_4	$\bar{x_4}$	$\bar{x_4}$	x_4	; Y :	y_3	$\bar{y_2}$	0	$\bar{y_1}$	y_4	$\bar{y_4}$	$\bar{y_4}$	y_4
	$\bar{x_4}$	$\bar{x_4}$	$\bar{x_4}$	$\bar{x_4}$	x_1	x_2	x_3	0		y_4	y_4	y_4	y_4	$\bar{y_3}$	$\bar{y_2}$	$\bar{y_1}$	0
	$\bar{x_4}$	x_4	$\bar{x_4}$	x_4	$\bar{x_2}$	x_1	0	x_3		y_4	$\bar{y_4}$	y_4	$\bar{y_4}$	$\bar{y_2}$	y_3	0	$\bar{y_1}$
	$\bar{x_4}$	$\bar{x_4}$	x_4	x_4	$\bar{x_3}$	0	x_1	$\bar{x_2}$		y_4	y_4	$\bar{y_4}$	$\bar{y_4}$	$\bar{y_1}$	0	y_3	y_2
	$\bar{x_4}$	x_4	x_4	$\bar{x_4}$	0	$\bar{x_3}$	x_2	x_1		y_4	$\bar{y_4}$	$\bar{y_4}$	y_4	0	$\bar{y_1}$	y_2	$\bar{y_3}$

Let $\{X_i\}$ and $\{Y_i\}$ be coefficient matrices and $\{s_i = s_i^R + is_i^I\}_{i=1}^4$ be a set of complex symbols. then the corresponding complex orthogonal space-time block code, by using equation $Z = \sum_{i=1}^4 X_i s_i^R + i \sum_{i=1}^4 Y_i s_i^I$, is

$$\begin{bmatrix} s_1 & 0 & s_3^R + is_2^I & s_2^R + is_3^I & \frac{s_4}{2} & \frac{s_4}{2} & \frac{s_4}{2} & \frac{s_4}{2} & \frac{s_4}{2} \\ 0 & s_1 & -s_2^R + is_3^I & s_3^R - is_2^I & \frac{s_4}{2} & -\frac{s_4}{2} & \frac{s_4}{2} & -\frac{s_4}{2} \\ -s_3^R + is_2^I & s_2^R + is_3^I & s_1^* & 0 & \frac{s_4}{2} & \frac{s_4}{2} & -\frac{s_4}{2} & -\frac{s_4}{2} \\ -s_2^R + is_3^I & -s_3^R - is_2^I & 0 & s_1^* & \frac{s_4}{2} & -\frac{s_4}{2} & -\frac{s_4}{2} & -\frac{s_4}{2} \\ -\frac{s_4^*}{2} & -\frac{s_4^*}{2} & -\frac{s_4^*}{2} & -\frac{s_4^*}{2} & -\frac{s_4^*}{2} & s_1^R - is_3^I & s_2^* & s_3^R - is_1^I & 0 \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & \frac{s_4^*}{2} & -s_2 & s_1^R + is_3^I & 0 & s_3^R - is_1^I \\ -\frac{s_4^*}{2} & -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -s_3^R - is_1^I & 0 & s_1^R + is_3^I & -s_2^* \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & 0 & -s_3^R - is_1^I & s_2 & s_1^R - is_3^I \\ -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} & -\frac{s_4^*}{2} & \frac{s_4^*}{2} & \frac{s_4^*}{2} &$$

We now give a new theorem and all six new amicable designs derived from this theorem can be found in Table 4.3.

Theorem 3.3 If there exist a pair of amicable orthogonal designs $AODs(n; a_1, ..., a_s; b_1, ..., b_t)$, then there exists a pair of amicable orthogonal designs $AODs(2n; e_1a_1, e_2a_2..., e_sa_s; k_1b_1, k_2b_2, ..., k_tb_t)$ for every $e_i, k_j \in \{1, 2\}$.

Proof. Let $X = \sum_{i=1}^{s} A_i x_i$ and $Y = \sum_{j=1}^{t} B_j y_j$ are the amicable designs in order n. Let $C_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 1 \\ 1 & - \end{bmatrix}$, they have the following properties: $C_1 C_1^t = I_2, C_2 C_2^t = 2I_2$, and $C_1 C_2^t = C_2 C_1^t$. Construct the matrices

$$P = \sum_{i=1}^{s} (A_i \otimes C_{e_i}) p_i \tag{4}$$

and

$$Q = \sum_{j=1}^{t} (B_j \otimes C_{k_j}) q_j \tag{5}$$

Some new amicable orthogonal designs including AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) and AODs(8; 1, 2, 2, 2; 1, 1, 1, 2) of order 8 are found as part of a complete search of the equivalence classes for orthogonal designs. A detailed description about the search method can be found in [11].

Example 3.2 For the AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) given in [11], the corresponding COD(8; 2, 2, 2, 2; 2, 2, 2, 2, 2, 2, 2, 2, 2) is a full(i.e., no zeros) complex orthogonal design which results in no wasted time slots and efficient implementation.

ſ	$\begin{array}{c} \frac{s_1}{\sqrt{2}} \\ \frac{s_1}{\sqrt{2}} \\ \frac{s_2}{\sqrt{2}} \\ \frac{s_2}{\sqrt{2}} \\ \frac{s_2}{\sqrt{2}} \\ \frac{s_2}{\sqrt{2}} \\ \frac{s_3}{\sqrt{2}} \\ \frac{s_4}{\sqrt{2}} \\$	$\begin{array}{c} \frac{s_1}{\sqrt{2}} \\ -\frac{s_1}{\sqrt{2}} \\ \frac{s_2}{\sqrt{2}} \\ -\frac{s_2}{\sqrt{2}} \\ -\frac{s_2}{\sqrt{2}} \\ \frac{s_4^R + is_4}{\sqrt{2}} \end{array}$	$\begin{array}{c} \frac{s_2}{\sqrt{2}} \\ \frac{s_2}{\sqrt{2}} \\ -\frac{s_1}{\sqrt{2}} \\ -\frac{s_1}{\sqrt{2}} \\ \frac{-s_4 + is_3}{\sqrt{2}} \\ \frac{-s_4 - is_3}{\sqrt{2}} \\ \frac{s_4 - is_3}{\sqrt{2}} \\ \frac{s_4 + is_4}{\sqrt{2}} \\ \frac{s_3 + is_4}{\sqrt{2}} \end{array}$	$\begin{array}{c} \frac{s_2}{\sqrt{2}} \\ -\frac{s_1}{\sqrt{2}} \\ -\frac{s_1}{\sqrt{2}} \\ \frac{s_1}{\sqrt{2}} \\ \frac{s_1}{\sqrt{2}}$	$\begin{array}{c} \frac{s_3}{\sqrt{2}} \\ \frac{s_4}{\sqrt{2}} \\ \frac{s_4}{\sqrt{2}} \\ \frac{s_2}{\sqrt{2}} \\ \frac{s_2^{-} - is_1^{-1}}{\sqrt{2}} \\ \frac{s_2^{-} - is_1^{-1}}{\sqrt{2}} \\ \frac{s_1^{-} + is_2^{-1}}{\sqrt{2}} \\ \frac{s_1^{-} + is_2^{-1}}{2$	$\begin{array}{c} \frac{s_4}{\sqrt{2}} \\ -\frac{s_3}{\sqrt{2}} \\ \frac{s_4}{\sqrt{2}} \\ -\frac{s_3}{\sqrt{2}} \\ \frac{s_2^{-is_1}}{\sqrt{2}} \\ \frac{s_2^{-is_1}}{\sqrt{2}} \\ \frac{s_1^{-is_1}}{\sqrt{2}} \\ \frac{s_1^{-is_2}}{\sqrt{2}} \\$	$\begin{array}{c} \frac{s_3}{\sqrt{2}} \\ \frac{s_4}{\sqrt{2}} \\ -\frac{s_4}{\sqrt{2}} \\ -\frac{s_4}{\sqrt{2}} \\ \frac{s_1^R - is_2}{\sqrt{2}} \\ \frac{s_1^R - is_2}{\sqrt{2}} \\ \frac{s_1^R - is_2}{\sqrt{2}} \\ \frac{-s_2^R - is_1}{\sqrt{2}} \\ \frac{-s_2^R - is_1}{\sqrt{2}} \\ \frac{-s_2^R - is_1}{\sqrt{2}} \end{array}$	$ \begin{bmatrix} \frac{s_4}{\sqrt{2}} \\ -\frac{s_1}{\sqrt{2}} \\ -\frac{s_4}{\sqrt{2}} \\ \frac{s_1^{R}-is_2}{\sqrt{2}} \\ \frac{s_1^{R}-is_2}{\sqrt{2}} \\ \frac{-s_1^{R}-is_1^{I}}{\sqrt{2}} \\ \frac{-s_2^{R}-is_1^{I}}{\sqrt{2}} \\ \frac{-s_2^{R}-is_1^{I}}{\sqrt{2}} \\ \frac{s_2^{R}+is_1^{I}}{\sqrt{2}} \\ \frac{s_2^{R}+is_1^{I}}{\sqrt{2}} \end{bmatrix} $
	$\sqrt{2}$	$-\frac{1}{\sqrt{2}}$	$\overline{\sqrt{2}}_{a^*}$	$-\frac{1}{\sqrt{2}}$	$\sqrt{2}$	$-\frac{3}{\sqrt{2}}$	$\sqrt{2}$	$-\frac{1}{\sqrt{2}}$
	$\frac{s_2}{\sqrt{2}}$	$\frac{s_2}{\sqrt{2}}$	$-\frac{s_1}{\sqrt{2}}$	$-\frac{s_1}{\sqrt{2}}$	$\frac{s_3}{\sqrt{2}}$	$\frac{s_4}{\sqrt{2}}$	$-\frac{s_3}{\sqrt{2}}$	$-\frac{s_4}{\sqrt{2}}$
	$\frac{s_2^*}{\sqrt{2}}$	$-\frac{s_{2}^{*}}{\sqrt{2}}$	$-\frac{s_1^*}{\sqrt{2}}$	$\frac{s_1^*}{\sqrt{2}}$	$\frac{s_4^*}{\sqrt{2}}$	$-\frac{s_{3}^{*}}{\sqrt{2}}$	$-\frac{s_4^*}{\sqrt{2}}$	$\frac{s_3^*}{\sqrt{2}}$
	$\frac{-s_4^{R}+is_3^{I}}{\sqrt{2}}$	$\frac{-s_3^R+is_4^I}{\sqrt{2}}$	$\frac{-s_4^R+is_3^I}{\sqrt{2}}$	$\frac{-s_{3}^{R}+is_{4}^{I}}{\sqrt{2}}$	$\frac{s_2^R - is_1^I}{\sqrt{2}}$	$\frac{s_2^R - is_1^I}{\sqrt{2}}$	$\frac{s_1^R - is_2^I}{\sqrt{2}}$	$\frac{s_1^R - is_2^I}{\sqrt{2}}$
	$\frac{\sqrt{2}}{-s_3^R - is_4^I}$	$s_4^R + is_3^I$	$\frac{\sqrt{2}}{-s_3^R - is_4^I}$	$s_4^R + is_3^I$	$s_2^R - is_1^I$	$\frac{\sqrt{2}}{-s_2^R + is_1^I}$	$\frac{\sqrt{2}}{s_1^R - is_2^I}$	$\frac{\sqrt{2}}{-s_1^R + is_2^I}$
	$-s_4^{R}+is_2^{I}$	$-s_2^R + is_4^I$	$\sqrt{2}$ $s_4^R - is_2^I$	$s_2^R - i s_4^I$	$\sqrt{2}$ $s_1^R + i s_2^I$	$\sqrt{2} s_{1}^{R} + i s_{2}^{I}$	$\sqrt{2} - s_{2}^{R} - i s_{1}^{I}$	$\sqrt{2}_{-s_{2}^{R}-is_{1}^{I}}$
	$\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{2}{\sqrt{2}}$	$\frac{2}{\sqrt{2}}$
L	$\frac{-s_3 - is_4}{\sqrt{2}}$	$\frac{s_4 + is_3}{\sqrt{2}}$	$\frac{s_3 + is_4}{\sqrt{2}}$	$\frac{-s_4 - is_3}{\sqrt{2}}$	$\frac{s_1 + is_2}{\sqrt{2}}$	$\frac{-s_1 - is_2}{\sqrt{2}}$	$\frac{-s_2 - is_1}{\sqrt{2}}$	$\frac{s_2 + is_1}{\sqrt{2}}$

4 Amicable Pairs with Order Eight

Given an $AODs(8; u_1, \dots, u_s; v_1, \dots, v_t)$, then the maximum achievable value for s + t is 8 according to Corollary 5.32 in [1]. We summarize all existence and non-existence results of AODs which are of 4-4-variables type, 3-4-variables type or 3-3-variables type in Table 4.1, Table 4.2 and Table 4.3 respectively. In these tables

- \star denotes such an AODs is newly constructed (remains undecided in Street's paper [6]),
- \times $\,$ denotes such an AODs does not exist,
- \otimes denotes such an AODs is newly found non-existent (remains undecided in Street's paper [6]),
- U denotes such an AODs remains unknown,
- \diamond $\,$ denotes such an AODs can be constructed using Equating and Killing variables concept,
- C denotes such an AODs can be constructed using Corollary 3.1,
- T1 denotes such an AODs can be constructed using Theorem 3.1 (Wolfe),
- T2 denotes such an AODs can be constructed using Theorem 3.2 (Street),
- T3 denotes such an AODs can be constructed using Theorem 3.3.
- S denotes such an AODs is found by exhaustive search.

	1111	1114	1122	2222	1112	1124	1222	1113	1223	1115	1123	1133
1111	С	\otimes	\otimes	×	×	×	×	×	×	×	×	×
1114		T2	U	×	×	×	×	×	×	×	×	×
1122			T1	×	×	×	×	×	×	×	×	×
2222				$\star s$	×	×	×	×	×	×	×	×
1112					T1	×	$\star s$	×	×	×	×	×
1124						×	×	×	×	×	×	×
1222							U	×	×	×	×	×
1113								U	×	×	×	×
1223									×	×	×	×
1115										×	×	×
1123											\otimes	×
1133												×

Table 4.1 4-4-variables type of AODs

	1111	1114	1122	2222	1112	1124	1222	1113	1223	1123	1115	1133
111	\$	\diamond	U	×	\diamond	×	U	U	×	×	×	×
114	\otimes	\diamond	*◊	×	U	×	U	U	×	×	×	×
122	\otimes	U	\diamond	×	\diamond	×	U	U	×	×	×	×
224	×	×	U	\mathbf{C}	×	\mathbf{C}	U	×	×	×	×	×
112	\$	U	\diamond	×	\diamond	×	$\star S$	×	×	\otimes	×	×
124	\otimes	\diamond	U	×	U	×	U	×	×	\otimes	×	×
222	\otimes	U	\diamond	*◊	U	U	U	×	×	\otimes	×	×
113	×	×	×	×	\diamond	×	U	U	×	\otimes	×	×
134	×	×	×	×	×	×	×	×	×	×	×	×
223	×	×	×	×	×	×	U	×	×	\otimes	×	×
123	\otimes	U	\diamond	×	×	×	×	U	×	\otimes	×	×
115	\otimes	\diamond	U	×	×	×	×	×	U	\otimes	×	×
133	×	×	×	×	×	×	×	×	×	T1	×	×
116	×	×	×	×	×	×	×	×	×	×	×	×
125	×	×	×	×	×	×	×	×	×	×	×	×
233	×	×	×	×	×	×	×	×	×	×	×	×

Table 4.2 3-4-variables type of AODs

	111	114	122	224	112	124	222	113	223	134	123	115	133	116	125	233
111	\$	\$	T3	×	T3	\$	$\star T3$	\$	U	×	U	\$	U	×	×	×
114		T3	$\star T3$	T3	T3	T3	T3	U	U	×	\diamond	\diamond	U	×	×	U
122			T3	$\star T3$	T3	$\star T3$	T3	\diamond	U	×	\diamond	U	U	×	×	U
224				T3	T3	T3	T3	×	U	\diamond	U	×	U	\diamond	\diamond	\mathbf{C}
112					T3	$\star T3$	T3	\diamond	*◊	×	\diamond	U	\diamond	×	×	U
124						T3	$\star T3$	U	U	×	U	\diamond	\diamond	×	×	U
222							T3	U	U	U	\diamond	U	U	U	U	U
113								\diamond	U	×	U	\mathbf{U}	\diamond	×	×	×
223									U	×	U	\mathbf{U}	\diamond	×	×	U
134										×	×	×	×	×	×	×
123											\diamond	U	\diamond	×	×	U
115												\diamond	\diamond	×	×	×
133													\diamond	×	×	×
116														×	×	×
125															×	×
233																U

Table 4.3 3-3-variables type of AODs

It is worth mentioning that amicable orthogonal designs are also important in the construction of orthogonal designs. Using our new designs AODs(8; 2, 3; 1, 1, 1, 3) given in [11], AODs(8; 1, 1, 2; 1, 2, 2, 2) and Theorem 5.97 in [1] gives us the following new orthogonal designs in order 32: OD(32; 1, 1, 2, 2, 2, 2, 3, 6, 6), OD(32; 2, 2, 2, 3, 7, 9), OD(32; 1, 1, 1, 1, 2, 2, 2, 3, 6) and OD(32; 1, 1, 1, 2, 2, 2, 3, 9).

References

- A.V.Geramita and J.Seberry, Orthogonal Designs, Quadratic Forms and Hadamard Matrices, ser. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York and Basel, vol.43, 1979.
- [2] A.V.Geramita and J.M.Geramita, Complex orthogonal designs, J.Combinatorial Theory, ser.A,vol.25, pp.211-225, 1978.
- [3] D.J.Street, Cyclotomy and designs, Ph.D.Dissertation, University of Sydney, N.S.W, 1981.
- [4] W.W.Wolfe, Orthogonal designs-amicable orthogonal designs-some algebraic and combinatorial techniques, *Ph.D.Dissertation, Queen's University, Kingston, Ontario*, 1975.
- [5] V.Tarokh, H.Jafarkhani, and A.R.Calderbank, Space-time block codes from orthogonal designs, *IEEE Trans.Inform. Theory*, vol.45, pp.1456-1467, July 1999.
- [6] D.J.Street, Amicable orthogonal designs of order eight, Journal of Australian Mathematical Society(A), 33(1982), pp.23-29.
- [7] X.B.Liang, Orthogonal designs with maximal rates, *IEEE Trans. Inform. Theory*, Vol.49, No.10, pp.2468-2503, Oct.2003.
- [8] S.M.Alamouti, A simple transmit diversity scheme for wireless communications, *IEEE J. Select.* Areas Commun., Vol.16, pp.1451-1458, Oct.1998.
- [9] L.C.Tran, J.Seberry, B.J.Wysocki, T.A.Wysocki, T.Xia and Y.Zhao, Two new complex orthogonal space-time codes for 8 transmit antennas, *IEE Electronics Lett.*, Vol.40, No.1, pp.55-56, Jan.2004.
- [10] J.Seberry, L.C.Tran, Y.Wang, B.J.Wysocki, T.A.Wysocki, T.Xia and Y.Zhao, New complex orthogonal space-time block codes of order eight, *Signal Processing for Telecommunications and Multimedia, Ser.Multimedia Systems and Applications.*, Vol.27, pp.173-182, Springer, New York, 2004.
- [11] Y.Zhao, Y.Wang and J.Seberry, On amicable orthogonal designs of order 8, Australasian. J. Combin., (to appear).