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Abstract

New amicable orthogonal designs AODs(8; 1, 1, 1; 2, 2, 2), AODs(8; 1, 1, 4; 1, 2, 2), AODs(8; 1, 2,

2; 2, 2, 4), AODs(8; 1, 2, 2; 1, 2, 4), AODs(8; 1, 1, 2; 1, 2, 4), AODs(8; 1, 2, 4; 2, 2, 2), AODs(8; 1, 1, 4;

1, 1, 2, 2), AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) and AODs(8; 1, 1, 1, 2; 1, 2, 2, 2) are found by applying a new

theorem or by an exhaustive search. Also some previously undecided cases of amicable pairs are

demonstrated to be non-existent after a complete search of the equivalence classes for orthogonal

designs.

2000 Mathematics subject classification (Amer. Math. Soc.): 05B30, 15A36.

1 Motivation

Complex orthogonal space-time block codes(STBCs) based on Amicable Orthogonal Designs(AODs)

[1] are known for relatively simple receiver structure and minimum processing delay when dealing

with complex signal constellations. The simplest complex STBCs is an Alamouti code [8] for two

transmit antennas, which is based on an amicable orthogonal design of order 2. The complex STBCs

for more than two transmit antennas cannot achieve rate one [7], but they can still provide full

diversity. To date, only the complex STBCs based on full(i.e., no zeros) designs of order two and four

have been proposed [5][8]. The known complex STBCs for higher number of transmit antennas, e.g.



eight, have zeros in the code matrices that results in the waste of several time slots when no useful

information is being transmitted from a given antenna. Moreover, those zeros make implementation

of the transmitter rather difficult at high symbol rates, as it requires the transmitter to be switched

on and off frequently. It has been shown that by utilizing some amicable pairs, especially the new

AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) which is the only full design with 4 variables of order 8, the new complex

codes have much better error performance than the conventional ones [9][10].

2 Introduction and Basic Definitions

Definition 2.1 Let x1, x2, · · · , xt be commuting indeterminates. An orthogonal design X of order

n and type (s1, s2, · · · , st) denoted OD(n; s1, · · · , st), where si are positive integers, is a matrix of

order n with entries from {0,±x1, · · · , ± xt}, such that

XXT = (
t∑

i=1

six
2
i )In,

where XT denotes the transpose of X and In is the identity matrix of order n.

Alternatively, each row of X has si entries of the type ±xi and the rows are pairwise-orthogonal under

the Euclidean inner product [1]. The above description of X applies to the columns of X as well.

Definition 2.2 Let X be an OD(n;u1, · · · , us) on the variables {x1, · · · , xs} and Y an OD(n; v1, · · · , vt)

on the variables {y1, · · · , yt}. It is said that X and Y are amicable orthogonal designs AODs(n;u1, · · · , us;

v1, · · · , vt) if XY T = Y XT .

In the complex multiple antenna communication systems, each transmitted complex symbol contains

both real and imaginary part. Hence, the concept of complex orthogonal designs used for STBCs is

different from the definition introduced in Geramita-Geramita [2].

Definition 2.3 A complex orthogonal design for STBC (CODSTBC, throughout this paper referred

as COD for short) Z of order n is an n × n matrix on the complex indeterminates s1, · · · , st, with

entries chosen from 0,±s1, · · · ,±st, their conjugates ±s∗1, · · · ,±s∗t , or their product with i =
√−1

such that

ZHZ = (
t∑

i=1

|si|2)In, (1)

where ZH denotes the conjugate transpose of Z and In is the identity matrix of order n.

Given an orthogonal design over s variables, we can get new designs of the same order but different

types by setting variables equal to one another or zero. The concept of “Equating and Killing variables”

was first stated as Lemma 4.4 in [1].



Definition 2.4 Let X be an OD(n; u1, · · · , us) on the variables {x1, · · · , xs}, then there exists

OD(n;u1, · · · , ui + uj , · · · , us) and OD(n; u1, · · · , ui−1, ui+1, · · · , us) on s− 1 variables.

The description of Equating and Killing variables applies as well to amicable orthogonal designs.

Example 2.1 Given an AODs(8; 1, 1, 2, 2; 1, 1, 2, 2), if we set u
′
3=u3 +u4 for one of the amicable pair,

then we get a new AODs(8; 1, 1, 4; 1, 1, 2, 2) with same order but different type. We can also get new

designs AODs(8; 1, 1, 2; 1, 1, 2, 2), AODs(8; 1, 2, 2; 1, 1, 2, 2) by killing variables.

The existence and non-existence results for AODs are established by using the theory of quadratic

forms. For future reference, a detailed description about the linkage between quadratic forms and

amicable orthogonal designs can be found in Street’s Thesis [3].

3 Theorems and Examples

In this section, two previously known theorems will be quoted for constructing AODs. The first

contribution is due to Wolfe [4] and the second one can be found in Street’s thesis [3]. An example of

Street’s theorem is given followed by a new construction theorem.

Theorem 3.1 (Wolfe, 1975). If there exist a pair of AODs (n; a1, ..., as; b1, ..., bt) and a pair of AODs

(m; c1, ..., cu; d1, ..., dv), then there exists a pair of AODs (mn; b1c1, ..., b1cu−1, a1cu, ..., ascu; b1d1, ..., b1dv,

b2cu, ..., btcu).

The observation of Wolfe’s theorem leads to the following corollary.

Corollary 3.1 If there exist a pair of amicable orthogonal designs AODs(n; a1, ..., as; b1, ..., bt), then

there exists a pair of amicable orthogonal designs of type

a)AODs(2n; a1, ..., as, as; b1, ..., bt, as),

b)AODs(2n; a1, a1, 2a2..., 2as; 2b1, ..., 2bt),

c)AODs(2n; a1, a1, a2..., as; b1, ..., bt).

Proof. Let X =
∑s

i=1 Aixi and Y =
∑t

j=1 Bjyj are the amicable designs in order n.

a) Let one pair be AODs(2; 1, 1; 1, 1) in Theorem 2.1.

b) Let weighing matrices M =


 0 1

− 0


, N =


 1 1

1 −


 and construct the matrices

P = (A1 ⊗ I2)p1 + (A1 ⊗M)p2 +
s∑

i=2

(Ai ⊗N)pi+1 (2)



and

Q =
t∑

j=1

(Bj ⊗N)qj (3)

c) Same as b), only set N =


 1 0

0 −


 .

Here ⊗ denotes the Kronecker product and the pi’s and qi’s are distinct commuting indeterminates.

It’s obvious that all the coefficient matrices Pi’s and Qi’s satisfy the conditions in (2) because the

weighing matrices M and N have the following properties: M = −M t, N = N t, and MN t = NM t.

¤

Theorem 3.2 (Street, 1981). Suppose (A,B) and (C, D) are both AODs (n; a1, ..., as; b1, ..., bt).

Suppose further that there exists a weighing matrix W (n, k) such that

AWT = WCT , BWT = −WDT

Then there exist AODs (2n; k, a1, ..., as; k, b1, ..., bt).

Example 3.1 Given W (4, 4), AODs(4; 1, 1, 1; 1, 1, 1), we use Theorem 3.2 to construct AODs(8; 1, 1, 1, 4;

1, 1, 1, 4). We have

A =




x1 0 x3 x2

0 x1 −x2 x3

−x3 x2 x1 0

−x2 −x3 0 x1




; B =




y1 0 y2 y3

0 y1 y3 −y2

y2 y3 −y1 0

y3 −y2 0 −y1




, C =




x1 x2 x3 0

−x2 x1 0 x3

−x3 0 x1 −x2

0 −x3 x2 x1




;

D =




−y3 −y2 −y1 0

−y2 y3 0 −y1

−y1 0 y3 y2

0 −y1 y2 −y3




and W =




1 1 1 1

1 − 1 −
1 1 − −
1 − − 1




.

The above matrices satisfy the conditions of Theorem 3.2 and give AODs(8; 1, 1, 1, 4; 1, 1, 1, 4). Such

an amicable pair can be used to construct COD(8; 1, 1, 1, 4; 1, 1, 1, 4) for 8 transmitter antennas com-

munication system. The pair of AODs is given below (we use x̄1 for −x1, x̄2 for −x2 and so on).

X :




x1 0 x3 x2 x4 x4 x4 x4

0 x1 x̄2 x3 x4 x̄4 x4 x̄4

x̄3 x2 x1 0 x4 x4 x̄4 x̄4

x̄2 x̄3 0 x1 x4 x̄4 x̄4 x4

x̄4 x̄4 x̄4 x̄4 x1 x2 x3 0

x̄4 x4 x̄4 x4 x̄2 x1 0 x3

x̄4 x̄4 x4 x4 x̄3 0 x1 x̄2

x̄4 x4 x4 x̄4 0 x̄3 x2 x1




; Y :




y1 0 y2 y3 y4 y4 y4 y4

0 y1 y3 ȳ2 y4 ȳ4 y4 ȳ4

y2 y3 ȳ1 0 y4 y4 ȳ4 ȳ4

y3 ȳ2 0 ȳ1 y4 ȳ4 ȳ4 y4

y4 y4 y4 y4 ȳ3 ȳ2 ȳ1 0

y4 ȳ4 y4 ȳ4 ȳ2 y3 0 ȳ1

y4 y4 ȳ4 ȳ4 ȳ1 0 y3 y2

y4 ȳ4 ȳ4 y4 0 ȳ1 y2 ȳ3






Let {Xi} and {Yi} be coefficient matrices and {si = sR
i + isI

i }4i=1 be a set of complex symbols. then

the corresponding complex orthogonal space-time block code, by using equation Z =
∑4

i=1 Xis
R
i +

i
∑4

i=1 Yis
I
i , is




s1 0 sR
3 + isI

2 sR
2 + isI

3
s4
2

s4
2

s4
2

s4
2

0 s1 −sR
2 + isI

3 sR
3 − isI

2
s4
2

− s4
2

s4
2

− s4
2

−sR
3 + isI

2 sR
2 + isI

3 s∗1 0 s4
2

s4
2

− s4
2

− s4
2

−sR
2 + isI

3 −sR
3 − isI

2 0 s∗1
s4
2

− s4
2

− s4
2

s4
2

− s∗4
2

− s∗4
2

− s∗4
2

− s∗4
2

sR
1 − isI

3 s∗2 sR
3 − isI

1 0

− s∗4
2

s∗4
2

− s∗4
2

s∗4
2

−s2 sR
1 + isI

3 0 sR
3 − isI

1

− s∗4
2

− s∗4
2

s∗4
2

s∗4
2

−sR
3 − isI

1 0 sR
1 + isI

3 −s∗2
− s∗4

2

s∗4
2

s∗4
2

− s∗4
2

0 −sR
3 − isI

1 s2 sR
1 − isI

3




We now give a new theorem and all six new amicable designs derived from this theorem can be found

in Table 4.3.

Theorem 3.3 If there exist a pair of amicable orthogonal designs AODs(n; a1, ..., as; b1, ..., bt), then

there exists a pair of amicable orthogonal designs AODs(2n; e1a1, e2a2..., esas; k1b1, k2b2, ..., ktbt) for

every ei, kj ∈ {1, 2}.

Proof. Let X =
∑s

i=1 Aixi and Y =
∑t

j=1 Bjyj are the amicable designs in order n.

Let C1 =


 1 0

0 1


 and C2 =


 1 1

1 −


, they have the following properties: C1C

t
1 = I2, C2C

t
2 = 2I2,

and C1C
t
2 = C2C

t
1. Construct the matrices

P =
s∑

i=1

(Ai ⊗ Cei)pi (4)

and

Q =
t∑

j=1

(Bj ⊗ Ckj )qj (5)

¤

Some new amicable orthogonal designs including AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) and AODs(8; 1, 2, 2, 2; 1, 1,

1, 2) of order 8 are found as part of a complete search of the equivalence classes for orthogonal designs.

A detailed description about the search method can be found in [11].

Example 3.2 For the AODs(8; 2, 2, 2, 2; 2, 2, 2, 2) given in [11], the corresponding COD(8; 2, 2, 2, 2; 2, 2,

2, 2) is a full(i.e., no zeros) complex orthogonal design which results in no wasted time slots and efficient

implementation.






s1√
2

s1√
2

s2√
2

s2√
2

s3√
2

s4√
2

s3√
2

s4√
2

s1√
2

− s1√
2

s2√
2

− s2√
2

s∗4√
2

− s∗3√
2

s∗4√
2

− s∗3√
2

s∗2√
2

s∗2√
2

− s∗1√
2

− s∗1√
2

s3√
2

s4√
2

− s3√
2

− s4√
2

s∗2√
2

− s∗2√
2

− s∗1√
2

s∗1√
2

s∗4√
2

− s∗3√
2

− s∗4√
2

s∗3√
2

−sR
4 +isI

3√
2

−sR
3 +isI

4√
2

−sR
4 +isI

3√
2

−sR
3 +isI

4√
2

sR
2 −isI

1√
2

sR
2 −isI

1√
2

sR
1 −isI

2√
2

sR
1 −isI

2√
2

−sR
3 −isI

4√
2

sR
4 +isI

3√
2

−sR
3 −isI

4√
2

sR
4 +isI

3√
2

sR
2 −isI

1√
2

−sR
2 +isI

1√
2

sR
1 −isI

2√
2

−sR
1 +isI

2√
2

−sR
4 +isI

3√
2

−sR
3 +isI

4√
2

sR
4 −isI

3√
2

sR
3 −isI

4√
2

sR
1 +isI

2√
2

sR
1 +isI

2√
2

−sR
2 −isI

1√
2

−sR
2 −isI

1√
2

−sR
3 −isI

4√
2

sR
4 +isI

3√
2

sR
3 +isI

4√
2

−sR
4 −isI

3√
2

sR
1 +isI

2√
2

−sR
1 −isI

2√
2

−sR
2 −isI

1√
2

sR
2 +isI

1√
2




4 Amicable Pairs with Order Eight

Given an AODs(8; u1, · · · , us; v1, · · · , vt), then the maximum achievable value for s + t is 8 according

to Corollary 5.32 in [1]. We summarize all existence and non-existence results of AODs which are

of 4-4-variables type, 3-4-variables type or 3-3-variables type in Table 4.1, Table 4.2 and Table 4.3

respectively. In these tables

? denotes such an AODs is newly constructed (remains undecided in Street’s paper [6]),

× denotes such an AODs does not exist,

⊗ denotes such an AODs is newly found non-existent (remains undecided in Street’s paper [6]),

U denotes such an AODs remains unknown,

¦ denotes such an AODs can be constructed using Equating and Killing variables concept,

C denotes such an AODs can be constructed using Corollary 3.1,

T1 denotes such an AODs can be constructed using Theorem 3.1 (Wolfe),

T2 denotes such an AODs can be constructed using Theorem 3.2 (Street),

T3 denotes such an AODs can be constructed using Theorem 3.3.

S denotes such an AODs is found by exhaustive search.

1111 1114 1122 2222 1112 1124 1222 1113 1223 1115 1123 1133

1111 C ⊗ ⊗ × × × × × × × × ×
1114 T2 U × × × × × × × × ×
1122 T1 × × × × × × × × ×
2222 ?S × × × × × × × ×
1112 T1 × ?S × × × × ×
1124 × × × × × × ×
1222 U × × × × ×
1113 U × × × ×
1223 × × × ×
1115 × × ×
1123 ⊗ ×
1133 ×

Table 4.1 4-4-variables type of AODs



1111 1114 1122 2222 1112 1124 1222 1113 1223 1123 1115 1133

111 ¦ ¦ U × ¦ × U U × × × ×
114 ⊗ ¦ ?¦ × U × U U × × × ×
122 ⊗ U ¦ × ¦ × U U × × × ×
224 × × U C × C U × × × × ×
112 ¦ U ¦ × ¦ × ?S × × ⊗ × ×
124 ⊗ ¦ U × U × U × × ⊗ × ×
222 ⊗ U ¦ ?¦ U U U × × ⊗ × ×
113 × × × × ¦ × U U × ⊗ × ×
134 × × × × × × × × × × × ×
223 × × × × × × U × × ⊗ × ×
123 ⊗ U ¦ × × × × U × ⊗ × ×
115 ⊗ ¦ U × × × × × U ⊗ × ×
133 × × × × × × × × × T1 × ×
116 × × × × × × × × × × × ×
125 × × × × × × × × × × × ×
233 × × × × × × × × × × × ×

Table 4.2 3-4-variables type of AODs

111 114 122 224 112 124 222 113 223 134 123 115 133 116 125 233

111 ¦ ¦ T3 × T3 ¦ ?T3 ¦ U × U ¦ U × × ×
114 T3 ?T3 T3 T3 T3 T3 U U × ¦ ¦ U × × U

122 T3 ?T3 T3 ?T3 T3 ¦ U × ¦ U U × × U

224 T3 T3 T3 T3 × U ¦ U × U ¦ ¦ C

112 T3 ?T3 T3 ¦ ?¦ × ¦ U ¦ × × U

124 T3 ?T3 U U × U ¦ ¦ × × U

222 T3 U U U ¦ U U U U U

113 ¦ U × U U ¦ × × ×
223 U × U U ¦ × × U

134 × × × × × × ×
123 ¦ U ¦ × × U

115 ¦ ¦ × × ×
133 ¦ × × ×
116 × × ×
125 × ×
233 U

Table 4.3 3-3-variables type of AODs

It is worth mentioning that amicable orthogonal designs are also important in the construction of or-

thogonal designs. Using our new designs AODs(8; 2, 3; 1, 1, 1, 3) given in [11], AODs(8; 1, 1, 2; 1, 2, 2, 2)

and Theorem 5.97 in [1] gives us the following new orthogonal designs in order 32: OD(32; 1, 1, 2, 2, 2, 2,

3, 6, 6), OD(32; 2, 2, 2, 3, 7, 9), OD(32; 1, 1, 1, 1, 2, 2, 2, 3, 6) and OD(32; 1, 1, 1, 2, 2, 2, 3, 9).
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