
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

January 1998

Covert Distributed Computing Using Java Through Web Spoofing Covert Distributed Computing Using Java Through Web Spoofing

J. Horton
University of Wollongong, jeffh@uow.edu.au

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Horton, J. and Seberry, Jennifer: Covert Distributed Computing Using Java Through Web Spoofing 1998.
https://ro.uow.edu.au/infopapers/352

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37003726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages

Covert Distributed Computing Using Java Through Web Spoofing Covert Distributed Computing Using Java Through Web Spoofing

Abstract Abstract
We use the Web Spoofing attack reported by Cohen and also the Secure Internet Programming Group at
Princeton University to give a new method of achieving covert distributed computing with Java. We show
how Java applets that perform a distributed computation can be inserted into vulnerable Web pages. This
has the added feature that users can rejoin a computation at some later date through bookmarks made
while the pages previously viewed were spoofed. Few signs of anything unusual can be observed. Users
need not knowingly revisit a particular Web page to be victims. We also propose a simple countermeasure
against such a spoofing attack, which would be useful to help users detect the presence of Web Spoofing.
Finally, we introduce the idea of browser users, as clients of Web-based services provided by third parties,
"paying" for these services by running a distributed computation applet for a short period of time.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
This conference paper was originally published as Horton, J and Seberry, J, Covert Distributed Computing
Using Java Through Web Spoofing, Information Security and Privacy, ACISP '98, Lecture Notes in
Computer Science, 1438, 1998, 48-57. Copyright Springer-Verlag. Original journal available here.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/352

http://www.springer.com/east/home/computer/lncs?SGWID=5-164-0-0-0&SHORTCUT=www.springer.com/lncs
https://ro.uow.edu.au/infopapers/352

Covert Distributed Computing Using JavaThrough Web Spoo�ngJe�rey Horton and Jennifer SeberryCentre for Computer Security ResearchSchool of Information Technology and Computer ScienceUniversity of WollongongNorth�elds Avenue, Wollongongfjeffh, j.seberryg@cs.uow.edu.auAbstract. We use the Web Spoo�ng attack reported by Cohen and alsothe Secure Internet Programming Group at Princeton University to givea new method of achieving covert distributed computing with Java. Weshow how Java applets that perform a distributed computation can beinserted into vulnerable Web pages. This has the added feature that userscan rejoin a computation at some later date through bookmarks madewhile the pages previously viewed were spoofed. Few signs of anythingunusual can be observed. Users need not knowingly revisit a particularWeb page to be victims.We also propose a simple countermeasure against such a spoo�ng attack,which would be useful to help users detect the presence of Web Spoo�ng.Finally, we introduce the idea of browser users, as clients of Web-basedservices provided by third parties, \paying" for these services by runninga distributed computation applet for a short period of time.1 IntroductionThere are many problems in computer science which may be solved most easilythrough the application of brute force. An example of such a problem is deter-mination of the key used to encrypt a block of data with an algorithm suchas DES (Data Encryption Standard). The computer time required could be ob-tained with the full knowledge and cooperation of the individuals controlling theresources, or covertly without their knowledge by some means. A past suggestionfor the covert accomplishment of tasks such as this involved the use of computerviruses to perform distributed computations [1].Java is a general purpose object-oriented programming language introducedin 1995 by Sun Microsystems. It is similar in many ways to C and C++. Pro-grams written in Java may be compiled to a platform-independent bytecodewhich can be executed on any platform to which the Java runtime system hasbeen ported; the Java bytecodes are commonly simply interpreted, however speedof execution of Java programs can be improved by using a runtime system whichtranslates the bytecodes into native machine instructions at execution time. Suchsystems, incorporating these Just-in-time (JIT) compilers, are becoming more

common. The Java system includes support for easy use of multiple threads ofexecution, and network communication at a low level using sockets, or a highlevel using URL objects [2].One of the major uses seen so far for Java is the creation of applets to provideexecutable content for HTML pages on the World Wide Web. Common Webbrowsers such as Netscape Navigator and Microsoft Internet Explorer includesupport for downloading and executing Java applets. There are various securityrestrictions imposed upon applets that are intended to make it safer for users toexecute applets from unknown sources on their computers. One such restrictionis that applets are usually only allowed to open a network connection to thehost from which the applet was downloaded. A number of problems with Javasecurity have been discovered by various researchers [5] [7].Java could also be applied to performing a distributed computation. Java'sstraightforward support for networking and multiple threads of execution makeconstruction of an applet to perform the computing tasks simple. The possibilityof using Java applets to covertly or otherwise perform a distributed computationis discussed by several researchers [4] [5] [7, pp. 112{114] [8].There have been no suggestions, however, as to how this might be accom-plished without requiring browser users to knowingly visit a particular page orWeb server at the beginning or sometime during the course of each session withtheir Web browser, so that the applet responsible for performing the computa-tion can be loaded. This paper describes how the Web spoo�ng idea describedby the Secure Internet Programming Group at Princeton University can be usedto pass a Java applet to perform a distributed computation to a client. Theadvantage is that clients do not have to knowingly (re)visit a particular siteeach time, but may rejoin the computation through bookmarks made during aprevious session.There will be some indications visible in the browser when rejoining a compu-tation through a bookmark that the user has not reached the site they may havebeen expecting; however, these signs are small, and the authors believe, mostlycorrectable using the same techniques as employed in a vanilla Web Spoo�ngattack.2 About Web Spoo�ngWeb Spoo�ng was �rst described briey by Cohen [3]. The Web Spoo�ng attackwas later discussed in greater detail and elaborated upon by the Secure InternetProgramming Group at Princeton University [6]. Among other contributions,the Princeton group introduced the use of JavaScript for the purposes of con-cealing the operation of the Web Spoo�ng attack and preventing the browseruser from escaping from the spoofed context. JavaScript is a scripting languagethat is supported by some common Web browsers. JavaScript programs may beembedded in an HTML page, and may be executed when the HTML page isloaded by the browser, or when certain events occur, such as the browser userholding the mouse pointer over a hyperlink on the page.

The main application of Web Spoo�ng is seen as being surveillance, or per-haps tampering: the attacking server will be able to observe and/or modify theWeb tra�c between a user being spoofed and some Web server, including anyform data entered by the user and the responses of the server; it is pointed outthat \secure" connections will not help | the user's browser has a secure con-nection with the attacking server, which in turn has a secure connection withthe server being spoofed [6].Web spoo�ng works as follows: when an attacking serverwww.attacker.orgreceives a request for an HTML document, before supplying the document everyURL in the document is rewritten to refer to the attacking server instead, butincluding the original URL in some way | so that the attacking server is ableto fetch the document that is actually desired by the browser user. For example,http://www.altavista.digital.com/might become something like:http://www.attacker.org/f.acgi?f=http://www.altavista.digital.com/There are other ways in which the spoofed URL may be constructed. The Prince-ton group gives an example [6].The �rst part of the URL (before the `?') speci�es a program that will beexecuted by the server. This is a CGI (Common Gateway Interface) program.For those not familiar with CGI programs, the part of the URL following the `?'represents an argument or set of arguments that is passed to the CGI programspeci�ed by the �rst part of the URL. More than one argument can be passedin this way | arguments are separated by ampersand (`&') characters.So, when the user of the browser clicks on a spoofed URL, the attacking serveris contacted. It fetches the HTML document the user wishes to view, using theURL encoded in the spoofed URL, rewrites the URLs in the document, andsupplies the modi�ed document to the user. Not all URLs need be rewritten topoint at the attacking server, only those which are likely to specify a documentcontaining HTML, which is likely to contain URLs that need to be rewritten.In particular, images do not generally need to be spoofed. However, as manyimages would be speci�ed using only a partial URL (relative to the URL of theHTML page containing the image's URL), the URLs would need to be rewrittenin full, to point at the appropriate image on the server being spoofed.There will be some evidence that spoo�ng is taking place, however. For ex-ample, the browser's status line and location line will display rewritten URLs,which an alert user would notice. The Princeton group claim to have succeededat concealing such evidence from the user through the use of JavaScript. UsingJavaScript to display the proper (non-spoofed) URLs on the status line whenthe user holds the mouse pointer above a hyperlink on the Web page is straight-forward in most cases; using JavaScript to conceal the other evidence of spoo�ngis less obvious.In the course of implementing a program to perform spoo�ng, we have ob-served that some pages using JavaScript do not seem amenable to spoo�ng, es-pecially if the JavaScript itself directs the browser to load particular Web pages.

It seems that the JavaScript has di�culty constructing appropriate URLs if thecurrent document is being spoofed, due to the unusual form of the spoofed URLs.We have implemented only the spoo�ng component of the attack, as well asthe simplest use of JavaScript for concealment purposes, that of displaying non-spoofed URLs on the browser status line where necessary, for the purposes ofdemonstration; the aspects of the attack that provide more sophisticated forms ofconcealment were not implemented. We believe that the work on concealment ofthe Web Spoo�ng attack done by the Princeton group can pro�tably be appliedto concealing the additional evidence when using Web spoo�ng to perform adistributed computation.2.1 Some HTML Tags to ModifyAny HTML tag which can include an attribute specifying a URL may poten-tially require modi�cation for spoo�ng to take place. Common tags that requiremodi�cation include:{ Hyperlinks, which are generated by the HREF attribute of the <A> tag. A newHTML document is fetched and displayed when one of these is selected bythe user.{ Images displayed on an HTML page are speci�ed using the tag. Itsattributes SRC and LOWSRC, which indicate from where the browser is to fetchthe image data, may require adjustment if present.{ Forms into which the user may enter data are speci�ed using the <FORM>tag. Its ACTION attribute can contain the URL of a CGI program that willprocess the data entered by the user when the user indicates that they wishto submit the form.{ Java applets are included in an HTML page using the <APPLET> tag. Sinceapplets are capable of communicating through a socket connected to an arbi-trary port on the applet's server of origin, the applet should be downloadeddirectly from that server. The default otherwise is to obtain the applet'scode from the same server as supplied the HTML page containing the ap-plet. An applet's code can be obtained from an arbitrary host on the Internet,speci�ed using the CODEBASE attribute. For spoo�ng to function properly inthe presence of Java applets, the CODEBASE attribute must be added if notpresent. Otherwise, it must be ensured that the CODEBASE attribute is anabsolute URL.These are just a few of the more common tags with attributes that requiremodi�cation to undertake a spoo�ng attack.3 Application of Web Spoo�ng to Distributed ComputingThe Secure Internet Programming Group suggest that Web Spoo�ng allows tam-pering with the pages returned to the user, by inserting \misleading or o�ensivematerial" [6]. We observe that the opportunity to tamper with the pages allows

a Java applet to perform part of a distributed computation to be inserted intothe page. Tampering with the spoofed pages in this manner and for this purposehas not been previously suggested.As Web pages being spoofed must have their URLs rewritten to point at theattacking server, it is a simple matter to insert the HTML code to include a Javaapplet into each page in the course of performing the other modi�cations to thepage. The Java applet can be set to have only a small \window" on the page,which makes it di�cult for users to detect its presence on the Web pages thatthey view.When the browser encounters a Java applet for the �rst time during a session,it usually starts Java, displaying a message to this e�ect in the status line ofthe browser. It may be possible to conceal this using JavaScript if necessary(although this has not been tested); however, if Java applets become increasinglycommon and therefore unremarkable, concealment may be deemed unnecessary.Users may bookmark spoofed pages during the course of their session. Ifthis occurs, the user will rejoin the computation when next that bookmark isaccessed. Rather than knowingly (re)visiting a particular site to acquire a copy ofan applet, the user unknowingly contacts an attacking server which incorporatesthe applet into each page supplied to the user.A site that employed distributed computing with Java applets and Webspoo�ng could potentially be running applets not only on machines of browserusers who visit the site directly, but also on the machines of users who visit abookmark made after having directly visited the site on some previous occa-sion. Thus, the \pool" of users who could be contributing to a computation isnot limited to those that directly visit the site, as it is with other approachesto covert distributed computing with Java. For example, consider a Web serverthat receives on average 10,000 hits/day. If the operators of the Web serverelect to incorporate an applet to perform distributed computation in each pagedownloaded from the server, they will steal some CPU time from an averageof 10,000 computers each day. However, by using Web spoo�ng as well, on thesecond day after starting the spoo�ng attack and supplying the applet, CPUtime is being stolen from the (on average) 10,000 users who knowingly (re)visitthe site, and also from users who have visited the site on the previous day andmade bookmarks to other sites subsequently visited.The level of load on the attacking server can be controlled by redirectingif necessary some requests directly to the actual server containing the resource,foregoing the opportunity to performWeb Spoo�ng, and of stealing computationtime from some unsuspecting browser user, but keeping the load on the serverat reasonable levels.An attacker might decide to increase the likelihood of bookmarks referring tospoofed pages by modifying aWeb search engine to return answers to queries thatincorporate spoofed links, but not require the search engine itself to participatein the spoo�ng (of course, if the pages of an unmodi�ed search engine are beingspoofed when a search is performed, rewriting of the URLs in the response willtake place automatically).

The user's Web browser will display a URL in its location line which exhibitsthe presence of spoo�ng when revisiting a bookmark made of a spoofed page;however, the authors believe that this may be concealed after the page has com-menced loading using JavaScript, although again this has not been implemented.3.1 An ImplementationFor reasons of simplicity, the Web spoo�ng attack for the purposes of demon-stration was implemented using a CGI program. An o�-the-shelf Web server wasused to handle HTTP requests.The applet to demonstrate the performance of a simple key cracking task wasof course implemented in Java. The program which kept track of which subprob-lems had been completed (without �nding a solution) and that distributed newsubproblems to client applets was also written in Java (the \problem server").Client applets use threads, one for performing a computation, another forcommunicating with the server to periodically report the status of their partic-ular computation to the problem server. Periodic reporting to the server guardsagainst the loss of an entire computation should the client applet be terminatedbefore completion of the entire computation, for example, by the user exitingthe Web browser in which the applet is being run.The thread performing the computation sleeps periodically, to avoid usingexcessive resources and so unintentionally revealing its presence.The problem server keeps records using the IP numbers of the computers onwhich a client applet is running, and will allow only one instance of an appletto run on each computer, to avoid degrading performance too noticeably. A newclient applet will be permitted to commence operations if some amount of timehas elapsed without a report from the original client applet.4 Countermeasures?4.1 Client-side PrecautionsObviously, disabling Java is an excellent way for a user to ensure that he or shedoes not participate unwillingly in such an attack, as the Java applet to performthe computation will be unable to run. The disadvantage of this approach is thatapplets performing services of potential utility to the user will also not be ableto run.The merits of disabling JavaScript are briey discussed by the Princetongroup [6]. This prevents the Web spoo�ng from being concealed from the clients.How many clients would take notice of the signs is an interesting question, espe-cially given that in the future clients may have become accustomed to the use ofstrange URLs such as those produced by a Web spoo�ng program, as there areseveral sites providing legitimate services with a Web spoo�ng-style program1.1 \The Anonymizer": see http://www.anonymizer.com/ [6]; the \Zippy Filter": seehttp://www.metahtml.com/apps/zippy/welcome.mhtml [6]; the \Fool's Tools" havebeen used to \reshape" HTML: http://las.alfred.edu/~pav/fooltools.html.

4.2 Server-side PrecautionsDuring the preparation of a demonstration of the approach to distributed com-puting with Java described here, it was observed that there were some sites whosepages included counters of the number of times that a site had been visited, andlinks to other CGI programs, all of which failed to produce the expected re-sults when the page containing the counter, or link to CGI program, was beingspoofed. Note that a page visit counter is commonly implemented by using aCGI program through an HTML tag.The problem was eventually traced to an improperly set Referer: �eld in theHTTP request sent by the spoo�ng program to fetch an HTML page from theserver being spoofed. The Referer: �eld that was originally being sent includeda spoofed URL.The Referer: �eld of an HTTP request is used to specify the address ofthe resource, most commonly a Web page, that contained the URL referenceto the resource which is the subject of the HTTP request, in cases where theURL reference was obtained from a source that may be referred to by a URL;this �eld would be empty if the source of the request was the keyboard, forexample [9] [10].The value of the Referer: �eld can be checked by a CGI program to deter-mine that a request to execute a CGI program comes only from a URL embeddedin a speci�c page, or a set of pages. This prevents easy misuse or abuse of theCGI program by others.An implementation of distributed computing with Java in the manner de-scribed in this paper would want to keep the amount of data passing throughthe attacking server as small as possible, to minimise response time to client re-quests, and so that the number of clients actively fetching pages and performingcomputations could be maximized. To achieve this, only URLs in pages whichare likely to point at an HTML document (whose URLs will need to be rewritten,so that the client continues to view spoofed documents) are rewritten to pointat the spoo�ng server | all other URLs, speci�cally URLs in HTML tagsare modi�ed only so that they fully specify the server and resource path; theyare NOT spoofed.It is easy enough for the attacking server to adjust the Referer: �eld so thatit has the value which it would normally have were the page not being spoofed.However, this does not help with the fetching of non-spoofed resources such asimages | the attacking server never sees the HTTP request for these resources.So the Referer: �eld will not be set as the spoofed server would expect.So we propose that an e�ective countermeasure against a spoo�ng attackfor the purpose of performing a distributed computation is for Web servers tocheck the Referer: �eld for images and other resources that are expected to bealways embedded in some page being served by the Web server for consistency;that is, the Referer: �eld indicates always that the referrer of the document isa page served by the Web server. Usually it should be su�cient to verify that theaddress of the Web server that served the page which contained the URL for theresource currently being served is the same as the Web server asked to serve the

current request. The Web server could refuse to serve a resource if its checks ofthe Referer: �eld were not satis�ed, or display an alternative resource, perhapsattempting to explain possible causes of the problem.While checking the Referer: �eld and taking action depending on its con-tents does not prevent an attack from taking place, it does mean that unless allthe images contained on a page are also spoofed there will be gaps where a Webserver has refused to serve an image because its checks of the Referer: �eldhave failed. Given the high graphical content of many Web pages, it is unlikelythat a user would wish or be able to persist in their Web travels while the pageswere being spoofed. Either they would �nd a solution or stop using the Web.Spoo�ng all the images would increase the amount of data processed by thespoo�ng server, which as a result would greatly limit the number of clients whocould be e�ectively spoofed at the one time.Unfortunately, at this time there are some inconsistencies in the way in whichdi�erent Web browsers handle the Referer: �eld. Common Web browsers likeNetscape Navigator and Microsoft Internet Explorer appear to provide Referer:�elds for HTTP requests for images embedded in Web pages, for example. Otherless widely used browsers, such as Apple Computer's Cyberdog, do not do so.It should be noted that this countermeasure would be most e�ective in pro-tecting users if many of the Web servers in existence were to implement thissort of check. A site could, however, implement this countermeasure to help en-sure that users of that particular site were likely to detect the presence of Webspoo�ng.5 Computing for SaleIt is not unusual to �nd that a Java applet that performs a distributed compu-tation is classed as a \malicious" applet [7, pp. 113{114] [8]. The computationis undesirable because the user is not aware that it is being performed.On the other hand, it is not di�cult to imagine a large group of users donat-ing some of their computer time to help perform a long computation. Examplesinclude e�orts to crack instances of DES or RC5 encrypted messages2, or �ndingMersenne Primes3. Using Java for this sort of purpose avoids many troublesomeissues of producing a client program for a variety of di�erent computer plat-forms; there is, however, currently a heavy speed penalty that must be paid,as Java is not as e�cient as a highly-tuned platform-dependent implementation.Improvements in JIT compilers, mentioned earlier, will help to reduce this speedpenalty, but will not eliminate it entirely.We introduce the idea of \Computing for Sale" | that sites which providesome form of service to clients could require that clients allow the running of aJava applet for some �xed period of time as the \price" for accessing the service.An excellent example of a service to which this idea could be applied is that ofa Web search engine, or perhaps an online technical reference library or support2 See http://www.distributed.net/3 See http://www.mersenne.org/

service. Clients that are unable or unwilling to allow the Java applet to run sothat it may perform its computation could be provided with a reduced service.For example, a client of a Web search engine who refused to run the appletcould be provided with E-mail results of their query half an hour or so afterquery submission rather than immediately. This provides an incentive for clientsto allow computation applets to perform their tasks.It would be possible for a service to deny access or provide only a reducedservice to a client whose computation applets consistently fail to report resultsfor some reason, such as being terminated by the client.In the interests of working in a wide variety of network environments, ap-plets used for this purpose should be able to communicate with the server usingmethods apart from ordinary socket connections, such as, by using Java's URLaccess capabilities, HTTP POST or GET messages [11]. For example, a �rewallmight prohibit arbitrary socket connections originating behind the �rewall butpermit HTTP message tra�c.The service provider would be able to sell computation time in much thesame way as many providers sell advertising space on their Web pages. Someclients of such services might prefer to choose between an advertising-free servicewhich requires that client assist in performing a computation, and the usualservice loaded with advertising, but not requiring the client to assist with thecomputation by running an applet.6 ConclusionThere are many problems in computer science which can best be solved by theapplication of brute force. An example is the determination of an unknown cryp-tographic key, given some ciphertext and corresponding plaintext. Distributedcomputing o�ers a way of obtaining the necessary resources, by using a portionof the CPU time of many computers.Such a project can either be conducted with full knowledge and cooperationof all participants, or covertly. There have been some suggestions that appletswritten in Java and running in Web browsers might perform covert distributedcomputations without the knowledge of browser users, but requiring browserusers to knowingly visit a particular site.We observe that Web Spoo�ng o�ers a way of not only adding Java applets toperform covert distributed computations to Web pages, but also of increasing thelikelihood of past unwitting contributors contributing again when they revisitbookmarks made during a prior spoofed Web browsing session.Some simple measures which make a successful attack more di�cult and lesslikely have been examined. These include disabling Java. We also proposed thatservers examine the Referer: �eld of HTTP requests, and refuse to serve theobject, or serve some other object explaining the problem, should the Referer:�eld not be consistent with expectations.We introduced the idea of browser users \paying" for access to services andresources on the Web through the use of their idle computer time for a short

period. Service providers could then sell these CPU resources in the same way asadvertising is now sold, and may feel it appropriate to o�er an advertising-freeservice for users who \pay" using their computer's idle time.References1. S. R. White. Covert Distributed Processing With Computer Viruses. In Advancesin Cryptology | Crypto '89 Proceedings, pages 616{619, Springer-Verlag, 1990.2. Sun Microsystems. The JavaTM Language: An Overview. Seehttp://java.sun.com/docs/overviews/java/java-overview-1.html [URLvalid at 9 Feb. 1998].3. Frederick B. Cohen. Internet holes: 50 ways to attack your web systems. NetworkSecurity, December 1995. See also http://all.net/journal/netsec/9512.html[URL valid at 20 Apr. 1998]4. Frederick B. Cohen. A Note on Distributed Coordinated Attacks. Computers &Security, 15:103{121, 1996.5. Edward W. Felten, Drew Dean and Dan S. Wallach. Java Security: From HotJavato Netscape and Beyond. In IEEE Symposium on Security and Privacy, 1996.See also http://www.cs.princeton.edu/sip/pub/secure96.html [URL valid at 9Feb. 1998]6. Drew Dean, Edward W. Felten, Dirk Balfanz and Dan S. Wallach. Webspoo�ng: An Internet Con Game. Technical report 540-96, Department ofComputer Science, Princeton University, 1997. In 20th National InformationSystems Security Conference (Baltimore, Maryland), October, 1997. See alsohttp://www.cs.princeton.edu/sip/pub/spoofing.html [URL valid at 9 Feb.1998]7. Gary McGraw and Edward W. Felten. Java Security: Hostile Applets, Holes, andAntidotes. John Wiley & Sons, Inc., 1997.8. M. D. LaDue. Hostile Applets on the Horizon. Seehttp://www.rstcorp.com/hostile-applets/HostileArticle.html [URL validat 12 Feb. 1998].9. RFC 1945 \Hypertext Transfer Protocol | HTTP/1.0". Seehttp://www.w3.org/Protocols/rfc1945/rfc1945 [URL valid at 9 Feb. 1998].10. RFC 2068 \Hypertext Transfer Protocol | HTTP/1.1". Seehttp://www.w3.org/Protocols/rfc2068/rfc2068 [URL valid at 9 Feb. 1998].11. Sun Microsystems White Paper. Java Remote MethodInvocation | Distributed Computing For Java. Seehttp://www.javasoft.com/marketing/collateral/javarmi.html [URL valid at9 Feb. 1998].

	Covert Distributed Computing Using Java Through Web Spoofing
	Recommended Citation

	Covert Distributed Computing Using Java Through Web Spoofing
	Abstract
	Disciplines
	Publication Details

	JavaDistComp.dvi

