View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Online

University of Wollongong

Research Online

Faculty of Engineering and Information

Faculty of Informatics - Papers (Archive) Sciences

January 1998

Covert Distributed Computing Using Java Through Web Spoofing

J. Horton
University of Wollongong, jeffh@uow.edu.au

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

b Part of the Physical Sciences and Mathematics Commons

Recommended Citation
Horton, J. and Seberry, Jennifer: Covert Distributed Computing Using Java Through Web Spoofing 1998.
https://ro.uow.edu.au/infopapers/352

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://core.ac.uk/display/37003726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages

Covert Distributed Computing Using Java Through Web Spoofing

Abstract

We use the Web Spoofing attack reported by Cohen and also the Secure Internet Programming Group at
Princeton University to give a new method of achieving covert distributed computing with Java. We show
how Java applets that perform a distributed computation can be inserted into vulnerable Web pages. This
has the added feature that users can rejoin a computation at some later date through bookmarks made
while the pages previously viewed were spoofed. Few signs of anything unusual can be observed. Users
need not knowingly revisit a particular Web page to be victims. We also propose a simple countermeasure
against such a spoofing attack, which would be useful to help users detect the presence of Web Spoofing.
Finally, we introduce the idea of browser users, as clients of Web-based services provided by third parties,
"paying" for these services by running a distributed computation applet for a short period of time.

Disciplines
Physical Sciences and Mathematics

Publication Details

This conference paper was originally published as Horton, J and Seberry, J, Covert Distributed Computing
Using Java Through Web Spoofing, Information Security and Privacy, ACISP '98, Lecture Notes in
Computer Science, 1438, 1998, 48-57. Copyright Springer-Verlag. Original journal available here.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/352

http://www.springer.com/east/home/computer/lncs?SGWID=5-164-0-0-0&SHORTCUT=www.springer.com/lncs
https://ro.uow.edu.au/infopapers/352

Covert Distributed Computing Using Java
Through Web Spoofing

Jeffrey Horton and Jennifer Seberry

Centre for Computer Security Research
School of Information Technology and Computer Science
University of Wollongong
Northfields Avenue, Wollongong
{jeffh, j.seberry}Qcs.uow.edu.au

Abstract. We use the Web Spoofing attack reported by Cohen and also
the Secure Internet Programming Group at Princeton University to give
a new method of achieving covert distributed computing with Java. We
show how Java applets that perform a distributed computation can be
inserted into vulnerable Web pages. This has the added feature that users
can rejoin a computation at some later date through bookmarks made
while the pages previously viewed were spoofed. Few signs of anything
unusual can be observed. Users need not knowingly revisit a particular
Web page to be victims.

We also propose a simple countermeasure against such a spoofing attack,
which would be useful to help users detect the presence of Web Spoofing.
Finally, we introduce the idea of browser users, as clients of Web-based
services provided by third parties, “paying” for these services by running
a distributed computation applet for a short period of time.

1 Introduction

There are many problems in computer science which may be solved most easily
through the application of brute force. An example of such a problem is deter-
mination of the key used to encrypt a block of data with an algorithm such
as DES (Data Encryption Standard). The computer time required could be ob-
tained with the full knowledge and cooperation of the individuals controlling the
resources, or covertly without their knowledge by some means. A past suggestion
for the covert accomplishment of tasks such as this involved the use of computer
viruses to perform distributed computations [1].

Java is a general purpose object-oriented programming language introduced
in 1995 by Sun Microsystems. It is similar in many ways to C and C++. Pro-
grams written in Java may be compiled to a platform-independent bytecode
which can be executed on any platform to which the Java runtime system has
been ported; the Java bytecodes are commonly simply interpreted, however speed
of execution of Java programs can be improved by using a runtime system which
translates the bytecodes into native machine instructions at execution time. Such
systems, incorporating these Just-in-time (JIT) compilers, are becoming more

common. The Java system includes support for easy use of multiple threads of
execution, and network communication at a low level using sockets, or a high
level using URL objects [2].

One of the major uses seen so far for Java is the creation of applets to provide
executable content for HTML pages on the World Wide Web. Common Web
browsers such as Netscape Navigator and Microsoft Internet Explorer include
support for downloading and executing Java applets. There are various security
restrictions imposed upon applets that are intended to make it safer for users to
execute applets from unknown sources on their computers. One such restriction
is that applets are usually only allowed to open a network connection to the
host from which the applet was downloaded. A number of problems with Java
security have been discovered by various researchers [5] [7].

Java could also be applied to performing a distributed computation. Java’s
straightforward support for networking and multiple threads of execution make
construction of an applet to perform the computing tasks simple. The possibility
of using Java applets to covertly or otherwise perform a distributed computation
is discussed by several researchers [4] [5] [7, pp. 112-114] [8].

There have been no suggestions, however, as to how this might be accom-
plished without requiring browser users to knowingly visit a particular page or
Web server at the beginning or sometime during the course of each session with
their Web browser, so that the applet responsible for performing the computa-
tion can be loaded. This paper describes how the Web spoofing idea described
by the Secure Internet Programming Group at Princeton University can be used
to pass a Java applet to perform a distributed computation to a client. The
advantage is that clients do not have to knowingly (re)visit a particular site
each time, but may rejoin the computation through bookmarks made during a
previous session.

There will be some indications visible in the browser when rejoining a compu-
tation through a bookmark that the user has not reached the site they may have
been expecting; however, these signs are small, and the authors believe, mostly
correctable using the same techniques as employed in a vanilla Web Spoofing
attack.

2 About Web Spoofing

Web Spoofing was first described briefly by Cohen [3]. The Web Spoofing attack
was later discussed in greater detail and elaborated upon by the Secure Internet
Programming Group at Princeton University [6]. Among other contributions,
the Princeton group introduced the use of JavaScript for the purposes of con-
cealing the operation of the Web Spoofing attack and preventing the browser
user from escaping from the spoofed context. JavaScript is a scripting language
that is supported by some common Web browsers. JavaScript programs may be
embedded in an HTML page, and may be executed when the HTML page is
loaded by the browser, or when certain events occur, such as the browser user
holding the mouse pointer over a hyperlink on the page.

The main application of Web Spoofing is seen as being surveillance, or per-
haps tampering: the attacking server will be able to observe and/or modify the
Web traffic between a user being spoofed and some Web server, including any
form data entered by the user and the responses of the server; it is pointed out
that “secure” connections will not help — the user’s browser has a secure con-
nection with the attacking server, which in turn has a secure connection with
the server being spoofed [6].

Web spoofing works as follows: when an attacking server www.attacker.org
receives a request for an HTML document, before supplying the document every
URL in the document is rewritten to refer to the attacking server instead, but
including the original URL in some way — so that the attacking server is able
to fetch the document that is actually desired by the browser user. For example,

http://www.altavista.digital.com/
might become something like:
http://www.attacker.org/f.acgi?f=http://wuw.altavista.digital.com/

There are other ways in which the spoofed URL may be constructed. The Prince-
ton group gives an example [6].

The first part of the URL (before the ‘?’) specifies a program that will be
executed by the server. This is a CGI (Common Gateway Interface) program.
For those not familiar with CGI programs, the part of the URL following the ‘7’
represents an argument or set of arguments that is passed to the CGI program
specified by the first part of the URL. More than one argument can be passed
in this way — arguments are separated by ampersand (‘&’) characters.

So, when the user of the browser clicks on a spoofed URL, the attacking server
is contacted. It fetches the HTML document the user wishes to view, using the
URL encoded in the spoofed URL, rewrites the URLs in the document, and
supplies the modified document to the user. Not all URLs need be rewritten to
point at the attacking server, only those which are likely to specify a document
containing HTML, which is likely to contain URLs that need to be rewritten.
In particular, images do not generally need to be spoofed. However, as many
images would be specified using only a partial URL (relative to the URL of the
HTML page containing the image’s URL), the URLs would need to be rewritten
in full, to point at the appropriate image on the server being spoofed.

There will be some evidence that spoofing is taking place, however. For ex-
ample, the browser’s status line and location line will display rewritten URLs,
which an alert user would notice. The Princeton group claim to have succeeded
at concealing such evidence from the user through the use of JavaScript. Using
JavaScript to display the proper (non-spoofed) URLs on the status line when
the user holds the mouse pointer above a hyperlink on the Web page is straight-
forward in most cases; using JavaScript to conceal the other evidence of spoofing
is less obvious.

In the course of implementing a program to perform spoofing, we have ob-
served that some pages using JavaScript do not seem amenable to spoofing, es-
pecially if the JavaScript itself directs the browser to load particular Web pages.

It seems that the JavaScript has difficulty constructing appropriate URLs if the
current document is being spoofed, due to the unusual form of the spoofed URLs.

We have implemented only the spoofing component of the attack, as well as
the simplest use of JavaScript for concealment purposes, that of displaying non-
spoofed URLs on the browser status line where necessary, for the purposes of
demonstration; the aspects of the attack that provide more sophisticated forms of
concealment were not implemented. We believe that the work on concealment of
the Web Spoofing attack done by the Princeton group can profitably be applied
to concealing the additional evidence when using Web spoofing to perform a
distributed computation.

2.1 Some HTML Tags to Modify

Any HTML tag which can include an attribute specifying a URL may poten-
tially require modification for spoofing to take place. Common tags that require
modification include:

— Hyperlinks, which are generated by the HREF attribute of the <A> tag. A new
HTML document is fetched and displayed when one of these is selected by
the user.

— Images displayed on an HTML page are specified using the tag. Its
attributes SRC and LOWSRC, which indicate from where the browser is to fetch
the image data, may require adjustment if present.

— Forms into which the user may enter data are specified using the <FORM>
tag. Its ACTION attribute can contain the URL of a CGI program that will
process the data entered by the user when the user indicates that they wish
to submit the form.

— Java applets are included in an HTML page using the <APPLET> tag. Since
applets are capable of communicating through a socket connected to an arbi-
trary port on the applet’s server of origin, the applet should be downloaded
directly from that server. The default otherwise is to obtain the applet’s
code from the same server as supplied the HTML page containing the ap-
plet. An applet’s code can be obtained from an arbitrary host on the Internet,
specified using the CODEBASE attribute. For spoofing to function properly in
the presence of Java applets, the CODEBASE attribute must be added if not
present. Otherwise, it must be ensured that the CODEBASE attribute is an
absolute URL.

These are just a few of the more common tags with attributes that require
modification to undertake a spoofing attack.

3 Application of Web Spoofing to Distributed Computing

The Secure Internet Programming Group suggest that Web Spoofing allows tam-
pering with the pages returned to the user, by inserting “misleading or offensive
material” [6]. We observe that the opportunity to tamper with the pages allows

a Java applet to perform part of a distributed computation to be inserted into
the page. Tampering with the spoofed pages in this manner and for this purpose
has not been previously suggested.

As Web pages being spoofed must have their URLs rewritten to point at the
attacking server, it is a simple matter to insert the HTML code to include a Java
applet into each page in the course of performing the other modifications to the
page. The Java applet can be set to have only a small “window” on the page,
which makes it difficult for users to detect its presence on the Web pages that
they view.

When the browser encounters a Java applet for the first time during a session,
it usually starts Java, displaying a message to this effect in the status line of
the browser. It may be possible to conceal this using JavaScript if necessary
(although this has not been tested); however, if Java applets become increasingly
common and therefore unremarkable, concealment may be deemed unnecessary.

Users may bookmark spoofed pages during the course of their session. If
this occurs, the user will rejoin the computation when next that bookmark is
accessed. Rather than knowingly (re)visiting a particular site to acquire a copy of
an applet, the user unknowingly contacts an attacking server which incorporates
the applet into each page supplied to the user.

A site that employed distributed computing with Java applets and Web
spoofing could potentially be running applets not only on machines of browser
users who visit the site directly, but also on the machines of users who visit a
bookmark made after having directly visited the site on some previous occa-
sion. Thus, the “pool” of users who could be contributing to a computation is
not limited to those that directly visit the site, as it is with other approaches
to covert distributed computing with Java. For example, consider a Web server
that receives on average 10,000 hits/day. If the operators of the Web server
elect to incorporate an applet to perform distributed computation in each page
downloaded from the server, they will steal some CPU time from an average
of 10,000 computers each day. However, by using Web spoofing as well, on the
second day after starting the spoofing attack and supplying the applet, CPU
time is being stolen from the (on average) 10,000 users who knowingly (re)visit
the site, and also from users who have visited the site on the previous day and
made bookmarks to other sites subsequently visited.

The level of load on the attacking server can be controlled by redirecting
if necessary some requests directly to the actual server containing the resource,
foregoing the opportunity to perform Web Spoofing, and of stealing computation
time from some unsuspecting browser user, but keeping the load on the server
at reasonable levels.

An attacker might decide to increase the likelihood of bookmarks referring to
spoofed pages by modifying a Web search engine to return answers to queries that
incorporate spoofed links, but not require the search engine itself to participate
in the spoofing (of course, if the pages of an unmodified search engine are being
spoofed when a search is performed, rewriting of the URLs in the response will
take place automatically).

The user’s Web browser will display a URL in its location line which exhibits
the presence of spoofing when revisiting a bookmark made of a spoofed page;
however, the authors believe that this may be concealed after the page has com-
menced loading using JavaScript, although again this has not been implemented.

3.1 An Implementation

For reasons of simplicity, the Web spoofing attack for the purposes of demon-
stration was implemented using a CGI program. An off-the-shelf Web server was
used to handle HTTP requests.

The applet to demonstrate the performance of a simple key cracking task was
of course implemented in Java. The program which kept track of which subprob-
lems had been completed (without finding a solution) and that distributed new
subproblems to client applets was also written in Java (the “problem server”).

Client applets use threads, one for performing a computation, another for
communicating with the server to periodically report the status of their partic-
ular computation to the problem server. Periodic reporting to the server guards
against the loss of an entire computation should the client applet be terminated
before completion of the entire computation, for example, by the user exiting
the Web browser in which the applet is being run.

The thread performing the computation sleeps periodically, to avoid using
excessive resources and so unintentionally revealing its presence.

The problem server keeps records using the IP numbers of the computers on
which a client applet is running, and will allow only one instance of an applet
to run on each computer, to avoid degrading performance too noticeably. A new
client applet will be permitted to commence operations if some amount of time
has elapsed without a report from the original client applet.

4 Countermeasures?

4.1 Client-side Precautions

Obviously, disabling Java is an excellent way for a user to ensure that he or she
does not participate unwillingly in such an attack, as the Java applet to perform
the computation will be unable to run. The disadvantage of this approach is that
applets performing services of potential utility to the user will also not be able
to run.

The merits of disabling JavaScript are briefly discussed by the Princeton
group [6]. This prevents the Web spoofing from being concealed from the clients.
How many clients would take notice of the signs is an interesting question, espe-
cially given that in the future clients may have become accustomed to the use of
strange URLs such as those produced by a Web spoofing program, as there are
several sites providing legitimate services with a Web spoofing-style program®.

! “The Anonymizer”: see http://www.anonymizer.com/ [6]; the “Zippy Filter”: see
http://www.metahtml.com/apps/zippy/welcome.mhtml [6]; the “Fool’s Tools” have
been used to “reshape” HTML: http://las.alfred.edu/~pav/fooltools.html.

4.2 Server-side Precautions

During the preparation of a demonstration of the approach to distributed com-
puting with Java described here, it was observed that there were some sites whose
pages included counters of the number of times that a site had been visited, and
links to other CGI programs, all of which failed to produce the expected re-
sults when the page containing the counter, or link to CGI program, was being
spoofed. Note that a page visit counter is commonly implemented by using a
CGI program through an HTML tag.

The problem was eventually traced to an improperly set Referer: field in the
HTTP request sent by the spoofing program to fetch an HTML page from the
server being spoofed. The Referer: field that was originally being sent included
a spoofed URL.

The Referer: field of an HTTP request is used to specify the address of
the resource, most commonly a Web page, that contained the URL reference
to the resource which is the subject of the HTTP request, in cases where the
URL reference was obtained from a source that may be referred to by a URL;
this field would be empty if the source of the request was the keyboard, for
example [9] [10].

The value of the Referer: field can be checked by a CGI program to deter-
mine that a request to execute a CGI program comes only from a URL embedded
in a specific page, or a set of pages. This prevents easy misuse or abuse of the
CGI program by others.

An implementation of distributed computing with Java in the manner de-
scribed in this paper would want to keep the amount of data passing through
the attacking server as small as possible, to minimise response time to client re-
quests, and so that the number of clients actively fetching pages and performing
computations could be maximized. To achieve this, only URLs in pages which
are likely to point at an HTML document (whose URLSs will need to be rewritten,
so that the client continues to view spoofed documents) are rewritten to point
at the spoofing server — all other URLs, specifically URLs in HTML tags
are modified only so that they fully specify the server and resource path; they
are NOT spoofed.

It is easy enough for the attacking server to adjust the Referer: field so that
it has the value which it would normally have were the page not being spoofed.
However, this does not help with the fetching of non-spoofed resources such as
images — the attacking server never sees the HTTP request for these resources.
So the Referer: field will not be set as the spoofed server would expect.

So we propose that an effective countermeasure against a spoofing attack
for the purpose of performing a distributed computation is for Web servers to
check the Referer: field for images and other resources that are expected to be
always embedded in some page being served by the Web server for consistency;
that is, the Referer: field indicates always that the referrer of the document is
a page served by the Web server. Usually it should be sufficient to verify that the
address of the Web server that served the page which contained the URL for the
resource currently being served is the same as the Web server asked to serve the

current request. The Web server could refuse to serve a resource if its checks of
the Referer: field were not satisfied, or display an alternative resource, perhaps
attempting to explain possible causes of the problem.

While checking the Referer: field and taking action depending on its con-
tents does not prevent an attack from taking place, it does mean that unless all
the images contained on a page are also spoofed there will be gaps where a Web
server has refused to serve an image because its checks of the Referer: field
have failed. Given the high graphical content of many Web pages, it is unlikely
that a user would wish or be able to persist in their Web travels while the pages
were being spoofed. Either they would find a solution or stop using the Web.
Spoofing all the images would increase the amount of data processed by the
spoofing server, which as a result would greatly limit the number of clients who
could be effectively spoofed at the one time.

Unfortunately, at this time there are some inconsistencies in the way in which
different Web browsers handle the Referer: field. Common Web browsers like
Netscape Navigator and Microsoft Internet Explorer appear to provide Referer:
fields for HTTP requests for images embedded in Web pages, for example. Other
less widely used browsers, such as Apple Computer’s Cyberdog, do not do so.

It should be noted that this countermeasure would be most effective in pro-
tecting users if many of the Web servers in existence were to implement this
sort, of check. A site could, however, implement this countermeasure to help en-
sure that users of that particular site were likely to detect the presence of Web
spoofing.

5 Computing for Sale

It is not unusual to find that a Java applet that performs a distributed compu-
tation is classed as a “malicious” applet [7, pp. 113-114] [8]. The computation
is undesirable because the user is not aware that it is being performed.

On the other hand, it is not difficult to imagine a large group of users donat-
ing some of their computer time to help perform a long computation. Examples
include efforts to crack instances of DES or RC5 encrypted messages?, or finding
Mersenne Primes?. Using Java for this sort of purpose avoids many troublesome
issues of producing a client program for a variety of different computer plat-
forms; there is, however, currently a heavy speed penalty that must be paid,
as Java is not as efficient as a highly-tuned platform-dependent implementation.
Improvements in JIT compilers, mentioned earlier, will help to reduce this speed
penalty, but will not eliminate it entirely.

We introduce the idea of “Computing for Sale” — that sites which provide
some form of service to clients could require that clients allow the running of a
Java applet for some fixed period of time as the “price” for accessing the service.
An excellent example of a service to which this idea could be applied is that of
a Web search engine, or perhaps an online technical reference library or support

2 See http://wuw.distributed.net/
% See http://wuw.mersenne.org/

service. Clients that are unable or unwilling to allow the Java applet to run so
that it may perform its computation could be provided with a reduced service.
For example, a client of a Web search engine who refused to run the applet
could be provided with E-mail results of their query half an hour or so after
query submission rather than immediately. This provides an incentive for clients
to allow computation applets to perform their tasks.

It would be possible for a service to deny access or provide only a reduced
service to a client whose computation applets consistently fail to report results
for some reason, such as being terminated by the client.

In the interests of working in a wide variety of network environments, ap-
plets used for this purpose should be able to communicate with the server using
methods apart from ordinary socket connections, such as, by using Java’s URL
access capabilities, HTTP POST or GET messages [11]. For example, a firewall
might prohibit arbitrary socket connections originating behind the firewall but
permit HTTP message traffic.

The service provider would be able to sell computation time in much the
same way as many providers sell advertising space on their Web pages. Some
clients of such services might prefer to choose between an advertising-free service
which requires that client assist in performing a computation, and the usual
service loaded with advertising, but not requiring the client to assist with the
computation by running an applet.

6 Conclusion

There are many problems in computer science which can best be solved by the
application of brute force. An example is the determination of an unknown cryp-
tographic key, given some ciphertext and corresponding plaintext. Distributed
computing offers a way of obtaining the necessary resources, by using a portion
of the CPU time of many computers.

Such a project can either be conducted with full knowledge and cooperation
of all participants, or covertly. There have been some suggestions that applets
written in Java and running in Web browsers might perform covert distributed
computations without the knowledge of browser users, but requiring browser
users to knowingly visit a particular site.

We observe that Web Spoofing offers a way of not only adding Java applets to
perform covert distributed computations to Web pages, but also of increasing the
likelihood of past unwitting contributors contributing again when they revisit
bookmarks made during a prior spoofed Web browsing session.

Some simple measures which make a successful attack more difficult and less
likely have been examined. These include disabling Java. We also proposed that
servers examine the Referer: field of HTTP requests, and refuse to serve the
object, or serve some other object explaining the problem, should the Referer:
field not be consistent with expectations.

We introduced the idea of browser users “paying” for access to services and
resources on the Web through the use of their idle computer time for a short

period. Service providers could then sell these CPU resources in the same way as
advertising is now sold, and may feel it appropriate to offer an advertising-free
service for users who “pay” using their computer’s idle time.

References

1.

2.

10.

11.

S. R. White. Covert Distributed Processing With Computer Viruses. In Advances
in Cryptology — Crypto 89 Proceedings, pages 616619, Springer-Verlag, 1990.
Sun Microsystems. The Java'M Language: An Overview. See
http://java.sun.com/docs/overviews/java/java-overview-1.html [URL
valid at 9 Feb. 1998].

Frederick B. Cohen. Internet holes: 50 ways to attack your web systems. Network
Security, December 1995. See also http://all.net/journal/netsec/9512.html
[URL valid at 20 Apr. 1998]

Frederick B. Cohen. A Note on Distributed Coordinated Attacks. Computers &
Security, 15:103-121, 1996.

Edward W. Felten, Drew Dean and Dan S. Wallach. Java Security: From HotJava
to Netscape and Beyond. In IEEE Symposium on Security and Privacy, 1996.
See also http://www.cs.princeton.edu/sip/pub/secure96.html [URL valid at 9
Feb. 1998]

Drew Dean, Edward W. Felten, Dirk Balfanz and Dan S. Wallach. Web
spoofing: An Internet Con Game. Technical report 540-96, Department of
Computer Science, Princeton University, 1997. In 20th National Information
Systems Security Conference (Baltimore, Maryland), October, 1997. See also
http://www.cs.princeton.edu/sip/pub/spoofing.html [URL valid at 9 Feb.
1998]

Gary McGraw and Edward W. Felten. Java Security: Hostile Applets, Holes, and
Antidotes. John Wiley & Sons, Inc., 1997.

M. D. LaDue. Hostile Applets on the Horizon. See
http://www.rstcorp.com/hostile-applets/HostileArticle.html [URL valid
at 12 Feb. 1998].

RFC 1945 “Hypertext Transfer Protocol — HTTP/1.0”. See
http://www.w3.org/Protocols/rfc1945/rfc1945 [URL valid at 9 Feb. 1998].
RFC 2068 “Hypertext Transfer Protocol — HTTP/1.17. See
http://www.u3.org/Protocols/rfc2068/rfc2068 [URL valid at 9 Feb. 1998].
Sun Microsystems White Paper. Java Remote Method
Invocation — Distributed Computing For Java. See

http://www.javasoft.com/marketing/collateral/javarmi.html [URL valid at
9 Feb. 1998|.

	Covert Distributed Computing Using Java Through Web Spoofing
	Recommended Citation

	Covert Distributed Computing Using Java Through Web Spoofing
	Abstract
	Disciplines
	Publication Details

	JavaDistComp.dvi

