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Group Divisible Designs, GBRSDS And Generalized Weighing Matrices Group Divisible Designs, GBRSDS And Generalized Weighing Matrices 

Abstract Abstract 
We give new constructions for regular group divisible designs, pairwise balanced designs, generalized 
Bhaskar Rao supplementary difference sets and generalized weighing matrices. In particular if p is a 
prime power and q divides p – 1 we show the following exist: 

(i) GDD(2(p2 +p+ 1), 2(p2 +p+ 1), rp2, 2p2, λ1 = p2λ, λ2 = (p2 —p)r, m = p2 + p+ 1, n = 2), r = 1,2; 

(ii) GDD(q(p+ 1), q(p+ 1), p(q – 1), p(q –1), λ1 = (q – 1)(q – 2), λ2 = (p– 1)(q – 1)2/q, m = q, n = p+1); 

(iii) PBD(21, 10; K), K = {3, 6, 7} and PBD(78, 38; K), K = {6, 9, 45}; 

(iv) GW(vk, k2; EA(k)) whenever a (v, k, λ)-difference set exists and k is a prime power; 

(v) PBIBD(vk2, vk2, k2, k2; λ1 = 0, λ2 = λ, λ3 = k) whenever a (v, k, λ)-difference set exists and k is a prime 
power; 

(vi) we give a GW(21; 9; Z3). 

The GDD obtained are not found in W.H. Clatworthy, “Tables of Two-Associate-Class, Partially Balanced 
Designs”, NBS, US Department of Commerce, 1971. 
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GROUP DIVISIBLE DESIGNS, GBRSDS ANDGENERALIZED WEIGHING MATRICESDinesh G. Sarvate Jennifer Seberry�Department of Mathematics Department of Computer ScienceCollege of Charleston and University of WollongongCharleston, S.C. 29424 Wollongong, NSW, 2500U.S.A. AustraliaJune 11, 1998AbstractWe give new constructions for regular group divisible designs, pairwise balanced designs,generalized Bhaskar Rao supplementary di�erence sets and generalized weighing matrices.In particular if p is a prime power and q divides p� 1 we show the following exist:(i) GDD(2(p2+p+1), 2(p2+p+1), rp2, 2p2, �1 = p2�, �2 = (p2�p)r, m = p2+p+1,n = 2), r = 1; 2;(ii) GDD(q(p+1), q(p+1), p(q�1), p(q�1), �1 = (q�1)(q�2), �2 = (p�1)(q�1)2=q,m = q, n = p+ 1);(iii) PBD(21; 10;K), K = f3; 6; 7g and PBD(78; 38;K), K = f6; 9; 45g;(iv) GW (vk; k2;EA(k)) whenever a (v; k; �)-di�erence set exists and k is a prime power;(v) PBIBD(vk2 ; vk2; k2; k2; �1 = 0, �2 = �, �3 = k) whenever a (v; k; �)-di�erence setexists and k is a prime power;(vi) we give a GW (21; 9;Z3).The GDD obtained are not found in W.H. Clatworthy, Tables of Two-Associate-Class,Partially Balanced Designs, NBS, US Department of Commerce, 1971.1 INTRODUCTIONIn this paper we set out to explore the usefulness of Bhaskar Rao designs and generalizedmatrices in the construction of GDD and found them to be very rich indeed.A design is a pair (X;B) where X is a �nite set of elements and B is a collection of (notnecessarily distinct) subsets Bi (called blocks) of X .A balanced incomplete block design, BIBD(v; b; r; k; �), is an arrangement of v elements intob blocks such that:(i) each element appears in exactly r blocks;(ii) each block contains exactly k(< v) elements; and(iii) each pair of distinct elements appear together in exactly � blocks.�Research supported by Telecom grant 7027 and ARC grant A488302411



As r(k� 1) = �(v� 1) and vr = bk are well known necessary conditions for the existence of aBIBD(v; b; r; k; �) we denote this design by BIBD(v; k; �).Let v and � be positive integers and K a set of positive integers.An arrangement of the elements of a setX into blocks is a pairwise balanced design, PBD(v;K;�),if:(i) X contains exactly v elements;(ii) if a block contains k elements then k belongs to K;(iii) each pair of distinct elements appear together in exactly � blocks.A pairwise balanced design PBD(v; fkg;�), that is where K = fkg consists of exactly oneinteger, is a BIBD(v; k; �). It is well known that a PBD(v � 1; fk; k� 1g;�) can be obtainedfrom the BIBD(v; b; r; k; �).For the de�nition of a partially balanced incomplete block design with m associate classes(PBIBD(m)) see Raghavarao [34] or Street and Street [53].A generalized Bhaskar Rao design, W is de�ned as follows. Let W be a v � b matrix withentries from GSf0g where G = fh1 = e; h2; : : : ; hgg is a �nite group of order g. W is thenexpressed as a sum W = h1A1 + � � �+ hgAg, where A1; : : : ; Ag are v � b (0; 1) matrices suchthat the Hadamard product Ai ? Aj = 0 for any i 6= j.Denote by W+ the transpose of h�11 A1+ � � �+h�1g Ag and let N = A1+ � � �+Ag. In this paperwe are concerned with the special case where W , denoted by GBRD(v; b; r; k; �;G), satis�es(i) WW+ = reI + �g (h1 + � � �+ hg)(J � I); and(ii) NNT = (r� �)I + �J .It can be seen that the second condition requires that N be the incidence matrix of aBIBD(v; b; r; k; �) and thus we can use the shorter notation GBRD(v; k; �;G) for a gen-eralized Bhaskar Rao design. A GBRD(v; k; �;Z2) is also referred to as a BRD(v; k; �).A GBRD(v; k; �;G) with v = b is a symmetric GBRD or generalized weighing matrix, but ageneralized weighing matrix, W = GW (v; k;G) is also used for any square matrix satisfyingWW+ = keI where h1 + � � �+ hg = 0 is used (as in the gth roots of unity). If W has no 0entries the GBRD is also known as a generalized Hadamard matrix (GH).A group divisible design, GDD(v; b; r; k; �1; �2; m; n), on v points is a triple (X;S;A) where(i) X is a set (of points), where jX j = v,(ii) S is a class of non-empty subsets X (called groups), of size n, which partitions X , andjSj = n,(iii) A is a class of subsets of X (called blocks), each containing at least two points, andjAj = b,(iv) each pair of distinct points fx; yg where x and y are from the same group is containedin precisely �1 blocks.(v) each pair of distinct points fx; yg where x and y are not from the same group is containedin precisely �2 blocks. 2



In general, the number of elements in a group is denoted by n.Bhaskar Rao designs with elements 0;�1 have been studied by a number of authors includingBhaskar Rao [3, 4], Seberry [42, 44], Singh [48], Sinha [49], Street [51], Street and Rodger [52]and Vyas [54]. Bhaskar Rao [3] used these designs to construct partially balanced designs andthis was improved by Street and Rodger [52] and Seberry [44]. Another technique for studyingpartially balanced designs has involved looking at generalized orthogonal matrices which haveelements from elementary abelian groups and the element 0. Matrices with group elements asentries have been studied by Berman [1, 2], Butson [5, 6], Delsarte and Goethals [13], Drake[16], Rajkundlia [35], Seberry [40, 41], Shrikhande [47] and Street [50].Generalized Hadamard matrices has been studied by Street [50], Seberry [40, 41], Dawson [8],and de Launey [9, 10].Bhaskar Rao designs over elementary abelian groups other than Z2 have been studied by Lamand Seberry [26] and Seberry [45]. de Launey, Sarvate and Seberry [12] considered BhaskarRao designs over Z4 which is an abelian (but not elementary) group. Some Bhaskar Raodesigns over the non-abelian groups S3 and Q4 have been studied by Gibbons and Mathon[20].Palmer and Seberry [33] study generalized Bhaskar Rao designs over the non-abelian groupsS3, D4, Q4, D6 and over the small abelian group Z2 � Z4. Seberry [46] completed the studyof groups of order 8.We use the following notation for initial blocks of a GBRD. We say (a�; b�; : : : ; c) is aninitial block, when the Latin letters are developed mod v and the Greek subscripts are theelements of the group, which will be placed in the incidence matrix in the position indicatedby the Latin letter. For example in the (i; b� 1 + i)th position we place � and so on.We form the di�erence table of an initial block (a�; b�; : : : ; c) by placing in the position headedby x� and by row y� the element (x� y)���1 where (x� y) is mod v and ���1 is in the group.By the term totality of elements we mean that repetitions remain: hence the set union off1,2,3,4,5,6g S f3,4,7,8g = f1,2,3,4,5,6,7,8g while the totality of elements in the two setsf1,2,3,4,5,6g & f3,4,7,8g = f1,2,3,3,4,4,5,6,7,8g. The symbol & is sometimes written as U.A set of initial blocks will be said to form a GBR di�erence set (if there is one initial block)or GBR supplementary di�erence sets (if more than one) if in the totality of elements(x� y)���1 (mod v;G)each non-zero element ag, a (mod v), g 2 G, occurs �= j G j times.Examples of the use of these GBR supplementary di�erence sets (GBRSDS) are given inSeberry [42].2 GROUP DIVISIBLE DESIGNSLet B be the incidence matrix of a BIBD(v; b; r; k; �). Let A be the matrix formed from aGBRD(V;B;R; j; tv;G), where jGj = v, by replacing each zero of the GBRD by the v � vzero matrix and each group element of the GBRD by the right regular permutation matrixrepresentation from the group EA(v).Then A is a GDD(vV; vB;R; j; �1 = 0; �2 = t; m = V; n = v).Lemma 1 Suppose there exists a BIBD(v; b; r; k; �), Y , and a GBRD(V;B;R; j; tv;G), A,with jGj = v. Then there exists a GDD(vV; bB; rR; jk; �1 = R�; �2 = trk; m = V; n = v).3



Proof. Let C = A � Y , where the group element gi of G with matrix representation Gi isreplaced by GiY and zero by the v � b zero matrix. Then all the parameters of C except �1and �2 are immediate. The inner product of any two rows of Y is � and GiY also has innerproduct of rows �. GiY 's occur R times in each row of C so �1 = R�.The inner product of rows of the GBRD gives t copies of the group so the contribution to theinner product of rows of di�erent GDD groups is& tGiY Y TG�1j = & tGi(r� �)I + �J)G�1j = t(r � �+ �v)J:gi; gj 2 G gi; gj 2 GHence �2 = trk. Another way to check that �2 = trk is to observe that we will have as innerproduct t(G1 + � � �+ Gv)Y Y T = t(J)((r� �)I + �J) = t(r � �)J + t(�v)J;Now use �(v � 1) = r(k � 1) to get the result. 2Example 1 Let the Y = SBIBD(3; 2; 1) and A be the GBRD(6; 6; 6;Z3). Then the Lemmagives us GDD(18; 18; 12; 12; �1 = 6; �2 = 8; m = 6; n = 3) which is given below and whichis not found in Clatworthy's tables [7].Example 2 Let A be formed from the GBRD(7; 21; 9; 3; 3;Z3) = D which may be writtenas:D = 266666666664 0 1 1 0 1 0 00 0 1 1 0 1 00 0 0 1 1 0 11 0 0 0 1 1 00 1 0 0 0 1 11 0 1 0 0 0 11 1 0 1 0 0 0 0 1 ! 0 !2 0 00 0 1 ! 0 !2 00 0 0 1 ! 0 !2!2 0 0 0 1 ! 00 !2 0 0 0 1 !! 0 !2 0 0 0 11 ! 0 !2 0 0 0 0 1 !2 0 w 0 00 0 1 !2 0 w 00 0 0 1 !2 0 ww 0 0 0 1 !2 00 w 0 0 0 1 !2!2 0 w 0 0 0 11 !2 0 w 0 0 0 377777777775Let B = 264 0 1 11 0 11 1 0 375 ; T = 264 0 1 00 0 11 0 0 375 ; and O = 264 0 0 00 0 00 0 0 375.We form C from A by replacing 0 by O and !i by T iB. Then C is a GDD(21; 63; 18; 6; �1 =9; �2 = 4; m = 7; n = 3).Corollary 2 A GBRD(p2+ p+1; p2+ p+1; p2; p2; p2� p; Z2) always exists for p a primepower so a GDD(2(p2 + p + 1); 2(p2 + p + 1); rp2; kp2; �1 = p2�; �2 = (p2 � p)r) existswhere (k; r; �) = (2; 2; 2) or (1; 1; 0).Corollary 3 A GBRD(p+ 1; p; p� 1; Zq) exists for every prime power p, if q divides p� 1.An SBIBD(q; q � 1; q � 2) exists. Hence there exists a GDD(q(p + 1), q(p + 1), p(q � 1),p(q � 1), �1 = (q � 1)(q � 2), �2 = (p� 1)(q � 1)2=q, m = p+ 1; n = q).Corollary 4 If a GBRD(V;B;R; j; tv; EA(v)) exists then a GDD(vV; vB;R(v � 1); j(v �1); �1 = R(v � 2); �2 = t(v � 1)2; m = V; n = v) exists.Proof. An SBIBD(v; v � 1; v � 2) always exists. 24



Example 2 (continued). There exists a GH(3t; Z3) = H; 3t > 7, and write SBIBD(7; 3; 1) =S. Take seven rows of H and replace its elements by 0 and T i to give,H 0 = GDD(21; 9t; 3t; 7; �1 = 0; �2 = t; m = 7; n = 3):Replace the zeros and ones of S by the 3� 1 matrix of zeros and ones respectively to form,S0 = GDD(21; 7; 3; 9; �1 = 3; �2 = 1; m = 7; n = 3):We note L = I7 � J3;1 is a GDD(21; 7; 1; 3; �1 = 1; �3 = 0; m = 7; n = 3).Then C1 = [C : H 0(t = 3) : H 0(t = 4) : S0]is a PBD(21; 12;K), where K = f6; 7; 9g, andC2 = [C : H 0(t = 6) : L]is a PBD(21; 10;K), where K = f6; 7; 3g.Table 1 gives some GDD on 21 varieties which exist.v k m n �1 �2 Comment21 12 7 3 4 2 from SBIBD(7; 4; 2)21 7 7 3 0 t (a GH(3t; Z3) exists, 3t > 7)21 18 7 3 6 5 (J � I)7 � J3;121 3 7 3 1 0 I7 � J3;121 9 7 3 3 1 from SBIBD(7; 3; 1)21 k 7 3 r � from BIBD(7; b; r; k; �)21 K 7 3 0 � from GBRD(7; B; R;K; 3�;Z3)Table 1Remark 1 The GDDs with �1 = r in Table 1 and in Table 2 can be constructed from aBIBD and are singular but we have listed these parameters for easy reference so as to be ableto apply them in the following Lemma and the Table 2 parameters in Lemma 6.Clatworthy's tables [7] give R188 with v = b = 21, k = r = 8, m = 7, n = 3, �1 = 7, �2 = 1but no GDD with v = b = 21, and the designs of Table 1 appear to be new.Lemma 5 Combinations from Table 1 can be used to give PBD(21; �;K) for many � andki 2 K.Glynn [21] has found a GW (13; 9; 6;S3) which is circulant with the following �rst row:[o e a d o a f e f o d] where a = (1), b = (123)(456), c = (132)(465), d = (14)(26)(35),e = (15).Example 7 Using Lemma 1 with the SBIBD(6; 5; 4) we getC = GDD(78; 78; 45; 45; �1 = 36; �2 = 20; m = 13; n = 6):5



No: v k m n �1 �2 CommentB1 78 54 13 6 9 6 from SBIBD(13; 9; 6)B2 78 45 13 6 36 20 aboveB3 78 13 13 6 0 t (if a GH(6t; G) exists jGj = b;6t > 13 : none are known);B4 78 72 13 6 12 11 (J � I)13� J6;1B5 78 6 13 6 1 0 I13 � J6;1B6 78 24 13 6 4 1 from SBIBD(13; 4; 1)B7 78 k 13 6 r � from BIBD(13; b; r; k; �)B8 78 K 13 6 0 � from GBRD(13; B; R;K; 6�;S3)B9 78 9 13 6 0 6 from GW (13; 9; 6;S3)Table 2Table 2 gives some GDD on 78 varieties which exist.We note that a PBD(78; 38; K) with K = f6; 9; 45g can be formed by taking[B2 : 2 copies B5 : 3 copies B9]:Clatworthy's tables list R201 which has v = b = 78, r = k = 9, m = 13, n = 6 but all theother designs in Table 2 appear to be new.Lemma 6 Combinations from Table 2 can be used to give PBD(78; �;K) for many � and K.3 GENERALIZED SUPPLEMENTARYDIFFERENCE SETSWe slightly extend a Lemma of de Launey and Seberry [11, Lemma 6.1.1] to get a new result.Theorem 7 Suppose there exist n-fv; k;�g supplementary di�erence sets and a square GBRD(k; j; tg;G), Y = (ysu), where jGj = g. Then there exist nk � fv; j; t�g;Gg� GBRSDS.Proof. Let the n � fv; k;�g SDS, Di; i = 1; : : : ; n, have elements di1; di2; : : : ; dik.Using the GBRD(ysu) we form nk GBRSDS by choosing the initial blocksdi1y1u ; di2y2u ; : : : ; dikyku ; i = 1; 2; : : : ; n; u = 1; 2; : : : ; k;where if ysu is 0, then we remove disysu from the block (see Example 8).These blocks are developed modulo v so that in a block, developed from an initial block withyau in position (1; a), position (1 + b; a+ b) is also yau. Note that 1 + b and a + b are bothreduced modulo v.Because the initial sets, Di, had each element 1; 2; : : : ; v� 1 occurring as the solution of theequation dia � dib; i 2 f1; : : : ; ng; a; b 2 f1; : : : ; kgexactly � times, the new design will havegajg�1bj ; j = 1; : : : ; k; a; b 2 f1; : : : ; kgoccurring �tg times. Hence we have the starting blocks of an nk� fv; j; t�g;Gg�GBRSDS.2 6



Corollary 8 Let p � 1 (mod 4) be a prime power. Then there exist 2�fp; 12(p�1); 12(p�3)gSDS. Suppose there exists a GBRD((p � 1)=2; k; tg;G) where jGj = g. Then there exist(p� 1)� fp; k; tg(p� 3)=2;Gg�GBRSDS.Example 8 We use the GBRD(5; 5; 4; 4; 3;Z3)Y = (yiu) = 2666664 0 1 1 1 11 0 1 ! !21 1 0 !2 !1 ! !2 0 11 !2 ! 1 0 3777775 written as 2666664 ? 0 0 0 00 ? 0 1 20 0 ? 2 10 1 2 ? 00 2 1 0 ? 3777775.Attaching ? to an element is the same as multiplying it by zero in multiplicative notation andso removes that element from the starting block.Now there are 3 � f7; 5; 10g SDS namely f0; 1; 2; 3; 4g, f0; 1; 2; 4; 5g and f0; 1; 2; 3; 5g. So wemake 15 starting blocksf10; 20; 30; 40g; f00; 20; 31; 42g; f00; 10; 32; 41g; f00; 11; 22; 40g; f00; 12; 21; 30g;f10; 20; 40; 50g; f00; 20; 41; 52g; f00; 10; 42; 51g; f00; 11; 22; 50g; f00; 12; 21; 40g;f10; 20; 30; 50g; f00; 20; 31; 52g; f00; 10; 32; 51g; f00; 11; 22; 50g; f00; 12; 21; 30g;which give a 15� f7; 4; 30;Z3g � GBRSDS.Applying the same method to the (11; 5; 2)-di�erence set f1; 3; 4; 5; 9g gives 5 starting blocks,D1i ; i = 1; : : : ; 5, namely f30; 40; 50; 90g, f10; 40; 51; 92g, f10; 30; 52; 91g, f10; 31; 42; 90g andf10; 32; 41; 50g which give a 5 � f11; 4; 6;Z3g � GBRSDS. (Note: superscript 1 in D1i isnot necessary in this example.)Corollary 9 Let p � 3 (mod 4) be a prime power. Suppose there exists a GBRD(v; b; r; k; tp;G), jGj = p. Then there exist a GDD(vp; bp; 12r(p � 1); 12k(p � 1); �1 = 14r(p � 3); �2 =14 t(p � 1)2; m = v; n = p) and a GDD(vp; bp; 12r(p + 1); 12k(p + 1); �1 = 14r(p + 1); �2 =14(p+ 1)2; m = v; n = p).Proof. Use the (p; 12(p�1); 14(p�3))-di�erence set in the theorem or the (p; 12(p+1); 14(p+1))di�erence set. 2Corollary 10 Let p � 3 (mod 4) and p + 1 both be prime powers. Then there exist aGDD(p(p+ 2); p(p + 2); 12(p2 � 1); 12(p2 � 1); �1 = 14(p+ 1)(p� 3); �2 = 14(p � 1)2; m =p+ 2; n = p) and an SBIBD(p(p+ 2); 12(p+ 1)2; 14(p+ 1)2).Proof. Use the previous corollary and the GBRD(p+ 2; p+ 1; p;Zp). 2Example 9 Over GF (23) with the primitive equation 3 =  + 1 we have; 2; 3 =  + 1; 4 = 2+ ; 5 = 3 =  + 1; 6 = 2 + 1; 7 = 1and choosing m00 = mii = 0, m0i = mi0 = 1, i = 1; : : : ; 8 and mij = ak if k = j + i7



0 1  2 3 4 5 60 1 1 1 1 1 1 1 10 1 0 1 a a2 a3 a4 a5 a61 1 1 0 a3 a2 a a5 a4 a2 1 a a3 0 a4 1 a2 a6 a52 1 a2 a2 a4 0 a5 a a3 13 1 a3 a 1 a5 0 a6 a2 a44 1 a4 a2 a2 a a6 0 1 a35 1 a5 a4 a6 a3 a2 1 0 a6 1 a6 a2 a5 1 a4 a3 a 0We map 0 ! 07, ai ! T iB. If B is an SBIBD(7; k; �) the new matrix has order 63 , rowand column sum 8k, �1 = 8� and �2 = k2. So we have an SBIBD(63; 63; 32; 32; 16) or aGDD(63; 63; 24; 24; �1 = 8; �2 = 9; m = 9; n = 7).In general this construction takes a GBRD(p+ 1; p; p� 1) where p is a prime power and anSBIBD(p� 1; k; �) and makes a GDD(p2 � 1; p2 � 1; pk; pk; �1 = p�; �2 = k2).Corollary 11 Let p � 3 (mod 4) and q = p � 1 both be prime powers. Then there exists aGDD(p(q2+ q+1), p2(q2+ q+1), 12p2(p� 1), 12p(p� 1); �1 = 14p2(p� 3), �2 = 14(p� 1)2) anda GDD(p(q2+ q + 1), p2(q2 + q + 1), 12p2(p+ 1), 12p(p� 1); �1 = 14p2(p+ 1), �2 = 14(p+ 1)2,m = q2 + q + 1, n = p).Proof. Use the p�fq2+q+1; q+1; q+1; Gg�GBRSDS, jGj = p, to make a GBRD(q2+q+1; p(q2+q+1); p2; p; p; G). Then use the SBIBD(p; 12(p�1); 14(p�3)) and SBIBD(p; 12(p+1); 14(p+ 1)) to obtain the second GDD of the enunciation. 2For example, we know that there exist a di�erence set for SBIBD(7; 3; 1) and aGBRD(3; 3; 3;Z3). We apply Theorem 7 to get 3� f7; 3; 3;Z3g �GBRSDS.Now we use Lemma 1 and the trivial BIBD(3; 1; 0) = I3 to obtain a GDD(21; 63; 9; 3; 0; 1)and Lemma 1 and the BIBD(3; 2; 1) to obtain a GDD(21; 63; 9; 3; 9; 4).4 GENERALIZED WEIGHING MATRICESWrite G = (gij) for a symmetric GH(k;G), jGj = k, where G comprises the kth roots of unity,1; ; : : : ; k�1 with the relation 1 +  + 2 + : : : + k�1 = 0. G is in normalized form sog0i = gi0 = 1, i = 0, : : :, k � 1 and gij = ij.Let D = fd1; : : : ; dkg be a (v; k; �)-di�erence set. Form the k � fv; k; k�g� GBRSDS, Di =fgi1d1; gi2d2; : : : ; gikdkg, i = 1; : : : ; k. Call the matrices developed from Di, Ai. Now we forma matrix, W , of order k2 by choosing the circulant matrix with �rst now[A1 : A2 : : : : : Ak]:We claim W is a generalized weighing matrix.Theorem 12 If k is a prime power and there exists a (v; k; �)-di�erence set then there existsa GW (vk; k2; EA(k)).Proof. We use the normalized GH(k; EA(k)); G = (gij) whose elements are the kth rootsof unity as above. We form W as above. 8



There are three products to check: the inner product of row x and row x+yk, y 6= 0; the innerproduct of row x and row y where x; y 2 Si = fik; ik + 1; : : : ; ik + k � 1; i = 1; : : : ; kg;the inner product of row x and row y where x 2 Si, y 2 Sj , i 6= j.The �rst row of Ai has a1;dj = gij , a1;n = 0 otherwise. Hence the xth row of Ai has ax;j =a1;j�x+1 = g1m if j � x+ 1 = dm and axj = 0 otherwise.Case 1: The inner product of the xth row and the x+ ykth row of W isk�1Xz=0 vXj=1 ax;j+zka�1x+yk;j+zk ; y 6= 0= k�1Xz=0 vXj=1a1;j+zk�x+1a�11;j+zk�x�yk+1 ; y 6= 0= k�1Xz=0 Xdm2D gzmg�1(z�y);m; y 6= 0; if dm = j � x+ 1; dm 2 D= 0since Xd2D gzmg�1(z�y);m is the inner product of two rows of theGH , G, for which 1+ + 2+ : : :+k�1 = 0.Case 2: The inner product of the xth row and the yth row, x, y 2 Si isk�1Xz=0 vXj=1 ax;j+zka�1y;j+zk ; y 6= x= k�1Xz=0 Xdm ;dn2D gzmg�1zn ; dm = j � x+ 1; dn = j � y + 1; dm; dn 2 D= 0since k�1Xz=0 gzmg�1zn is the inner product of two rows of the GH .Case 3: The inner product of xth and yth rows, x 2 Si, y 2 Sj , i 6= j isk�1Xz=0 vXj=1 ax;j+zka�1y;j+zk= k�1Xz=0 Xdm;dn2D gzmg�1z+w;n ; some w 6= 0;dm = j � x+ 1; dn = j � y + 1; dm; dn 2 D:( The w reects that where x; y come from di�erent Si, the elements of row y have all beenincremented by the same �xed constant (w) due to the block cyclic structure of W )= k�1Xz=0 Xdm;dn2D zm�zn�wn= k�1Xz=0 Xdm;dn2D z(m�n)�wn9



= Xdm;dn2D k�1Xz=0 z(m�n)�wn= 0 as k�1Xz=0 z(m�n)�wn = 0:Thus we have the result. 2Example 10 The GW (21; 9;Z3) is given. Similarly one can construct a GW (55; 25;Z5).266666666666666666666666666666666666666664
0 1 1 0 1 0 0 0 1 ! 0 !2 0 0 0 1 !2 0 ! 0 00 0 1 1 0 1 0 0 0 1 ! 0 !2 0 0 0 1 !2 0 ! 00 0 0 1 1 0 1 0 0 0 1 ! 0 !2 0 0 0 1 !2 0 !1 0 0 0 1 1 0 !2 0 0 0 1 ! 0 ! 0 0 0 1 !2 00 1 0 0 0 1 1 0 !2 0 0 0 1 ! 0 ! 0 0 0 1 !21 0 1 0 0 0 1 ! 0 !2 0 0 0 1 !2 0 ! 0 0 0 11 1 0 1 0 0 0 1 ! 0 !2 0 0 0 1 !2 0 ! 0 0 00 1 !2 0 ! 0 0 0 1 1 0 1 0 0 0 1 ! 0 !2 0 00 0 1 !2 0 ! 0 0 0 1 1 0 1 0 0 0 1 ! 0 !2 00 0 0 1 !2 0 ! 0 0 0 1 1 0 1 0 0 0 1 ! 0 !2! 0 0 0 1 !2 0 1 0 0 0 1 1 0 !2 0 0 0 1 ! 00 ! 0 0 0 1 !2 0 1 0 0 0 1 1 0 !2 0 0 0 1 !!2 0 ! 0 0 0 1 1 0 1 0 0 0 1 ! 0 !2 0 0 0 11 !2 0 ! 0 0 0 1 1 0 1 0 0 0 1 ! 0 !2 0 0 00 1 ! 0 !2 0 0 0 1 !2 0 ! 0 0 0 1 1 0 1 0 00 0 1 ! 0 !2 0 0 0 1 !2 0 ! 0 0 0 1 1 0 1 00 0 0 1 ! 0 !2 0 0 0 1 !2 0 ! 0 0 0 1 1 0 1!2 0 0 0 1 ! 0 ! 0 0 0 1 !2 0 1 0 0 0 1 1 00 !2 0 0 0 1 ! 0 ! 0 0 0 1 !2 0 1 0 0 0 1 1! 0 !2 0 0 0 1 !2 0 ! 0 0 0 1 1 0 1 0 0 0 11 ! 0 !2 0 0 0 1 !2 0 ! 0 0 0 1 1 0 1 0 0 0

377777777777777777777777777777777777777775Lemma 13 If k is a prime power and there exists a (v; k; �)-di�erence set then there exists aPBIBD(vk2; vk2; k2; k2; �1 = 0; �2 = �; �3 = k).Proof. We replace the elements of the GW (vk; k2; EA(k)) by their matrix representation asbefore. This gives �1 = 0.The set of xth and (x + yk)th rows, y = 0; : : : ; k � 1 of the GW give the third associationwhich has �3 = k.The set of rows corresponding to the product of the xth rows and the yth rows, x 2 Si, y 2 Sj ,i 6= j give the second association class with �2 = �. 2Table 3 gives some of the generalized weighing matrices and PBIBDs parameters obtainedby using Theorem 12 and Lemma 13.Example 11 From the GW (21; 9;Z3) with !i replaced by T i we have the classes comprisingrows 3j + 1, 3j + 2, 3j + 3, j = 0; 1; : : : ; 20 with inner product zero.Rows 3j + 1, 3j + 2, 3j + 3 with any of 21 + 3j + 1, 21 + 3j + 2, 21 + 3j + 3 (and vice versa)and with any of 42+3j+1, 42+3j+2, 42+3j+3, j = 0; 1; : : : ; 7 (and vice versa) have innerproduct 3.All other pairs of rows have inner product 1. 10



Di�erence set GW PBIBD(v; k; �) (vk; k2;EA(k)) (vk2; vk2; k2; k2; 0; �; k)(4; 3; 2) (12; 9;EA(3)) (36; 36; 9; 9; 0; 2; 3)(7; 3; 1) (21; 9;EA(3)) (63; 63; 9; 9; 0; 1; 3)(5; 4; 3) (20; 16;EA(4)) (80; 80; 16; 16; 0; 3; 4)(7; 4; 2) (28; 16;EA(4)) (112; 112; 16; 16; 0; 2; 4)(13; 4; 1) (52; 16;EA(4)) (208; 208; 16; 16; 0; 1; 4)(6; 5; 4) (30; 25;EA(5)) (150; 150; 25; 25; 0; 4; 5)(11; 5; 2) (55; 25;EA(5)) (275; 275; 25; 25; 0; 2; 5)(21; 5; 1) (105; 25;EA(5)) (525; 525; 25; 25; 0; 1; 5)(8; 7; 6) (56; 49;EA(7)) (392; 392; 49; 49; 0; 6; 7)(15; 7; 3) (105; 49;EA(7)) (735; 735; 49; 49; 0; 3; 7)(9; 8; 7) (72; 64;EA(8)) (576; 576; 64; 64; 0; 7; 8)(15; 8; 4) (120; 64;EA(8)) (960; 960; 64; 64; 0; 4; 8)(57; 8; 1) (456; 64;EA(64)) (3648; 3648; 64; 64; 0; 1; 8)Table 3So the PBIBD, X , satis�es XJ = JX = 9,XXT = 9I3 � I7 � I3 + (J � I)3 � J7 � J3 + (J � I)3 � I7 � 2J:Hence we have a PBIBD(63; 63; 9; 9; �1 = 0; �2 = 1; �3 = 3).Acknowledgment: We wish to thank Dr. Kishore Sinha for his helpful advice and com-ments.References[1] Gerald Berman (1977), Weighing matrices and group divisible designs determined byEG(t; pn); t > 2, Utilitas Math., 12, 183-192.[2] Gerald Berman (1978), Families of generalised weighing matrices, Canad. J. Math., 30,1016-1028.[3] M. Bhaskar Rao (1966), Group divisible family of PBIB designs. J. Indian Stat. Assoc.,4, 14-28.[4] M. Bhaskar Rao (1970), Balanced orthogonal designs and their applications in the con-struction of some BIB and group divisible designs. Sankhya Ser. A, 32, 439-448.[5] A.T. Butson (1962), Generalized Hadamard matrices, Proc. Amer. Math. Soc. , 13, 894-898.[6] A.T. Butson (1963), Relations among generalized Hadamard matrices, relative di�erencesets and maximal length recurring sequences, Canad. J. Math., 15, 42-48.[7] Clatworthy W. H., Tables of Two-Associate-Class Partially Balanced Designs, NationalBureau of Standards, US Commerce Department, 1971.11
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