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On New Families of Supplementary Di�erence Setsover Rings with Short OrbitsMarc Gysin and Jennifer Seberry�Centre for Computer Security Research,Department of Computer Science,The University of Wollongong,Wollongong, NSW 2500, AustraliaDedicated to Professor Anne Penfold StreetAbstractWe discuss di�erence sets (DS) and supplementary di�erence sets (SDS)over rings. We survey some constructions of SDS over Galois rings wherethere are no short orbits. >From there we move to constructions whichinvolve short orbits. These give rise to new in�nite families of SDS overGF (p)�GF (q), p, q both prime powers. Many of these families have � = 1.We also show some new balanced incomplete block designs and pairwisebalanced designs arising from the constructions given here.1 IntroductionThe methods and techniques in this paper have been inspired by many authorsincluding Dokovic [3], Furino [5], Hunt and Wallis [7] and Storer [16]. We usethese methods and further generalisations to �nd many new in�nite families ofSDS.De�nition 1 (Supplementary Di�erence Sets) Let S1; S2; : : : ; Se be subsetsof Zv (or any �nite abelian group of order v) containing k1; k2; : : : ; ke elementsrespectively. Let Ti be the totality of all di�erences between elements of Si (withrepetitions), and let T be the totality of all the elements of Ti. If T containseach non{zero element of Zv a �xed number of times, say �, then the sets will becalled e{fv; k1; k2; : : : ; ke;�g supplementary di�erence sets (SDS).The parameters of e{fv; k1; k2; : : : ; ke;�g supplementary di�erence sets satisfy�(v� 1) = eXi=1 ki(ki � 1): (1)�Research supported by the Centre for Computer Security Research, ARC Large Grant223261006 and a University of Wollongong Postgraduate Research Scholarship1



If k1 = k2 = : : : = ke = k we shall write e{fv; k;�g to denote the e SDS and (1)becomes �(v � 1) = ek(k � 1):If e = 1, then we will denote the SDS as a fv; k;�g di�erence set (DS) ratherthan a 1� fv; k;�g SDS.The rest of this paper is organised as follows. Section 2 gives an introductionto cyclotomy and basic theorems. Section 3 gives some recursive constructions.None of the constructions in Sections 2 and 3 are new. Sections 4, 5 and 6 presentnew constructions. Section 4 gives a further generalisation of previous results.Section 5 presents a construction yielding supplementary di�erence sets withshort orbits. Section 6 develops further some of the Stanton{Sprott{Whitemanconstructions. Finally, in Section 7, we give some new pairwise balanced designs(PBD) and balanced incomplete block designs (BIBD) arising from the previoussections.2 CyclotomyWe give a short introduction to cyclotomy. More details are given in [4] and [12].None of the theorems presented in this section is new.De�nition 2 Let x be a primitive element of F = GF (q), where q = p� = ef+1is a prime power. Write F � =< x >. The cyclotomic classes (or cosets) Ci in Fare: Ci = fxes+i : s = 0; 1; : : : ; f � 1g; i = 0; 1; : : : ; e� 1:We note that the Ci's are pairwise disjoint and their union is F � = F n f0g.Notation 1 Let A = fa1; a2; : : : ; akg be a k{set; then we will use �A for thecollection of di�erences between distinct elements of A, i.e,�A = [ai � aj : i 6= j; 1 � i; j � k]:Note that �Ci = Ci1 [ : : :[ Cif�1;where 0 � ik � e � 1 and the ik's are not necessarily distinct. Also observe thatthe classes Ci have a multiplicative structure. That is, 1xiplus � Ci = Ci+iplus ;and, together with the distributive law,�Ci+iplus = xiplus � Ci1 [ : : :[ xiplus � Cif�1= Ci1+iplus [ : : :[ Cif�1+iplus :1If i + iplus � e, then i + iplus has to be reduced mod e. In the remainder of this paper,we will not indicate when indexes have to be reduced, except for some very special cases whichrequire some further considerations. 2



Now, e�1[i=0�Ci = e�1[iplus=0�Ci+iplus= e�1[iplus=0Ci1+iplus [ : : :[ e�1[iplus=0Cif�1+iplus= e�1[i=0Ci [ : : :[ e�1[i=0 Ci= (f � 1)F �:Therefore, we have the following theorem.Theorem 1 Let q = p� = ef + 1, x, C0; : : : ; Ce�1 be de�ned as above. ThenC0; : : : ; Ce�1 are e� fq; f ; f � 1g SDS :Theorem 1 can be generalised (see, for example, [17]):Theorem 2 Let S0 = Ck1[: : :[Ckt, ki 6= kj for i 6= j, Sm = Ck1+m[: : :[Ckt+m,t � e. Now S0; : : : ; Se�1 are e� fq; tf ; t(tf � 1)g SDS :Proof. Note that�(Ci [ Cj) = �Ci [�(Ci � Cj) [�(Cj � Ci)[�Cj;where �(Ca� Cb) = [ca � cb : ca 2 Ca; cb 2 Cb]:Similarly to the above we can now write�(Ci [ Cj) = f�1[s=1 Cas [ f[s=1Cbs [ f[s=1Ccs [ f�1[s=1 Cds;and; e�1[m=0�(Ci+m [ Cj+m) = : : :: : : = (4f � 2)F �:as above. It can now be easily shown thate�1[m=0�Sm = e�1[m=0�(Ci1+m [ : : :[ Cit+m) = t(tf � 1)F �: 2For q being an odd prime power we de�ne �1 = x q�12 = x ef2 . For odd f , we haveef2 = e(f�12 ) + e2 , so �1 2 C e2 . Therefore,(�1)� Ck = (�1)� fxes+k : s = 0; : : : ; f � 1g= fxe( f�12 )+ e2 xes+k : s = 0; : : : ; f � 1g= fxes+k+ e2 : s = 0; : : : ; f � 1g= Ck+ e2 : 3



Similarly, for Sm = Ci1+m [ : : :[ Cit+m,(�1)� Sk = Sk+ e2 :The di�erences arising from Ck and (�1) � Ck must be the same, similarly forSk and (�1)� Sk, Therefore, we get the following theorem.Theorem 3 Let q = ef + 1 be an odd prime power and let f be odd. Now inTheorems 1 and 2:C0; : : : ; C e2�1 are e2 � fq; f ; f � 12 g SDS ;S0; : : : ; S e2�1 are e2 � fq; tf ; t(tf � 1)2 g SDS :Note that we could also have chosen any con�guration, for example, C0; C e2+1; C2;: : : ; Ce�1 instead of C0; : : : ; C e2�1. There are a total of 2 e2 independent choices ofeither Ck or Ck+ e2 for the above e2 �fq; f ; f�12 g SDS . Similarly for Sk and Sk+ e2 .Hence, there are many2 nonisomorphic SDS for either case in Theorem 3.Another standard construction for SDS is obtained by adding the element f0g toeach set Cj or Sj in Theorems 1 to 3. Observe that for any set D�(D [ f0g) = �D [D [ (�1)�D:Theorem 4 >From Theorems 1 to 3 and by adding the element f0g to each setCj or Sj, respectively, we gete� fq; f + 1; f + 1g SDS ;e� fq; tf + 1; t(tf + 1)g SDS ;e2 � fq; f + 1; f + 12 g SDS ;e2 � fq; t(f + 1); t(tf + 1)2 g SDS :3 Supplementary Di�erence Sets without Short Or-bitsIn this section we show how we can construct SDS over cross products of Galois�elds (also called Galois rings) and over Zp� by similar constructions as givenabove. None of the constructions and the SDS in this section are new and theyare, for example, covered by a more general construction given in [5] but theapproach and (the sketch of) the proof of Theorem 5 here are di�erent from theconstructions given in [5]. Other similar constructions are given in [1], [8] and[10].2This construction gives us 2 e2 e2 � fq; f ; f�12 g SDS . But not all of these SDS are noniso-morphic, for example, if e = 4, then C0; C2 and C1; C3 are isomorphic SDS since one can beobtained from one another by multiplying all the classes with the same �xed element.4



De�nition 3 Let p1; : : : ; pn be prime powers and let f be a factor of each pi�1.Let ei = pi�1f and xi be a primitive element of GF (pi). Let `i 2 f
g [ f(j;m) :0 � j � pi�1f � 1; 0 � m � f � 1g, i = 1; : : : ; n. Then we de�ne the classesC`1;`2;:::;`n asC`1;`2;:::;`n = f(r1(s); r2(s); : : : ; rn(s)) : s = 0; : : : ; f � 1g;where ri(s) = ( 0 `i = 
xei(s+m)+ji `i = (j;m)`i 2 f(j;m) : 0 � j � pi�1f � 1; 1 � m � f � 1g will not be de�ned if all `k = 
,for k = 0; : : : ; i� 1.We shall also be concerned with di�erent types of class C`1;`2;:::;`n . We de�ne twoclasses C`11;`21;:::;`n1 and C`12;`22;:::;`n2 to be of a di�erent type, if there is at leastone i such that `i1 = 
 and `i2 6= 
 or vice versa; otherwise the classes are to bede�ned of the same type.Observe that for any n, the totality of all the de�ned classes C`1;:::;`n are a parti-tion of f(1; : : : ; 1); : : : ; (p1 � 1; : : : ; pn � 1)g. The total number of di�erent typesof class is 2n � 1 (if we do not count the class C
;
;:::;
 = f0g).Theorem 5 Let p1; : : : ; pn be prime powers. Let f be a factor of each pi� 1, letei = pi�1f and xi be a primitive element of GF (pi).(i) C`1;:::;`n are p1 � : : :� pn � 1f � fp1 � : : :� pn; f ; f � 1g SDS ;for all de�ned `1; : : : ; `n.(ii) There are �(f)n�1 nonisomorphic such SDS depending on the initial choicesof the primitive elements xi, i = 1; : : : ; n.(iii) Furthermore, if all pi's are odd and f is odd, then there are many noni-somorphic p1�:::�pn�12f {fp1 � : : :� pn; f ; f�12 g SDS for each of the SDS in(ii).Proof. We only sketch how to prove (i) to (iii).(i): It can be shown that the totality of di�erences arising from one type of classgenerate this type of class f � 1 times. That is[same type of class�C`1;:::;`n = (f � 1) [same type of classC`1;:::;`n ;and this will complete this part of the proof, since all the classes are a partitionof f(1; : : : ; 1); : : : ; (p1 � 1; : : : ; pn � 1g.(ii): If n = 1, then �(f)n�1 = 1. That is, the SDS in this case does not dependon the choice of the primitive element x1. If, however, n � 2, then the classesdepend on the choice of the primitive elements xi, i � 2. For each pi, i � 2 thereare �(pi�1) primitive elements of which �(f) will lead to another nonisomorphic5



set of classes. There are a total of n � 1 independent such choices, therefore, wehave �(f)n�1 such SDS.(iii): If all pi's are odd and f is odd, then (�1) = (�1; : : : ;�1) will not be inC(0;0);:::;(0;0). So there are two classes, C(0;0);:::;(0;0) and (�1)�C(0;0);:::;(0;0) whichgenerate the same di�erences. Similarly for all other classes C`1;:::;`n . Hence, halfof the classes must generate all the di�erences and there are a total of p1�:::�pn�12findependent choices of either C`1;:::;`n or (�1) � C`1;:::;`n to form p1�:::�pn�12f {fp1 � : : :� pn; f ; f�12 g SDS. 2Theorems 2 to 4 can now be extended similarly.Theorem 6 Let pi, ei, xi, f be as above. Let t � minfei : 1 � i � ng. For eachdi�erent type of class now de�neSstart = t[i=1C`1i;:::;`nisuch that, for each � 6= � and 1 � k � n, if `k� = (j�; m�) and `k� = (j�; m�),then j� 6= j�.If we now let all the Sstart's \cycle through", then we havep1 � : : :� pn � 1f � fp1 � : : :� pn; tf ; t(tf � 1)g SDS :Theorem 7 If, in Theorem 6, all pi's are odd and f is odd, then there are alsop1 � : : :� pn � 12f � fp1 � : : :� pn; tf ; t(tf � 1)2 g SDS ;obtained by taking either Sstart+k or (�1)�Sstart+k for each k and each di�erenttype of class.Theorem 8 In Theorems 5 to 7 we obtainp1 � : : :� pn � 1f � fp1 � : : :� pn; f + 1; f + 1g SDS ;p1 � : : :� pn � 1f � fp1 � : : :� pn; tf + 1; t(tf + 1)g SDS ;p1 � : : :� pn � 12f � fp1 � : : :� pn; f + 1; f + 12 g SDS ;p1 � : : :� pn � 12f � fp1 � : : :� pn; tf + 1; t(tf + 1)2 g SDS ;by adding the element f0g to each of the initial sets, in Theorems 5 to 7, respec-tively.Clearly, all the above constructions work for p1; : : : ; pn being pairwise distinctprimes. We then haveGF (p1)� : : :�GF (pn) ' Zp1 � : : :� Zpn' Zp1�:::�pn :We now turn briey to SDS over Zp� . The next theorem corresponds to Lemma4.3 in [5]. 6



Theorem 9 Let p be an odd prime and x be an element of Zp� such that x hasmultiplicative order p� � p��1. Let f be a factor of p� 1. LetCz;`z = fpzx p��z�p��z�1f s+`z : s = 0; : : : ; f � 1g;z = 0; : : : ; �� 1, `z = 0; : : : ; p��z�p��z�1f � 1.(i) Cz;`z are p� � 1f � fp�; f ; f � 1g SDS over Zp� ;for z, `z running through the above ranges.(ii) The number of nonisomorphic SDS in (i) is one.(iii) Furthermore, if f is odd, then there are many nonisomorphic p��12f �fp�; f ; f�12 gSDS.The constructions in Theorems 2 to 4 can now be applied very similarly. Wedo not state the theorems here. However, we would like to mention that com-binations of SDS over cross products of Galois �elds and Zp� are possible. InTheorems 5 and 9 two classes, say Cj over G1 and Ck over G2, could always beexpressed as Cj = fy1xc1s+j1 : s = 0; : : : ; f � 1g;Ck = fy2xc2s+k2 : s = 0; : : : ; f � 1g: (2)Any two such classes give immediately rise to f new classes, say Cj;k;m overG1 �G2, which can be expressed asCj;k;m = f(y1xc1s+j1 ; y2xc2(s+m)+k2 ) : s = 0; : : : ; f � 1gfor m = 0; : : : ; f � 1.Suppose that the Cj 's are a partition of G1 and the Ck's are a partition of G2.If now the totality of the Cj 's form v1�1f � fv1; f ; f � 1g SDS over G1, that is,[j �Cj = (f � 1)[j Cjand the totality of the Ck's form v2�1f � fv2; f ; f � 1g SDS over G2, that is,[k �Ck = (f � 1)[k Ck;then Cj;k;m = f(y1xc1s+j1 ; y2xc2(s+m)+k2 ) : s = 0; : : : ; f � 1gDk = f(0; y2xc2s+k2 ) : s = 0; : : : ; f � 1gEj = f(y1xc1s+j1 ; 0) : s = 0; : : : ; f � 1g7



are v1v2�1f � fv1v2; f ; f � 1g SDS over G1 �G2, since,[j;k;m�Cj;k;m = (f � 1) [j;k;mCj;k;m[k �Dk = (f � 1)[k Dk[j �Ej = (f � 1)[j Ej :Furthermore, the Cj;k;m's, Dk's and Ej 's are a partition of G1 � G2.It is clear that the above construction can be applied recursively. The construc-tions from Theorems 2 to 4 may now be applied accordingly.The theorems given in the above sections produce in�nite families of SDS. Fora given v the above constructions may lead to di�erent groups. For example, ifv = 25, then we may consider SDS overGF (25); orZ5 � Z5 ' GF (5)�GF (5); orZ25:If, in the above constructions, we call C(0;0);:::;(0;0), C0;00 or C0;0;0 \the �rst class",then in Theorems 5 and 9 all the SDS are de�ned by \second element" in the�rst class. That is, the whole structure is de�ned byx = (x�(jG1j)f1 ; : : : ; x�(jGnj)fn ); (3)where Gi are the di�erent groups involved, xi is a generator of the units of Gi(i = 1; : : : ; n) and jGij is the order of the group Gi.We also would like to point out that the �rst class is a3 subgroup of the unitsin G1 � : : :� Gn. All the other classes are the orbits of this subgroup. All theorbits and the subgroup have the same order, that is, there are no short orbits.This is due to the construction and (3) which assures that xf = (1; 1; : : : ; 1) andxi = (u1; : : : ; un) with uk 6= 1, (k = 1; : : : ; n) for 2 � i � f � 1.4 A More General ConstructionThe construction in Theorem 10 is similar to Theorem 5. However, the construc-tion here is more general. This generalisation is completely di�erent from theconstructions in [5]. A construction using a similar idea for cyclic block designshas been given in [1].Theorem 10 Suppose C0; : : : ; Ce�1 aree � fv; f0; : : : ; fe�1;�g SDS over G;3Because there may is more than one way to construct the �rst class (Theorem 5) we say \asubgroup" and not \the subgroup". 8



and suppose there is a prime power q with fij(q � 1) for all 0 � i � e � 1. Fur-thermore, suppose that (�+ 1)j(q� 1).Let x be a primitive element of GF (q) and let cj;s be the s{th element4 in set Cj.Let Cj;` = f(cj;s; x q�1fj s+`) : s = 0; : : : ; fj � 1gDk = f(0; x q�1�+1 s+k) : s = 0; : : : ; �gEj = f(cj;s; 0) : s = 0; : : : ; fj � 1g;where j = 0; : : : ; e� 1, k = 0; : : : ; q�1�+1 � 1, ` = 0; : : : ; q � 2.NowCj;`; Dk; Ej are (eq + q�1�+1)�fvq; f0; f0; : : : ; fe�1; fe�1; �+ 1; : : : ; �+ 1; f0; : : : ; fe�1;�g SDS over G�GF (q);for j; k; ` running through the above ranges.Proof. e�1[j=0�Ej = � [g2G�(g; 0);due to the assumption; and;q�1�+1�1[k=0 �Dk = � [y2GF (q)�(0; y);due to cyclotomy and the construction. Alsoe�1[j=0�Cj;0 = �jG�j�1[k=0 (gk; xuk);such that S�jG�j�1k=0 gk = �G�.Now e�1[j=0 q�2[̀=0�Cj;` = �jG�j�1[k=0 q�2[̀=0(gk; xuk+`)= � [g2G� [y2GF (q)�(g; y);which completes the proof. 2Corollary 1 The above construction also works if(�� 1) j (q � 1);(2�+ 1) j (q � 1); q being odd(2�� 1) j (q � 1); q being odd:4Note that \the order" within the sets Ci may be chosen completely arbitrarily.9



Proof. The standard constructions in cyclotomy given above give rise to SDSover GF (q) with � = f+1; f�12 ; f+12 , where f is the size of the sets. Therefore, forthe construction of the Dk's, we have to let f = ��1; 2�+1; 2��1, respectively,and this f must divide q � 1. 2Corollary 2 Suppose there are fv; f ;�g SDS over G and fq; f ;�g SDS overGF (q), q a prime power and f j(q � 1), then there are fvq; f ;�g SDS over G �GF (q).Proof. Follows directly from the construction and by embedding the fq; f ;�gSDS over GF (q) in G� GF (q) yielding the Dk's. 2Corollary 3 Suppose C0; : : : ; Ce�1 aree� fv; f ;�g SDS over G;and suppose there is a prime power q with f j(q � 1). Furthermore, suppose that�j(f � 1).Let x be a primitive element of GF (q) and let cj;s be the s{th element in set Cj.Let Cj;` = f(cj;s; x q�1f s+`) : s = 0; : : : ; f � 1gDk = f(0; x q�1f s+k) : s = 0; : : : ; f � 1gEj = f(cj;s; 0) : s = 0; : : : ; f � 1g;where j = 0; : : : ; e� 1, k = 0; : : : ; q�1f � 1, ` = 0; : : : ; q � 2.Now f�1� copies of Cj;`; Ej and one copy of Dk are (eq f�1� + q�1f )�fvq; f ; f � 1g SDS over G�GF (q);for j; k; ` running through the above ranges.Proof. Follows directly from Theorem 10 and the construction. 2Theorem 10 and its corollaries lead to in�nite families of SDS. Note that due toCorollary 1 may more than one construction be possible (for example, if q = 13and � = 3). Theorem 5 is a special case of Corollary 2.In the above section constructions of SDS over Zp� are given. Similarly, we cannow extend SDS via Zp� .Theorem 11 Suppose C0; : : : ; Ce�1 aree � fv; f0; : : : ; fe�1;�g SDS over G;and suppose there is a prime p with fij(p� 1) for all 0 � i � e� 1. Furthermore,suppose that (�+ 1)j(p� 1). 10



Let x be an element of Zp� such that x has multiplicative order p�� p��1 and letcj;s be the s{th element in set Cj. LetCj;z;`z = f(cj;s; pzx p��z�p��z�1fj s+`z ) : s = 0; : : : ; fj � 1gDz;kz = f(0; pzx p��z�p��z�1�+1 s+kz ) : s = 0; : : : ; �gEj = f(cj;s; 0) : s = 0; : : : ; fj � 1g;where j = 0; : : : ; e � 1, kz = 0; : : : ; p��z�p��z�1�+1 � 1, z = 0; : : : ; � � 1, `z =0; : : : ; p��z � p��z�1 � 1.NowCj;z;`z ; Dz;kz ; Ej are (ep� + p��1�+1 )�fvp�; f0; f0; : : : ; fe�1; fe�1; �+ 1; : : : ; �+ 1; f0; : : : ; fe�1;�g SDS over G� Zp� ;for j; kz; z; `z running through the above ranges.Proof. Similarly to Theorem 10: The proof follows >from Theorem 9 and theconstruction. 2Remark 1 Similarly to the above, the construction also works if(�� 1) j (p� 1);(2�+ 1) j (p� 1);(2�� 1) j (p� 1):The constructions from Corollaries 2 or 3 may be applied.Example 1 C0 = f1; 5; 25; 8g, C1 = f2; 10; 11; 16g, C2 = f4; 20; 22; 32g, C3 =f13; 26g are 4� f39; 4; 4; 4; 2; 1g SDS over Z39. The construction in Theorem 10now yields:22� f195; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 2; 2; 2; 2; 2; 2; 4; 4; 4; 2; 1gSDS over Z39 �GF (5) ' Z195;40� f351; 4; : : : ; : : : ; 2; 2; 2; 2; 4; 4; 4; 2; 1g SDS over Z39 � GF (32);58� f507; 4; : : : ; : : : ; 2; 2; 2; 2; 2; 2; 4; 4; 4; 2; 1gSDS over Z39 �GF (13);and there are many other SDS possible.Example 2 The sets f1; 12; 8; 5g, f10; 3; 11; 2g, f4; 6; 7; 9g are 3�f13; 4; 3g SDSover GF (13). (Note that \the order" within the sets has been chosen arbitrarily.)We now extend these SDS via GF (5). LetC0;0 = f(1; 1); (12; 2); (8; 4); (5; 3)g= f1; 12; 34; 18g;C1;0 = f(10; 1); (3; 2); (11; 4); (2; 3)g= f36; 42; 24; 28g;C2;0 = f(4; 1); (6; 2); (7; 4); (9; 3)g= f56; 32; 59; 48g;D0 = f(0; 1); (0; 2); (0; 4); (0; 3)g= f26; 52; 39; 13g;E0 = f(1; 0); (12; 0); (8; 0); (5; 0)g= f40; 25; 60; 5g;E1 = f(10; 0); (3; 0); (11; 0); (2; 0)g= f10; 55; 50; 15g;E2 = f(4; 0); (6; 0); (7; 0); (9; 0)g= f30; 45; 20; 35g;11



and let Cj;` = (1; 2`) � Cj;0, for j = 0; : : : ; 2, ` = 0; : : : ; 3. Now Cj;`, D0, E0,E1, E2 are 16 � f65; 4; 3g SDS over GF (13) � GF (5) ' Z65. These SDS arenonisomorphic to the ones arising from Theorem 5 or given in [5] because theelements in the classes arising from GF (13) have \been shu�ed" before the Cj;`were constructed. There are many other nonisomorphic such SDS, since, for �xedj, there are f !f = (f � 1)! ways to construct the Cj;`'s.Example 3 Section 10.6 in [2] gives fv; 4; 1gSDS for v = 49; 85. We extend theseSDS via GF (13) and let D = f(0; 0); (0; 1); (0; 3); (0; 9)g (note that f0; 1; 3; 9g is af13; 4; 1g DS, Corollary 2), Cj;` and Ej as in Theorem 10. We now have fr; 4; 1gSDS for r = 637; 1105;over Zr.Example 4 The set f0; 1; 3; 9g is a f13; 4; 1g DS over GF (13). We extend theseSDS via f1; 7; 24; 18g, f2; 14; 23; 11g, f4; 3; 21; 22g, f8; 6; 17; 19g, f16; 12; 9; 13g,f5; 10; 20; 15g which are 6� f25; 4; 3g SDS over Z52 . We getC0;0;00 = f(0; 1); (1; 7); (3; 24); (9; 18)g= f26; 157; 224; 243g;C0;0;`0 = (1; 2)`0 � C0;0;00 = 27`0 � C0;0;00;C0;1;01 = f(0; 5); (1; 10); (3; 20); (9; 15)g= f130; 235; 120; 165g;C0;1;`1 = (1; 2)`1 � C0;1;01 = 27`1 � C0;1;01;D0;00 = f(0; 1); (0; 24)g= f26; 299g;D0;k0 = (2; 2)k0 �D0;00 = 2k0 �D0;00;D1;01 = f(0; 5); (0; 20)g= f130; 195g;D1;k1 = (2; 2)k1 �D1;01 = 2k1 �D1;01;E0 = f(0; 0); (1; 0); (3; 0); (9; 0)g= f0; 300; 250; 100g:Now for `0 = 0; : : : ; 19, `1 = 0; : : : ; 3, k0 = 0; : : : ; 9, k1 = 0; 1, C0;0;`0, C0;1;`1,D0;k0 , D1;k1 , E0 are 37�f325; 4; 4; : : : ; : : : ; 2; 2; 1g SDS over GF (13)�Z52 ' Z325.Corollary 4 Suppose n = p� is a prime power and q is an odd prime power.Suppose (n+ 1)j(q� 1). Then we get(q + q � 12 )� fq(n2 + n+ 1);n+ 1; : : : ; 2; n+ 1; 1g SDSover Zn2+n+1 � GF (q).Proof. Cyclic projective planes exist for every order n = p� (Singer), see, forexample, [6] or [11]. Therefore, we have a fv; k;�g DS withv = n2 + n+ 1; k = n + 1; � = 1:Theorem 10 gives us the desired SDS. 2Corollary 5 Suppose n = p� is a prime power and q is a prime. Suppose (n+1)j(q � 1). Then we get(q� + q� � 12 )� fq�(n2 + n + 1);n+ 1; : : : ; 2; n+ 1; 1g SDSover Zn2+n+1 � Zq�, for � � 1.Proof. As Corollary 4 but now via Theorem 11. 212



5 Supplementary Di�erence Sets with Short OrbitsTheorem 12 Let ` � 1 be a number such that ` + 2 is a prime power. Let q bea prime power with q � 1 mod (`+ 1)2. Let x` and xq generate GF (`+ 2)� andGF (q)�, respectively. LetCj = f(xs̀; x q�1(`+1)2 s+jq ) : s = 0; : : : ; (`+ 1)2 � 1gE = f(xs̀; 0) : s = 0; : : : ; `gfor j = 0; : : : ; q�1`+1 � 1.Now the Cj's plus `+ 1 copies of E are(q � 1`+ 1 + `+ 1)� f(`+ 2)q; (`+ 1)2; : : : ; (`+ 1)2; `+ 1; : : : ; `+ 1; `(`+ 1)g SDS ;over GF (q)� GF (`+ 2), for j running through the above range.Proof. We de�neDk = f(0; x q�1(`+1)2 s+kq ) : s = 0; : : : ; (`+ 1)2 � 1g;for k = 0; : : : ; q�1(`+1)2 � 1.We have �C0 = Dk1 [ : : :[Dk` [Cj1 [ : : :[ Cj(`+1)2�`�1 ;where 0 � ki � q�1(`+1)2 � 1, 0 � ji � q�1`+1 � 1. The classes have a multiplicativestructure, so (1; xjplusq )� C0 = Cjplus ;�Cjplus = Dk1+jplus [ : : :[Dk`+jplus [Cj1+jplus [ : : :[ Cj(`+1)2�`�1+jplus :Therefore,q�1`+1�1[jplus=0�Cjplus = q�1`+1�1[jplus=0Dk1+jplus [ : : :[ q�1`+1�1[jplus=0Dk`+jplus [q�1`+1�1[jplus=0Cj1+jplus [ : : :[ q�1`+1�1[jplus=0Cj(`+1)2�`�1+jplus= ` q�1`+1�1[k=0 Dk [ ((`+ 1)2 � `� 1) q�1`+1�1[j=0 Cj= `(`+ 1) q�1(`+1)2�1[k=0 Dk [ `(`+ 1) q�1`+1�1[j=0 Cj:13



Also �E = `E;so (`+ 1)�E = `(`+ 1)E;and the proof is complete. 2Example 5 Let ` = 3 and q = 17 (note that 17 � 1 mod 16). Let (x`; xq) =(2; 5) = 22. NowC0 = f1; 22; 59; 23; 81; 82; 19; 78; 16; 12; 9; 28; 21; 37; 49; 58g;C1 = f56; 42; 74; 13; 31; 2; 44; 33; 46; 77; 79; 38; 71; 32; 24; 18g;C2 = f76; 57; 64; 48; 36; 27; 84; 63; 26; 62; 4; 3; 66; 7; 69; 73g;C3 = f6; 47; 14; 53; 61; 67; 29; 43; 11; 72; 54; 83; 41; 52; 39; 8g;E = f51; 17; 34; 68g;and C0; C1; C2; C3; E; E;E;E are 8 � f85; 16; 16; 16; 16; 4; 4; 4; 4; 12g SDS overGF (17)� GF (5) ' Z85.Note that ` odd implies `+2 and q odd. That is, �1 exists. Now�1 = (�1;�1) =(x `+12` ; x q�12q ) is not in C0 which can be easily shown. That is, (�1) � C0 6= C0.But the di�erences generated from �C0 and �(�C0) must be the same. Sincethis applies for every class Cj , we can take only half of the classes in Theorem 12to get SDS. We have the following corollary.Corollary 6 If, in Theorem 12, ` is odd, then there are also( q � 12(`+ 1) + `+ 12 )� f(`+ 2)q; (`+ 1)2; : : : ; (`+ 1)2; `+ 1; : : : ; `+ 1; ``+ 12 g SDS ;over GF (q)� GF (`+ 2).Example 6 In Example 5, C0; C1; E; E are4� f85; 16; 16; 4; 4; 6g SDSover Z85.Example 7 Let ` = 1 and q = 5 (note that 5 � 1 mod 4). In this case theconstructions in Theorem 12 and Corollary 6 work and the SDS in Corollary 6are given by C0 = f(1; 1); (2; 2); (1; 4); (2; 3)g= f1; 2; 4; 8gE = f(1; 0); (2; 0)g= f10; 5g:Now C0; E are 2� f15; 4; 2; 1g SDS over GF (5)�GF (3) ' Z15.14



Let ` = 1 and q = 13 (note that 13 � 1 mod 4). In this case the constructions inTheorem 12 and Corollary 6 work and the SDS in Corollary 6 are given byC0 = f(1; 1); (2; 8); (1; 12); (2; 5)g= f1; 8; 25; 5gC1 = f(1; 2); (2; 3); (1; 11); (2; 10)g= f28; 29; 37; 23gC2 = f(1; 4); (2; 6); (1; 9); (2; 7)g= f4; 32; 22; 20gE = f(1; 0); (2; 0)g= f13; 26g:Now C0; C1; C2; E are 4� f39; 4; 4; 4; 2; 1g SDS over GF (13)�GF (3) ' Z39.Let ` = 1 and q = 17 (note that 17 � 1 mod 4). In this case the constructions inTheorem 12 and Corollary 6 work and the SDS in Corollary 6 are given byC0 = f(1; 1); (2; 13); (1; 16); (2; 4)g= f1; 47; 16; 38gC1 = f(1; 5); (2; 14); (1; 12); (2; 3)g= f22; 14; 46; 20gC2 = f(1; 8); (2; 2); (1; 9); (2; 15)g= f25; 2; 43; 32gC3 = f(1; 6); (2; 10); (1; 11); (2; 7)g= f40; 44; 28; 41gE = f(1; 0); (2; 0)g= f34; 17g:Now C0; C1; C2; C3; E are 5�f51; 4; 4; 4; 4; 2; 1g SDS over GF (17)�GF (3) ' Z51.Note that C0 is again a subgroup of the units of GF (`+ 2)�GF (q). The otherclasses are all orbits of this subgroup. But this time we have one short orbit, thatis, one class with less elements than C0, which is E.6 Twin Prime Power ConstructionsStanton, Sprott, Storer and Whiteman, see, for example, [15], [16] or [18], showedconstructions of DS over GF (p) � GF (p + 2), with p, p + 2 both prime powers.We give very similar constructions here which give new families of SDS.Theorem 13 Let p, p+2 be two prime powers p > 2. Let x, y generate GF (p)�,GF (p+ 2)�, respectively. Let f = p2�12 = lcm(p� 1; p+ 1). LetCi = f(xs; ys+i) : s = 0; : : : ; f � 1gEk = f(x p�12 s+k ; 0) : s = 0; 1g;where i = 0; 1, k = 0; : : : ; p�12 � 1. Then C0, E0; : : : ; E p�12 �1 arep+ 12 � fp(p+ 2); p2 � 12 ; 2; : : : ; 2; (p� 1)24 g SDSover GF (p)� GF (p+ 2).Proof. De�ne E = f(xs; 0) : s = 0; : : : ; p � 2g, D = f(0; ys) : s = 0; : : : ; pg.Note that C0, C1, D, E are a partition of (GF (p) � GF (p + 2)) n f0g. �C0generates (p�1)22 classes Cik , ik = 0; 1, (p�1)24 times D and (p�1)24 � 1 times E,which follows directly from the construction (by counting \the number of hits15



from �C0" in each of the classes C0; C1; D; E and taking into account the length,that is, the number of elements in each class). Observe thatp�12 �1[k=0 �Ek = E:It now only remains to prove that half of the ik's are 0 (and the other halftherefore 1). Note that�1� C0 = (�1;�1)� C0 = (x p�12 ; y p+12 )� C0 = C1;since (x p�12 ; y p+12 ) = (x p�12 ; y p�12 +1) 2 C1. But�C0 = �(�C0) = �C1:Hence, half of the Cik 's generated by �C0 are C0's and the other half are C1's.2Remark 2 The only reason why the Ek's in Theorem 13 are needed is because�C0 does not generate enough E's (namely (p�1)24 � 1 instead of (p�1)24 ). There-fore, the class E has to be generated once more via the �Ek's.Remark 3 The SDS in Corollary 6 and Theorem 13 for the case GF (3) �GF (5) ' Z15 are the same.We restate the theorem of Stanton, Sprott [15] and Whiteman [18] and reproveit by simply counting the di�erences generated by �fC0 [E [ f0gg.Theorem 14 (Stanton{Sprott{Whiteman restated) Let C0, E be de�nedas above, then fC0 [ E [ f0gg is afp(p+ 2); p2 � 12 + p; (p+ 1)24 � 1g DSover GF (p)� GF (p+ 2).Proof. We know that�fC0 [E [ f0gg = �C0 [�E [�(C0� E)[�(E � C0) [ C0 [ �C0 [ E [ �E= (p� 1)24 (C0 [ C1) [ (p� 1)24 D [ ((p� 1)24 � 1)E[(p� 2)E [�(C0 �E)[�(E � C0) [ C0 [ C1 [ 2E:We have to examine �(C0�E) and �(E�C0). Again by counting \the numberof hits from �(C0 � E)" we �nd that �(C0 � E) generates p�12 D's and (p� 2)Cik 's. Similarly, �(E � C0) generates p�12 D's and (p� 2) (�Cik)'s.Therefore, (C0 [ C1) is generated(p� 1)24 + p� 2 + 1 = (p+ 1)24 � 116



times. The class D is generated(p� 1)24 + p� 1 = (p+ 1)24 � 1times. And, �nally, the class E is generated(p� 1)24 � 1 + p� 2 + 2 = (p+ 1)24 � 1times. 2Corollary 7 Let C0, D be de�ned as above, then fC0 [Dg is afp(p+ 2); (p+ 1)22 ; (p+ 1)24 g DSover GF (p)� GF (p+ 2).Proof. The complement of fC0 [ E [ f0gg is fC1 [ Dg which is a DS. But�fC1 [ Dg = � � fC1 [ Dg = �fC0 [ Dg. Hence, fC0 [ Dg is a DS with theabove parameters. 2Example 8 Let p = 5, p+ 2 = 7, (x; y) = (2; 3) = 17. NowC0 = f1; 17; 9; 13; 11; 12; 29; 3; 16; 27; 4; 33gD = f15; 10; 30; 20; 25; 5gE = f21; 7; 14; 28gE0 = f21; 14gE1 = f7; 28g;and C0; E0; E1 are 3� f35; 12; 2; 2; 4g SDS. Furthermore,fC0 [E [ f0gg = f1; 17; 9; 13; 11; 12; 29; 3; 16; 27; 4; 33; 21; 7; 14; 28; 0g;which is a f35; 17; 8g DS; and;fC0 [Dg = f1; 17; 9; 13; 11; 12; 29; 3; 16; 27; 4; 33; 15; 10; 30; 20; 25; 5g;which is a f35; 18; 9g DS. All the SDS and DS are over GF (5)�GF (7) ' Z35.The above theorems motivate us to �nd other pairs of prime powers p, p + a (anow greater than 2) with gcd(p� 1; p+ a � 1) = 2 to construct DS and SDS ina similar manner. However, some calculations show that DS and SDS as in theabove theorems are only possible for a = 2. If a > 2, then the set D (the zeroesin p) will be generated too many times.A more successful approach is to drop the condition gcd(p� 1; p + a � 1) = 2.That is, we let g = gcd(p� 1; p + a � 1) and try to �nd appropriate conditionsabout a and g. 17



Theorem 15 Let p, q = (g � 1)p + 2 be two prime powers p > 2, where g =gcd(p� 1; q � 1). Let x, y generate GF (p)� and GF (q)�, respectively. Let f =(p�1)(q�1)g = lcm(p� 1; q � 1). LetCi = f(xs; ys+i) : s = 0; : : : ; f � 1gE = f(xs; 0) : s = 0; : : : ; p� 2g;where i = 0; : : : ; g � 1. Then fC0 [ E [ f0gg; : : : ; fC g2�1 [E [ f0gg areg2 � fpq; (p� 1)(q � 1)g + p;�g SDSover GF (p)� GF (q), where � = pq � 1� g2g :Proof. Similarly to the proof above (Theorem 14). The construction alsoinvolves the fact that �1 = (�1;�1) = (x p�12 ; y q�12 ) 2 C g2 . Therefore, we onlyneed the classes fC0 [ E [ f0gg to fC g2�1 [ E [ f0gg to generate the SDS. But�1 2 C g2 can be easily proven by showing that q�1�(p�1)2 � g2 mod g. 2The above theorem and construction are very similar to Theorem II.1 in Storer[16]. This theorem was originally due to Whiteman [18]. However, in StorerDS are constructed, while Theorem 15 gives SDS. The case g = 2 is of courseTheorem 14.Example 9 Let p = 5, g = 4. Now q = 3p + 2 = 17 is a prime power. Alsogcd(4; 16) = 4 = g. Let x = 2 and y = 5. NowfC0 [ E [ f0gg = f1; 22; 59; 23; 81; 82; 19; 78; 16; 12; 9; 28; 21; 37; 49; 58;0; 51; 17; 34; 68gfC1 [ E [ f0gg = f56; 42; 74; 13; 31; 2; 44; 33; 46; 77; 79; 38; 71; 32; 24; 18;0; 51; 17; 34; 68g;and fC0 [E [ f0gg, fC1 [ E [ f0gg are 2� f85; 21; 10g SDS.We close the section by pointing out the similarity of Theorem 12 to Theorem15 for q = (` + 1)2 + 1. If we denote the other prime in Theorem 12 by p, thenp = `+2. Now g = gcd(p� 1; q� 1) = `+1 and q = (g� 1)p+ 2. The classes C0in either theorems are now the same (if we take the same generators of GF (p)�and GF (q)�). The whole construction is now very similar. Taking only half ofthe classes (Theorem 15) corresponds of course to Corollary 6.7 Balanced Incomplete Block Designs and PairwiseBalanced DesignsDe�nition 4 Let B be a collection of b blocks (or sets) of size k over a �nite setV with v elements. If B satis�es the following conditions18



(i) each element vi occurs exactly r times;(ii) each unordered pair (vi; vj) occurs in exactly � of the b blocks;then B is called a balanced incomplete block design (BIBD).The parameters of a BIBD satisfy bk = vr;�(v � 1) = r(k � 1):Since 2 of the parameters v; b; r; k; � are redundant, we will refer to a BIBD asBIBD(v; k; �).If S0; : : : ; St�1 are t�fv; f ;�g SDS, then we may obtain v� t blocks Bi;j , whereBi;j is obtained from Si by adding the element j to each of the elements in Si. Itcan be easily shown that the Bi;j 's are a BIBD. Therefore, we have the followingtheorem.Theorem 16 If there are t � fv; f ;�g SDS, then there is a BIBD(v; f; �).A more sophisticated construction is given in [12], Theorem 23:Theorem 17 (Theorem 23 from [12]) If there are n � fv; f ;�g SDS, thenthere are BIBD(v + 1; f; �f(f � 1)), for � � 1.If there are e{fv; f ;�g SDS, then there are also e{fv; v� f ; ev � 2ef + �g com-plementary SDS. Therefore, all the above constructions also produce many com-plementary SDS and BIBD.De�nition 5 Let B be a collection of blocks (or sets) of sizes ki 2 K over a �niteset V with v elements. If each unordered pair (vi; vj) of elements of V occurs inexactly � blocks, then B is called a pairwise balanced design, PBD(v;K; �).The parameters of a PBD satisfyXBi2B ki(ki � 1) = �v(v� 1);where ki is the size of block Bi. A BIBD(v; k; �) is a PBD(v; fkg; �). Therefore,by Theorem 16, if there are t � fv; f ;�g SDS, then there is a PBD(v; ffg; �).In Table 1 we present some PBD with � = 1 which are obtained by the aboveconstructions. There are many other PBD possible.8 ConclusionMany theorems which produce in�nite families of SDS (and therefore BIBD andPBD) have been given. Many of these theorems can be applied recursively with-out multiplying the parameter �. Some of the constructions are very similar forcertain parameters which indicates that there might be some further generalisa-tions. The authors feel that there are many other theorems possible which shallbe investigated in another paper. 19



v V K How15 GF (3)� GF (5) ' Z15 f4; 2g Corollary 6 with ` = 139 GF (3)�GF (13) ' Z39 f4; 2g Corollary 6 with ` = 151 GF (3)�GF (17) ' Z51 f4; 2g Corollary 6 with ` = 165 GF (13)�GF (5) ' Z65 f4; 2g f0; 1; 3; 9g and Theorem 1075 GF (3)�GF (52) f4; 2g Corollary 6 with ` = 187 GF (3)�GF (29) ' Z87 f4; 2g Corollary 6 with ` = 1111 GF (3)�GF (37) ' Z111 f4; 2g Corollary 6 with ` = 1123 GF (3)�GF (41) ' Z123 f4; 2g Corollary 6 with ` = 1147 GF (3)�GF (72) f4; 2g Corollary 6 with ` = 1159 GF (3)�GF (53) ' Z159 f4; 2g Corollary 6 with ` = 1183 GF (3)�GF (61) ' Z183 f4; 2g Corollary 6 with ` = 1195 Z15 � GF (13) ' Z195 f4; 2g Corollary 6 and Theorem 10195 Z39 �GF (5) ' Z195 f4; 2g Corollary 6 and Theorem 10217 Z31 �GF (7) ' Z217 f6; 2g Corollary 4 with n = 5219 GF (3)�GF (73) ' Z219 f4; 2g Corollary 6 with ` = 1221 GF (13)� GF (17) ' Z221 f4; 2g f0; 1; 3; 9g and Theorem 10231 Z21 � GF (11) ' Z231 f5; 2g Corollary 4 with n = 4243 GF (3)�GF (34) f4; 2g Corollary 6 with ` = 1247 GF (19)� GF (13) ' Z247 f3; 2g f4; 9; 6g; f5; 16; 17g; f8; 18; 12gand Theorem 10255 Z15 � GF (17) ' Z255 f4; 2g Corollary 6 and Theorem 10255 Z51 �GF (5) ' Z255 f4; 2g Corollary 6 and Theorem 10325 GF (13)� Z52 ' Z325 f4; 2g f0; 1; 3; 9g and Theorem 11351 Z39 � GF (32) f4; 2g Corollary 6 and Theorem 10377 GF (13)� GF (29) ' Z377 f4; 2g f0; 1; 3; 9g and Theorem 10403 Z31 � GF (13) ' Z403 f6; 2g Corollary 4 with n = 5435 Z15 � GF (29) ' Z435 f4; 2g Corollary 6 and Theorem 10481 GF (13)� GF (37) ' Z481 f4; 2g f0; 1; 3; 9g and Theorem 10507 Z39 �GF (13) f4; 2g Corollary 6 and Theorem 10513 Z57 � GF (32) f8; 2g Corollary 4 with n = 7555 Z15 � GF (37) ' Z555 f4; 2g Corollary 6 and Theorem 10615 Z15 � GF (41) ' Z615 f4; 2g Corollary 6 and Theorem 10651 Z21 � GF (31) ' Z651 f5; 2g Corollary 4 with n = 4795 Z15 � GF (53) ' Z795 f4; 2g Corollary 6 and Theorem 10915 Z15 � GF (61) ' Z915 f4; 2g Corollary 6 and Theorem 101001 Z91 �GF (11) ' Z1001 f10; 2g Corollary 4 with n = 9Table 1: Some PBD with � = 1.20
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