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On New Families of Supplementary Difference Sets
over Rings with Short Orbits

Marc Gysin and Jennifer Seberry™

Centre for Computer Security Research,
Department of Computer Science,
The University of Wollongong,
Wollongong, NSW 2500, Australia

Dedicated to Professor Anne Penfold Street

Abstract

We discuss difference sets (DS) and supplementary difference sets (SDS)
over rings. We survey some constructions of SDS over Galois rings where
there are no short orbits. ;From there we move to constructions which
involve short orbits. These give rise to new infinite families of SDS over
GF(p)x GF(q), p, ¢ both prime powers. Many of these families have A = 1.

We also show some new balanced incomplete block designs and pairwise
balanced designs arising from the constructions given here.

1 Introduction

The methods and techniques in this paper have been inspired by many authors
including Dokovic [3], Furino [5], Hunt and Wallis [7] and Storer [16]. We use
these methods and further generalisations to find many new infinite families of

SDS.

Definition 1 (Supplementary Difference Sets) Let 51,55, ..., 5, be subsets
of Z, (or any finite abelian group of order v) containing ki, ko, ..., k. elements
respectively. Let T; be the totality of all differences between elements of S; (with
repetitions), and let T" be the totality of all the elements of 7;. If 7" contains
each non—zero element of 7, a fixed number of times, say A, then the sets will be
called e{v; k1, ko, ..., ke; A} supplementary difference sets (SDS).

The parameters of e—{v; ky, ko, ..., ke; A} supplementary difference sets satisfy

AMv—1)= Z:k(k ~1). (1)

*Research supported by the Centre for Computer Security Research, ARC Large Grant
223261006 and a University of Wollongong Postgraduate Research Scholarship



If kv = ky=...=k. =k we shall write e-{v;k; A} to denote the e SDS and (1)
becomes

AMv—1)=ek(k-1).

If e = 1, then we will denote the SDS as a {v;k; A} difference set (DS) rather
than a 1 — {v; k; A} SDS.

The rest of this paper is organised as follows. Section 2 gives an introduction
to cyclotomy and basic theorems. Section 3 gives some recursive constructions.
None of the constructions in Sections 2 and 3 are new. Sections 4, 5 and 6 present
new constructions. Section 4 gives a further generalisation of previous results.
Section 5 presents a construction yielding supplementary difference sets with
short orbits. Section 6 develops further some of the Stanton—Sprott—Whiteman
constructions. Finally, in Section 7, we give some new pairwise balanced designs
(PBD) and balanced incomplete block designs (BIBD) arising from the previous
sections.

2 Cyclotomy

We give a short introduction to cyclotomy. More details are given in [4] and [12].
None of the theorems presented in this section is new.

Definition 2 Let z be a primitive element of ' = GF(q), where ¢ = p®* = ef+1
is a prime power. Write F'* =< z >. The cyclotomic classes (or cosets) C; in F
are:

Ci:{xes-l'i:5:0,1,...,f—1}, 1=0,1,...,e—1.

We note that the C;’s are pairwise disjoint and their union is F* = F'\ {0}.

Notation 1 Let A = {ay,a3,...,a;} be a k—set; then we will use AA for the
collection of differences between distinct elements of A, i.e,

AA=la;—a; 1 # 7,1 <4,j <k

Note that

AC; = Cil U...u Cif_l,
where 0 < 7 < e — 1 and the 7;’s are not necessarily distinct. Also observe that
the classes C; have a multiplicative structure. That is, !

plus — (..
zirns O = Cipi s

and, together with the distributive law,

ACiyiy,. a'rius x O UL U gt X O

if—l

= Cil‘l'iplus u...u Cif—l‘l'iplus'

Mf g+ tplus > €, then ¢ 4 tp14. has to be reduced mod e. In the remainder of this paper,
we will not indicate when indexes have to be reduced, except for some very special cases which
require some further considerations.



Now,

e—1 e—1
Jac = J ACu,..
=0 Iplus=0
e—1 e—1
= U GtV U Gt
Iplys=0 Iplys=0
e—1 e—1
= UCZ'U...U UCZ'
=0 =0
- (f-1)F"

Therefore, we have the following theorem.

Theorem 1 Letg=p* =ef + 1, z, Co,...,Cc_q1 be defined as above. Then
CoyeooyCeoy are e —{q; f; f— 1} SDS'.

Theorem 1 can be generalised (see, for example, [17]):

Theorem 2 Let Sy = Cp,U.. UCk,, ki # k; fori # 3, 55, = Cry4mU. . UCk4m,
t<e. Now
S0s-vesSecq are e — {q;tf;t(tf — 1)} SDS.

Proof. Note that
A(Ci U C]‘) = AC; U A(Ci — C]‘) U A(C]‘ — Ci) U AC]‘,

where

A(C, = Cyp)=eca—cp:cg € Cy, cp € Ch).

Similarly to the above we can now write
-1 ! ! -1
ACiuCy) =] CoulJaul]JC ull Cus
s=1 s=1 s=1 s=1

and;

e—1

U ACiHn U Cjpm) =

m=0

(4f — 2)F™.

as above. It can now be easily shown that

e—1 e—1
U ASn = | A(Cigm U U Cigm) = H(tf = 1)F™.
m=0 m=0

O
For ¢ being an odd prime power we define —1 = 7 = 27, For odd f, we have
% = e(fz;l) + 5,80 =1 € C<. Therefore,

(- xCp = (=) x{z®F:s=0,...,f-1}
f=1

= {xe( P )"'%aves"'k:s:o,...,f—l}
{xes"'k"'%:s:o,...,f—l}



Similarly, for S, = Cs,4m U ... UCiqm,
(—1) X Sk = Sk-l—%-

The differences arising from C} and (—1) x C} must be the same, similarly for
Sk and (=1) X S, Therefore, we get the following theorem.

Theorem 3 Let ¢ = ef + 1 be an odd prime power and let f be odd. Now in
Theorems 1 and 2:

_{Q7f7f—} SDS

—{qtf; (tf

e
Co,---,C§_1 are o
e
2

)}SDS

So, .- .,S;_l are

Note that we could also have chosen any configuration, for example, C, C2g_|_1 , O,
., C._q instead of Cl, .. Ce_l There are a total of 25 independent choices of

either Cy or Cyy ¢ for the above § —{q f; = 1} SDS . Similarly for Sy and Sy <.
Hence, there are many? nomsomorphlc SDS for either case in Theorem 3.

Another standard construction for SDS is obtained by adding the element {0} to
each set C'; or §; in Theorems 1 to 3. Observe that for any set D

A(DU{0})=ADUDU(-1)x D.

Theorem 4 ;From Theorems 1 to 3 and by adding the element {0} to each set
C'; or S;, respectively, we get

e—{¢f+ 1/ +1) SDS,

e—{q;tf+ L;t(tf+ 1)} SDS,

Cferruid s,
%—{q;t(erl) (tf+1)} SDS'.

3 Supplementary Difference Sets without Short Or-
bits

In this section we show how we can construct SDS over cross products of Galois
fields (also called Galois rings) and over Z,a by similar constructions as given
above. None of the constructions and the SDS in this section are new and they
are, for example, covered by a more general construction given in [5] but the
approach and (the sketch of) the proof of Theorem 5 here are different from the
constructions given in [5]. Other similar constructions are given in [1], [8] and

[10].

?This construction gives us 25 £ —{g £ =t } SDS . But not all of these SDS are noniso-
morphic, for example, if e = 4, then Co, C> and C1,C5 are isomorphic SDS since one can be
obtained from one another by multiplying all the classes with the same fixed element.



Definition 3 Let pq,...,p, be prime powers and let f be a factor of each p; — 1.
Let e; = pi;I and z; be a primitive element of GF(p;). Let {; € {Q} U {(j,m):
0 <5< % —1,0<m < f—1}, ¢ =1,...,n. Then we define the classes
Coyty,... 38

Coytgotn = {(r1(s),7m2(8), .. oyrp(s)) 15 =0,..., f = 1},

where

0 6 =9Q
Ti(S) = wel(s—km)-l-] KZ _ (]7 m)

te{(fm):0< ;< pijfl — 1,1 <m < f— 1} will not be defined if all {;, = Q,
1—1

We shall also be concerned with different types of class Cy, 4, ¢,. We define two
classes Cy,, 45,0, and Cy, to be of a different type, if there is at least
one 7 such that ¢;1 = Q and {;5 # Q or vice versa; otherwise the classes are to be
defined of the same type.

lo5 .. lno

Observe that for any n, the totality of all the defined classes C'y, . 4, are a parti-
tion of {(1,...,1),...,(p1 — 1,...,pn — 1)}. The total number of different types
of class is 2" — 1 (if we do not count the class Cqq . o = {0}).

Theorem 5 Let py,...,p, be prime powers. Let f be a factor of each p; — 1, let

€; = % and x; be a primitive element of GF(p;).

(i)

X...Xp,—1
Co...s, are L fp —{p1 X ... X pui fif— 1} SDS

for all defined £4,...,0,.

(ii) There are ¢(f)"~! nonisomorphic such SDS depending on the initial choices
of the primitive elements z;, 1 = 1,...,n.

(iii) Furthermore, if all p;’s are odd and f is odd, then there are many noni-
somorphic %*{Pl X oo X Pus 3 fz;l} SDS for each of the SDS in

(ii).

Proof. We only sketch how to prove (i) to (iii).
(i): It can be shown that the totality of differences arising from one type of class
generate this type of class f — 1 times. That is

U ACy,.p, = (f=1) UJ Corrootns

same type of class same type of class

and this will complete this part of the proof, since all the classes are a partition
of {(1,...,1),...,(p1—1,...,pn— 1}.

(ii): If n = 1, then ¢(f)"~! = 1. That is, the SDS in this case does not depend
on the choice of the primitive element zq. If, however, n > 2, then the classes
depend on the choice of the primitive elements z;, ¢+ > 2. For each p;, ¢ > 2 there
are ¢(p; — 1) primitive elements of which ¢( f) will lead to another nonisomorphic



set of classes. There are a total of n — 1 independent such choices, therefore, we
have ¢( f)"~! such SDS.

(iii): If all p;’s are odd and f is odd, then (—1) = (=1,...,—1) will not be in
C(0,0),...(0,0)- So there are two classes, C(g)....(0,0) and (=1) X Cg0),...(0,0) Which
generate the same differences. Similarly for all other classes Cy, . ,,. Hence, half

of the classes must generate all the differences and there are a total of %

or (=1) x Cy, . 4, to form pilx”';fp"_lf

n

independent choices of either Cy .,

n

{p1 X ... x pa; f3 451} SDS. o

Theorems 2 to 4 can now be extended similarly.

Theorem 6 Let p;, e;, x;, f be as above. Let t < min{e; : 1 <i < n}. For each
different type of class now define

13
Sstart = U Cﬁli,...lm

=1
such that, for each o # 3 and 1 < k < n, if lyy = (Jo.ma) and Lz = (13, mg),
then jo # jg.

If we now let all the Sgari’s “cycle through”, then we have

PLX .. X pp—1
f

Theorem 7 If, in Theorem 6, all p;’s are odd and [ is odd, then there are also

—{p1 X ... X putfit(tf —1)} SDS.

PLX .. X pp—1
2f
obtained by taking either Sgtariqk or (—1) X Ssarik for each k and each different
type of class.

—{p1><---xpn;tf;@} SDS,

Theorem 8 In Theorems 5 to 7 we obtain

PLX .. Xpy—1

—{p1 X ... Xpu; f+ 1 f+1} SDS,

f
XX pp,—1
al fp —{p1 x .. Xputf+ LU+ 1)} SDS,
PLX .. X py—1 ) S+
57 —{p1 X ... Xp; [+ 1; 5 }SDS,
plX"'Q;p”_l—{plx...xpn;thrl;t(thiJrl)}SDSv

by adding the element {0} to each of the initial sets, in Theorems 5 to 7, respec-
tively.

Clearly, all the above constructions work for py,...,p, being pairwise distinct
primes. We then have

GF(p1) X ... xGF(p,) ~ Z, X...XZ,,

~

Zp1)<...)<pn'

We now turn briefly to SDS over Z,a. The next theorem corresponds to Lemma
4.3 in [5].



Theorem 9 Let p be an odd prime and x be an element of Z,« such that x has
multiplicative order p® — p®~1. Let f be a factor of p— 1. Let

a—z a—z—
' 4

1
Cu. :{pzxp 7 stz cs=0,...,f—1},

a—z a—z—1

z=0,...,a—1, @20,...,%—1.
()
pr -1 o
Cp, are —A{p*; f; f— 1} SDS over Z,a,

for z, L, running through the above ranges.

(71) The number of nonisomorphic SDS in (i) is one.

(iii) Furthermore, if f is odd, then there are many nonisomorphic p;;1 —{p“; f; f2;1

SDS.

The constructions in Theorems 2 to 4 can now be applied very similarly. We
do not state the theorems here. However, we would like to mention that com-
binations of SDS over cross products of Galois fields and Z,» are possible. In
Theorems 5 and 9 two classes, say C; over (1 and C} over Gy, could always be
expressed as

c; = {y1$i15+j:5:0,...,f—1},
Cp = {pats=0,....f-1}. (2)

Any two such classes give immediately rise to f new classes, say (', over
(G'1 X GGo, which can be expressed as

Cikm = {(ylxilsﬂayzw?(Hm)M) cs=0,....f—1}
form=0,....f—1.

Suppose that the C;’s are a partition of G and the C}’s are a partition of Gs.
If now the totality of the C';’s form ”1;1 —A{wy; f; f— 1} SDS over Gy, that is,

Jac; =(f-nle;

and the totality of the C't’s form ”2;1 — {wg; f; f — 1} SDS over G, that is,

Uace=(r-1JCr
k k

then
Cikm = {(3/190;15+j73/296§2(5+m)+k) cs=0,....f—1}
Dy = {(0,y022" )15 =0,...,f— 1}
E;, = {(ylxilsﬂ,O):s:O,...,f—1}



are % — {wvyvg; f; f — 1} SDS over Gy x (4, since,

U AC',k,m = (f_ 1) U C',k,m

j7k7m j7k7m

Uabe = (f-1)JDs
k k
Jae;, = (f-nUeE;

Furthermore, the C; . ,,’s, Di’s and E;’s are a partition of Gy x Gy.

It is clear that the above construction can be applied recursively. The construc-
tions from Theorems 2 to 4 may now be applied accordingly.

The theorems given in the above sections produce infinite families of SDS. For
a given v the above constructions may lead to different groups. For example, if
v = 25, then we may consider SDS over

GF(25), or
Z5 X Z5 ~ GF(5) X GF(5), or
Z25.

If, in the above constructions, we call C(g,0)....(0,0)» Co,0, OF Co,0,0 “the first class”,
then in Theorems 5 and 9 all the SDS are defined by “second element” in the
first class. That is, the whole structure is defined by

¢UG1D ¢Gnl)
r=(x, 7 @, ), (3)

where G; are the different groups involved, z; is a generator of the units of G|
(i=1,...,n)and |G| is the order of the group G;.

We also would like to point out that the first class is a® subgroup of the units
in Gy X ... X G,. All the other classes are the orbits of this subgroup. All the
orbits and the subgroup have the same order, that is, there are no short orbits.
This is due to the construction and (3) which assures that 2/ = (1,1,...,1) and
= (Ugy. oy uy) With ug £ 1, (k=1,...,n)for2 <i< f—1.

4 A More General Construction

The construction in Theorem 10 is similar to Theorem 5. However, the construc-
tion here is more general. This generalisation is completely different from the
constructions in [5]. A construction using a similar idea for cyclic block designs
has been given in [1].

Theorem 10 Suppose Co,...,C._1 are

e —A{v; fo, .., fec1; A} SDS over G;

®Because there may is more than one way to construct the first class (Theorem 5) we say “a
subgroup” and not “the subgroup”.



and suppose there is a prime power q with fi|(q— 1) for all0 < i <e—1. Fur-
thermore, suppose that (A + 1)|(¢—1).

Let = be a primitive element of GF(q) and let c; s be the s—th element* in set C.
Let

—s—I—ﬁ
Civ = Al¢js,x s )is=0,....f;—1}

D = {(0,25F ) s =0, A)
E;, = {(¢s,0):5=0,...,f—1},

where j =0,...,e—1,k=0,. L A=0,...,9—2.

: ’/\—I—l -
Now

Cio, Dy, E; are (eq + %)—
{0vq; fos fos ooy femts femt, A Lo A+ 1 fos o, fem1s A} SDS over G x GF(q),

for 7.k, L running through the above ranges.

Proof.
U AE; = A U qg,0
geG*
due to the assumption; and;
-1
U ADk =A U (07 y)v
k=0 yEGF(q)*

due to cyclotomy and the construction. Also

U AC‘,O = U (gkkuk)v
7=0 k=0

such that UMG - 1g = \G*.

Now
e—1g—2 AlG*[-1g-2
ch,f _ U U gk wuk‘l‘ﬁ
7=04=0 k=0 (=0
=2 U (),
gEG* yeGF (¢)*
which completes the proof. a

Corollary 1 The above construction also works if
(A=1) [ (¢-1),
(2X+1) | (¢—1), q being odd
(2X=1) | (¢—1), ¢ being odd.

“Note that “the order” within the sets C; may be chosen completely arbitrarily.



Proof. The standard constructions in cyclotomy given above give rise to SDS
over GF(q) with A = f+1, f2;17 fzi, where f is the size of the sets. Therefore, for
the construction of the Dy’s, we have tolet f = A—1,2A+1,2X — 1, respectively,
and this f must divide ¢ — 1. a

Corollary 2 Suppose there are {v; f; A} SDS over G and {q; f; A\} SDS over
GF(q), q a prime power and f|(q — 1), then there are {vq; f; A} SDS over GG x
GF(q).

Proof. Follows directly from the construction and by embedding the {q¢; f; A}
SDS over GF(q) in G X GF(q) yielding the Dy’s. a

Corollary 3 Suppose Cy,...,C._1 are
e —{v; f; A} SDS over G,

and suppose there is a prime power q with f|(¢ — 1). Furthermore, suppose that

AlCf=1).

Let x be a primitive element of GF(q) and let ¢; s be the s—th element in set C;.
Let

—1
Civ = {(cLS,quSH) cs=0,....f—1}
=1

D = {0,277 ) :is=0,.... -1}
E; {(¢j5,0):8=0,..., f =1},

wherej:O,...,e—l,k:O,...,%—l,ﬁ:O,...,q—Q.

Now

f%l copies of C; ¢, F; and one copy of Dy, are (eqf%l + %)_

{vg; f; f — 1} SDS over G x GF(q),

for 7.k, L running through the above ranges.

Proof. Follows directly from Theorem 10 and the construction. a

Theorem 10 and its corollaries lead to infinite families of SDS. Note that due to
Corollary 1 may more than one construction be possible (for example, if ¢ = 13
and A = 3). Theorem 5 is a special case of Corollary 2.

In the above section constructions of SDS over Z,a are given. Similarly, we can
now extend SDS via Za.

Theorem 11 Suppose Co,...,C._1 are
e —A{v; fo, .., fec1; A} SDS over G;

and suppose there is a prime p with f;|(p—1) for all0 < i < e —1. Furthermore,
suppose that (A + 1)|(p—1).

10



Let © be an element of Zya such that x has multiplicative order p* — p®~1 and let
c;s be the s—th element in set C;. Let

a—z a—z—1
e —£ 5+£Z
Cj@’,fz = {(Cj,svpzx g ) S = 07 .. 7f] - 1}
a—z_ a—z—1
Doy, = {(0,p My ia =00
E;, = {(¢s,0):5=0,...,f—1},
where j = 0,...,e — 1, k, = 0,...,pa_2;ﬁ_z_1 -1, 2=0,...,aa—-1, [, =
0,...,p0 % —po=2~1 _ 1,
Now
Cj727£27D27kz7Ej are (epa —I_ p;‘;ll)_

{vpa;f07f07' . ‘7f6—17f6—17A+ 17' . 7A+ 17f07' . '7f6—1;A} SDS over G x Zpo“v

for 7. k., z, L, running through the above ranges.

Proof. Similarly to Theorem 10: The proof follows ;from Theorem 9 and the
construction. a

Remark 1 Similarly to the above, the construction also works if

A=1 | (-1,
2x+1) | (-1,
2A-1) | (»-1).

The constructions from Corollaries 2 or 3 may be applied.

Example 1 (o = {1,5,25,8}, €1 = {2,10,11,16}, Cy = {4,20,22,32}, C5 =
{13,26} are 4 — {39;4,4,4,2;1} SDS over Zsg. The construction in Theorem 10
now yields:

922 — [195;4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,4,4,4,2; 1}

SDS over Zsg x GF(5) ~ Zi9s,

40 — {35134, ...,...,2,2,2,2,4,4,4,2; 1} SDS over Zsg x GF(3?),
58— L5075 4, vy 2,2,2,2,2,2,4,4,4,2;1)

SDS over Zsg x GF(13),

and there are many other SDS possible.

Example 2 The sets {1,12,8,5}, {10,3,11,2}, {4,6,7,9} are 3 — {13;4;3} SDS
over GF(13). (Note that “the order” within the sets has been chosen arbitrarily.)
We now extend these SDS via GF(5). Let

Coo = {(1,1),(12,2),(8,4),(5,3)} = {1,12,34,18},
Cio = {(10,1),(3,2),(11,4),(2,3)} = {36,42,24,28},
Coo = {(4,1),(6,2),(7,4),(9,3)} = {56,32,59,48},
Dy = {(0,1),(0,2),(0,4),(0,3)} ={26,52,39,13},
FEy = {(1,0),(12,0),(8,0),(5,0)} = {40,25,60,5},
FEy = {(10,0),(3,0),(11,0),(2,0)} = {10, 55,50, 15},
FEy = {(4,0),(6,0),(7,0),(9,0)} = {30, 45, 20,35},

11



and let Cj, = (1,2 x Cjo, for j = 0,...,2, £ = 0,...,3. Now Cj, Do, Eo,
Ey, Ey are 16 — {65;4;3} SDS over GF(13) X GF(5) ~ Zgs. These SDS are
nonisomorphic to the ones arising from Theorem 5 or given in [5] because the
elements in the classes arising from G F(13) have “been shuffled” before the C;
were constructed. There are many other nonisomorphic such SDS, since, for fixed

7, there are ? = (f — 1)! ways to construct the C;’s.

Example 3 Section 10.6 in [2] gives {v;4; 1} SDS for v = 49, 85. We extend these
SDS via GF(13) and let D = {(0,0),(0,1),(0,3),(0,9)} (note that {0,1,3,9}is a
{13;4;1} DS, Corollary 2), C;, and £; as in Theorem 10. We now have {r;4;1}
SDS for

r = 637,1105,

over Z,.

Example 4 The set {0,1,3,9}is a {13;4;1} DS over GF(13). We extend these
SDS via {1,7,24,18}, {2,14,23,11}, {4,3,21,22), {8,6,17,19}, {16,12,9,13),
{5,10,20,15} which are 6 — {25;4;3} SDS over Z5.. We get

0070700 = {(07 1)7 (17 7)7 (37 24)7 (97 18)} = {267 157,224, 243}7

Coouy = (1,2)" x Coo0, = 277 % Co.0,0,,
Co10, = {(0,5),(1,10),(3,20),(9,15)} = {130,235,120, 165},
Core, = (1,2)" x Cor0, =27 X Co10,,

Doo, = {(0,1),(0,24)} = {26,299},

Do, = (2,2)% x Dog, = 2% x Dog,,

Dyo, = {(0,5),(0,20)} = {130,195},

Din, = (2,2)" x Dy, =2M x Dy,

Eo = {(0,0),(1,0),(3,0),(9,0)} = {0,300, 250,100}.

Now for ﬁo = 0,...,19, ﬁl = 0,...,3, ko = 0,...,9, kl = 0,1, 00707%7 007111,
Do gy D1 gy s Foare 37—4{325:4,4,...,...,2,2;1} SDS over GF(13)X Zs2 =~ Zsgs.

Corollary 4 Suppose n = p® is a prime power and ¢ is an odd prime power.
Suppose (n+ 1)[(q—1). Then we get

-1
(g + qT)—{q(n2+n+1)§n‘|‘17---727n‘|‘ 151} SDS
over Z2y,.1 X GF(q).

Proof. Cyclic projective planes exist for every order n = p® (Singer), see, for
example, [6] or [11]. Therefore, we have a {v;k; A} DS with

v:n2+n+1, k=n+1, A=1.
Theorem 10 gives us the desired SDS. O

(o3

Corollary 5 Suppose n = p

D|(¢g—1). Then we get

g“ —1
2

over Z,2 11 X Zga, for a > 1.

is a prime power and ¢ is a prime. Suppose (n +

(¢ + Y= {¢*(n* +n4+1)n+1,....2,n+1;1} SDS

Proof. As Corollary 4 but now via Theorem 11. a

12



5 Supplementary Difference Sets with Short Orbits

Theorem 12 Let £ > 1 be a number such that £ + 2 is a prime power. Let g be
a prime power with ¢ = 1 mod ({ + 1)%. Let xy and x, generate GF({ + 2)* and
GF(q)*, respectively. Let

C; = {(x;,x;“”? ).s:O,...,(ﬁ—|—1)2—1}
= {(27,0):s=0,...,(}

forj:O,...,z_I_;%—l.

=

Now the C;’s plus { + 1 copies of E are

(Z%ﬁ“ D= {(l+2)q; (€4 172 (04 1% 0+ Lo L+ 1504 1)) SDS
over GF(q) Xx GF({ +2), for j running through the above range.

Proof. We define

—q_12 stk
Dp = {(0,25F"  Yis=0,...,(0+1)* -1},

for k=10,. (£-|-_11) —1.
We have
ACy = Dy U...UD U
CjU. UCJ(/z+1)2 1t
where 0 < k; < (£-|-1) —1,0< 5 < Z-l_—l 1. The classes have a multiplicative

structure, so

(Lal™)yx Cy = ¢

Iplus?
chplus = Dkl +jplus u...u Dk[‘l’jplus U
le‘l’jplus u...u Cj([+1)2_[_1+jplus °
Therefore,
-l -l -1
U chplus = U Dkl‘l’jplus u...u U Dk[‘l’jplus U
jpluszo jplu =0 jplu =0
1z+1 -1 1z+1 -1
U le‘l’jplus u...u U j([+1)2_g_1+jplus
jplu =0 jpluszo
z+1 -1 Z-I_-l1 -1
= (|J Dru((t+1)—1-1) U C;
k=0
qg—1
iz ! -l
= (t+1) |J Deut(e+1) U ;.
k=0

13



Also
AE = (F,

S50

(+DAE=((+1)F,

and the proof is complete. a

Example 5 Let { = 3 and ¢ = 17 (note that 17 = 1 mod 16). Let (z/,2,) =
(2,5) = 22. Now

Co = {1,22,59,23,81,82,19,78,16,12,9,28,21,37,49, 58},
1 = {56,42,74,13,31,2,44,33,46,77,79,38,71, 32,24, 18},
Cy = {76,57,64,48,36,27,84,63,26,62,4,3,66,7,69, 73},
Cs = {6,47,14,53,61,67,29,43,11,72,54,83,41,52,39,8},

E = {51,17,34,68},

and Cy,C,Cy,Cs, F,F,F, F are 8 — {85;16,16,16,16,4,4,4,4;12} SDS over

Note that ¢ odd implies (+2 and ¢ odd. That is, —1 exists. Now —1 = (=1, —1) =

241 g—1

(z,2 ,x4° ) is not in Cp which can be easily shown. That is, (—1) x Ty # Cj.
But the differences generated from ACy and A(—Cyp) must be the same. Since
this applies for every class (';, we can take only half of the classes in Theorem 12
to get SDS. We have the following corollary.

Corollary 6 If, in Theorem 12, { is odd, then there are also

g—1 {+1
Gurnt 2

(+1
)= {4+ 2)g; (C+ 12 (L+1)% 0+ 1,--.,£+1;ﬁ%} SDS',

over GF(q) x GF({+2).
Example 6 In Example 5, Cy, C4, E, F are

4 — {85;16,16,4,4;6} SDS
over Zss.

Example 7 Let { = 1 and ¢ = 5 (note that 5 = 1 mod 4). In this case the
constructions in Theorem 12 and Corollary 6 work and the SDS in Corollary 6
are given by

Co = {(1,1),(2,2),(1,4),(2,3)} ={1,2,4,8}
E = {(1,0),(2,0)} = {10,5}.

Now Cly, £ are 2 — {15;4,2;1} SDS over GF(5) x GF(3) ~ Zy5.

14



Let { =1 and ¢ = 13 (note that 13 = 1 mod 4). In this case the constructions in
Theorem 12 and Corollary 6 work and the SDS in Corollary 6 are given by

Co = {(1,1),(2,8),(1,12),(2,5)} = {1,8,25,5}
Cr = {(1,2),(2,3),(1,11),(2,10)} = {28,29, 37,23}
Oy = {(1,4),(2,6),(1,9),(2,7)} = {4,32,22,20}
E = {(1,0),(2,0)} = {13,26}.

Now Cy, Cq,C4q, E are 4 — {39;4,4,4,2; 1} SDS over GF(13) x GF(3) = Zsg.

Let { =1 and ¢ = 17 (note that 17 = 1 mod 4). In this case the constructions in
Theorem 12 and Corollary 6 work and the SDS in Corollary 6 are given by

Co = {(171)7(2 13) ( 6)7(2 )}: {17477 16738}
Cl {(17 5)7 (2 14) (1 12) (2 )} = {227 147467 20}
Cs {(178)7( ) ( )7( 715)}: {2572743732}
CS {(176)7(2 10) (1711)7(277)}: {40744728741}
Eo= {(1,0),(2,0)} = {34,17}.

Now Co, C1,C4,Cs, I are 5—{51;4,4,4,4,2;1} SDS over GF(17) X GF(3) ~ Zs;.

Note that C is again a subgroup of the units of GF({+ 2) X GF(q). The other
classes are all orbits of this subgroup. But this time we have one short orbit, that
is, one class with less elements than Cy, which is F

6 Twin Prime Power Constructions

Stanton, Sprott, Storer and Whiteman, see, for example, [15], [16] or [18], showed
constructions of DS over GF(p) x GF(p+ 2), with p, p 4+ 2 both prime powers.
We give very similar constructions here which give new families of SDS.

Theorem 13 Let p, p+ 2 be two prime powers p > 2. Let x, y generate GF(p)*,
GF(p+ 2)*, respectively. Let f = E— _1 =lem(p—1,p+1). Let

C; = @@ yt):s=0,....,f-1}

Ey = {(96132;15""]“,0):5:0,1},
wherei:O,l,k:O,...,%—l. Then Co, Fo,...,Ep-1_, are
2
1 2_1 — 12
1%— pp+2): 2 . ,2,...,2;%} SDS

over GF(p) x GF(p+ 2).

Proof. Define £ = {(2°,0): s =0,...,p—2}, D = {(0,9°) : s = 0,...,p}.
Note that Cy, Cq, D, E are a partition of (GF(p) x GF(p+ 2)) \ {0}. Ay
generates ﬁ%ﬁ classes C;,, i = 0,1, ﬁ—ﬁ times D and %L 1 times F,
which follows directly from the constructlon (by counting “the number of hits

15



from ACy” in each of the classes Cy, C'1, D, E and taking into account the length,
that is, the number of elements in each class). Observe that

g
| AE.=E.
k=0

It now only remains to prove that half of the i;’s are 0 (and the other half
therefore 1). Note that

p—1

—1% Co=(~1,-1) x Co = («"7 4T ) x Co = (1,
since (¢ 2 ,y 2 )= (wT,ypfz;l‘H) € (. But
ACy = A(=Cp) = ACY.

Hence, half of the €}, ’s generated by ACy are Cy’s and the other half are C’s.
O

Remark 2 The only reason why the Fy’s in Theorem 13 are needed is because

AC) does not generate enough E’s (namely (p_41)2 — 1 instead of @). There-

fore, the class F has to be generated once more via the AF}’s.

Remark 3 The SDS in Corollary 6 and Theorem 13 for the case GF(3) x
GF(5) ~ Zy5 are the same.

We restate the theorem of Stanton, Sprott [15] and Whiteman [18] and reprove
it by simply counting the differences generated by A{CoU £ U {0}}.

Theorem 14 (Stanton—Sprott—Whiteman restated) Let Cy, E be defined
as above, then {Co U EU{0}} is a

2_1 _|_12
i+ 2y Ry g

over GF(p) x GF(p+ 2).
Proof. We know that

A{CoUEU{0}} = ACoUAEUA(Co— EYUA(E - Co)UCoU—CoU EU—E

= couenu 2= g

U(p—Q)EUA(C()—E)UA(E—Co)UCoUClLJQE.

We have to examine A(Cy— F) and A(E —Cy). Again by counting “the number
of hits from A(Co — E)” we find that A(Co — E) generates 2 D’s and (p — 2)

Ci,’s. Similarly, A(E — Cp) generates 254 D’s and (p — 2) (—=C;,)'s.
Therefore, (Co U C7) is generated

(p—1)? (p+1)?
AS. —241=
1 +p + 1

-1
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times. The class D is generated

(»-1)? (p+1)°
— —l==-1
PR 1
times. And, finally, the class F is generated
(p—1)7 (p+1)°
1 —242= -1
1 +p—2+ 1
times. a

Corollary 7 Let Cy, D be defined as above, then {CoU D} is a

(p+1)? (p+1)°
2 ’ 4

{p(p +2); } DS

over GF(p) x GF(p+ 2).
Proof. The complement of {Cy U F'U{0}} is {C7 U D} which is a DS. But
A{CyUD} =A—-{CyUD} =A{CoU D}. Hence, {CoU D} is a DS with the

above parameters. o

Example 8 Let p=5,p+2=17, (2,y) =(2,3) = 17. Now

Co = {1,17,9,13,11,12,29.3,16,27,4,33}

D = {15,10,30,20,25,5}
E = {21,7,14,28}

Ey = {21,14}

By = {7,28},

and Cy, Fo, By are 3 — {35;12,2,2;4} SDS. Furthermore,

{CoU BU{0}) = {1,17,9,13,11,12,29,3,16,27,4,33,21,7, 14,28,0},
which is a {35;17;8} DS; and;

{Cou DY = {1,17,9,13,11,12,29,3, 16,27, 4,33, 15, 10, 30, 20, 25, 5},
which is a {35;18;9} DS. All the SDS and DS are over GF(5) X GF(7) =~ Zss.

The above theorems motivate us to find other pairs of prime powers p, p+ a (a
now greater than 2) with ged(p — 1,p+ a — 1) = 2 to construct DS and SDS in
a similar manner. However, some calculations show that DS and SDS as in the
above theorems are only possible for @ = 2. If @ > 2, then the set D (the zeroes
in p) will be generated too many times.

A more successful approach is to drop the condition ged(p— 1,p+a—1) = 2.

That is, we let ¢ = ged(p— 1,p+ a — 1) and try to find appropriate conditions
about a and g¢.

17



Theorem 15 Let p, ¢ = (g — 1)p + 2 be two prime powers p > 2, where g =
ged(p— 1,9 —1). Let z, y generate GF(p)* and GF(q)*, respectively. Let f =

(p—l)g& =lem(p—1,q—1). Let

C; = {@ ) :s=0,...,f—1}
E = {(z°,0):s=0,...,p—2},

where it =0,...,9 — 1. Then {COUEU{O}},...,{Cg_lUEU{O}} are
—)(g—1
g—{pq;(pl#ﬂx A} SDS

over GF(p) X GF(q), where

— 1=
N g
29
Proof.  Similarly to the proof above (Theorem 14). The construction also

involves the fact that —1 = (—-1,-1) = ($132;1,qu_1) € C2g. Therefore, we only
need the classes {Co U K U{0}} to {Cg_l U F U{0}} to generate the SDS. But

-1¢€ C2g can be easily proven by showing that %ﬂ = 2 mod g. O

The above theorem and construction are very similar to Theorem II.1 in Storer
[16]. This theorem was originally due to Whiteman [18]. However, in Storer
DS are constructed, while Theorem 15 gives SDS. The case g = 2 is of course
Theorem 14.

Example 9 Let p =5, g = 4. Now ¢ = 3p+ 2 = 17 is a prime power. Also
ged(4,16)=4=g¢. Let =2 and y = 5. Now

{CoUEU{0}} = {1,22,59,23,81,82,19,78,16,12,9,28,21, 37,49, 58,
0,51,17,34,68}

{CiUEU{0}} = {56,42,74,13,31,2,44,33,46,77,79,38,71,32,24, 18,
0,51,17,34,68},

and {CoU FU{0}}, {CL U EU{0}} are 2 — {85;21;10} SDS.

We close the section by pointing out the similarity of Theorem 12 to Theorem
15 for ¢ = (£ 4+ 1)? + 1. If we denote the other prime in Theorem 12 by p, then
p=L0+2. Nowg=ged(p—1,g—1)=(+1and ¢ = (g—1)p+ 2. The classes Cy
in either theorems are now the same (if we take the same generators of GF(p)*
and GF(q)*). The whole construction is now very similar. Taking only half of
the classes (Theorem 15) corresponds of course to Corollary 6.

7 Balanced Incomplete Block Designs and Pairwise
Balanced Designs

Definition 4 Let B be a collection of b blocks (or sets) of size k over a finite set
V' with v elements. If B satisfies the following conditions

18



(i) each element v; occurs exactly r times;

(ii) each unordered pair (v;,v;) occurs in exactly A of the b blocks;

then B is called a balanced incomplete block design (BIBD).

The parameters of a BIBD satisfy

bk = or,
AMv—1) = r(k—-1).

Since 2 of the parameters v, b, r, k, A are redundant, we will refer to a BIBD as

BIBD(v, k, A).

If So,..., 51 are t —{v; f; A} SDS, then we may obtain v X ¢ blocks B; ;, where
B; ; is obtained from S; by adding the element j to each of the elements in 5;. It
can be easily shown that the B; ;’s are a BIBD. Therefore, we have the following
theorem.

Theorem 16 [f there are t — {v; f; A} SDS, then there is a BIBD(v, f,\).
A more sophisticated construction is given in [12], Theorem 23:

Theorem 17 (Theorem 23 from [12]) If there are n — {v; f; A} SDS, then
there are BIBD(v + 1, f,af(f — 1)), for a > 1.

If there are e—{v; f; A} SDS, then there are also e—{v;v — f;ev — 2ef + A} com-
plementary SDS. Therefore, all the above constructions also produce many com-
plementary SDS and BIBD.

Definition 5 Let B be a collection of blocks (or sets) of sizes k; € K over a finite
set V with v elements. If each unordered pair (v;,v;) of elements of V' occurs in
exactly A blocks, then B is called a pairwise balanced design, PBD(v, K, X).

The parameters of a PBD satisfy

Z ki(ki — 1) = Av(v — 1),

B;eB
where k; is the size of block B;. A BIBD(v,k,A)is a PBD(v,{k}, A). Therefore,
by Theorem 16, if there are ¢t — {v; f; A} SDS, then there is a PBD(v, {f}, ).

In Table 1 we present some PBD with A = 1 which are obtained by the above
constructions. There are many other PBD possible.

8 Conclusion

Many theorems which produce infinite families of SDS (and therefore BIBD and
PBD) have been given. Many of these theorems can be applied recursively with-
out multiplying the parameter A. Some of the constructions are very similar for
certain parameters which indicates that there might be some further generalisa-
tions. The authors feel that there are many other theorems possible which shall
be investigated in another paper.
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v V K How
15| GF(3)x GF(5) ~ Zs {4,2} Corollary 6 with { =1
39 | GF(3)xGF(13)~ Zsg | {4,2} Corollary 6 with { =1
51 | GF(3)x GF(17)~ Zs1 | {4,2} Corollary 6 with { =1
65 | GF(13) x GF(5) ~ Ze¢s | {4,2} | {0,1,3,9} and Theorem 10
75 GF(3) x GF(5%) {4,2} Corollary 6 with { =1
87 | GF(3)xGF(29)~ Zg; | {4,2} Corollary 6 with { =1
111 | GF3)x GF(37)~ Z1n1 | {4,2} Corollary 6 with { =1
123 | GF(3) x GF(41) ~ Z125 | {4,2} Corollary 6 with ¢ =1
147 GF(3) x GF(7%) {4,2} Corollary 6 with ¢ =1
159 | GF(3) x GF(53) ~ Z159 | {4,2} Corollary 6 with ¢ =1
183 | GF(3) x GF(61)~ Z155 | {4,2} Corollary 6 with ¢ =1
195 Z1s X GF(13) ~ Zy95 {4,2} | Corollary 6 and Theorem 10
195 Zsg X GF(5) ~ Zy95 {4,2} | Corollary 6 and Theorem 10
217 Zs1 X GF(T) ~ Zaz {6,2} Corollary 4 with n =5
219 | GF(3) X GF(73) ~ Zng | {4,2} Corollary 6 with ¢ =1
221 | GF(13) x GF(17) ~ Z321 | {4,2} {0,1,3,9} and Theorem 10
231 Zon X GF(11) ~ Z33 {5,2} Corollary 4 with n = 4
243 GF(3) x GF(3%) {4,2} Corollary 6 with ¢ =1
247 | GF(19) x GF(13) ~ Zogr | 13,2} | {4,9,6),{5,16,17}, {8, 18, 12}
and Theorem 10
255 Z1s X GF(17) ~ Zass {4,2} | Corollary 6 and Theorem 10
255 Zs1 X GF(5) ~ Zyss {4,2} | Corollary 6 and Theorem 10
325 GF(13) X Zsa ~ Zsa5 {4,2} {0,1,3,9} and Theorem 11
351 Z39 X GF(3?) {4,2} | Corollary 6 and Theorem 10
377 | GF(13) x GF(29) ~ Zs77 | {4,2} {0,1,3,9} and Theorem 10
403 Zs1 X GF(13) ~ Zsp3 {6,2} Corollary 4 with n =5
435 Z1s X GF(29) ~ Zy35 {4,2} | Corollary 6 and Theorem 10
481 | GF(13) x GF(37) ~ Z4s1 | {4,2} {0,1,3,9} and Theorem 10
507 Zs9 x GF(13) {4,2} | Corollary 6 and Theorem 10
513 Zsr x GF(3?) {8,2} Corollary 4 with n =7
555 Z1s X GF(37) ~ Zsss {4,2} | Corollary 6 and Theorem 10
615 Z1s X GF(41) ~ Zg1s {4,2} | Corollary 6 and Theorem 10
651 Zon X GF(31) ~ Zgs1 {5,2} Corollary 4 with n = 4
795 Z15 X GF(53) ~ Zrg5 {4,2} | Corollary 6 and Theorem 10
915 Z1s X GF(61) ~ Zgys {4,2} | Corollary 6 and Theorem 10
1001 Zor x GF(11) ~ Z1om {10,2} Corollary 4 with n =9

Table 1: Some PBD with A = 1.
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