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On the (10, 5, A\)-Family of Bhaskar Rao Designs

Ghulam R Chaudhry and Jennifer Seberry
Department of Computer Science

University of Wollongong, AUSTRALIA

Abstract

We prove a theorem for BRD(10,5,A)s and give thirteen (13) inequivalent BRD(10,5,4)s.

1 Introduction

A balanced incomplete block (BIBD) design is an arrangement of v symbols in b blocks each
containing (k < v) symbols, satisfying the following conditions : (i) every symbol occurs at
most once in a block, (ii) every symbol occurs in exactly r blocks, (iii) every pair of treatments
or symbols occur together in exactly A blocks.

A Bhaskar Rao design [BRD(v,b, 7, k, \)] is a matrix of order v X b with (0, + 1 entries),
satisfying the following conditions : (i) it has k non-zero [(v — k) zero] entries/column, (ii) it has
r non-zero [(b — r) zero] entries/row, (iii) A non-zero entries are in the same column as A other
non-zero entries for every pair of rows, (iv) the inner product of any pair of distinct rows is zero,
(v) when it’s —1s are changed to +1s, the resulting matrix becomes the incidence matrix of a
BIBD. The necessary conditions for the existence of a BRD(v,b,r,k, \) are :

(i)
(i)
)
)

vr =
AMov—1)=r(k-1),
(iii) the inner product of distinct rows is zero,

(iv) 2|A and 2]b.

Theorem 1 (Chaudhry and Seberry [2]) The conditions
i) M(v—1)=0 (mod 4)
ii) Av(v—1)=0 (mod 20)
i) b=0 (mod 2)
are necessary for the existence of BRD(v,5,2)X) where X may take values 1, 2, 3, ... .

Lemma 1 (Chaudhry and Seberry [2]) Suppose in the signing of the rows of a BIBD, it
happens that the rows {1,...,7} € A are mutually orthogonal and the rows {j + 1,...,v} € B are
mutually orthogonal but no row of A is orthogonal to any row of B and vice versa. Then if we
take another copy of the BIBD and negate the orthogonal rows in B, we obtain a BRD(v, k,2)).



2 BRDs(10,5, \)

There exist twenty one (21) inequivalent BIBDs with parameters (10,5,4), these are given in
[3], appendix B. In this paper, we have constructed thirteen (13) BRD(10, 5, 4)s from the
BIBD(10,5,4)s: call this set A, these are given in the appendix in the same order as in [3].
Gibbons BIB designs numbers 9, 12, 13, 14, 15, 16, 19 and 21 were found, by an exhaustive
computer search, not to give BRDs: call this set B. Hence thirteen of the twenty one inequiva-
lent BIBD(10,5,4)s can be signed to BRD(10,5,4)s and eight cannot.

We write D;||D; = [D;D;] for the matrix of order v x 2b with parameters (v, 20,27, k,2X)
when D; is the matrix of order v with parameters (v,b,r,k,A). We note though that the eight
BIBD(10, 5, 4)s, which can not be signed to BRD(10, 5, 4)s, satisfy Lemma 1. We use D;||D;
for the BRDs constructed using Lemma 1. Now we construct the BRD(10,5,8)s in two ways :

i) if D;, D; € A, there are 78 different BIBD(10,5,8)s for D;||D;, so we obtain 78 inequivalent
BRD(10,5,8)s:

ii) if £y € B, then Eg||Ey is a BIBD(10,5,8), and so we obtain 8 BRD(10,5,8)s.

Thus we have constructed 86 BRD(10,5,8)s of the > 135922 possible cases.

Theorem 2 The conditions
i) M(v—1)=0 (mod 4)
ii) Av(v—1)=0 (mod 20)
i) b=0 (mod 2)
i) A=0 (mod 4)
are necessary and sufficient for the existence of BRD(10,5,)).

Remark The inequivalent BRD(10,5,4)s are given in the appendix.
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Appendix Thirteen inequivalent BRD(10,18,9,5,4)s are given below :
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