University of Wollongong

Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

January 1998

On the (10, 5, λ)-Family of Bhaskar Rao Designs

G. Chaudhry University of Wollongong

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Chaudhry, G. and Seberry, Jennifer: On the (10, 5, λ)-Family of Bhaskar Rao Designs 1998. https://ro.uow.edu.au/infopapers/344

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

On the (10, 5, λ)-Family of Bhaskar Rao Designs

Abstract

We prove a theorem for BRD(10,5,Lambda)s and give thirteen (13) inequivalent BRD(10,5,4)s.

Disciplines

Physical Sciences and Mathematics

Publication Details

This article was originally published as Chaudhry, GR and Seberry, J, On the $(10,5,\lambda)$ -Family of Bhaskar Rao Designs, Bulletin of the Institute of Combinatronics and Its Applications, 23, 1998, 83-87.

On the $(10, 5, \lambda)$ -Family of Bhaskar Rao Designs

Ghulam R Chaudhry and Jennifer Seberry Department of Computer Science University of Wollongong, AUSTRALIA

Abstract

We prove a theorem for BRD(10,5, λ)s and give thirteen (13) inequivalent BRD(10,5,4)s.

1 Introduction

A balanced incomplete block (BIBD) design is an arrangement of v symbols in b blocks each containing (k < v) symbols, satisfying the following conditions: (i) every symbol occurs at most once in a block, (ii) every symbol occurs in exactly r blocks, (iii) every pair of treatments or symbols occur together in exactly λ blocks.

A Bhaskar Rao design [BRD(v, b, r, k, λ)] is a matrix of order $v \times b$ with $(0, \pm 1 \text{ entries})$, satisfying the following conditions: (i) it has k non-zero [(v-k) zero] entries/column, (ii) it has r non-zero [(b-r) zero] entries/row, (iii) λ non-zero entries are in the same column as λ other non-zero entries for every pair of rows, (iv) the inner product of any pair of distinct rows is zero, (v) when it's -1s are changed to +1s, the resulting matrix becomes the incidence matrix of a BIBD. The necessary conditions for the existence of a BRD(v, b, r, k, λ) are:

- (i) vr = bk,
- (ii) $\lambda(v-1) = r(k-1)$,
- (iii) the inner product of distinct rows is zero,
- (iv) $2|\lambda$ and 2|b.

Theorem 1 (Chaudhry and Seberry [2]) The conditions

- i) $\lambda(v-1) \equiv 0 \pmod{4}$
- $ii) \lambda v(v-1) \equiv 0 \pmod{20}$
- iii) $b \equiv 0 \pmod{2}$

are necessary for the existence of $BRD(v,5,2\lambda)$ where λ may take values 1, 2, 3, ...

Lemma 1 (Chaudhry and Seberry [2]) Suppose in the signing of the rows of a BIBD, it happens that the rows $\{1, ..., j\} \in A$ are mutually orthogonal and the rows $\{j + 1, ..., v\} \in B$ are mutually orthogonal but no row of A is orthogonal to any row of B and vice versa. Then if we take another copy of the BIBD and negate the orthogonal rows in B, we obtain a $BRD(v, k, 2\lambda)$.

2 BRDs(10,5, λ)

There exist twenty one (21) inequivalent BIBDs with parameters (10,5,4), these are given in [3], appendix B. In this paper, we have constructed thirteen (13) BRD(10, 5, 4)s from the BIBD(10,5,4)s: call this set A, these are given in the appendix in the same order as in [3]. Gibbons BIB designs numbers 9, 12, 13, 14, 15, 16, 19 and 21 were found, by an exhaustive computer search, not to give BRDs: call this set B. Hence thirteen of the twenty one inequivalent BIBD(10,5,4)s can be signed to BRD(10,5,4)s and eight cannot.

We write $D_i||D_j = [D_iD_j]$ for the matrix of order $v \times 2b$ with parameters $(v, 2b, 2r, k, 2\lambda)$ when D_i is the matrix of order v with parameters (v, b, r, k, λ) . We note though that the eight BIBD(10, 5, 4)s, which can not be signed to BRD(10, 5, 4)s, satisfy Lemma 1. We use $D_i||\overline{D_i}|$ for the BRDs constructed using Lemma 1. Now we construct the BRD(10,5,8)s in two ways:

- i) if D_i , $D_j \in A$, there are 78 different BIBD(10,5,8)s for $D_i||D_j$, so we obtain 78 inequivalent BRD(10,5,8)s;
- ii) if $E_k \in B$, then $E_k || E_k$ is a BIBD(10,5,8), and so we obtain 8 BRD(10,5,8)s.

Thus we have constructed 86 BRD(10,5,8)s of the \geq 135922 possible cases.

Theorem 2 The conditions

- $i) \lambda(v-1) \equiv 0 \pmod{4}$
- $ii) \lambda v(v-1) \equiv 0 \pmod{20}$
- iii) $b \equiv 0 \pmod{2}$
- iv) $\lambda \equiv 0 \pmod{4}$

are necessary and sufficient for the existence of $BRD(10, 5, \lambda)$.

Remark The inequivalent BRD(10,5,4)s are given in the appendix.

References

- [1] Bhaskar Rao M, Group divisible family of PBIB designs, J. Indian Stat. Assoc. 4 (1966), pp. 14-28.
- [2] Chaudhry G R and Seberry J, On Bhaskar Rao designs of block size five, 22ACCMCC, Sydney Australia, July 15-19, 1996.
- [3] Gibbons P B, Computing Techniques for the Construction and Analysis of Block Designs, PhD Thesis, University of Toronto, Technical Report No. 92, May 1976.
- [4] Gibbons P B and Mathon R, Construction methods for Bhaskar Rao and related designs, J Austral. Math. Soc. (Series A) 42 (1987), pp. 5-30.
- [5] Hall M Jr, Combinatorial Theory, Blaisdell Publishing Company, Waltham, Mass. USA, 1967.

 ${f Appendix}$ Thirteen inequivalent BRD(10,18,9,5,4)s are given below:

BRD #	I	II	III	IV
Gibbons #	I	II		IV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & \overline{3} & 6 & 7 \\ 1 & \overline{2} & 3 & 8 & 9 \\ 1 & \overline{2} & 4 & 5 & 10 \\ 1 & \overline{3} & \overline{6} & \overline{7} & 10 \\ 1 & \overline{4} & 6 & 8 & \overline{9} \\ 1 & \overline{4} & \overline{6} & \overline{8} & \overline{10} \\ 1 & \overline{5} & \overline{7} & \overline{8} & 9 \\ 1 & \overline{5} & \overline{7} & \overline{9} & \overline{10} \\ 2 & 3 & 8 & 9 & \overline{10} \\ 2 & 3 & 8 & 9 & \overline{10} \\ 2 & 3 & 8 & 9 & \overline{10} \\ 2 & 3 & 8 & 9 & \overline{10} \\ 2 & 4 & \overline{6} & 7 & \overline{9} \\ 2 & \overline{4} & \overline{7} & 9 & 10 \\ 2 & 5 & \overline{6} & \overline{8} & 10 \\ 3 & \overline{4} & 5 & \overline{6} & \overline{9} \\ 3 & 4 & \overline{5} & \overline{7} & \overline{8} \\ 3 & \overline{4} & 7 & \overline{8} & 10 \\ 3 & \overline{5} & \overline{6} & \overline{9} & 10 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \overline{2} & \overline{3} & \overline{8} & 9 \\ 1 & \overline{2} & \overline{4} & 5 & 10 \\ 1 & \overline{3} & \overline{6} & \overline{8} & \overline{10} \\ 1 & \overline{4} & \overline{6} & 7 & 8 \\ 1 & \overline{4} & \overline{6} & \overline{7} & \overline{8} & 9 \\ 1 & \overline{5} & \overline{7} & \overline{9} & \overline{10} \\ 2 & \overline{3} & \overline{7} & \overline{9} & \overline{10} \\ 2 & \overline{4} & \overline{6} & 7 & \overline{9} \\ 2 & \overline{4} & \overline{6} & 7 & \overline{9} \\ 2 & \overline{4} & \overline{7} & \overline{8} & 10 \\ 2 & \overline{5} & \overline{6} & \overline{8} & 9 \\ 2 & \overline{5} & \overline{6} & 8 & 10 \\ 3 & \overline{4} & \overline{5} & \overline{6} & 9 \\ 3 & \overline{4} & \overline{8} & \overline{9} & \overline{10} \\ 3 & \overline{5} & \overline{6} & \overline{7} & 10 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & \overline{3} & 6 & 7 \\ 1 & \overline{2} & 3 & 8 & 9 \\ 1 & \overline{2} & 4 & \overline{5} & 10 \\ 1 & \overline{3} & \overline{6} & \overline{8} & 10 \\ 1 & \overline{4} & \overline{6} & 7 & \overline{9} \\ 1 & \overline{4} & \overline{6} & \overline{7} & \overline{9} \\ 1 & \overline{5} & \overline{7} & 8 & \overline{10} \\ 2 & 3 & \overline{7} & \overline{9} & 10 \\ 2 & 4 & \overline{6} & 7 & 8 \\ 2 & \overline{4} & \overline{7} & 8 & 10 \\ 2 & \overline{5} & \overline{6} & \overline{8} & 9 \\ 2 & \overline{5} & \overline{6} & 9 & \overline{10} \\ 3 & \overline{4} & \overline{5} & \overline{6} & \overline{8} \\ 3 & \overline{4} & \overline{5} & \overline{7} & 9 \\ 3 & 4 & \overline{8} & \overline{9} & \overline{10} \\ 3 & \overline{5} & \overline{6} & 7 & 10 \end{bmatrix}$
BRD #	V	VI	VII	VIII
Gibbons #	V	VI	VII	VIII
$ \begin{array}{c ccccc} 1 & 1 & 2 \\ 2 & 1 & 2 \\ 3 & 1 & 2 \\ 4 & 1 & 2 \\ 5 & 1 & 3 \\ 6 & 1 & 4 \\ 7 & 1 & 4 \\ 8 & 1 & 5 \\ 9 & 1 & 5 \\ 10 & 2 & 3 \\ 11 & 2 & 4 \\ 12 & 2 & 4 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \overline{2} & 3 & 6 & 7 \\ 1 & \overline{2} & \overline{3} & 8 & 9 \\ 1 & 2 & \overline{4} & 5 & 10 \\ 1 & \overline{3} & \overline{6} & \overline{8} & \overline{10} \\ 1 & 4 & 6 & \overline{7} & \overline{8} \\ 1 & \overline{4} & \overline{7} & \overline{9} & \overline{10} \\ 1 & \overline{5} & \overline{6} & 9 & 10 \\ 1 & \overline{5} & 7 & 8 & \overline{9} \\ 2 & \overline{3} & 7 & 9 & \overline{10} \\ 2 & 4 & \overline{6} & 7 & \overline{9} \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \overline{2} & 3 & 6 & 7 \\ 1 & \overline{2} & \overline{3} & 8 & 9 \\ 1 & 2 & \overline{4} & \overline{5} & 10 \\ 1 & \overline{3} & 6 & \overline{8} & 10 \\ 1 & 4 & \overline{6} & 7 & 9 \\ 1 & \overline{4} & \overline{7} & \overline{8} & \overline{10} \\ 1 & \overline{5} & \overline{6} & \overline{9} & \overline{10} \\ 1 & 5 & \overline{7} & 8 & \overline{9} \\ 2 & \overline{3} & 7 & \overline{9} & 10 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & \overline{3} & 6 & 7 \\ 1 & \overline{2} & 3 & 8 & 9 \\ 1 & \overline{2} & \overline{4} & 5 & 10 \\ 1 & \overline{3} & \overline{6} & \overline{8} & \overline{10} \\ 1 & 4 & 6 & \overline{7} & 10 \\ 1 & \overline{4} & 8 & \overline{9} & \overline{10} \\ 1 & \overline{5} & \overline{6} & \overline{7} & \overline{9} \\ 1 & \overline{5} & 7 & \overline{8} & 9 \\ 2 & \overline{3} & \overline{7} & 9 & \overline{10} \\ 2 & \overline{4} & 6 & \overline{7} & \overline{8} \end{bmatrix}$

BRD	#			X					XI				XVII					XVIII						
Gibbons			Χ			XI						XVII					XVIII							
1	Γ 1	2	3	4	5		Γ 1	2	3	4	5	1 [1	2	3	4	5	1	1	2	3	4	5	1
2	1	2	$\overline{3}$	6	7		1	$\overline{2}$	3	6	7		1	$\overline{2}$	3	6	7		1	$\overline{2}$	$\overline{3}$	6	7	
3	1	$\overline{2}$	3	8	9		1	$\overline{2}$	3	8	9		1	$\overline{2}$	3	8	9		1	2	5	7	8	
4	1	$\overline{2}$	$\overline{4}$	5	10		1	2	$\overline{4}$	$\overline{6}$	10		1	2	$\overline{4}$	$\overline{6}$	10		1	$\overline{2}$	$\overline{6}$	$\overline{7}$	9	
5	1	$\overline{3}$	$\overline{6}$	8	10		1	$\overline{3}$	5	8	10		1	$\overline{3}$	5	8	10		1	3	5	9	10	
6	1	4	6	$\overline{9}$	10		1	4	$\overline{5}$	6	9		1	$\overline{4}$	5	$\overline{9}$	10		1	$\overline{3}$	$\overline{6}$	8	10	
7	1	$\overline{4}$	$\overline{7}$	8	10		1	$\overline{4}$	$\overline{7}$	8	10		1	4	$\overline{6}$	7	$\overline{9}$		1	$\overline{4}$	7	8	10	
8	1	5	$\overline{6}$	7	$\overline{9}$		1	5	7	8	$\overline{9}$		1	5	6	7	8		1	$\overline{4}$	7	$\overline{9}$	10	
9	1	$\overline{5}$	$\overline{7}$	8	9		1	$\overline{6}$	7	9	$\overline{10}$		1	$\overline{7}$	8	9	$\overline{10}$		1	5	6	8	$\overline{9}$	
10	2	3	7	9	10		2	$\overline{3}$	7	9	$\overline{10}$		2	$\overline{3}$	7	9	10		2	3	7	8	9	
11	2	$\overline{4}$	6	$\overline{7}$	$\overline{8}$		2	4	$\overline{5}$	7	$\overline{9}$		2	$\overline{4}$	$\overline{5}$	7	8		2	$\overline{3}$	8	$\overline{9}$	10	
12	2	$\overline{4}$	$\overline{6}$	8	$\overline{9}$		2	$\overline{4}$	8	9	$\overline{10}$		2	4	7	8	10		2	4	5	8	$\overline{10}$	
13	2	5	$\overline{6}$	9	10		2	5	6	$\overline{7}$	8		2	5	6	8	9		2	$\overline{4}$	6	9	10	
14	2	5	7	8	10		2	5	6	8	10		2	5	6	$\overline{9}$	$\overline{10}$		2	5	$\overline{6}$	7	10	
15	3	$\overline{4}$	5	6	7		3	$\overline{4}$	5	7	10		3	4	5	7	9		3	4	$\overline{5}$	7	$\overline{9}$	
16	3	$\overline{4}$	5	8	9		3	4	6	7	8		3	$\overline{4}$	$\overline{6}$	8	9		3	$\overline{4}$	6	7	8	
17	3	4	$\frac{1}{7}$	$\frac{\overline{9}}{9}$	10		3	4	$\frac{1}{6}$	8	9		3	$\overline{4}$	6	8	10		3	5	$\frac{1}{6}$	7	10	
18	3	$\frac{1}{5}$	$\frac{\cdot}{6}$	8	10		3	5	6	$\frac{\overline{9}}{9}$	$\frac{10}{10}$		3	$\frac{1}{5}$	$\frac{3}{6}$	$\frac{1}{7}$	10		4	5	6	8	9	
BRD	_				X X	•	_				•		-				-		_					

BRD #	XX								
Gibbons #			ХХ						
1	Γ 1	2	3	4	5				
2	1	2	3	4	6				
3	1	$\overline{2}$	5	7	8				
4	1	$\overline{2}$	$\overline{6}$	$\frac{7}{7}$	9				
5	1	3	5	$\overline{9}$	10				
6	1	$\overline{3}$	7	9	10				
7	1	4	6	8	$\overline{9}$				
8	1	$\overline{4}$	$\overline{7}$	8	10				
9	1	5	$\overline{6}$	8	10				
10	2	3	$\overline{6}$	8	10				
11	2	$\overline{3}$	7	8	$\overline{9}$				
12	2	4	5	9	10				
13	2	$\overline{4}$	8	9	10				
14	2	$\overline{5}$	$\overline{6}$	7	10				
15	3	$\overline{4}$	5	$\overline{7}$	8				
16	3	$\frac{\overline{5}}{\overline{4}}$	6	7	10				
17	3	$\overline{5}$	6	8	9				
18	4	5	6	$\overline{7}$	9				