University of Wollongong

Research Online

Faculty of Engineering and Information

Faculty of Informatics - Papers (Archive) Sciences

December 2000

Codes Identifying Bad Signatures in Batches

J. Pastuszak
Polish Academy of Sciences, Warsaw, Poland

J. Pieprzyk
University of Wollongong

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

b Part of the Physical Sciences and Mathematics Commons

Recommended Citation
Pastuszak, J.; Pieprzyk, J.; and Seberry, Jennifer: Codes Identifying Bad Signatures in Batches 2000.
https://ro.uow.edu.au/infopapers/334

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages

Codes Identifying Bad Signatures in Batches

Abstract

The work is concerned with identification of bad signatures in a sequence which is validated using
batching. Identification codes (id-codes) are defined and their general properties are investigated. A
taxonomy of id-codes is given. The generic construction for a wide range of id-codes is given and its
instantiation using mutually orthogonal Latin squares is described. Hierarchical identification is studied
for two cases when the identification procedure uses a family of id-codes and when there is a single
underlying id-code. Remarks about future research conclude the work.

Keywords
Digital Signatures, Batch Verification, Identification Codes

Disciplines
Physical Sciences and Mathematics

Publication Details

This conference paper was originally published as Pastuszak, J, Pieprzyk, J and Seberry, J, Codes
Identifying Bad Signatures in Batches, in Roy, B abd Ding, C (eds), Proceedings of INDOCRYPT'2000,
Lecture Notes in Computer Science, 1977, 2000, 143-154. Copyright Springer Verlag. Original book
available here.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/334

http://www.springerlink.com/content/105633/
https://ro.uow.edu.au/infopapers/334

Codes Identifying Bad Signatures in Batches

Jarostaw Pastuszak!, Josef Pieprzyk?, and Jennifer Seberry?

! Systems Research Institute
Polish Academy of Sciences
Warsaw, POLAND
jarek.pastuszak@bsb.com.pl
2 Centre for Computer Security Research
School of IT and Computer Science
University of Wollongong
Wollongong, NSW 2522, AUSTRALIA
Josef _Pieprzyk@uow.edu.au
Jennifer_SeberryQuow.edu.au

Abstract. The work is concerned with identification of bad signatures
in a sequence which is validated using batching. Identification codes (id-
codes) are defined and their general properties are investigated. A tax-
onomy of id-codes is given. The generic construction for a wide range of
id-codes is given and its instantiation using mutually orthogonal Latin
squares is described. Hierarchical identification is studied for two cases
when the identification procedure uses a family of id-codes and when
there is a single underlying id-code. Remarks about future research con-
clude the work.

Keywords: Digital Signatures, Batch Verification, Identification Codes.

1 Introduction

The concept of digital signatures have evolved considerably over the last two
decades. Handwritten signatures are not suitable in electronic environment es-
pecially in the context of the ease in which electronic documents can be copied
and/or cut-and-paste manipulated. Digital signature were invented to prevent
documents from illegal modification. Digital signature encapsulates both the
contents of the document and the signer secret key in such a way that verifica-
tion is public - every body who knows the corresponding public key of the signer
and the document, can validate the signature. Digital money is a specific kind of
signature which is signed (typically, blindly) by the bank and used by customers
in (almost) the same way as the traditional cash with added important func-
tionality — it can be used in transactions performed over the Internet (electronic
commerce).

The reliance of e-Commerce on digital money has a dramatic impact on the
computing load imposed on the bank. The bank has become the focal point

where all electronic money (digital signatures) are flowing. Observe that be-
fore the transaction is approved, the electronic money must be validated. Batch
verification is an attractive short cut for signature validation saving time and
computing resources. It is applicable whenever the verifier gets a large number of
digital signatures generated by the same signer provided the signature exhibits
the homomorphic property allowing signatures to be validated in batches in the
expense of a single exponentiation.

If the batch passes the validation, all signatures are considered correct and are
accepted. If however, the batch fails to pass the validation test, the verifier must
identify invalid signatures in the batch. Clearly, rejection of the whole batch is
not an option. A natural question arises: how to identify invalid signatures in the
batch so the valid signatures can be accepted ? Additionally, one would expect
that the identification process should be as efficient as possible.

2 Background

Batch verification makes sense if the signatures in a batch are related or gener-
ated by the same signer. There are two types of signatures which can be batched:
RSA signatures and DSA (DSS) signatures. The RSA signatures use the fixed
exponent (public key of the signer) for verification. Assume that we have n mes-
sages and their signatures. The signatures can be verified independently at the
expense of n exponentiations. The batch containing all signature can be verified
at the expense of a single exponentiation plus (n — 1) modular multiplications.

DSA signatures are based on exponentiation when the base is fixed and pub-
licly known (the modular arithmetics is chosen by the signer). Again n signatures
can be verified one by one at the expense of n exponentiations. The batch of
n signatures are validated using a single exponentiation and (n — 1) modular
additions.

These two methods of batch verification are insecure as an enemy who may
know the verification process, may try to get the verifier to accept invalid sig-
natures. The simplest method of attack would be to produce a forged signature
and insert two copies of it in the batch in such a way that they cancel each
other when the verification is performed, For instance in the RSA case, any
batch which contains two forged pairs: (my, sy) and (m;l, 5;1) where my is the
forged message (document) and sy is the forged signature, passes the verification
test.

Bellare, Garay and Rabin [1] developed verification tests which are secure
against any attacker. The security of the test is measured by the probability
that a contaminated batch passes it making the verifier to accept all invalid or
bad signatures contained in the batch. The probability of slipping bad signatures
through the test can be traded with efficiency.

The problem we address in this work is an efficient identification of bad signa-
tures after the test fails. There is a general method of bad signature identification
which is called “cut and choose” in [3] or “divide and conquer” in [4]. It takes a
contaminated batch and splits it repeatedly until all bad signatures are identi-

fied. The efficiency of this method depends on the degree of contamination (or
how many bad signatures are in the batch) and also on how the bad signatures
are distributed in the batch.

Note that identification of bad signatures resembles the problem of error cor-
rection. To be able to correct errors, the code must clearly identify all positions
on which errors have occurred. As observed in [4], error correcting codes can be
applicable for bad signature identification. There is a major difference between
error correcting codes and identification codes or id-codes which allow to identify
bad signatures. Computations in error correcting codes are done in the binary
field with EXCLUSIVE-OR addition (XOR). The interaction among valid and
invalid signatures within the batch are governed by INCLUSIVE-OR (logical
OR).

The work is structured as follows. The model for id-codes is studied in Sec-
tion 3. Section 4 investigates general properties of id-codes. Section 5 discusses
taxonomy of id-codes. The general construction based on OR-checking matrix
and its instantiation based on mutually orthogonal Latin squares are given in
Section 6. Hierarchical identification is described in Section 7. A discussion about
further work on id-codes closes the work.

3 The Model

The problem we are dealing with is bad signature identification in a batch which
has failed to pass the test. The test T is a probabilistic algorithm which takes
a batch of an arbitrary length and produces a binary outcome accept/reject. It
satisfies the following two general conditions:

1. Any clean batch (which contains all valid signatures) always passes the test.

2. A dirty batch (which contains one or more bad signatures) fails the test with
an overwhelming probability. In fact, it is reasonable to assume that a dirty
batch always fails the test.

We further suppose that the cost of running the test does not depend on the
size of the batch. This assumption seems to be true for relatively small batches
where the computation effort is equivalent to a fixed sequence of exponentiations

(see [1]).

Definition 1. Given a batch B* = {(m;,s;)|i = 1,...,u} of signed documents
(m; is the i-th document and s; its signature). The identification code IC(u,t)
able to identify up to t bad signatures is a collection of sub-batches (B, ...,By)
where B; C B* such that for any possible pattern of up to t bad signatures, the
outcomes (the syndrome)

S = (T(Bl), H 7T(Bv))

uniquely identifies all bad signatures.

The identification code IC(u,t) can be equivalently represented by its v X u
test-checking matrix A = [a;;] such that

o 1 if (mi,si)EBj
%j =1 0 otherwise

Clearly, for a fixed size u of the batch, one would like to obtain a code IC (u, t)
with the parameter v as small as possible. Note that v indicates how many tests
7 must be run to identify all bad signatures and it can be considered as the
parameter characterising the efficiency of the code. The parameter v is upper
bounded by u as it is always possible to design a trivial code whose matrix A is
the u x u identity matrix. This code is equivalent to serial validation of signatures
one by one.

The following notation is introduced. The code IC(u, t) is uniquely identified
by its (v x u) test-checking matrix A. The entries of A are binary. Columns of
the matrix A are indexed by u signatures in a batch. So the matrix A can be
seen as a sequence of columns of the form

A:(Ala"'aAu)

The index of the i-th signature in the batch B™ is the i-th column A;. A row
specifies the corresponding sub-batch which includes all signatures for which the
entries are 1.

Note that if the i-th signature is bad the syndrome produced for a batch
contaminated by it is equal to A; or S(i) = A;. Given a batch B* with ¢ bad
signatures. Assume further that the bad signatures have occurred on positions
(b1,...,bt) in the batch B*. Their corresponding indices are (Ay,,. .., Ayp,). De-
note the syndrome produced for the batch as

S(bl,...,bt) = A, V...V A4,
where V is bit-by-bit inclusive (logical) OR. For example, if

1
A1 = and A2 = ? then Al \ A2 =
0

O = = =

1
1
0
0

4 Properties of Id-Codes

Using an information-theoretic arguments, we argue that there is a lower bound
on the v parameter.

Theorem 1. Given an id-code IC(u,t) which always identifies correctly any t
bad signatures in the batch of the size u. Then the number of tests (and the
number of collections) v satisfies the following inequality

v210g2§ <1;> (1)

Proof. Given a batch B* of u elements contaminated by at most ¢ bad signatures.
The identification of bad signatures is possible if the syndromes are distinct for
all patterns of ¢ bad signatures (i < t) so knowing the syndrome, it is possible
to determine the positions of bad signatures in the batch. Note that there are

> (1)

different identifiable patterns (including the pattern with no bad signature). Now
if we have v sub-batches (By,...,B,), then the test 7 applied for a single sub-
batch B;; 0 < j < t, provides a binary outcome (pass/fail) so the number of
possible syndromes is 2¥. Clearly

t
v u
5 ()
i=0
and the bound described by Equation (1) holds.

Obviously, searching for id-codes makes sense if they are better (take less
tests) than the naive id-code which tests batches containing single signatures.
From Theorem 1 we can derive an interesting corollary.

Corollary 1. Id-codes better than the naive id-code exist only if t < u/2.

Proof. Note that for ¢ > n/2, the number of tests

t u/2 u
2 () E R
1=0 =0 =0

Thus the number of tests v must be at least © — 1 which is almost the same as
for the naive id-code which requires u tests.

Definition 2. An index A; includes A; if A;V A; = A;.

Given the matrix A of an id-code. Observe that if there are two columns i # j
such that the index A; includes A;, then the code is unable to identify whether
there are a single bad signature with the syndrome A; or two bad signatures
with the syndrome A; V A;. In other words, the matrix A with such indices is
not able to identify bad signatures with indices A; and A;. We say that the two
indices collide.

Lemma 1. Given identification coding with a (v x u) test-checking matriz A.
Assume further that there is an index A; (column A;) such that its Hamming
weight wt(A;) = r, then the number of colliding indices with A; is

Cu(A) =27 +2V77 — 2,

Proof. There are two cases where collision may occur

— the index A; includes other indices (A4; V Ay, = A;) for some k,
— the index A; is included in other indices (A; V A = Ay).

For a given index A; with its Hamming weight r, we can create 2" — 1 indices
which are included in A; — the first case. We can also create 2Y~" — 1 indices
which include A; — the second case. In effect, we have to exclude 2" + 2v~" — 2
indices.

Corollary 2. To increase effectiveness of identification codes we should select
weights of indices so the number of colliding indices is minimal. The smallest

number of colliding indices occurs when the Hamming weight of all indices is 3.

Assume that we have two indices 4; and A;. We can define the intersection
of the two as A; A A; where A is bit-by-bit logical AND.

Lemma 2. Given two indices A; and A; such that wt(4;) = r1 and wt(4;) =
ry. Denote A, = A; N A; - the mazimal index which is contained in both A;

and A; and wt(A.) = r. Then the number of indices which collide with the pair
(Ai, A]) 18

C# (Az, AJ) — U1 + QU—T2 + 2r1+r2—r _ 20+r—r1—r2 _Qri—r _ 9ra—r.

Proof. Denote A = {44,..., Au}. Note that Cyu(A4;,4;) > Cu(A4; V Aj) and

))

becomes the equality only if r = 0. From Lemma 1, we can write
Cy(A; V Aj) = 2mtre=r g guir=ri=ra _ o

Denote #A; and #A; the numbers of colliding indices from A; and A;, respec-
tively, which have not been considered among the indices from A; V A;. Thus,
we have

Cu(Ai,Aj) = Cu(Ai V Aj) + #A, + #A;.

There are the following cases, the index

— collides with A; — there are 2™ such indices,
— collides with A; \ A; — there are 2">~" such indices,
— collides with A\ (A4; A A;) — there are 2UT"~"1="2 guch indices.

Observe that indices colliding with A;\ A; have been already counted in Cy (A4;V
A;). Further on, note that the zero index (all bits are zero) has been counted.
Therefore

#Ai — (27"2—7" _ 1)(2v+r—r1—r2 _ 1) and #Aj — (27"1—7" _ 1)(2v+r—r1—r2 _ 1)_
Adding the numbers we obtain the final result.

Lemma 3. Given identification code determined by its (vxu) matriz A. If there
is a parameter k < u and a sequence of indices (A;,,...,A;,) such that

! d
Ai]‘ = ZEfIU:

k
=1 1

J

then the id-code can identify no more than k bad signatures. Where \/?Z1 stands
for bit-by-bit logical OR and 1, is a binary vector of length v containing ones
only.

Proof. Denote A = {4y,...,A,} as the set of all indices (columns) of the matrix
A. Create the following two sets:

./41 :{Aila---;Aik} and AQ :A\Al

The proof proceeds by contradiction. Assume that any ¢ = k£ 4+ 1 bad signatures
can be identified. Now we take a sequence of k£ bad signatures with their indices
(Aiy, ..., A;). Their syndrome is 1,. Now if there is an extra bad signature than
the collection of ¢ bad signatures have the same syndrome — there is a collision
and we have obtained the contradiction.

Observe that while designing id-codes, one would need to avoid using two
indices A;, A; such that A; = = A; where — is bit-by-bit negation as such id-
code identifies at most two bad signatures.

5 Taxonomy of Id-Codes

From an efficiency point of view, the batch size is preferred to be as large as
possible. This also means that the size of the batch determines the block size of
the id-code. So to identify bad signatures efficiently, one would need a family of
id-codes rather than a single id-code working for a batch of fixed size. On the
other hand, there is a boundary on the block size of a id-code which typically
reflects restrictions imposed on computing resources.

Given a batch B" and an id-code IC(u,t) There are two general classes of
bad signature identification:

— flat identification — there is an id-code whose block size equals the size of the
batch (n = u),

— hierarchical identification — the number of signatures « in the batch is bigger
than the block size u (n > u).

Clearly, flat identification applies an id-code and if the number of bad signatures
is smaller than ¢, it always works. Its natural extension for larger batch sizes,
could be the division of the batch into sub-batches each of size u. Hierarchical
identification applies merges signatures into sub-batches and treats them as sin-
gle signatures so we get a sequence of u sub-batches. The code is applied to it
and identifies up to ¢t contaminated sub-batches. These sub-batches can be either
subject to flat or again to hierarchical identification.

Assume that the efficiency of identification is measured by the number of
tests 7 necessary to identify all bad signatures. Note that this measurement is
equivalent to the number of rows in the matrix A which defines the id-code.
Intuitively, the more bad signatures are in a batch, the more expensive the
identification process is. Id-code can be categorised into:

— codes with constant workload — no matter what is the degree of contami-
nation, the number of tests is constant and the code either succeeds (if the
identification capability exceeds the degree of contamination) or fails,

— codes with contamination-dependent workload — the number of tests depends
on the contamination. Again codes fail if the number of bad signatures ex-
ceeds their identification capabilities.

From a practical point of view, codes with contamination-dependent workload
are very attractive as they trade efficiency with identification capability. The
identification process starts by performing a limited number of tests allowing to
identify a single bad signature. If this fails, the identification proceeds by trying a
new tests which together with the old tests permit to identify two bad signatures.
The process continues until all bad signatures are identified or the identification
fails. Important feature of id-codes seems to be re-usability of previous tests.

The batch validation applies a specific id-code, say IC(u, t). If the capability
of the code (expressed by t) is smaller than the degree of batch contamination £
(¢ is the number of bad signatures in the batch), then the failure is unavoidable.
Consequently, the parameter ¢ must be increased. Additionally, the work done
so far is likely to be lost. Thus it is imperative, to make a “good” guess about
the maximum degree of contamination (the parameter t). Clearly, statistical
information gathered from the past can suggest such a guess. Note that the situ-
ation simplifies somewhat if the codes in hand trade efficiency with identification
capability as the guess can be more pessimistic.

6 Constructions of Id-Codes

As we know, one would wish to have an identification code which allows for
gradual increment of ¢ with a possible re-use of all tests conducted for smaller
ts. Now we present our main construction.

Definition 3. A (k+ 1)n x n? matriz A with binary elements is a OR-checking
matrix if there are k+ 1 ones per column, n ones per row, and the inner product
of any pair of columns is either zero or one.

Lemma 4. Given a (k+ 1)n x n?> OR-checking matriz A. Then the OR of any
subset of k columns is unique for k=1,...,n — 1.

Proof. For convenience in typesetting we will write these columns as rows by
transposing the matrix — so we are going to consider A”. We consider any k
rows but permute them so that the ones are moved to the left of each row as
far as possible. We now consider a simple counting argument to look at the
intersection patters of the rows. If any two rows have an intersection +1, the
ones (written as x) will use a total of (k + 1)(k + 2) — 1 columns and be able
to be represented as:

k+1 k k-1 e 2
XXX ...x 00...0 O0...0 ... |00

x00...0 xx ...x 0...0 ... |00
0x0 .0 x0...0 x . X ... |oo
000 ...x 00 ...xx O ...x Lo Ixx

If any pair of rows do not have intersection +1 then more than 3 (k + 1)(k +
2) — 1 columns will be needed to represent the patters of ones but the last row
will always have at least 2 elements +1 at the right of the row which have no
element in the column above either of them which is non-zero.

Now suppose that the matrix yielded that any k£ — 1 rows corresponding to
bad signatures gave a unique OR but that there are two solutions which give the
same result for k rows indicating bad signatures. We rearrange the rows in our
pattern representative, if necessary, so one of these two solutions is the last row.
We now consider the other solution. For the first £ — 1 vectors and the second
solution to cover the same number of columns the second solution must have two
+1 at the right of the row which have no element in the column above either of
them non-zero. But this means the first and second solution have at intersection
at least 2 ones contradicting the definition of the OR-checking matrix. Hence
any collection of k rows produces OR sums which are distinct.

We note that this proof does not extend to a collection of k 4+ 1 rows because
in that case we could only assume the last row to have more than one elements
+1 at the right of the last row which has no element in the column above it
which is non-zero. This does not lead to any contradiction.

Corollary 3. Given a (k + 1)n x n? OR-checking matriz A whose every two
column intersection is either zero or one. Then there is an IC(u,t) code which

is capable to identify up to t = n—1 bad signatures within a batch of size u = n?.

The identification code based on OR-checking matrices is efficient as it allows
to re-use all previous results if the guess about the parameter ¢ has been wrong.
Given a batch B* of the size u = n? The (n x u) OR-checking matrix A is
created. Denote A as a shortened version of A containing first (¢ + 1)n rows
of A;t=1,2,...,n— 1.

1. The identification process starts from the assumption that ¢ = 1. First col-
lection of 2n tests 7 are run for batches defined by rows of the matrix A().
If the bad signatures are not correctly identified (i.e. the batch without bad
signatures still fails the test 7), then it is assumed that ¢ = 2. Otherwise the
process ends.

2. Assume that the identification using A(*) has failed to identify bad signatures
(t=2,3,...,n —1). The collection of necessary tests are defined by A(*1).
Note that A*+1) differs from A® in that it contains n additional rows. The
identification process can be accomplished by running n additional tests
corresponding to the batches defined by rows in A1 which are not in
A® Tf the identification has not been successful, ¢ is increment by 1 and the
process continues.

The identification fails if ¢ > n.

The construction also gives the upper bound on the number v of necessary
tests to identify ¢ bad signatures.

Corollary 4. The number v of tests necessary to identify t bad signatures in
the batch of size u satisfies the following inequality:

v (t+1)Vu

There are many combinatorial structures which can be used to give the re-
quired OR-checking matrices for example transversal designs and group divisible
designs. However we give a rich construction based on Latin squares.

A Latin square of order n is an n X n array in which n different symbols, say
a, b, ... each occur once in each row and column. Two Latin squares are said to
the mutually orthogonal if when the squares are compared element by element
each of the distinct pairs occurs exactly once. Formally, two Latin squares, L and
L' are said to be mutually orthogonal if L(a,b) = L(e,d) and L'(a,b) = L'(e, d),
implies @ = ¢ and b = d. For further information, refer to [2].

Lemma 5. Suppose there are k mutually orthogonal Latin squares of order n.
Then there is a (k + 1)n x n?> OR-checking matrix.

Proof. We use the auxiliary matrices described in [2].

Ezample 1. Let

abcd abcd abcd
badc cdab dcba
My = cdab » Mo = dcba » My = badc
dcba badc cdab

be three mutually orthogonal Latin squares of order 4 on the symbols x; = a,
2 = b, 3 = c and x4 = d. Define M;;, 1 <i <k, by

N (M) gy = e,
(Mij)es = {O otherwise.

where 1 <e, f <4. S0 M;;, 1 <i<4and1<j<4can be written as

Corollary 5. Let g > 2 be a prime power then there are ¢ — 1 mutually orthog-
onal Latin squares of order q

Many other results are also known, for example for every n > 3 except 6
there are at least two orthogonal Latin squares of order n and for n > 90 there
are at least 6.

7 Hierarchical Identification

Identification codes are designed to work with a batch of fixed size. In practice,
one would expect to have an identification scheme which is going to work with
a batch of arbitrary length. Hierarchical identification provides such a scheme.
Consider a family of id-codes F = {IC(v,t)} with some well defined parameters

(v, t).

Definition 4. Given a batch B* of arbitrary length u. Hierarchical identification
based on the family of identification codes F is a procedure defined recursively:

— stopping case — if the size of the batch u is smaller or equal to some parameter
v s0 we can use the identification code IC(v,t) € F, then we apply it (flat
identification), otherwise

recursive step — if the size of the batch u is bigger than the highest parameter
Umae i1 the family F, then it is divided into sub-batches such that { < vpqs
and there is some IC(v,t) € F which can be used to identify contaminated
sub-batches where £ < v and (t' < t).

The hierarchical identification is denoted by HI(F).

Hierarchical identification can be based on different collections of id-codes.There
are two extreme cases:

— F consists of infinite sequence of id-codes,
— the family F is reduced to a single id-code.

No matter what is the underlying family F, one would ask the following
questions:

— What is the minimum (maximum, average) number of tests which is neces-
sary to identify all bad signatures ?

— Given a family F and the number ¢ of bad signatures in the batch, is there
any procedure which minimises the number of tests ?

7.1 Hierarchical Identification with Infinite F

Consider id-codes defined in Section 6. Each id-code can be uniquely indexed by
a prime power p > 2. For this index, the code is IC(p?,p — 1). The family

F = {IC(p*,p—1)|p is the prime power;p # 2}

Note that IC(p?,p— 1) can be used to identify up to p— 1 bad signatures. If the
number of bad signatures is t < p — 1, the code will use

(t+p+1

tests. If £ > p — 1, then the code fails.

Let #7 (F) be the number of tests necessary to identify all ¢ bad signatures
in a batch B*. Now we are trying to evaluate lower and upper bound for the
number #7 (F). Assume that the size of the batch u = p? where p is a prime
power. Now we choose somehow p; < p and divide the batch BY into p? sub-
batches. Each sub-batch contains 1—;‘% elements. Note that we have to consider
only codes for which ¢ > p; — 1 as otherwise the code may fail.

Let the ¢ bad signatures be clustered into r sub-batches each containing ¢;

bad signatures so
r
t=> t
i=1

where r < p;—1 and naturally, ¢; < p%. The number #7 (F) has two components:
1

1. the number of tests necessary to identify all contaminated sub-batches — this
takes
a:(’f‘+1)p1+1,

2. the number of tests necessary to identify bad signatures within the sub-
batches. For a given sub-batch, we count the number of necessary tests. First
we choose a prime power ps such that p3 > 1%. As the sub-batch contains ¢;

1

bad signatures we need
Bi=(ti +1)p2 + 1

tests.

The number of tests .
#T(F)=a+) B
i=1
which after simple transformations gives

#T(F)=(+pr+p(t+r)+(r+1)

The number #7 (F) depends on the random parameter r and grows linearly
with 7 so #7T (F) is smallest for » = 1 when all bad signatures occur in a single
sub-batch. #7 (F) takes on the maximum for r = ¢ = p; — 1. So we have the
following corollary.

Corollary 6. Given a batch B" with t bad signatures. Hierarchical identification
with infinite F will consume #T (F) tests where

2p1 + (t+ D)p2 + 2 < #T(F) < pi + 2p1p2 + p1 — 2po.

7.2 Hierarchical Batching with a Single IC(v,t)

In some applications, one would like to keep the identification procedure as
simple as possible which is using a single identification code or in other words
the family F contains a single element. Again, knowing the number ¢ of bad
signatures in a batch B*, one would like to see how the number of necessary
tests to identify all signatures varies (lower and upper bounds) as a function of
the u and ¢.

Assume that v = p? and we apply the id-code IC(p?,p — 1). Given a batch
B%. There are two ways bad signatures can be identified:

— Serial identification — a batch is divided into % sub-batches. For each sub-

batch, the id-code is used. This is a serial application of flat identification.

— Hierarchical identification — a batch is divided into v sub-batches and the
id-code is applied for the sub-batches and identifies the contaminated sub-
batches. The process is repeated for contaminated sub-batches as many times
as necessary to identify bad signatures.

Consider serial identification. Note that if a batch BP is clean (¢t = 0), it
takes one test to verify it. If the batch is contaminated by ¢t < p bad signatures,
the identification will take (t + 1)p + ¢t + 1 tests. Assume that a batch B* has
been divided into R = % sub-batches (if u is a multiple of p?) among which
r sub-batches are dirty and the other R — r are clean. All clean sub-batches
consume one test each. A dirty sub-batch B; takes (¢; + 1)(p + 1) tests where
Sr_, t; = t. So the number of tests required to identify bad signatures is

i=1

U
P —r+(@+1)(t+r)
Note that the number of tests is a random variable which ranges from r = 1
when all bad signatures happen to be in one sub-batch, to r = ¢ when there are
t sub-batches each containing a single bad signature.

Consider the second case of hierarchical identification. To simplify our delib-
erations, assume that u = p?/ for some integer j. Denote #7 (j,¢) the number
of tests needed to identify ¢ bad signatures in a batch BP” when the id-code
is applied to the sub-batches each containing p?—1) signatures. The following
recursive equation is easy to derive

#T(Gt) = (r+ Dp+r+ Y #T([- Lt),

i=1

where 7 is a random variable which indicates the number of contaminated sub-
batches and t; are numbers of bad signatures in the corresponding contaminated
sub-batches; i = 1,...,7.

8 Conclusions

The generic class of id-codes has been defined using the test-checking matrix A.
The (u x v) matrix A determines the necessary tests. The syndrome is the binary
vector which gives the test results for sub-batches defined by rows of A. The
syndrome is also equal to bit-by-bit inclusive-OR of indices which correspond to
bad signatures. We have investigated interaction of indices and found out that
to maximise the identification capability of an id-code, one would need to choose
indices of their Hamming weight equal to v/2.

The main construction of id-codes uses the so-called OR-checking matrix.
The id-code takes a sequence of n? signatures and allows to identify up to n — 1
bad signatures. The nice characteristic of the code is that the number of tests
can be reduced if the batch contains less than n — 1 bad signatures. To identify a
single bad signature, it takes 2n tests. Any additional bad signature, adds n ad-
ditional tests necessary for correct identification. There are many combinatorial
structures which can be used to design id-codes. We have shown how mutually
orthogonal Latin squares can be applied to construct id-codes.

We have not discussed the identification procedure of bad signatures in our
id-code. The problem is far less complicated than for example in error correcting
codes, mainly because the monotonicity of the Hamming weight of the syndrome.
In other words, indices of bad signatures must be included in the syndrome. The
implementation of this process can be done by

— checking all signatures one by one and marking those whose index collides
with the syndrome,

— removing all signatures belonging to those sub-batches which have passed
the test (they identified by zeros in the syndrome). In other words, all bad
signatures are in the set

B\ U B;

T(Bi)=0

where B; is the sub-batch determined by the i-th row of the id-code.

Id-codes can be used directly to a contaminated batch. We called this flat
identification. Alternatively, a contaminated batch can be first grouped into sub-
batches and the id-code is applied to sub-batches and identifies contaminated
sub-batches. This process can be done many times until bad signatures are iden-
tified. This is the hierarchical identification.

There are still many open problems. The obvious one is whether the con-
struction given in this work is “optimal”, i.e. identification of bad signatures
consumes the smallest possible number of tests. Hierarchical identification al-
lows to avoid natural limitations imposed by the size of batch and apply the
id-code in hand to a batch of arbitrary length. Is there any strategy for grouping
signatures into sub-batches so the number of necessary tests is minimised ?

References

1. M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In K. Nyberg, editor, Advances in Cryptology
- EUROCRYPT’98, pages 236-250. Springer, 1998. Lecture Notes in Computer
Science No. 1403.

2. C.J. Colbourn and J.H. Dinitz, editors. The CRC Handbook of Combinatorial De-
signs. CRC Press, Boca Raton, FL, 1996.

3. J-S. Coron and D. Naccache. On the security of RSA screening. In H. Imai and
Y. Zheng, editors, Public Key Cryptography — Second International Workshop on
Practice and Theory in Public Key Cryptography, PKC’99, pages 197-203. Springer,
1999. Lecture Notes in Computer Science No. 1560.

4. J. Pastuszak, D. Michalek, J. Pieprzyk, and J. Seberry. Identification of bad sig-
natures in batches. In H. Imai and Y. Zheng, editors, Public Key Cryptography -
Third International Workshop on Practice and Theory in Public Key Cryptography,
PKC’2000, pages 28-45. Springer, 2000. Lecture Notes in Computer Science No.
1751.

	Codes Identifying Bad Signatures in Batches
	Recommended Citation

	Codes Identifying Bad Signatures in Batches
	Abstract
	Keywords
	Disciplines
	Publication Details

	paper.dvi

