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Codes Identifying Bad Signatures in BathesJaros law Pastuszak1, Josef Pieprzyk2, and Jennifer Seberry21 Systems Researh InstitutePolish Aademy of SienesWarsaw, POLANDjarek.pastuszak�bsb.om.pl2 Centre for Computer Seurity ResearhShool of IT and Computer SieneUniversity of WollongongWollongong, NSW 2522, AUSTRALIAJosef Pieprzyk�uow.edu.auJennifer Seberry�uow.edu.auAbstrat. The work is onerned with identi�ation of bad signaturesin a sequene whih is validated using bathing. Identi�ation odes (id-odes) are de�ned and their general properties are investigated. A tax-onomy of id-odes is given. The generi onstrution for a wide range ofid-odes is given and its instantiation using mutually orthogonal Latinsquares is desribed. Hierarhial identi�ation is studied for two aseswhen the identi�ation proedure uses a family of id-odes and whenthere is a single underlying id-ode. Remarks about future researh on-lude the work.Keywords: Digital Signatures, Bath Veri�ation, Identi�ation Codes.1 IntrodutionThe onept of digital signatures have evolved onsiderably over the last twodeades. Handwritten signatures are not suitable in eletroni environment es-peially in the ontext of the ease in whih eletroni douments an be opiedand/or ut-and-paste manipulated. Digital signature were invented to preventdouments from illegal modi�ation. Digital signature enapsulates both theontents of the doument and the signer seret key in suh a way that veri�a-tion is publi - every body who knows the orresponding publi key of the signerand the doument, an validate the signature. Digital money is a spei� kind ofsignature whih is signed (typially, blindly) by the bank and used by ustomersin (almost) the same way as the traditional ash with added important fun-tionality { it an be used in transations performed over the Internet (eletroniommere).The reliane of e-Commere on digital money has a dramati impat on theomputing load imposed on the bank. The bank has beome the foal point



where all eletroni money (digital signatures) are owing. Observe that be-fore the transation is approved, the eletroni money must be validated. Bathveri�ation is an attrative short ut for signature validation saving time andomputing resoures. It is appliable whenever the veri�er gets a large number ofdigital signatures generated by the same signer provided the signature exhibitsthe homomorphi property allowing signatures to be validated in bathes in theexpense of a single exponentiation.If the bath passes the validation, all signatures are onsidered orret and areaepted. If however, the bath fails to pass the validation test, the veri�er mustidentify invalid signatures in the bath. Clearly, rejetion of the whole bath isnot an option. A natural question arises: how to identify invalid signatures in thebath so the valid signatures an be aepted ? Additionally, one would expetthat the identi�ation proess should be as eÆient as possible.2 BakgroundBath veri�ation makes sense if the signatures in a bath are related or gener-ated by the same signer. There are two types of signatures whih an be bathed:RSA signatures and DSA (DSS) signatures. The RSA signatures use the �xedexponent (publi key of the signer) for veri�ation. Assume that we have n mes-sages and their signatures. The signatures an be veri�ed independently at theexpense of n exponentiations. The bath ontaining all signature an be veri�edat the expense of a single exponentiation plus (n� 1) modular multipliations.DSA signatures are based on exponentiation when the base is �xed and pub-lily known (the modular arithmetis is hosen by the signer). Again n signaturesan be veri�ed one by one at the expense of n exponentiations. The bath ofn signatures are validated using a single exponentiation and (n � 1) modularadditions.These two methods of bath veri�ation are inseure as an enemy who mayknow the veri�ation proess, may try to get the veri�er to aept invalid sig-natures. The simplest method of attak would be to produe a forged signatureand insert two opies of it in the bath in suh a way that they anel eahother when the veri�ation is performed, For instane in the RSA ase, anybath whih ontains two forged pairs: (mf ; sf ) and (m�1f ; s�1f ) where mf is theforged message (doument) and sf is the forged signature, passes the veri�ationtest.Bellare, Garay and Rabin [1℄ developed veri�ation tests whih are seureagainst any attaker. The seurity of the test is measured by the probabilitythat a ontaminated bath passes it making the veri�er to aept all invalid orbad signatures ontained in the bath. The probability of slipping bad signaturesthrough the test an be traded with eÆieny.The problem we address in this work is an eÆient identi�ation of bad signa-tures after the test fails. There is a general method of bad signature identi�ationwhih is alled \ut and hoose" in [3℄ or \divide and onquer" in [4℄. It takes aontaminated bath and splits it repeatedly until all bad signatures are identi-



�ed. The eÆieny of this method depends on the degree of ontamination (orhow many bad signatures are in the bath) and also on how the bad signaturesare distributed in the bath.Note that identi�ation of bad signatures resembles the problem of error or-retion. To be able to orret errors, the ode must learly identify all positionson whih errors have ourred. As observed in [4℄, error orreting odes an beappliable for bad signature identi�ation. There is a major di�erene betweenerror orreting odes and identi�ation odes or id-odes whih allow to identifybad signatures. Computations in error orreting odes are done in the binary�eld with EXCLUSIVE-OR addition (XOR). The interation among valid andinvalid signatures within the bath are governed by INCLUSIVE-OR (logialOR).The work is strutured as follows. The model for id-odes is studied in Se-tion 3. Setion 4 investigates general properties of id-odes. Setion 5 disussestaxonomy of id-odes. The general onstrution based on OR-heking matrixand its instantiation based on mutually orthogonal Latin squares are given inSetion 6. Hierarhial identi�ation is desribed in Setion 7. A disussion aboutfurther work on id-odes loses the work.3 The ModelThe problem we are dealing with is bad signature identi�ation in a bath whihhas failed to pass the test. The test T is a probabilisti algorithm whih takesa bath of an arbitrary length and produes a binary outome aept/rejet. Itsatis�es the following two general onditions:1. Any lean bath (whih ontains all valid signatures) always passes the test.2. A dirty bath (whih ontains one or more bad signatures) fails the test withan overwhelming probability. In fat, it is reasonable to assume that a dirtybath always fails the test.We further suppose that the ost of running the test does not depend on thesize of the bath. This assumption seems to be true for relatively small batheswhere the omputation e�ort is equivalent to a �xed sequene of exponentiations(see [1℄).De�nition 1. Given a bath Bu = f(mi; si)ji = 1; : : : ; ug of signed douments(mi is the i-th doument and si its signature). The identi�ation ode IC(u; t)able to identify up to t bad signatures is a olletion of sub-bathes (B1; : : : ;Bv)where Bi � Bu suh that for any possible pattern of up to t bad signatures, theoutomes (the syndrome) S = (T (B1); : : : ; T (Bv))uniquely identi�es all bad signatures.



The identi�ation ode IC(u; t) an be equivalently represented by its v � utest-heking matrix A = [aij ℄ suh thataij = �1 if (mi; si) 2 Bj0 otherwiseClearly, for a �xed size u of the bath, one would like to obtain a ode IC(u; t)with the parameter v as small as possible. Note that v indiates how many testsT must be run to identify all bad signatures and it an be onsidered as theparameter haraterising the eÆieny of the ode. The parameter v is upperbounded by u as it is always possible to design a trivial ode whose matrix A isthe u�u identity matrix. This ode is equivalent to serial validation of signaturesone by one.The following notation is introdued. The ode IC(u; t) is uniquely identi�edby its (v � u) test-heking matrix A. The entries of A are binary. Columns ofthe matrix A are indexed by u signatures in a bath. So the matrix A an beseen as a sequene of olumns of the formA = (A1; : : : ; Au)The index of the i-th signature in the bath Bu is the i-th olumn Ai. A rowspei�es the orresponding sub-bath whih inludes all signatures for whih theentries are 1.Note that if the i-th signature is bad the syndrome produed for a bathontaminated by it is equal to Ai or S(i) = Ai. Given a bath Bu with t badsignatures. Assume further that the bad signatures have ourred on positions(b1; : : : ; bt) in the bath Bu. Their orresponding indies are (Ab1 ; : : : ; Abt). De-note the syndrome produed for the bath asS(b1; : : : ; bt) = Ab1 _ : : : _ Abtwhere _ is bit-by-bit inlusive (logial) OR. For example, ifA1 = 266411003775 and A2 = 266410103775 then A1 _ A2 = 266411103775 :4 Properties of Id-CodesUsing an information-theoreti arguments, we argue that there is a lower boundon the v parameter.Theorem 1. Given an id-ode IC(u; t) whih always identi�es orretly any tbad signatures in the bath of the size u. Then the number of tests (and thenumber of olletions) v satis�es the following inequalityv � log2 tXi=0 �ui � (1)



Proof. Given a bath Bu of u elements ontaminated by at most t bad signatures.The identi�ation of bad signatures is possible if the syndromes are distint forall patterns of i bad signatures (i � t) so knowing the syndrome, it is possibleto determine the positions of bad signatures in the bath. Note that there aretXi=0 �ui �di�erent identi�able patterns (inluding the pattern with no bad signature). Nowif we have v sub-bathes (B1; : : : ;Bv), then the test T applied for a single sub-bath Bj ; 0 � j � t, provides a binary outome (pass/fail) so the number ofpossible syndromes is 2v. Clearly2v � tXi=0 �ui �and the bound desribed by Equation (1) holds.Obviously, searhing for id-odes makes sense if they are better (take lesstests) than the naive id-ode whih tests bathes ontaining single signatures.From Theorem 1 we an derive an interesting orollary.Corollary 1. Id-odes better than the naive id-ode exist only if t < u=2.Proof. Note that for t � n=2, the number of tests2v � tXi=0 �ui � � u=2Xi=0 �ui � � 12 uXi=0 �ui � = 2u�1Thus the number of tests v must be at least u� 1 whih is almost the same asfor the naive id-ode whih requires u tests.De�nition 2. An index Ai inludes Aj if Ai _Aj = Ai.Given the matrix A of an id-ode. Observe that if there are two olumns i 6= jsuh that the index Ai inludes Aj , then the ode is unable to identify whetherthere are a single bad signature with the syndrome Ai or two bad signatureswith the syndrome Ai _ Aj . In other words, the matrix A with suh indies isnot able to identify bad signatures with indies Aj and Ai. We say that the twoindies ollide.Lemma 1. Given identi�ation oding with a (v � u) test-heking matrix A.Assume further that there is an index Ai (olumn Ai) suh that its Hammingweight wt(Ai) = r, then the number of olliding indies with Ai isC#(Ai) = 2r + 2v�r � 2:Proof. There are two ases where ollision may our



{ the index Ai inludes other indies (Ai _ Ak = Ai) for some k,{ the index Ai is inluded in other indies (Ai _ Ak = Ak).For a given index Ai with its Hamming weight r, we an reate 2r � 1 indieswhih are inluded in Ai { the �rst ase. We an also reate 2v�r � 1 indieswhih inlude Ai { the seond ase. In e�et, we have to exlude 2r + 2v�r � 2indies.Corollary 2. To inrease e�etiveness of identi�ation odes we should seletweights of indies so the number of olliding indies is minimal. The smallestnumber of olliding indies ours when the Hamming weight of all indies is v2 .Assume that we have two indies Ai and Aj . We an de�ne the intersetionof the two as Ai ^Aj where ^ is bit-by-bit logial AND.Lemma 2. Given two indies Ai and Aj suh that wt(Ai) = r1 and wt(Aj) =r2. Denote A = Ai ^ Aj { the maximal index whih is ontained in both Aiand Aj and wt(A) = r. Then the number of indies whih ollide with the pair(Ai; Aj) isC#(Ai; Aj) = 2v�r1 + 2v�r2 + 2r1+r2�r � 2v+r�r1�r2 � 2r1�r � 2r2�r:Proof. Denote A = fA1; : : : ; Aug. Note that C#(Ai; Aj) � C#(Ai _ Aj) andbeomes the equality only if r = 0. From Lemma 1, we an writeC#(Ai _ Aj) = 2r1+r2�r + 2v+r�r1�r2 � 2:Denote #Ai and #Aj the numbers of olliding indies from Ai and Aj , respe-tively, whih have not been onsidered among the indies from Ai _ Aj . Thus,we have C#(Ai; Aj) = C#(Ai _Aj) + #Ai + #Aj :There are the following ases, the index{ ollides with Ai { there are 2r1 suh indies,{ ollides with Aj nAi { there are 2r2�r suh indies,{ ollides with A n (Ai ^Aj) { there are 2v+r�r1�r2 suh indies.Observe that indies olliding with Aj nAi have been already ounted in C#(Ai_Aj). Further on, note that the zero index (all bits are zero) has been ounted.Therefore#Ai = (2r2�r � 1)(2v+r�r1�r2 � 1) and #Aj = (2r1�r � 1)(2v+r�r1�r2 � 1):Adding the numbers we obtain the �nal result.Lemma 3. Given identi�ation ode determined by its (v�u) matrix A. If thereis a parameter k � u and a sequene of indies (Ai1 ; : : : ; Aik ) suh thatk_j=1Aij = 2641...1375 def= 1v;



then the id-ode an identify no more than k bad signatures. Where Wkj=1 standsfor bit-by-bit logial OR and 1v is a binary vetor of length v ontaining onesonly.Proof. Denote A = fA1; : : : ; Aug as the set of all indies (olumns) of the matrixA. Create the following two sets:A1 = fAi1 ; : : : ; Aikg and A2 = A nA1:The proof proeeds by ontradition. Assume that any t = k + 1 bad signaturesan be identi�ed. Now we take a sequene of k bad signatures with their indies(Ai1 ; : : : ; Aik ). Their syndrome is 1v. Now if there is an extra bad signature thanthe olletion of t bad signatures have the same syndrome { there is a ollisionand we have obtained the ontradition.Observe that while designing id-odes, one would need to avoid using twoindies Ai, Aj suh that Ai = :Aj where : is bit-by-bit negation as suh id-ode identi�es at most two bad signatures.5 Taxonomy of Id-CodesFrom an eÆieny point of view, the bath size is preferred to be as large aspossible. This also means that the size of the bath determines the blok size ofthe id-ode. So to identify bad signatures eÆiently, one would need a family ofid-odes rather than a single id-ode working for a bath of �xed size. On theother hand, there is a boundary on the blok size of a id-ode whih typiallyreets restritions imposed on omputing resoures.Given a bath Bn and an id-ode IC(u; t) There are two general lasses ofbad signature identi�ation:{ at identi�ation { there is an id-ode whose blok size equals the size of thebath (n = u),{ hierarhial identi�ation { the number of signatures u in the bath is biggerthan the blok size u (n > u).Clearly, at identi�ation applies an id-ode and if the number of bad signaturesis smaller than t, it always works. Its natural extension for larger bath sizes,ould be the division of the bath into sub-bathes eah of size u. Hierarhialidenti�ation applies merges signatures into sub-bathes and treats them as sin-gle signatures so we get a sequene of u sub-bathes. The ode is applied to itand identi�es up to t ontaminated sub-bathes. These sub-bathes an be eithersubjet to at or again to hierarhial identi�ation.Assume that the eÆieny of identi�ation is measured by the number oftests T neessary to identify all bad signatures. Note that this measurement isequivalent to the number of rows in the matrix A whih de�nes the id-ode.Intuitively, the more bad signatures are in a bath, the more expensive theidenti�ation proess is. Id-ode an be ategorised into:



{ odes with onstant workload { no matter what is the degree of ontami-nation, the number of tests is onstant and the ode either sueeds (if theidenti�ation apability exeeds the degree of ontamination) or fails,{ odes with ontamination-dependent workload { the number of tests dependson the ontamination. Again odes fail if the number of bad signatures ex-eeds their identi�ation apabilities.From a pratial point of view, odes with ontamination-dependent workloadare very attrative as they trade eÆieny with identi�ation apability. Theidenti�ation proess starts by performing a limited number of tests allowing toidentify a single bad signature. If this fails, the identi�ation proeeds by trying anew tests whih together with the old tests permit to identify two bad signatures.The proess ontinues until all bad signatures are identi�ed or the identi�ationfails. Important feature of id-odes seems to be re-usability of previous tests.The bath validation applies a spei� id-ode, say IC(u; t). If the apabilityof the ode (expressed by t) is smaller than the degree of bath ontamination `(` is the number of bad signatures in the bath), then the failure is unavoidable.Consequently, the parameter t must be inreased. Additionally, the work doneso far is likely to be lost. Thus it is imperative, to make a \good" guess aboutthe maximum degree of ontamination (the parameter t). Clearly, statistialinformation gathered from the past an suggest suh a guess. Note that the situ-ation simpli�es somewhat if the odes in hand trade eÆieny with identi�ationapability as the guess an be more pessimisti.6 Construtions of Id-CodesAs we know, one would wish to have an identi�ation ode whih allows forgradual inrement of t with a possible re-use of all tests onduted for smallerts. Now we present our main onstrution.De�nition 3. A (k+ 1)n�n2 matrix A with binary elements is a OR-hekingmatrix if there are k+ 1 ones per olumn, n ones per row, and the inner produtof any pair of olumns is either zero or one.Lemma 4. Given a (k + 1)n� n2 OR-heking matrix A. Then the OR of anysubset of k olumns is unique for k = 1; : : : ; n� 1.Proof. For onveniene in typesetting we will write these olumns as rows bytransposing the matrix { so we are going to onsider AT . We onsider any krows but permute them so that the ones are moved to the left of eah row asfar as possible. We now onsider a simple ounting argument to look at theintersetion patters of the rows. If any two rows have an intersetion +1, theones (written as x) will use a total of 12 (k + 1)(k + 2)� 1 olumns and be ableto be represented as:k+1 k k-1 ... | 2x x x ... x 0 0 ... 0 0 ... 0 ... |00



x 0 0 ... 0 x x ... x 0 ... 0 ... |000 x 0 ... 0 x 0 ... 0 x ... x ... |00...0 0 0 ... x 0 0 ... x 0 ... x ... |xxIf any pair of rows do not have intersetion +1 then more than 12 (k + 1)(k +2)� 1 olumns will be needed to represent the patters of ones but the last rowwill always have at least 2 elements +1 at the right of the row whih have noelement in the olumn above either of them whih is non-zero.Now suppose that the matrix yielded that any k � 1 rows orresponding tobad signatures gave a unique OR but that there are two solutions whih give thesame result for k rows indiating bad signatures. We rearrange the rows in ourpattern representative, if neessary, so one of these two solutions is the last row.We now onsider the other solution. For the �rst k � 1 vetors and the seondsolution to over the same number of olumns the seond solution must have two+1 at the right of the row whih have no element in the olumn above either ofthem non-zero. But this means the �rst and seond solution have at intersetionat least 2 ones ontraditing the de�nition of the OR-heking matrix. Heneany olletion of k rows produes OR sums whih are distint.We note that this proof does not extend to a olletion of k+ 1 rows beausein that ase we ould only assume the last row to have more than one elements+1 at the right of the last row whih has no element in the olumn above itwhih is non-zero. This does not lead to any ontradition.Corollary 3. Given a (k + 1)n � n2 OR-heking matrix A whose every twoolumn intersetion is either zero or one. Then there is an IC(u; t) ode whihis apable to identify up to t = n�1 bad signatures within a bath of size u = n2.The identi�ation ode based on OR-heking matries is eÆient as it allowsto re-use all previous results if the guess about the parameter t has been wrong.Given a bath Bu of the size u = n2. The (n � u) OR-heking matrix A isreated. Denote A(t) as a shortened version of A ontaining �rst (t + 1)n rowsof A; t = 1; 2; : : : ; n� 1.1. The identi�ation proess starts from the assumption that t = 1. First ol-letion of 2n tests T are run for bathes de�ned by rows of the matrix A(1).If the bad signatures are not orretly identi�ed (i.e. the bath without badsignatures still fails the test T ), then it is assumed that t = 2. Otherwise theproess ends.2. Assume that the identi�ation using A(t) has failed to identify bad signatures(t = 2; 3; : : : ; n� 1). The olletion of neessary tests are de�ned by A(t+1).Note that A(t+1) di�ers from A(t) in that it ontains n additional rows. Theidenti�ation proess an be aomplished by running n additional testsorresponding to the bathes de�ned by rows in A(t+1) whih are not inA(t). If the identi�ation has not been suessful, t is inrement by 1 and theproess ontinues.



The identi�ation fails if t � n.The onstrution also gives the upper bound on the number v of neessarytests to identify t bad signatures.Corollary 4. The number v of tests neessary to identify t bad signatures inthe bath of size u satis�es the following inequality:v � (t + 1)puThere are many ombinatorial strutures whih an be used to give the re-quired OR-heking matries for example transversal designs and group divisibledesigns. However we give a rih onstrution based on Latin squares.A Latin square of order n is an n�n array in whih n di�erent symbols, saya, b, : : : eah our one in eah row and olumn. Two Latin squares are said tothe mutually orthogonal if when the squares are ompared element by elementeah of the distint pairs ours exatly one. Formally, two Latin squares, L andL0 are said to be mutually orthogonal if L(a; b) = L(; d) and L0(a; b) = L0(; d),implies a =  and b = d. For further information, refer to [2℄.Lemma 5. Suppose there are k mutually orthogonal Latin squares of order n.Then there is a (k + 1)n� n2 OR-heking matrix.Proof. We use the auxiliary matries desribed in [2℄.Example 1. LetM1 = 264 a b  db a d  d a bd  b a375 ; M2 = 264 a b  d d a bd  b ab a d 375 ; M3 = 264 a b  dd  b ab a d  d a b375be three mutually orthogonal Latin squares of order 4 on the symbols x1 = a,x2 = b, x3 =  and x4 = d. De�ne Mij ; 1 � i � k, by(Mij)ef = �1 (Mi)fj = xe;0 otherwise.where 1 � e; f � 4. So Mij ; 1 � i � 4 and 1 � j � 4 an be written as



1 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 1Corollary 5. Let q > 2 be a prime power then there are q� 1 mutually orthog-onal Latin squares of order qMany other results are also known, for example for every n � 3 exept 6there are at least two orthogonal Latin squares of order n and for n > 90 thereare at least 6.7 Hierarhial Identi�ationIdenti�ation odes are designed to work with a bath of �xed size. In pratie,one would expet to have an identi�ation sheme whih is going to work witha bath of arbitrary length. Hierarhial identi�ation provides suh a sheme.Consider a family of id-odes F = fIC(v; t)g with some well de�ned parameters(v; t).De�nition 4. Given a bath Bu of arbitrary length u. Hierarhial identi�ationbased on the family of identi�ation odes F is a proedure de�ned reursively:{ stopping ase { if the size of the bath u is smaller or equal to some parameterv so we an use the identi�ation ode IC(v; t) 2 F , then we apply it (atidenti�ation), otherwise{ reursive step { if the size of the bath u is bigger than the highest parametervmax in the family F , then it is divided into ` sub-bathes suh that ` � vmaxand there is some IC(v; t) 2 F whih an be used to identify ontaminatedsub-bathes where ` � v and (t0 � t).The hierarhial identi�ation is denoted by HI(F).Hierarhial identi�ation an be based on di�erent olletions of id-odes.Thereare two extreme ases:



{ F onsists of in�nite sequene of id-odes,{ the family F is redued to a single id-ode.No matter what is the underlying family F , one would ask the followingquestions:{ What is the minimum (maximum, average) number of tests whih is nees-sary to identify all bad signatures ?{ Given a family F and the number t of bad signatures in the bath, is thereany proedure whih minimises the number of tests ?7.1 Hierarhial Identi�ation with In�nite FConsider id-odes de�ned in Setion 6. Eah id-ode an be uniquely indexed bya prime power p > 2. For this index, the ode is IC(p2; p� 1). The familyF = fIC(p2; p� 1)jp is the prime power; p 6= 2gNote that IC(p2; p�1) an be used to identify up to p�1 bad signatures. If thenumber of bad signatures is t � p� 1, the ode will use(t + 1)p + 1tests. If t > p� 1, then the ode fails.Let #T (F) be the number of tests neessary to identify all t bad signaturesin a bath Bu. Now we are trying to evaluate lower and upper bound for thenumber #T (F). Assume that the size of the bath u = p2 where p is a primepower. Now we hoose somehow p1 < p and divide the bath Bu into p21 sub-bathes. Eah sub-bath ontains up21 elements. Note that we have to onsideronly odes for whih t > p1 � 1 as otherwise the ode may fail.Let the t bad signatures be lustered into r sub-bathes eah ontaining tibad signatures so t = rXi=1 tiwhere r � p1�1 and naturally, ti � up21 . The number #T (F) has two omponents:1. the number of tests neessary to identify all ontaminated sub-bathes { thistakes � = (r + 1)p1 + 1;2. the number of tests neessary to identify bad signatures within the sub-bathes. For a given sub-bath, we ount the number of neessary tests. Firstwe hoose a prime power p2 suh that p22 � up21 . As the sub-bath ontains tibad signatures we need �i = (ti + 1)p2 + 1tests.



The number of tests #T (F) = � + rXi=1 �iwhih after simple transformations gives#T (F) = (r + 1)p1 + p2(t + r) + (r + 1)The number #T (F) depends on the random parameter r and grows linearlywith r so #T (F) is smallest for r = 1 when all bad signatures our in a singlesub-bath. #T (F) takes on the maximum for r = t = p1 � 1. So we have thefollowing orollary.Corollary 6. Given a bath Bu with t bad signatures. Hierarhial identi�ationwith in�nite F will onsume #T (F) tests where2p1 + (t + 1)p2 + 2 � #T (F) � p21 + 2p1p2 + p1 � 2p2:7.2 Hierarhial Bathing with a Single IC(v; t)In some appliations, one would like to keep the identi�ation proedure assimple as possible whih is using a single identi�ation ode or in other wordsthe family F ontains a single element. Again, knowing the number t of badsignatures in a bath Bu, one would like to see how the number of neessarytests to identify all signatures varies (lower and upper bounds) as a funtion ofthe u and t.Assume that v = p2 and we apply the id-ode IC(p2; p � 1). Given a bathBu. There are two ways bad signatures an be identi�ed:{ Serial identi�ation { a bath is divided into up2 sub-bathes. For eah sub-bath, the id-ode is used. This is a serial appliation of at identi�ation.{ Hierarhial identi�ation { a bath is divided into v sub-bathes and theid-ode is applied for the sub-bathes and identi�es the ontaminated sub-bathes. The proess is repeated for ontaminated sub-bathes as many timesas neessary to identify bad signatures.Consider serial identi�ation. Note that if a bath Bp2 is lean (t = 0), ittakes one test to verify it. If the bath is ontaminated by t < p bad signatures,the identi�ation will take (t + 1)p + t + 1 tests. Assume that a bath Bu hasbeen divided into R = up2 sub-bathes (if u is a multiple of p2) among whihr sub-bathes are dirty and the other R � r are lean. All lean sub-bathesonsume one test eah. A dirty sub-bath Bi takes (ti + 1)(p + 1) tests wherePri=1 ti = t. So the number of tests required to identify bad signatures isup2 � r + (p + 1)(t + r)Note that the number of tests is a random variable whih ranges from r = 1when all bad signatures happen to be in one sub-bath, to r = t when there aret sub-bathes eah ontaining a single bad signature.



Consider the seond ase of hierarhial identi�ation. To simplify our delib-erations, assume that u = p2j for some integer j. Denote #T (j; t) the numberof tests needed to identify t bad signatures in a bath Bp2j when the id-odeis applied to the sub-bathes eah ontaining p2(j�1) signatures. The followingreursive equation is easy to derive#T (j; t) = (r + 1)p + r + rXi=1 #T (j � 1; ti);where r is a random variable whih indiates the number of ontaminated sub-bathes and ti are numbers of bad signatures in the orresponding ontaminatedsub-bathes; i = 1; : : : ; r.8 ConlusionsThe generi lass of id-odes has been de�ned using the test-heking matrix A.The (u�v) matrix A determines the neessary tests. The syndrome is the binaryvetor whih gives the test results for sub-bathes de�ned by rows of A. Thesyndrome is also equal to bit-by-bit inlusive-OR of indies whih orrespond tobad signatures. We have investigated interation of indies and found out thatto maximise the identi�ation apability of an id-ode, one would need to hooseindies of their Hamming weight equal to v=2.The main onstrution of id-odes uses the so-alled OR-heking matrix.The id-ode takes a sequene of n2 signatures and allows to identify up to n� 1bad signatures. The nie harateristi of the ode is that the number of testsan be redued if the bath ontains less than n�1 bad signatures. To identify asingle bad signature, it takes 2n tests. Any additional bad signature, adds n ad-ditional tests neessary for orret identi�ation. There are many ombinatorialstrutures whih an be used to design id-odes. We have shown how mutuallyorthogonal Latin squares an be applied to onstrut id-odes.We have not disussed the identi�ation proedure of bad signatures in ourid-ode. The problem is far less ompliated than for example in error orretingodes, mainly beause the monotoniity of the Hamming weight of the syndrome.In other words, indies of bad signatures must be inluded in the syndrome. Theimplementation of this proess an be done by{ heking all signatures one by one and marking those whose index ollideswith the syndrome,{ removing all signatures belonging to those sub-bathes whih have passedthe test (they identi�ed by zeros in the syndrome). In other words, all badsignatures are in the set B n [T (Bi)=0Biwhere Bi is the sub-bath determined by the i-th row of the id-ode.



Id-odes an be used diretly to a ontaminated bath. We alled this atidenti�ation. Alternatively, a ontaminated bath an be �rst grouped into sub-bathes and the id-ode is applied to sub-bathes and identi�es ontaminatedsub-bathes. This proess an be done many times until bad signatures are iden-ti�ed. This is the hierarhial identi�ation.There are still many open problems. The obvious one is whether the on-strution given in this work is \optimal", i.e. identi�ation of bad signaturesonsumes the smallest possible number of tests. Hierarhial identi�ation al-lows to avoid natural limitations imposed by the size of bath and apply theid-ode in hand to a bath of arbitrary length. Is there any strategy for groupingsignatures into sub-bathes so the number of neessary tests is minimised ?Referenes1. M. Bellare, J. Garay, and T. Rabin. Fast bath veri�ation for modular expo-nentiation and digital signatures. In K. Nyberg, editor, Advanes in Cryptology- EUROCRYPT'98, pages 236{250. Springer, 1998. Leture Notes in ComputerSiene No. 1403.2. C.J. Colbourn and J.H. Dinitz, editors. The CRC Handbook of Combinatorial De-signs. CRC Press, Boa Raton, FL, 1996.3. J-S. Coron and D. Naahe. On the seurity of RSA sreening. In H. Imai andY. Zheng, editors, Publi Key Cryptography { Seond International Workshop onPratie and Theory in Publi Key Cryptography, PKC'99, pages 197{203. Springer,1999. Leture Notes in Computer Siene No. 1560.4. J. Pastuszak, D. Miha lek, J. Pieprzyk, and J. Seberry. Identi�ation of bad sig-natures in bathes. In H. Imai and Y. Zheng, editors, Publi Key Cryptography {Third International Workshop on Pratie and Theory in Publi Key Cryptography,PKC'2000, pages 28{45. Springer, 2000. Leture Notes in Computer Siene No.1751.
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