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Codes Identifying Bad Signatures in Bat
hesJaros law Pastuszak1, Josef Pieprzyk2, and Jennifer Seberry21 Systems Resear
h InstitutePolish A
ademy of S
ien
esWarsaw, POLANDjarek.pastuszak�bsb.
om.pl2 Centre for Computer Se
urity Resear
hS
hool of IT and Computer S
ien
eUniversity of WollongongWollongong, NSW 2522, AUSTRALIAJosef Pieprzyk�uow.edu.auJennifer Seberry�uow.edu.auAbstra
t. The work is 
on
erned with identi�
ation of bad signaturesin a sequen
e whi
h is validated using bat
hing. Identi�
ation 
odes (id-
odes) are de�ned and their general properties are investigated. A tax-onomy of id-
odes is given. The generi
 
onstru
tion for a wide range ofid-
odes is given and its instantiation using mutually orthogonal Latinsquares is des
ribed. Hierar
hi
al identi�
ation is studied for two 
aseswhen the identi�
ation pro
edure uses a family of id-
odes and whenthere is a single underlying id-
ode. Remarks about future resear
h 
on-
lude the work.Keywords: Digital Signatures, Bat
h Veri�
ation, Identi�
ation Codes.1 Introdu
tionThe 
on
ept of digital signatures have evolved 
onsiderably over the last twode
ades. Handwritten signatures are not suitable in ele
troni
 environment es-pe
ially in the 
ontext of the ease in whi
h ele
troni
 do
uments 
an be 
opiedand/or 
ut-and-paste manipulated. Digital signature were invented to preventdo
uments from illegal modi�
ation. Digital signature en
apsulates both the
ontents of the do
ument and the signer se
ret key in su
h a way that veri�
a-tion is publi
 - every body who knows the 
orresponding publi
 key of the signerand the do
ument, 
an validate the signature. Digital money is a spe
i�
 kind ofsignature whi
h is signed (typi
ally, blindly) by the bank and used by 
ustomersin (almost) the same way as the traditional 
ash with added important fun
-tionality { it 
an be used in transa
tions performed over the Internet (ele
troni

ommer
e).The relian
e of e-Commer
e on digital money has a dramati
 impa
t on the
omputing load imposed on the bank. The bank has be
ome the fo
al point



where all ele
troni
 money (digital signatures) are 
owing. Observe that be-fore the transa
tion is approved, the ele
troni
 money must be validated. Bat
hveri�
ation is an attra
tive short 
ut for signature validation saving time and
omputing resour
es. It is appli
able whenever the veri�er gets a large number ofdigital signatures generated by the same signer provided the signature exhibitsthe homomorphi
 property allowing signatures to be validated in bat
hes in theexpense of a single exponentiation.If the bat
h passes the validation, all signatures are 
onsidered 
orre
t and area

epted. If however, the bat
h fails to pass the validation test, the veri�er mustidentify invalid signatures in the bat
h. Clearly, reje
tion of the whole bat
h isnot an option. A natural question arises: how to identify invalid signatures in thebat
h so the valid signatures 
an be a

epted ? Additionally, one would expe
tthat the identi�
ation pro
ess should be as eÆ
ient as possible.2 Ba
kgroundBat
h veri�
ation makes sense if the signatures in a bat
h are related or gener-ated by the same signer. There are two types of signatures whi
h 
an be bat
hed:RSA signatures and DSA (DSS) signatures. The RSA signatures use the �xedexponent (publi
 key of the signer) for veri�
ation. Assume that we have n mes-sages and their signatures. The signatures 
an be veri�ed independently at theexpense of n exponentiations. The bat
h 
ontaining all signature 
an be veri�edat the expense of a single exponentiation plus (n� 1) modular multipli
ations.DSA signatures are based on exponentiation when the base is �xed and pub-li
ly known (the modular arithmeti
s is 
hosen by the signer). Again n signatures
an be veri�ed one by one at the expense of n exponentiations. The bat
h ofn signatures are validated using a single exponentiation and (n � 1) modularadditions.These two methods of bat
h veri�
ation are inse
ure as an enemy who mayknow the veri�
ation pro
ess, may try to get the veri�er to a

ept invalid sig-natures. The simplest method of atta
k would be to produ
e a forged signatureand insert two 
opies of it in the bat
h in su
h a way that they 
an
el ea
hother when the veri�
ation is performed, For instan
e in the RSA 
ase, anybat
h whi
h 
ontains two forged pairs: (mf ; sf ) and (m�1f ; s�1f ) where mf is theforged message (do
ument) and sf is the forged signature, passes the veri�
ationtest.Bellare, Garay and Rabin [1℄ developed veri�
ation tests whi
h are se
ureagainst any atta
ker. The se
urity of the test is measured by the probabilitythat a 
ontaminated bat
h passes it making the veri�er to a

ept all invalid orbad signatures 
ontained in the bat
h. The probability of slipping bad signaturesthrough the test 
an be traded with eÆ
ien
y.The problem we address in this work is an eÆ
ient identi�
ation of bad signa-tures after the test fails. There is a general method of bad signature identi�
ationwhi
h is 
alled \
ut and 
hoose" in [3℄ or \divide and 
onquer" in [4℄. It takes a
ontaminated bat
h and splits it repeatedly until all bad signatures are identi-



�ed. The eÆ
ien
y of this method depends on the degree of 
ontamination (orhow many bad signatures are in the bat
h) and also on how the bad signaturesare distributed in the bat
h.Note that identi�
ation of bad signatures resembles the problem of error 
or-re
tion. To be able to 
orre
t errors, the 
ode must 
learly identify all positionson whi
h errors have o

urred. As observed in [4℄, error 
orre
ting 
odes 
an beappli
able for bad signature identi�
ation. There is a major di�eren
e betweenerror 
orre
ting 
odes and identi�
ation 
odes or id-
odes whi
h allow to identifybad signatures. Computations in error 
orre
ting 
odes are done in the binary�eld with EXCLUSIVE-OR addition (XOR). The intera
tion among valid andinvalid signatures within the bat
h are governed by INCLUSIVE-OR (logi
alOR).The work is stru
tured as follows. The model for id-
odes is studied in Se
-tion 3. Se
tion 4 investigates general properties of id-
odes. Se
tion 5 dis
ussestaxonomy of id-
odes. The general 
onstru
tion based on OR-
he
king matrixand its instantiation based on mutually orthogonal Latin squares are given inSe
tion 6. Hierar
hi
al identi�
ation is des
ribed in Se
tion 7. A dis
ussion aboutfurther work on id-
odes 
loses the work.3 The ModelThe problem we are dealing with is bad signature identi�
ation in a bat
h whi
hhas failed to pass the test. The test T is a probabilisti
 algorithm whi
h takesa bat
h of an arbitrary length and produ
es a binary out
ome a

ept/reje
t. Itsatis�es the following two general 
onditions:1. Any 
lean bat
h (whi
h 
ontains all valid signatures) always passes the test.2. A dirty bat
h (whi
h 
ontains one or more bad signatures) fails the test withan overwhelming probability. In fa
t, it is reasonable to assume that a dirtybat
h always fails the test.We further suppose that the 
ost of running the test does not depend on thesize of the bat
h. This assumption seems to be true for relatively small bat
heswhere the 
omputation e�ort is equivalent to a �xed sequen
e of exponentiations(see [1℄).De�nition 1. Given a bat
h Bu = f(mi; si)ji = 1; : : : ; ug of signed do
uments(mi is the i-th do
ument and si its signature). The identi�
ation 
ode IC(u; t)able to identify up to t bad signatures is a 
olle
tion of sub-bat
hes (B1; : : : ;Bv)where Bi � Bu su
h that for any possible pattern of up to t bad signatures, theout
omes (the syndrome) S = (T (B1); : : : ; T (Bv))uniquely identi�es all bad signatures.



The identi�
ation 
ode IC(u; t) 
an be equivalently represented by its v � utest-
he
king matrix A = [aij ℄ su
h thataij = �1 if (mi; si) 2 Bj0 otherwiseClearly, for a �xed size u of the bat
h, one would like to obtain a 
ode IC(u; t)with the parameter v as small as possible. Note that v indi
ates how many testsT must be run to identify all bad signatures and it 
an be 
onsidered as theparameter 
hara
terising the eÆ
ien
y of the 
ode. The parameter v is upperbounded by u as it is always possible to design a trivial 
ode whose matrix A isthe u�u identity matrix. This 
ode is equivalent to serial validation of signaturesone by one.The following notation is introdu
ed. The 
ode IC(u; t) is uniquely identi�edby its (v � u) test-
he
king matrix A. The entries of A are binary. Columns ofthe matrix A are indexed by u signatures in a bat
h. So the matrix A 
an beseen as a sequen
e of 
olumns of the formA = (A1; : : : ; Au)The index of the i-th signature in the bat
h Bu is the i-th 
olumn Ai. A rowspe
i�es the 
orresponding sub-bat
h whi
h in
ludes all signatures for whi
h theentries are 1.Note that if the i-th signature is bad the syndrome produ
ed for a bat
h
ontaminated by it is equal to Ai or S(i) = Ai. Given a bat
h Bu with t badsignatures. Assume further that the bad signatures have o

urred on positions(b1; : : : ; bt) in the bat
h Bu. Their 
orresponding indi
es are (Ab1 ; : : : ; Abt). De-note the syndrome produ
ed for the bat
h asS(b1; : : : ; bt) = Ab1 _ : : : _ Abtwhere _ is bit-by-bit in
lusive (logi
al) OR. For example, ifA1 = 266411003775 and A2 = 266410103775 then A1 _ A2 = 266411103775 :4 Properties of Id-CodesUsing an information-theoreti
 arguments, we argue that there is a lower boundon the v parameter.Theorem 1. Given an id-
ode IC(u; t) whi
h always identi�es 
orre
tly any tbad signatures in the bat
h of the size u. Then the number of tests (and thenumber of 
olle
tions) v satis�es the following inequalityv � log2 tXi=0 �ui � (1)



Proof. Given a bat
h Bu of u elements 
ontaminated by at most t bad signatures.The identi�
ation of bad signatures is possible if the syndromes are distin
t forall patterns of i bad signatures (i � t) so knowing the syndrome, it is possibleto determine the positions of bad signatures in the bat
h. Note that there aretXi=0 �ui �di�erent identi�able patterns (in
luding the pattern with no bad signature). Nowif we have v sub-bat
hes (B1; : : : ;Bv), then the test T applied for a single sub-bat
h Bj ; 0 � j � t, provides a binary out
ome (pass/fail) so the number ofpossible syndromes is 2v. Clearly2v � tXi=0 �ui �and the bound des
ribed by Equation (1) holds.Obviously, sear
hing for id-
odes makes sense if they are better (take lesstests) than the naive id-
ode whi
h tests bat
hes 
ontaining single signatures.From Theorem 1 we 
an derive an interesting 
orollary.Corollary 1. Id-
odes better than the naive id-
ode exist only if t < u=2.Proof. Note that for t � n=2, the number of tests2v � tXi=0 �ui � � u=2Xi=0 �ui � � 12 uXi=0 �ui � = 2u�1Thus the number of tests v must be at least u� 1 whi
h is almost the same asfor the naive id-
ode whi
h requires u tests.De�nition 2. An index Ai in
ludes Aj if Ai _Aj = Ai.Given the matrix A of an id-
ode. Observe that if there are two 
olumns i 6= jsu
h that the index Ai in
ludes Aj , then the 
ode is unable to identify whetherthere are a single bad signature with the syndrome Ai or two bad signatureswith the syndrome Ai _ Aj . In other words, the matrix A with su
h indi
es isnot able to identify bad signatures with indi
es Aj and Ai. We say that the twoindi
es 
ollide.Lemma 1. Given identi�
ation 
oding with a (v � u) test-
he
king matrix A.Assume further that there is an index Ai (
olumn Ai) su
h that its Hammingweight wt(Ai) = r, then the number of 
olliding indi
es with Ai isC#(Ai) = 2r + 2v�r � 2:Proof. There are two 
ases where 
ollision may o

ur



{ the index Ai in
ludes other indi
es (Ai _ Ak = Ai) for some k,{ the index Ai is in
luded in other indi
es (Ai _ Ak = Ak).For a given index Ai with its Hamming weight r, we 
an 
reate 2r � 1 indi
eswhi
h are in
luded in Ai { the �rst 
ase. We 
an also 
reate 2v�r � 1 indi
eswhi
h in
lude Ai { the se
ond 
ase. In e�e
t, we have to ex
lude 2r + 2v�r � 2indi
es.Corollary 2. To in
rease e�e
tiveness of identi�
ation 
odes we should sele
tweights of indi
es so the number of 
olliding indi
es is minimal. The smallestnumber of 
olliding indi
es o

urs when the Hamming weight of all indi
es is v2 .Assume that we have two indi
es Ai and Aj . We 
an de�ne the interse
tionof the two as Ai ^Aj where ^ is bit-by-bit logi
al AND.Lemma 2. Given two indi
es Ai and Aj su
h that wt(Ai) = r1 and wt(Aj) =r2. Denote A
 = Ai ^ Aj { the maximal index whi
h is 
ontained in both Aiand Aj and wt(A
) = r. Then the number of indi
es whi
h 
ollide with the pair(Ai; Aj) isC#(Ai; Aj) = 2v�r1 + 2v�r2 + 2r1+r2�r � 2v+r�r1�r2 � 2r1�r � 2r2�r:Proof. Denote A = fA1; : : : ; Aug. Note that C#(Ai; Aj) � C#(Ai _ Aj) andbe
omes the equality only if r = 0. From Lemma 1, we 
an writeC#(Ai _ Aj) = 2r1+r2�r + 2v+r�r1�r2 � 2:Denote #Ai and #Aj the numbers of 
olliding indi
es from Ai and Aj , respe
-tively, whi
h have not been 
onsidered among the indi
es from Ai _ Aj . Thus,we have C#(Ai; Aj) = C#(Ai _Aj) + #Ai + #Aj :There are the following 
ases, the index{ 
ollides with Ai { there are 2r1 su
h indi
es,{ 
ollides with Aj nAi { there are 2r2�r su
h indi
es,{ 
ollides with A n (Ai ^Aj) { there are 2v+r�r1�r2 su
h indi
es.Observe that indi
es 
olliding with Aj nAi have been already 
ounted in C#(Ai_Aj). Further on, note that the zero index (all bits are zero) has been 
ounted.Therefore#Ai = (2r2�r � 1)(2v+r�r1�r2 � 1) and #Aj = (2r1�r � 1)(2v+r�r1�r2 � 1):Adding the numbers we obtain the �nal result.Lemma 3. Given identi�
ation 
ode determined by its (v�u) matrix A. If thereis a parameter k � u and a sequen
e of indi
es (Ai1 ; : : : ; Aik ) su
h thatk_j=1Aij = 2641...1375 def= 1v;



then the id-
ode 
an identify no more than k bad signatures. Where Wkj=1 standsfor bit-by-bit logi
al OR and 1v is a binary ve
tor of length v 
ontaining onesonly.Proof. Denote A = fA1; : : : ; Aug as the set of all indi
es (
olumns) of the matrixA. Create the following two sets:A1 = fAi1 ; : : : ; Aikg and A2 = A nA1:The proof pro
eeds by 
ontradi
tion. Assume that any t = k + 1 bad signatures
an be identi�ed. Now we take a sequen
e of k bad signatures with their indi
es(Ai1 ; : : : ; Aik ). Their syndrome is 1v. Now if there is an extra bad signature thanthe 
olle
tion of t bad signatures have the same syndrome { there is a 
ollisionand we have obtained the 
ontradi
tion.Observe that while designing id-
odes, one would need to avoid using twoindi
es Ai, Aj su
h that Ai = :Aj where : is bit-by-bit negation as su
h id-
ode identi�es at most two bad signatures.5 Taxonomy of Id-CodesFrom an eÆ
ien
y point of view, the bat
h size is preferred to be as large aspossible. This also means that the size of the bat
h determines the blo
k size ofthe id-
ode. So to identify bad signatures eÆ
iently, one would need a family ofid-
odes rather than a single id-
ode working for a bat
h of �xed size. On theother hand, there is a boundary on the blo
k size of a id-
ode whi
h typi
allyre
e
ts restri
tions imposed on 
omputing resour
es.Given a bat
h Bn and an id-
ode IC(u; t) There are two general 
lasses ofbad signature identi�
ation:{ 
at identi�
ation { there is an id-
ode whose blo
k size equals the size of thebat
h (n = u),{ hierar
hi
al identi�
ation { the number of signatures u in the bat
h is biggerthan the blo
k size u (n > u).Clearly, 
at identi�
ation applies an id-
ode and if the number of bad signaturesis smaller than t, it always works. Its natural extension for larger bat
h sizes,
ould be the division of the bat
h into sub-bat
hes ea
h of size u. Hierar
hi
alidenti�
ation applies merges signatures into sub-bat
hes and treats them as sin-gle signatures so we get a sequen
e of u sub-bat
hes. The 
ode is applied to itand identi�es up to t 
ontaminated sub-bat
hes. These sub-bat
hes 
an be eithersubje
t to 
at or again to hierar
hi
al identi�
ation.Assume that the eÆ
ien
y of identi�
ation is measured by the number oftests T ne
essary to identify all bad signatures. Note that this measurement isequivalent to the number of rows in the matrix A whi
h de�nes the id-
ode.Intuitively, the more bad signatures are in a bat
h, the more expensive theidenti�
ation pro
ess is. Id-
ode 
an be 
ategorised into:



{ 
odes with 
onstant workload { no matter what is the degree of 
ontami-nation, the number of tests is 
onstant and the 
ode either su

eeds (if theidenti�
ation 
apability ex
eeds the degree of 
ontamination) or fails,{ 
odes with 
ontamination-dependent workload { the number of tests dependson the 
ontamination. Again 
odes fail if the number of bad signatures ex-
eeds their identi�
ation 
apabilities.From a pra
ti
al point of view, 
odes with 
ontamination-dependent workloadare very attra
tive as they trade eÆ
ien
y with identi�
ation 
apability. Theidenti�
ation pro
ess starts by performing a limited number of tests allowing toidentify a single bad signature. If this fails, the identi�
ation pro
eeds by trying anew tests whi
h together with the old tests permit to identify two bad signatures.The pro
ess 
ontinues until all bad signatures are identi�ed or the identi�
ationfails. Important feature of id-
odes seems to be re-usability of previous tests.The bat
h validation applies a spe
i�
 id-
ode, say IC(u; t). If the 
apabilityof the 
ode (expressed by t) is smaller than the degree of bat
h 
ontamination `(` is the number of bad signatures in the bat
h), then the failure is unavoidable.Consequently, the parameter t must be in
reased. Additionally, the work doneso far is likely to be lost. Thus it is imperative, to make a \good" guess aboutthe maximum degree of 
ontamination (the parameter t). Clearly, statisti
alinformation gathered from the past 
an suggest su
h a guess. Note that the situ-ation simpli�es somewhat if the 
odes in hand trade eÆ
ien
y with identi�
ation
apability as the guess 
an be more pessimisti
.6 Constru
tions of Id-CodesAs we know, one would wish to have an identi�
ation 
ode whi
h allows forgradual in
rement of t with a possible re-use of all tests 
ondu
ted for smallerts. Now we present our main 
onstru
tion.De�nition 3. A (k+ 1)n�n2 matrix A with binary elements is a OR-
he
kingmatrix if there are k+ 1 ones per 
olumn, n ones per row, and the inner produ
tof any pair of 
olumns is either zero or one.Lemma 4. Given a (k + 1)n� n2 OR-
he
king matrix A. Then the OR of anysubset of k 
olumns is unique for k = 1; : : : ; n� 1.Proof. For 
onvenien
e in typesetting we will write these 
olumns as rows bytransposing the matrix { so we are going to 
onsider AT . We 
onsider any krows but permute them so that the ones are moved to the left of ea
h row asfar as possible. We now 
onsider a simple 
ounting argument to look at theinterse
tion patters of the rows. If any two rows have an interse
tion +1, theones (written as x) will use a total of 12 (k + 1)(k + 2)� 1 
olumns and be ableto be represented as:k+1 k k-1 ... | 2x x x ... x 0 0 ... 0 0 ... 0 ... |00



x 0 0 ... 0 x x ... x 0 ... 0 ... |000 x 0 ... 0 x 0 ... 0 x ... x ... |00...0 0 0 ... x 0 0 ... x 0 ... x ... |xxIf any pair of rows do not have interse
tion +1 then more than 12 (k + 1)(k +2)� 1 
olumns will be needed to represent the patters of ones but the last rowwill always have at least 2 elements +1 at the right of the row whi
h have noelement in the 
olumn above either of them whi
h is non-zero.Now suppose that the matrix yielded that any k � 1 rows 
orresponding tobad signatures gave a unique OR but that there are two solutions whi
h give thesame result for k rows indi
ating bad signatures. We rearrange the rows in ourpattern representative, if ne
essary, so one of these two solutions is the last row.We now 
onsider the other solution. For the �rst k � 1 ve
tors and the se
ondsolution to 
over the same number of 
olumns the se
ond solution must have two+1 at the right of the row whi
h have no element in the 
olumn above either ofthem non-zero. But this means the �rst and se
ond solution have at interse
tionat least 2 ones 
ontradi
ting the de�nition of the OR-
he
king matrix. Hen
eany 
olle
tion of k rows produ
es OR sums whi
h are distin
t.We note that this proof does not extend to a 
olle
tion of k+ 1 rows be
ausein that 
ase we 
ould only assume the last row to have more than one elements+1 at the right of the last row whi
h has no element in the 
olumn above itwhi
h is non-zero. This does not lead to any 
ontradi
tion.Corollary 3. Given a (k + 1)n � n2 OR-
he
king matrix A whose every two
olumn interse
tion is either zero or one. Then there is an IC(u; t) 
ode whi
his 
apable to identify up to t = n�1 bad signatures within a bat
h of size u = n2.The identi�
ation 
ode based on OR-
he
king matri
es is eÆ
ient as it allowsto re-use all previous results if the guess about the parameter t has been wrong.Given a bat
h Bu of the size u = n2. The (n � u) OR-
he
king matrix A is
reated. Denote A(t) as a shortened version of A 
ontaining �rst (t + 1)n rowsof A; t = 1; 2; : : : ; n� 1.1. The identi�
ation pro
ess starts from the assumption that t = 1. First 
ol-le
tion of 2n tests T are run for bat
hes de�ned by rows of the matrix A(1).If the bad signatures are not 
orre
tly identi�ed (i.e. the bat
h without badsignatures still fails the test T ), then it is assumed that t = 2. Otherwise thepro
ess ends.2. Assume that the identi�
ation using A(t) has failed to identify bad signatures(t = 2; 3; : : : ; n� 1). The 
olle
tion of ne
essary tests are de�ned by A(t+1).Note that A(t+1) di�ers from A(t) in that it 
ontains n additional rows. Theidenti�
ation pro
ess 
an be a

omplished by running n additional tests
orresponding to the bat
hes de�ned by rows in A(t+1) whi
h are not inA(t). If the identi�
ation has not been su

essful, t is in
rement by 1 and thepro
ess 
ontinues.



The identi�
ation fails if t � n.The 
onstru
tion also gives the upper bound on the number v of ne
essarytests to identify t bad signatures.Corollary 4. The number v of tests ne
essary to identify t bad signatures inthe bat
h of size u satis�es the following inequality:v � (t + 1)puThere are many 
ombinatorial stru
tures whi
h 
an be used to give the re-quired OR-
he
king matri
es for example transversal designs and group divisibledesigns. However we give a ri
h 
onstru
tion based on Latin squares.A Latin square of order n is an n�n array in whi
h n di�erent symbols, saya, b, : : : ea
h o

ur on
e in ea
h row and 
olumn. Two Latin squares are said tothe mutually orthogonal if when the squares are 
ompared element by elementea
h of the distin
t pairs o

urs exa
tly on
e. Formally, two Latin squares, L andL0 are said to be mutually orthogonal if L(a; b) = L(
; d) and L0(a; b) = L0(
; d),implies a = 
 and b = d. For further information, refer to [2℄.Lemma 5. Suppose there are k mutually orthogonal Latin squares of order n.Then there is a (k + 1)n� n2 OR-
he
king matrix.Proof. We use the auxiliary matri
es des
ribed in [2℄.Example 1. LetM1 = 264 a b 
 db a d 

 d a bd 
 b a375 ; M2 = 264 a b 
 d
 d a bd 
 b ab a d 
375 ; M3 = 264 a b 
 dd 
 b ab a d 

 d a b375be three mutually orthogonal Latin squares of order 4 on the symbols x1 = a,x2 = b, x3 = 
 and x4 = d. De�ne Mij ; 1 � i � k, by(Mij)ef = �1 (Mi)fj = xe;0 otherwise.where 1 � e; f � 4. So Mij ; 1 � i � 4 and 1 � j � 4 
an be written as



1 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 1Corollary 5. Let q > 2 be a prime power then there are q� 1 mutually orthog-onal Latin squares of order qMany other results are also known, for example for every n � 3 ex
ept 6there are at least two orthogonal Latin squares of order n and for n > 90 thereare at least 6.7 Hierar
hi
al Identi�
ationIdenti�
ation 
odes are designed to work with a bat
h of �xed size. In pra
ti
e,one would expe
t to have an identi�
ation s
heme whi
h is going to work witha bat
h of arbitrary length. Hierar
hi
al identi�
ation provides su
h a s
heme.Consider a family of id-
odes F = fIC(v; t)g with some well de�ned parameters(v; t).De�nition 4. Given a bat
h Bu of arbitrary length u. Hierar
hi
al identi�
ationbased on the family of identi�
ation 
odes F is a pro
edure de�ned re
ursively:{ stopping 
ase { if the size of the bat
h u is smaller or equal to some parameterv so we 
an use the identi�
ation 
ode IC(v; t) 2 F , then we apply it (
atidenti�
ation), otherwise{ re
ursive step { if the size of the bat
h u is bigger than the highest parametervmax in the family F , then it is divided into ` sub-bat
hes su
h that ` � vmaxand there is some IC(v; t) 2 F whi
h 
an be used to identify 
ontaminatedsub-bat
hes where ` � v and (t0 � t).The hierar
hi
al identi�
ation is denoted by HI(F).Hierar
hi
al identi�
ation 
an be based on di�erent 
olle
tions of id-
odes.Thereare two extreme 
ases:



{ F 
onsists of in�nite sequen
e of id-
odes,{ the family F is redu
ed to a single id-
ode.No matter what is the underlying family F , one would ask the followingquestions:{ What is the minimum (maximum, average) number of tests whi
h is ne
es-sary to identify all bad signatures ?{ Given a family F and the number t of bad signatures in the bat
h, is thereany pro
edure whi
h minimises the number of tests ?7.1 Hierar
hi
al Identi�
ation with In�nite FConsider id-
odes de�ned in Se
tion 6. Ea
h id-
ode 
an be uniquely indexed bya prime power p > 2. For this index, the 
ode is IC(p2; p� 1). The familyF = fIC(p2; p� 1)jp is the prime power; p 6= 2gNote that IC(p2; p�1) 
an be used to identify up to p�1 bad signatures. If thenumber of bad signatures is t � p� 1, the 
ode will use(t + 1)p + 1tests. If t > p� 1, then the 
ode fails.Let #T (F) be the number of tests ne
essary to identify all t bad signaturesin a bat
h Bu. Now we are trying to evaluate lower and upper bound for thenumber #T (F). Assume that the size of the bat
h u = p2 where p is a primepower. Now we 
hoose somehow p1 < p and divide the bat
h Bu into p21 sub-bat
hes. Ea
h sub-bat
h 
ontains up21 elements. Note that we have to 
onsideronly 
odes for whi
h t > p1 � 1 as otherwise the 
ode may fail.Let the t bad signatures be 
lustered into r sub-bat
hes ea
h 
ontaining tibad signatures so t = rXi=1 tiwhere r � p1�1 and naturally, ti � up21 . The number #T (F) has two 
omponents:1. the number of tests ne
essary to identify all 
ontaminated sub-bat
hes { thistakes � = (r + 1)p1 + 1;2. the number of tests ne
essary to identify bad signatures within the sub-bat
hes. For a given sub-bat
h, we 
ount the number of ne
essary tests. Firstwe 
hoose a prime power p2 su
h that p22 � up21 . As the sub-bat
h 
ontains tibad signatures we need �i = (ti + 1)p2 + 1tests.



The number of tests #T (F) = � + rXi=1 �iwhi
h after simple transformations gives#T (F) = (r + 1)p1 + p2(t + r) + (r + 1)The number #T (F) depends on the random parameter r and grows linearlywith r so #T (F) is smallest for r = 1 when all bad signatures o

ur in a singlesub-bat
h. #T (F) takes on the maximum for r = t = p1 � 1. So we have thefollowing 
orollary.Corollary 6. Given a bat
h Bu with t bad signatures. Hierar
hi
al identi�
ationwith in�nite F will 
onsume #T (F) tests where2p1 + (t + 1)p2 + 2 � #T (F) � p21 + 2p1p2 + p1 � 2p2:7.2 Hierar
hi
al Bat
hing with a Single IC(v; t)In some appli
ations, one would like to keep the identi�
ation pro
edure assimple as possible whi
h is using a single identi�
ation 
ode or in other wordsthe family F 
ontains a single element. Again, knowing the number t of badsignatures in a bat
h Bu, one would like to see how the number of ne
essarytests to identify all signatures varies (lower and upper bounds) as a fun
tion ofthe u and t.Assume that v = p2 and we apply the id-
ode IC(p2; p � 1). Given a bat
hBu. There are two ways bad signatures 
an be identi�ed:{ Serial identi�
ation { a bat
h is divided into up2 sub-bat
hes. For ea
h sub-bat
h, the id-
ode is used. This is a serial appli
ation of 
at identi�
ation.{ Hierar
hi
al identi�
ation { a bat
h is divided into v sub-bat
hes and theid-
ode is applied for the sub-bat
hes and identi�es the 
ontaminated sub-bat
hes. The pro
ess is repeated for 
ontaminated sub-bat
hes as many timesas ne
essary to identify bad signatures.Consider serial identi�
ation. Note that if a bat
h Bp2 is 
lean (t = 0), ittakes one test to verify it. If the bat
h is 
ontaminated by t < p bad signatures,the identi�
ation will take (t + 1)p + t + 1 tests. Assume that a bat
h Bu hasbeen divided into R = up2 sub-bat
hes (if u is a multiple of p2) among whi
hr sub-bat
hes are dirty and the other R � r are 
lean. All 
lean sub-bat
hes
onsume one test ea
h. A dirty sub-bat
h Bi takes (ti + 1)(p + 1) tests wherePri=1 ti = t. So the number of tests required to identify bad signatures isup2 � r + (p + 1)(t + r)Note that the number of tests is a random variable whi
h ranges from r = 1when all bad signatures happen to be in one sub-bat
h, to r = t when there aret sub-bat
hes ea
h 
ontaining a single bad signature.



Consider the se
ond 
ase of hierar
hi
al identi�
ation. To simplify our delib-erations, assume that u = p2j for some integer j. Denote #T (j; t) the numberof tests needed to identify t bad signatures in a bat
h Bp2j when the id-
odeis applied to the sub-bat
hes ea
h 
ontaining p2(j�1) signatures. The followingre
ursive equation is easy to derive#T (j; t) = (r + 1)p + r + rXi=1 #T (j � 1; ti);where r is a random variable whi
h indi
ates the number of 
ontaminated sub-bat
hes and ti are numbers of bad signatures in the 
orresponding 
ontaminatedsub-bat
hes; i = 1; : : : ; r.8 Con
lusionsThe generi
 
lass of id-
odes has been de�ned using the test-
he
king matrix A.The (u�v) matrix A determines the ne
essary tests. The syndrome is the binaryve
tor whi
h gives the test results for sub-bat
hes de�ned by rows of A. Thesyndrome is also equal to bit-by-bit in
lusive-OR of indi
es whi
h 
orrespond tobad signatures. We have investigated intera
tion of indi
es and found out thatto maximise the identi�
ation 
apability of an id-
ode, one would need to 
hooseindi
es of their Hamming weight equal to v=2.The main 
onstru
tion of id-
odes uses the so-
alled OR-
he
king matrix.The id-
ode takes a sequen
e of n2 signatures and allows to identify up to n� 1bad signatures. The ni
e 
hara
teristi
 of the 
ode is that the number of tests
an be redu
ed if the bat
h 
ontains less than n�1 bad signatures. To identify asingle bad signature, it takes 2n tests. Any additional bad signature, adds n ad-ditional tests ne
essary for 
orre
t identi�
ation. There are many 
ombinatorialstru
tures whi
h 
an be used to design id-
odes. We have shown how mutuallyorthogonal Latin squares 
an be applied to 
onstru
t id-
odes.We have not dis
ussed the identi�
ation pro
edure of bad signatures in ourid-
ode. The problem is far less 
ompli
ated than for example in error 
orre
ting
odes, mainly be
ause the monotoni
ity of the Hamming weight of the syndrome.In other words, indi
es of bad signatures must be in
luded in the syndrome. Theimplementation of this pro
ess 
an be done by{ 
he
king all signatures one by one and marking those whose index 
ollideswith the syndrome,{ removing all signatures belonging to those sub-bat
hes whi
h have passedthe test (they identi�ed by zeros in the syndrome). In other words, all badsignatures are in the set B n [T (Bi)=0Biwhere Bi is the sub-bat
h determined by the i-th row of the id-
ode.



Id-
odes 
an be used dire
tly to a 
ontaminated bat
h. We 
alled this 
atidenti�
ation. Alternatively, a 
ontaminated bat
h 
an be �rst grouped into sub-bat
hes and the id-
ode is applied to sub-bat
hes and identi�es 
ontaminatedsub-bat
hes. This pro
ess 
an be done many times until bad signatures are iden-ti�ed. This is the hierar
hi
al identi�
ation.There are still many open problems. The obvious one is whether the 
on-stru
tion given in this work is \optimal", i.e. identi�
ation of bad signatures
onsumes the smallest possible number of tests. Hierar
hi
al identi�
ation al-lows to avoid natural limitations imposed by the size of bat
h and apply theid-
ode in hand to a bat
h of arbitrary length. Is there any strategy for groupingsignatures into sub-bat
hes so the number of ne
essary tests is minimised ?Referen
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