
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

1-1-2000 

Identification of Bad Signatures in Batches Identification of Bad Signatures in Batches 

J. Pastuszak 
Polish Academy of Sciences, Warsaw, Poland 

D. Michalek 
Polish Academy of Sciences, Warsaw, Poland 

J. Pieprzyk 
University of Wollongong 

Jennifer Seberry 
University of Wollongong, jennie@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Pastuszak, J.; Michalek, D.; Pieprzyk, J.; and Seberry, Jennifer: Identification of Bad Signatures in Batches 
2000. 
https://ro.uow.edu.au/infopapers/333 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F333&utm_medium=PDF&utm_campaign=PDFCoverPages


Identification of Bad Signatures in Batches Identification of Bad Signatures in Batches 

Abstract Abstract 
The paper addresses the problem of bad signature identification in batch verification of digital signatures. 
The number of generic tests necessary to identify all bad signatures in a batch instance, is used to 
measure the efficiency of verifiers. The divide-and-conquer verifier DCVα(x,n) is defined. The verifier 
identifies all bad signatures in a batch instance x of the length n by repeatedly splitting the input into α 
sub-instances. Its properties are investigated. In particular, probability distributions for the number of 
generic tests necessary to identify one, two and three bad signatures, are derived. The average numbers 
of GT tests necessary to identify bad signatures ranging from 1 to 16 are obtained from computer 
simulation. Further, a Hamming verifier (HV) is defined which allows to identify a single bad signature in a 
batch of the length n = 2k –1 using k + 2 tests. HV is generalised into the two-layer Hamming verifier 
(2HV). Given a batch instance of the length 2k – 2, the 2HV verifier identifies a single bad signature using 
k + 2 tests and two bad signatures in expense of 3k + 3 tests. The work is concluded by comments about 
a general model for verification codes identifying t bad signatures and the design of verifiers using 
combinatorial structures. 

Keywords Keywords 
Digital Signatures, Batch Verification, Identification Codes. 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
This conference paper was originally published as Pastuszak, J, Michalek, D, Pieprzyk, J and Seberry, J, 
Identification of Bad Signatures in Batches, in Imai, H and Zheng, Y (eds), Workshop on Practice and 
Theory in Public Key Cryptosystems, PKC2000,, Melbourne, Victoria, Australia. Lecture Notes in Computer 
Science, 1751, 2000, 28-45. Copyright Springer-Verlag. Original book available here. ISSN 0302 9743 ISBN 
3 540 66967 1 

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/333 

http://www.springerlink.com/content/105633/
https://ro.uow.edu.au/infopapers/333


Identi�cation of Bad Signatures in BatchesJaros law Pastuszak1, Dariusz Micha lek1,Josef Pieprzyk2, and Jennifer Seberry21 Systems Research InstitutePolish Academy of SciencesWarsaw, POLANDjarek.pastuszak@bsb.com.pl2 Centre for Computer Security ResearchSchool of IT and Computer ScienceUniversity of WollongongWollongong, NSW 2522, AUSTRALIAJosef Pieprzyk@uow.edu.auJennifer Seberry@uow.edu.auLecture Notes in Computer Science, Vol 1751, H. Imai nad Y. Zheng (Eds), ThirdInternational Workshop on Practice and Theory in Public Key Cryptosystems,PKC2000, Melbourne, January 2000, pp.28{45Abstract. The paper addresses the problem of bad signature identi�-cation in batch veri�cation of digital signatures. The number of generictests necessary to identify all bad signatures in a batch instance, isused to measure the e�ciency of veri�ers. The divide-and-conquer veri-�er DCV�(x; n) is de�ned. The veri�er identi�es all bad signatures in abatch instance x of the length n by repeatedly splitting the input into �sub-instances. Its properties are investigated. In particular, probabilitydistributions for the number of generic tests necessary to identify one,two and three bad signatures, are derived. The average numbers of GTtests necessary to identify bad signatures ranging from 1 to 16 are ob-tained from computer simulation. Further, a Hamming veri�er (HV) isde�ned which allows to identify a single bad signature in a batch of thelength n = 2k � 1 using k+2 tests. HV is generalised into the two-layerHamming veri�er (2HV). Given a batch instance of the length 2k � 2,the 2HV veri�er identi�es a single bad signature using k + 2 tests andtwo bad signatures in expense of 3k+3 tests. The work is concluded bycomments about a general model for veri�cation codes identifying t badsignatures and the design of veri�ers using combinatorial structures.1 IntroductionDigital signatures are main cryptographic tools for message authentication. Un-like hand-written signatures, digital ones di�er from one document to anotheras they produce a �ngerprint which re
ects both the identity of signer (or moreprecisely their secret signing key) and the contents of the document (typically



embedded in its digest). Any digital signature includes signing and veri�cationalgorithms. The signing algorithm can be run by the holder of the secret sign-ing key. The veri�cation algorithm can be run by everybody as the matching(veri�cation) key is public.Often a signature is generated once but its veri�cation is done many times.A growing usage of digital signatures for electronic payment systems stresses theneed for streamlining of the signature veri�cation. Batch veri�cation o�ers ane�cient veri�cation of a collection of related signatures at a cost of making amistake. The probability of mistake can be traded o� with the e�ciency. Batchveri�cation is an option if the signature used exhibits the homomorphic property.The idea of batch veri�cation was spelt out in many papers [2, 4, 6, 8].2 MotivationUndoubtedly, fast signature veri�cation seems to be of utmost importance whenthere is a need for continual processing of many signatures. As shown by Bel-lare, Garay and Rabin in [1] there are three generic test which can be used forfast batch veri�cation of signatures. E�ciency of these tests varies and dependson the size of a signature batch being veri�ed. The main problem with batchveri�cation is that they trade e�ciency with security. In the case of individualsignature veri�cation, an attacker is forced to break the underlying signaturescheme if they want to generate a valid signature for a message. In the casewhen the batch veri�cation is applied, the attacker may also explore weaknessesexisting in the veri�cation tests. Veri�cation tests are probabilistic algorithms forwhich it is possible to set the bound on the probability of acceptance of invalidsignatures in the batch tested. As there is a direct relation between the probabil-ity and e�ciency, one can expect that the probability may be lowered during thetime when the heavy processing is expected (typically, the end of the week). In-stead of breaking the underlying signature, attackers are encouraged to generatemessages with invalid signatures on a massive scale. This serves two purposes.The �rst purpose is to increase the veri�cation load, and one can expect thatthe manager responsible for veri�cation of signatures, will lower the thresholdprobability even further. The second purpose is to increase the probability ofattacker success. On the top of this, the attacker may have speci�c knowledgeabout which test will be used and what parameters are employed. This knowl-edge may give some hints as to how invalid signatures could be produced tomaximise the chance of slipping through the tests.When a collection of signatures passes the tests, the veri�er accepts all thesignatures as valid. Otherwise, the collection is rejected. Now the veri�er mustseparate the valid signatures from invalid ones. In this paper, we consider dif-ferent methods of invalid signature identi�cation and evaluate e�ciency of testswith invalid signature identi�cation.



3 BackgroundThere are two homomorphic operations widely used for signing: modular expo-nentiation (the base is �xed) and RSA exponentiation (the exponent is �xed).Consider modular exponentiation de�ned for a cyclic group of order q, where gis the cyclic group generator. The DSA or DSS signatures and their versions aresignatures of this kind. Being more precise, the exponents are computed indi-vidually for each signature. This computation is cheap { it takes one modularinversion and multiplication. The �nal veri�cation can be done in batches inwhich exponents are added (see [5]).Given a batch x = ((m1; s1); : : : ; (mn; sn)) of messages with their signatures,signatures can be veri�ed one by one by checkinggmi ?= si for i = 1; : : : ; nThe cost of veri�cation is n exponentiations. To reduce the number of expen-sive exponentiations and speed up the veri�cation process, one can verify thefollowing Vg(x) �  gPni=1mi ?= nYi=1 si! (1)This costs one exponentiation, n�1 modular multiplications, and n�1 modularadditions. Typically, the calculation of Pni=1mi is done modulo q while Qni=1 siis performed modulo p where q divides p� 1.Consider the RSA exponentiation where the modulus N is the product oftwo primes p and q. The signer secret key is d and the public veri�cation keyis e. All signed messages are smaller than the modulus N . A typical batch ofsignatures looks like ((m1; s1); : : : ; (mn; sn)). Sequential veri�cation of the batchsei ?= mi for i = 1; : : : ; n;takes n exponentiations. Again, the veri�cation process can be sped up by usingVe(x) �  nYi=1mi ?=  nYi=1 si!e! (2)This takes one exponentiation and 2(n� 1) modular multiplications.In general, a batch veri�er is a probabilistic algorithm B which takes a batchinstance x = ((m1; s1); : : : ; (mn; sn)) and a security parameter `. The algorithm{ outputs \0" always whenever all the signatures in the batch are correct,{ outputs \1" with probability 1� 2�` whenever the batch contains incorrectsignatures.A batch veri�er never makes mistakes when the batch is \clean". If the batch is\dirty" or contains incorrect signatures, then the batch veri�er makes mistakeswith probability 2�`.



There is a universal test which is applicable for any signature scheme whichhas a homomorphic property. The test (in [1] called random subset test) is de�nedas follows.De�nition 1. Given a batch instance x = ((m1; s1); : : : ; (mn; sn)) and a secu-rity parameter `. The universal test (UT) takes ` rounds. For each round1. pick a random set T = ft1; : : : ; tng, i.e. each ti is selected independently andwith the same probability from f0; 1g,2. create a subset xT = f(mi; si)jti = 1g,3. run the test V (xT ) (either Vg(xT ) or Ve(xT )). If the test accepts go to thenext round. Otherwise, reject the batch.A useful test for signatures based on a �xed base applies a random string ofsmall integers used in the test as exponents (in [8] called small exponents test).De�nition 2. Given a batch instance x = ((m1; s1); : : : ; (mn; sn)) and a secu-rity parameter `. The small exponent (SE) test:1. select at random a collection of small integers e = (e1; : : : ; en) where ei < 2`,2. convert the instance x into xe = ((m1e1; se11 ); : : : ; (mnen; senn )),3. run the test Vg(x0). If the batch instance x0 passes the test accept x otherwisereject.Clearly, we are interested in a generic test which always succeed when allsignatures are valid and fails with an overwhelming probability when there isone or more bad signatures.De�nition 3. Given a batch instance x = ((m1; s1); : : : ; (mn; sn)). The generictest (GT) takes a batch instance x and1. outputs \0" whenever all signatures are valid. The test never makes mistakesfor this case,2. returns \1" whenever there is at least one bad signature. In this case the testmakes mistakes with probability 2�`.If a batch of signatures passes tests, then the veri�er accepts the whole batch.The probability of mistake can be make small enough say smaller than 2�100.However when a batch fails a test, the veri�er is not able to reject all signaturesin the batch. The veri�er faces the problem of identi�cation of bad signatures.Let us consider some possible solutions for bad signature identi�cation.The simplest solution for it could be based on testing all signatures one byone using the GT test.De�nition 4. Naive Veri�er.Given a batch instance x = ((m1; s1); : : : ; (mn; sn)).1. Run GT(x; n). If GT(x; n)=0, accept the instance x and exit. Otherwise,when GT(x; n)=1, for i = 1 to i = n do:{ apply GT(xi; 1),{ if GT(xi; 1) = 1 then store xi otherwise go for the next i.



2. Output all stored signatures in the list NV(x).where xi = (mi; si).The well-known twelve-coin problem is very much related to the identi�cationof bad signatures. It can be formulated as follows.Given 12 coins all of equal weight, except one defective coin. It is notknown whether the defective coin is lighter or heavier than each of theothers. Assume that there is a set of two-dish scales which can be usedto carry out tests. Coins can be placed on both sides and if the weightsare equal then the scales balance, otherwise they tilt downwards on theside carrying the heavier weight.Find a sequence of tests which can be performed using the scales toidentify the defective coin within the three weightings only.Note that identi�cation of a bad signature resembles the twelve-coin problem.The main di�erence is that tests performed on batches do not allow us to seehow the scales tilt. In other words, the tests carried out on batches allow us tosee whether the batch is clean (the scales balance) or dirty (the scales do notbalance).4 Divide-and-Conquer Veri�ersIdenti�cation of bad signatures can be implemented by the so called divide-and-conquer (DC) veri�er. The idea seems to be straightforward and can be tracedin the literature under the name \cut and choose" [4].The veri�er is an algorithm which takes a batch instance x and outputs either\0" when the batch instance is clean otherwise returns a list of all bad signatures.It is de�ned as a recursive function.De�nition 5. DC Veri�er.Given a batch instance x = ((m1; s1); : : : ; (mn; sn))with n = 2k signatures.1. Stopping case: If the instance consists of n = 1 signature, then run thegeneric test on the input, i.e. GT(x; 1).If GT(x; 1) = 0, return 0 and exit.Otherwise output the bad signature and exit.2. If the instance consists of n 6= 1 signature, apply the generic test on the inputsample, i.e. GT(x; n). If GT(x; n) = 0, return 0 and exit. Otherwise go tothe recursive step.3. Recursive step: Divide the instance x into � batch instances (x1; : : : ; x�)containing n� signatures each. The division is done at random. Call the DCveri�er for � sub-instances, i.e. DCV�(x1; n� ) � � � DCV�(x�; n� ).The computational overhead of our veri�ers is measured by the number oftimes the GT test is called during veri�cation process. The worst case occurs



when a batch instance contains all bad signatures. So the maximum number oftests performed by DCV� is# max(DCV�; n) = kXi=0 �i = �(k+1) � 1�� 1 = n�� 1�� 1 (3)where � indicates that the DCV veri�er slices input instances into � sub-instances of the same length and n is the length of the input batch instance.From Equation (3), it is easy to observe that for very badly contaminatedinstances, the selection of a large � is preferred. Note that if � = n = 2k, thenthe DCV veri�er becomes the NV veri�er which always consumes n + 1 tests.4.1 Degree of Contamination Versus Parameter �It is an interesting to ask about the degree of contamination of batch instances forwhich the naive veri�er becomes more e�cient than DCV2. This is an importantissue for e�cient signature veri�cation. To answer this question, assume that abatch instance consists of n = 2k signatures contaminated with t = 2r badsignatures (r < k). Denote the maximum numbers of GT tests necessary toidentify all t bad signatures out of total n ones using the NV and DCV2 veri�ersby # max(NV; n; t) and # max(DCV2; n; t), respectively.Note that the worst case occurs when the DC veri�er after the r-th recursivestep all sub-instances contain precisely one bad signature. To get to this point,DCV2 consumes precisely 2r � 1 tests. So# max(DCV2; 2k; t) = 2r � 1 + 2r � # max(DCV2; 2k�r; 1):A single bad signature in a batch instance of size 2k�r is always identi�able using2(k � r) + 1 tests. Therefore, we obtain# max(DCV2; 2k; t) = 2r+1(k � r + 1)� 1:Now we can ask how small the contamination of a batch instance should be torender the DCV veri�er more e�cient or# max(DCV2; 2k; t) < # max(NV; 2k; t):If we substitute values obtained, then the inequality becomes2(r+1)(k � r + 1)� 1 < 2k + 1or equivalently k � r + 1 < 2k�r�1 + 2�r:It is easy to check that this inequality holds for any k�r � 3. So we have provedthe corollary.Corollary 1. DCV2 is more e�cient (consumes less GT tests) from the NVveri�er if batch instances of 2k signatures contain less than 2k�3 bad ones.



Note that we have compared DCV2 (binary split of batch instances) withDCVn (equivalent to NV). Similar considerations can be made for any two veri-�ers DCV�, DCV� for � 6= �. This makes sense if the contamination varies andthe parameter � can be adjusted accordingly.Results of computer simulation conducted to determine the relation betweenthe degree of contamination and the parameter � are summarised in Table 1.Table 1. Tradeo� between parameter � and the degree of batch contaminationNumber Number of bad signatures Optimal Parametern t �128 1 2, 42; 4 4, 88 3216 32, 6432 128256 1 2, 42; 4; 8 416 832; 64 64512 1 2, 42; 4; 8; 16 432; 64 1281024 1; 2 2, 44; 8 416; 32 4, 864 256128 5122048 1 2, 42; 4; 8; 16; 32; 64 4128; 256 5124096 1 2,42; 4; 8; 16; 32; 64; 128 4256; 512 10244.2 Number of Tests Needed to Identify t Bad SignaturesDenote #(DCV�; n; t) to be the number of GT tests necessary to identify badsignatures from a batch instance with n signatures provided t ones are bad. Asthe DCV� veri�er is probabilistic in its nature, the number #(DCV�; n; t) is infact a random variable. To simplify our notation, letN�(t; n) = #(DCV�; n; t):



Our aim is to derive the probability distribution for the variable N2(t; n).Consider the veri�er DCV2 and the corresponding random variable N2(t; n).Let t = 1. Obviously, the veri�er needs to perform 2k + 1 tests, i.e.N2(1; 2k) = 2k + 1:This number of tests is constant and occurs with probability 1. By the way, thenumber of tests can be cut almost by half if t = 1 is known before hand asN2(1; 2k) = k + 1. This observation of course may be used for optimisation ofthe DCV veri�er. This is especially e�ective for � = 2. If a sub-instance passesthe GT test, the second sub-instance is not tested (as it must fail it anyway).Instead, it is divided into halves and one of the resulting sub-instances is tested.Let t = 2. Note that random variable N2(2; 2k) can be expressed by randomvariables N2(2; 2k�1) and N2(1; 2k�1) according to the following equation:N2(2; 2k) = �1 + 2N2(1; 2k�1) with probability p1;02 + N2(2; 2k�1) with probability p2;0 (4)Similarly, we can writeN2(2; 2k�1) = �1 + 2N2(1; 2k�2) with probability p1;12 + N2(2; 2k�2) with probability p2;1 (5)For i = 2; : : : ; k � 1, we can generalise asN2(2; 2k�i) = �1 + 2N2(1; 2k�i�1) with probability p1;i2 + N2(2; 2k�i�1) with probability p2;i (6)Assume that at step j, two bad signatures clustered together in a single in-stance have been put into two di�erent sub-instances. This means that the badsignatures were placed in the same instance j times in a row. ThereforeN2(2; 2k)(j) = 2j + 1 + 2N2(1; 2k�j�1) = 4k � 2j � 1 (7)where j = 0; 1; : : : ; k � 1.Now we are ready to calculate probabilities pi;j. The parameter n = 2k. Theprobability p1;0 expresses the probability that the initial batch instance splitsinto two sub-instances containing one bad signature each sop1;0 = �21�� n � 2n2 � 1�� nn2 � = n2(n� 1) :Similarly, the probability that after the split, one of the sub-instances containstwo bad signatures is:p2;0 = 2� �20��n� 2n2 �� nn2 � = n� 22(n� 1) :



The multiplier 2 indicates the fact that two bad signatures can be in the �rst orthe second sub-instance. Continuing our calculations, we obtainp1;i = n2(n� 2i) (8)p2;i = n� 2i+12(n� 2i) (9)The probability p(j) that for some step j, two bad signatures have been placedinto two di�erent sub-instances is:p(0) = p1;0p(1) = p2;0 � p1;1...p(j) = p2;0 � p2;1 � : : :� p2;j�1� p1;jAfter substituting values, the above equation takes on the following form:p(j) = nn� 1 12j+1for j = 0; : : : ; k � 1 and n = 2k. So we have proved the following corollary.Corollary 2. Given the DCV veri�er with � = 2. If a batch instance of lengthn = 2k is contaminated by two bad signatures, then the number N2(2; n) of nec-essary GT tests is a random variable whose probability distribution is as follows:P (N2(2; n) = 4k � 2j � 1) = nn� 1 12j+1 (10)for j = 0; 1; : : :; k � 1.Now we derive the probability distribution for the required number of GTtests when the input batch instance is contaminated by three bad signatures(t = 3).The number of GT tests is denoted by N2(3; 2k). The number of tests satis�esthe equationN2(3; 2k) = �1 + N2(1; 2k�1) + N2(2; 2k�1) with probability p12 + N2(3; 2k�1) with probability p2It means that after the �rst step, the veri�er may split the input instance intotwo sub-instances where (1) one sub-instance contains one bad signature and theother sub-instance is contaminated by two bad signatures, (2) one sub-instanceis clean and the other includes 3 bad signatures. The probability p1 is equal top1 = �31�� n� 3n2 � 1�� nn2 � = 3n4(n� 1) :



and the probability p2 isp2 = 2� �30��n� 3n2 �� nn2 � = n� 44(n� 1) :Assuming that the bad signatures have been tossed into two sub-instances at the�rst step by the veri�er, then the probability distribution can be derived fromprevious considerations (see Equation 8) andP (N2(3; n) = 6k � 2j � 5j(1; 2)) = p1 � p1;1 = 3n4(n� 1) n(n� 2) 12j+1for j = 0; 1; : : : ; k� 2.Consider the case when bad signatures have been tossed into the same sub-instance (the other sub-instance is clean) { the case (0,3). Assume that for certainstep i, the three bad signatures have been split into either (1,2) or (2,1). It meansalso that three bad signatures were tossed together i times soN2(3; n) = 2i + 1 + N2(1; 2k�i�1) + N2(2; 2k�r�1)for i = 0; : : : ; k � 1. After substituting the expressions obtained for t = 2 andt = 1, we obtain �nal probability distribution.Corollary 3. Given the veri�er DCV� with � = 2. If a batch instance of lengthn = 2k is contaminated by three bad signatures, then the number N2(3; n) ofrequired GT tests is a random variable whose probability distribution is as follows:P (N2(3; n) = 6k � 4i� 2j � 5) = 3n2(n� 1)(n� 2) 122i+j+3 n � 2i+1n� 2k�i�1 (11)for i = 0; 1; : : : ; k � 1 and j = 0; 1; : : : ; k � i � 2.Knowing the probability distributions for the number of GT tests necessaryto identify bad signatures in the cases when t = 1; 2; 3, it is easy to �nd theaverage number of test. For the number of bad signatures t > 3, the average canbe estimated using computer simulation. The results are compiled in Table 2.4.3 Optimisation of DC Veri�ersAs observed above, for DCV2, the number of GT tests can be reduced if theveri�er knows the precise number of bad signatures. If there is only a singlebad signature (t = 1), then at each step the DCV2 veri�er needs to tests onlysingle sub-instance out of two generated from the contaminated instance. If thesub-instance is clean, then the other sub-instance is dirty (and vice versa). Sothe number N2(1; 2k) = 2k + 1 can be reduced to k + 1. Even if the number ofbad signatures is not known before hand, this observation can be exploited toreduce the number of GT tests.



Table 2. The average number of GT tests necessary to identify t bad signatures in asequence of length nt n=16 n=32 n=64 n=128 n=256 n=512 n=10240 1,0 1,0 1,0 1,0 1,0 1,0 1,01 9,0 11,0 13,0 15,0 17,0 19,0 21,02 13,5 17,3 21,2 25,1 29,1 33,0 37,03 17,1 22,5 28,2 34,0 39,8 45,8 51,74 19,9 26,9 34,3 41,9 49,7 57,6 65,55 22,2 30,8 39,8 49,3 58,9 68,7 78,56 24,1 34,2 44,9 56,0 67,5 79,2 91,07 25,6 37,2 49,5 62,4 75,7 89,3 103,08 27,0 39,9 53,8 68,4 83,5 99,0 114,79 28,0 42,4 57,8 74,1 91,0 108,3 125,910 28,9 44,6 61,5 79,5 98,2 117,4 136,911 29,6 46,6 65,1 84,7 105,1 126,1 147,612 30,2 48,5 68,4 89,6 111,8 134,7 158,013 30,6 50,2 71,5 94,3 118,3 143,0 168,214 30,9 51,7 74,5 98,9 124,5 151,1 178,215 31,0 53,1 77,3 103,3 130,6 159,0 188,016 31,0 54,4 80,0 107,5 136,6 166,7 197,6De�nition 6. Fast DC Veri�er. Given a batch instance x = ((m1; s1); : : : ;(mn; sn)) with n = 2k signatures.1. Stopping case: If the instance consists of n = 1 signature, then run thegeneric test on the input, i.e. GT(x; 1).If GT(x; 1) = 0, exit. Otherwiseoutput the bad signature and exit.2. If the instance consists of n 6= 1 signature, apply the generic test on the inputsample, i.e. GT(x; n). If GT(x; n) = 0, exit. Otherwise go to the recursivestep.3. Recursive step: Split the instance x into � batch instances (x1; : : : ; x�) con-taining n� signatures each. The split is done at random. Call the DC veri�erfor ��1 sub-instances, i.e. DCV(x1; n� ) � � �DCV(x��1; n�). If there is at leastone dirty sub-instance, call DCV(x�; n�). Otherwise (i.e. if all sub-instancesare clean), call the veri�er DCV(x�; n�) in which the GT test is skipped.Note that the fast veri�er DCV2 needs � (1:5k + 1) tests (instead of 2k + 1)if there is one bad signature (but the veri�er does not know this before hand).The advantage drops if � grows. In general, the fast veri�er DCV� consumes((�� 1 + 1�)k + 1) tests instead of (�k+ 1) assuming a single bad signature andthe length of batch instance �k.Further improvement can be achieved if the split of instances is not random.It turns out that if the random split into sub-instances is replaced by deter-ministic split into � sub-instances, then the number N�(t; n) preserve the same



probability distribution assuming that the input batch instance is random. Thisassumption seems to hold in most practical situations.Additionally, the DCV veri�er can be sped up by a careful design of the GTtest. To illustrate the point assume that the DCV veri�er is used to identify badsignatures by running the test Ve(x) de�ned by Equation (2). Given a batch in-stance x = ((m1; s1); : : : ; (mn; sn)). Note that the test Ve(x) is run for the wholeinstance x and needs to produce the product of all messages (Qni=1mi) andall signatures (Qni=1 si). Before calling the veri�er, we can create two multiplica-tion tables for messages and signatures. For instance, the message multiplicationtable is of the following form (the input instance is of length 16):Batch Instance: 1; 2; 3; 4; 5;6;7;8; 9; 10; 11; 12; 13; 14; 15; 161-st level of products: (1; 2)(3; 4)(5; 6)(7; 8)(9; 10)(11; 12)(13;14)(15;16)2-nd level of products: (1; 2; 3; 4)(5; 6;7; 8)(9; 10; 11; 12)(13;14;15;16)3-rd level of products: (1; 2; 3; 4; 5;6;7; 8)(9; 10; 11; 12; 13; 14; 15; 16)4-th level of products: (1; 2; 3; 4; 5;6; 7; 8; 9;10;11;12;13;14; 15; 16):where (i; j) stands for the product of mi�mj . All multiplications needed by theDCV veri�er are already stored in the tables. To run the test Ve(x), it needs toperform a single exponentiation.5 Veri�ers Based on Hamming CodesAssume that batch instances are contaminated by at most a single bad signature.This assumption is true most of the time when the source of errors is unreliablestorage or communication so from time to time some signatures (or correspond-ing messages) get corrupted. Given a batch instance x = ((m1; s1); : : : ; (mn; sn))of length n = 2k � 1 for some positive k. To identify a single bad signature, it isenough to design a Hamming code with the block length n and k parity checkequations. Let H be a parity check matrix. H contains k rows and n columns.If the matrix H has the formH = 26664h1h2...hk37775 = �1 2 3 : : : 2k � 1 �where hi = (hi;1; : : : ; hi;n) is a binary string of length n with the weight 2k�1and integers i in the matrix represent columns which are binary strings repre-senting the integer. Note that the Hamming code with such H allows for a quickidenti�cation of error position as the error syndrome is the binary index of theposition in which the error occurs (for details see [3]).De�nition 7. Hamming Veri�er. Given a batch instance x = ((m1; s1); : : : ;(mn; sn)) of length n = 2k � 1 for some positive k.



1. Apply the generic test on the input instance. If GT(x; n)=0, exit. Otherwise,go to the next step.2. Create k sub-instances. i.e.xi = f(mj ; sj)jhi;j = 1gfor i = 1; : : : ; k where xi is a sub-instance composed from elements of x cho-sen whenever hi;j is equal to 1 (elements of x for which hi;j=0 are ignored).3. Run GT(xi; 2k�1) = �i for i = 1; : : : ; k where �i = 0 if the test accepts xior �i = 1 if it fails. The syndrome (�1; : : : ; �k) identi�es the position of thebad signature.4. Apply the generic test on the input instance without the bad signature. If thebatch instance is accepted, return the index of the bad signature. Otherwise,the veri�er fails and exits 1.The Hamming veri�er (HV) succeeds whenever batch instances of the length2k � 1 are contaminated by single bad signatures and HV consumes k + 2 GTtests. This number is almost identical to the number which is needed by DCV2when the veri�er knows that there is a single bad signature in the batch.Consider the case when HV fails { this obviously indicates that the numberof bad signatures is greater than 1. There are at least two possible courses ofaction:1. Filter out all clean signatures identi�ed by HV. Consider the syndrome string(�1; : : : ; �k) generated by HV. Clearly, we can remove all clean sub-instancesxi for which �i = 0 and identify the bad signatures using DCV for theremainder of the batch.2. Use the BCH code which corrects two errors to identify two bad signatures.This is an attractive option as we can reuse all results of GT tests obtainedby HV. This gives rise to two level Hamming veri�er de�ned below.Unfortunately, BCH codes correcting two errors are not directly applicable.The main reason is di�erent interactions of bad signatures compared to trans-mission errors in codes. Note that if two errors occur in a communication channelthen they cancel each other in a parity check equation or more precisely, theyobey the XOR addition. On the other hand, the behaviour of bad signatures isgoverned (with overwhelming probability) by logical addition. A parity checkingequation failure does not depend on how many bad signatures it contains. Thisfact make the problem more di�cult but also more interesting.Assume that we have a batch of n = 2k � 2 signatures which includes twobad ones (t = 2). As previously, we start from a Hamming code correcting asingle error with the corresponding parity check matrixH1 = 26664h1h2...hk37775 = �1 2 : : : 2k � 2� = 266641 0 : : : 00 1 : : : 1... : : :0 0 : : : 137775



Note that this matrix does not contain any column with all ones. We de�neanother matrix H = �H1H2 � (12)where H1 is as de�ned above and H2 is the negation of H1, i.e. H2(i; j) = H1(i; j)for i; j = 1; : : : ; k.De�nition 8. Two-Layer Hamming Veri�er. Given a batch instance x =((m1; s1); : : : ; (mn; sn)) of length n = 2k � 2 for some positive k and a linearcode represented by its parity check matrix H with 2k rows and n columns of theform given by Equation 12. Assume that the batch is contaminated by two badsignatures with their indicesI1 = (i1;1; : : : ; i1;k) and I2 = (i2;1; : : : ; i2;k)1. Apply the generic test on the input instance. If GT(x; n)=0, exit. Otherwise,go to the next step.2. Create 2k sub-instances (or control groups) corresponding to rows of thematrix H or x1;i = f(mj ; sj)jH1(i; j) = 1 and j = 1; : : : ; ngx2;i = f(mj ; sj)jH2(i; j) = 1 and j = 1; : : : ; ngfor i = 1; : : : ; k.3. Run GT(x1;i; 2k�1 � 1) = �i and GT(x2;i; 2k�1 � 1) = �0i for i = 1; : : : ; k.Create two syndromes � = (�1; : : : ; �k) and �0 = (�01; : : : ; �0k).4. Identify an index ` such that both �` = 1 and �0̀ = 1. As the two correspond-ing control groups complement each other and both are contaminated, thisimplies that each group contains a single bad signature.5. Run the HV veri�er for x1;` and identify the bad signature. In result, theindex I1 is known.6. Calculate the second index I2 = I1 � � � �0.7. Run the GT test for the input batch without the two bad signatures identi-�ed by indices (I1; I2). If the test accepts the batch, return the two indices,otherwise, the veri�er fails and exits 1.Take a closer look at the two-Layer Hamming Veri�er (2HV). All steps arestraightforward except the part when the second index is computed. Note thatthe indices and syndromes satisfy the following equations:I1 + I2 = �I1 + I2 = �0where + is a bit-by-bit logical OR. Note that + operation can be replaced bybit-by-bit XOR. Also the second equation can be converted using DeMorgan'sLaw. Thus I1 � I2 � I1I2 = �I1I2 = �0



This allows us to determine the other index knowing the �rst asI2 = I1 � � � �0 (13)Let us analyse the complexity of the 2HV veri�er. Step (1) takes one GT test.Step (3) consumes 2k GT tests. The HV veri�er employed in Step (5) requires(k� 1) + 2 GT tests. Step (7) makes the �nal GT test. Overall, the 2HV veri�erruns in expense of 3k+3 GT tests. So we can formulate the following conclusion.Proposition 1. Given a batch instance contaminated by two bad signatures.Then the 2HV veri�er always correctly identi�es them and consumes 3k+ 3 GTtests.Consider the case when instead of two bad signatures, a batch instance iscontaminated by a single bad signature. The 2HV veri�er will still work correctlyreturning two I1 = I2 indices. This case can be easily identi�ed as syndromes� = �0. This will allow to skip Step (5) and save on GT tests. If there is a highprobability of a single bad signature occurring, then it would be better to runthe HV veri�er �rst (perhaps with n = 2k � 2) and if it fails re-use the resultsin the 2HV veri�er.Now consider a simple example. Let a batch instance contain n = 24�2 = 14signatures (k = 4). Assume that bad signature occur on 6th (0110) and 10th(1010) positions. The linear code used is de�ned by its matrix H of the formH = �H1H2 � = 266666666666641 0 1 0 1 0 1 0 1 0 1 0 1 00 1 1 0 0 1 1 0 0 1 1 0 0 10 0 0 1 1 1 1 0 0 0 0 1 1 10 0 0 0 0 0 0 1 1 1 1 1 1 10 1 0 1 0 1 0 1 0 1 0 1 0 11 0 0 1 1 0 0 1 1 0 0 1 1 01 1 1 0 0 0 0 1 1 1 1 0 0 01 1 1 1 1 1 1 0 0 0 0 0 0 037777777777775We create sub-instances according to Step (2) and compute syndromes � =(0111) and �0 = (1011). Note that �3 = �03 so the third control groups in H1and H2 complement each other and contain single bad signatures. Now we applythe HV veri�er for the third control group in H1 and identify I1 = (0110). Thesecond index is I2 = I1 � � � �0 = (0110)� (0111)� (0100) = (0101).6 General Model for Veri�cation CodesConsider the 2HV veri�er. One would hope that the indices I1 and I2 could beidenti�ed using 2k tests which correspond to the control groups de�ned by thematrix H. Ideally, one would expect that from the two equationsI1 � I2 � I1I2 = �f(I1) � f(I2)� f(I1)f(I2) = �0; (14)



it is possible to determine both I1 and I2. The function f : �k ! �k is aBoolean function which for a given k-bit input, generates k-bit output. Now weprove that the following result is true.Theorem 1. Given four binary strings I1; I2; �; �0 2 �k used in the 2HV ver-i�er and satisfying Equation (14), then there is no function f : �k ! �k forwhich the equations have unique solutions for I1 and I2.Proof. First observe that Equation (14) is satis�ed if and only if it is true foreach bit. The proof reduces to the binary case { instead of Equation (14) weconsider its binary version i � j � ij = uf(i) � f(j) � f(i)f(j) = v; (15)where i; j; u; v 2 �. For the function f : � ! �, there are four possibilities only:f(x) 2 f0; 1; x; xg. The constant functions f(x) = 0 and f(x) = 1 are not anoption. The only candidates are f(x) = x and f(x) = x The results are given inTable 3. Consider the value u (3rd column) and the value v for f(x) = x (6thTable 3. The truth table for two candidates of f(x)i j u f(i) = i f(j) = j v f(i) = i f(j) = j v0 0 0 0 0 0 1 1 10 1 1 0 1 1 1 0 11 0 1 1 0 1 0 1 11 1 1 1 1 1 0 0 0column). If u = v = 0, there is the unique solution for i = j = 0. If u = 0; v = 1,there is no solution. For u = v = 1, there are three indistinguishable solutions.Consider the other function f(x) = x and the values u and v (9th column). Ifu = 0 and v = 1, there is unique solution i = j = 0. If u = 1 and v = 1, there isunique solution i = j = 1. For u = v = 1, there are two solutions (i = 0; j = 1)and (i = 1; j = 0). The combination u = v = 0 cannot occur.Although the above theorem gives us a \cold" comfort, it also points towardsa di�erent approach. Given a batch instance of n = 2k signatures with t = 2bad ones. We are looking for a matrix H with n columns and ` rows (l > 2k)such that any two indices I1; I2 (this time treated as the column vectors with `bits) generate the unique result I1 + I2 (+ is bit-by-bit OR). In other words, wesearch for such an arrangement of rows of H that no two pairs of indices collide.The �rst question to be answered is the size of parameter ` for which a sucharrangement may exist. If we assume that each column of the matrix H contains



half of \1" then the parameter ` must satisfy the following inequality� `̀2 � > �n2�It is easy to verify that for k = 3, ` � 2k + 1. If k grows, then for k = 40,` � 2k + 3.De�nition 9. Generic Veri�er (GV) Given a batch instance x of length n =2k for some positive k and a linear code represented by its parity check matrixH with ` rows (` > 2k) and n columns. Assume that the batch is contaminatedby t bad signatures with their indices I1; : : : ; It which are column vectors of H.The syndrome � = I1 + : : :+ It which uniquely identi�es the indices I1; : : : ; It.1. Apply the generic test on the input instance. If GT(x; n)=0, exit. Otherwise,go to the next step.2. Create ` sub-instances (or control groups) corresponding to rows of the matrixH.3. Run ` times the GT test and form the syndrome �.4. Identify indices I1; : : : ; It from the syndrome �.5. Run the GT test for the input batch without t bad signatures identi�ed. If thetest accepts the batch, return the t indices, otherwise, the veri�er fails andexits 1.6.1 Veri�cation Codes from Combinatorial DesignsCombinatorial designs provide an inexhaustible source of structures with unlim-ited potential for new designs of veri�cation codes. We start from a simple andnot e�cient structure to show at least, in principle, that veri�cation codes maybe constructed from well known combinatorial designs [7].Theorem 2. Let D be the incidence matrix of a SBIBD(v; k; �) where v > 2k,k > 2�. Then D is a veri�cation code allowing identi�cation of any two badsignatures.Proof. Note that columns in the D matrix represent the control groups or sub-collection of signatures which are to be tested. By contradiction. Assume that a2-SBIBD has two pairs of rows (B1; B2) and (B3; B4) such thatB1 [B2 = B3 [B4:Without loss of generality, we can write the incidence matrix of D where the�rst k elements of the �rst row B1 are ones and the remainder are zeros. We canalso write D with the �rst � elements of the second row B2 to be \1", the nextk�� elements to be \0", the next k�� elements { \1" and the remaining k onesin the �rst 2k�� { \0", The next two rows (B3 and B4) have k ones in the �rst



2k� � columns and the last v � 2k + � elements zero since B1 [B2 = B3 [B4.Hence D = 266666666664 1 � � �1 � � �1| {z }k 0 � � �0| {z }k�� 0 � � �0| {z }v�2k+�1 � � �1| {z }� 0 � � �0| {z }k�� 1 � � �1| {z }k�� 0 � � �0k ones| {z }2k�� 0 � � �0k ones| {z }2k�� 0 � � �0 377777777775Consider the ones in the �rst three rows, ensuring the inner product is �. Supposethat t ones overlap with both the �rst and second row (0 � t � �). Since thelast (v�2k+�) columns contain only zeros, the number of ones in the third rowis t in the �rst � columns, �� t in the next k � � columns, and further �� t inthe next k� � columns. Thus t+ 2�� 2t = k and t = 2�� k � 0. Hence 2� � k{ this is requested contradiction which proves the theorem.7 ConclusionsClearly, the above de�ned generic veri�er sets the environment for the futureresearch. In particular, the following list points out some open problems:{ lower bounds for the parameter ` or even better a function which determinesthe required parameter ` for a given t,{ how to design the matrix H so the syndrome uniquely identi�es the indices(bad signature positions),{ how to design a veri�cation code so identi�cation of bad signatures is e�-cient,{ determine t for which GV becomes no better than NV,{ constructions of veri�cation codes from combinatorial designs.AcknowledgementThe authors wish to thank anonymous referees for their critical comments.References1. M. Bellare, J. Garay, and T. Rabin. Fast batch veri�cation for modular expo-nentiation and digital signatures. In K. Nyberg, editor, Advances in Cryptology- EUROCRYPT'98, pages 236{250. Springer, 1998. Lecture Notes in ComputerScience No. 1403.2. M. Beller and Y. Yacobi. Batch Di�e-Hellman key agreement systems and theirapplication to portable communications. In R. Rueppel, editor, Advances in Cryptol-ogy - EUROCRYPT'92, pages 208{220. Springer, 1993. Lecture Notes in ComputerScience No. 658.



3. Elwyn Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.4. J-S. Coron and D. Naccache. On the security of RSA screening. In H. Imai andY. Zheng, editors, Public Key Cryptography { Second International Workshop onPractice and Theory in Public Key Cryptography, PKC'99, pages 197{203. Springer,1999. Lecture Notes in Computer Science No. 1560.5. L. Harn. Batch verifying multiple DSA-type digital signatures. Electronics Letters,34(9):870{871, 1998.6. D. Naccache, D. M'Raihi, S. Vaudenay, and D. Raphaeli. Can DSA be improved ?complexity trade-o�s with the digital signature standard. In A. De Santis, editor,Advances in Cryptology - EUROCRYPT'94, pages 77{85. Springer, 1995. LectureNotes in Computer Science No. 950.7. A.P. Street and W.D. Wallis. Combinatorics: A First Course. CBRC, Winnipeg,1982.8. S. Yen and C. Laih. Improved digital signature suitable for batch certi�cation. IEEETransactions on Computers, 44(7):957{959, 1995.


	Identification of Bad Signatures in Batches
	Recommended Citation

	Identification of Bad Signatures in Batches
	Abstract
	Keywords
	Disciplines
	Publication Details

	paper.dvi

