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Abstract

An exposure property of block designs is defined and investigated in this
paper. The families of c-exposed designs are shown for ¢ = 2 and ¢ = 3.
A sufficient condition for a c-exposed design is derived.

1 Introduction

We introduce an exposure property of block designs, which is interesting from a
combinatorial point of view. This property is motivated by traitor tracing schemes,
a research area of cryptography.

For a given block design, we consider a ‘false block’ which (i) is included in the
union of up to a certain number of blocks of the design, and (ii) has the same size of
intersection with each block involved in the union. The family of the blocks in the
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union is called exposed if every other block has an intersection, with the false block,
of size smaller than the above given size of intersections.

In this paper we first define the exposure property and show examples in Section
2. We derive a sufficient condition for the parameters of a block design being exposed
in Section 3, and the existence of the designs satisfying the condition is shown in
Sections 4 and 5. We discuss possible application of c-exposed designs in Section 6.

2 Definitions and 2-exposed block designs

A (v, k) block design is a pair of (X, B) where X is a set of v elements and B is a
family of k-subsets of X. Each of these k-subsets is called a block. For a (v, k) block
design (X, B) and C = {B1, By, -+, B.} C B, consider a k-subset F' C X such that

IFABy| =|FNBy|=--=|FNB, Q)
FCBUBU---UB,

Define a family C to be as follows
C={F C X : F satisfies (1) and |F| = k}.
A family C C B is called exposed if

{BeB:|FNB|=max|FNB;|} =C
BB

holds for every F € C. N
Obviously, C is exposed if C = @), and we call it trivial.

Example 2.1 Let (X, B) be the following block design

X={1,2---.9}
B = {123,456, 789, 147, 258, 369, 159, 168}

Let C = {123,147}. Then
C = {124,127,134,137}
This C is exposed.
A block design (X, B) is called c-exposed if C is exposed for all C C B with |C| < c.
Example 2.2 The following (9,3,{0,1}) block design

X ={1,2,---,9}
B = {123,456, 789, 147,258, 369}

1s 2-exposed. Table 1 shows this.
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Table 1. (Cont.)

c.C [FNB|, FeC,BEB

278 N 789] = [278 N 258] = 2
|278 1123 = [278 N 147 = 1
|278 M 456] = [278 N 369] = 0

|289 M 789] = [289 N 258| = 2
|289 N 123] = [289 N 369] = 1

Cia = {789,258} 289 N 456] = [289 N 147] = 0

23 — =
Cra = {278,289, 578, 589} 578 N 789| = |578 M 258 = 2

578 M 456] = [578 N 147| = 1
578 N 123 = [578 N 369] = 0

589 N 789] = [589 N 258| = 2
589 M 456] = [589 N 369| = 1
589 N 123| = [589 N 147] = 0
379 N 789] = [379 N 369] = 2
1379 N 123 = [379 N 147 = 1
379 M 456] = [379 N 258 = 0

389 N 789] = [389 N 369| = 2
389 N 123] = 389 N 258| = 1

C15 = {789,369} |389 N 456| = [389 N 147| =0

Cis = {379,389,679,689} | 570 7] — 679 M1 369] = 2

1679 N 456 = [679 N 147| = 1
1679 M 123 = [679 N 258] = 0

689 N 789] = 689 N 369| = 2
689 N 456] = 689 N 258| = 1
1689 N 123] = [689 N 147| = 0

For a block design (X, B) and an integer ¢ > 1, we denote

)\ = maxBl_BgeB ‘Bl M BQ|
i = mith...,Bzeg |Bl NN BZ‘

Theorem 2.1 A block design (X, B) is 2-exposed if k > 4\ — 2u3.

Proof: Let C = {By, B,} C B. For any third block B € B and any F € C, the
following inequality holds.

|[FNB| = [FNBNBINBy|+|FNBNB1\Be|+|FNBNBy\ By
< |BNB1NBy|+ BN B\ By| + BN By \ By
|[BN By|+|BNBy\ By
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|BN B+ |BNBs| —|BN BN By

k
< 2)\*M3<§

It is obvious that |FFN By| = |[FNBy| > k/2. So |FNB| < |FNBy|,|FNBs|. Hence

C is 2-exposed.
a

Example 2.3 The (21,5,1)-SBIBD is 2-exposed. The blocks of (21,5,1)-SBIBD are
By ={0+i,1+4,6+4,8+i18 +i}, 0<i< 20.

and M3 = |B0 n Blg N Blg| =0.

3 c-exposed designs (¢ > 2)

Let (X, B) be a block design, C = {By,Bs,--+,B.} C B, B € B\ C. For each
h,1<h<cg,

A > [BN By
= |[BNBN---NBJ|+

> |[BNB,NB;,N---NB;_, \ (B, U---UB;_,)|

1<s<ec—1
{hyig, s ic—1
={1,---,c}

}

(2)
Lemma 3.1 For2<h<g,
3 |BAB,N B, NN B\ (B,U---UB,_, U(UZB,))|
PR A B
={1,---,¢c}
< A—|BNBiN---NB.
Proof
3 IBOB,N B, N---NB;, , \ (Bi,U---UB,_, U(ULB,))|
1<s<c—h
{1, hyi1, ic—h}
={1,--
< |IBOByO B, N---NB;,_, \ (B, U---UB;_,)|
1<s<c—1
{h,i1 ic—1} = {1, c}

A
>

!
El
-
=
)
=
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the last inequality is from (2). The lemma is proved.

O
For 1 < h <c¢—1, denote by
N, = 3 BB, NN B\ (Bi,., U---UBi_, U(U'B,)) |
R S
= {1,
Then we have
N, = 3 |BNB;, NN By, \ (B, U---UB;_, U(U\,B,))]
L lSiEcTh
—{1,--,¢c}
- 3 |IBABy 1 NB;,N---NB;_, \ (Bis U---UB;_, U (ngpr)) |
1§s<a h—1
,- -, h+1}
U{n Jie h 1}
Lo
+ Z |B N Bil n---N Bis \ <Bis+1 u---u Bic—h—l U (Uzilpr)) ‘
{Sl s Ch jl} !
Ufin, - yie—p—1}
S0y
< A= flex1 + Niiy (from lemma 3.1)
That is
Ny <A = o1 + Ny (3)

Lemma 3.2 Ny < (h — 1)(A = peg1) + N, for 1 <h <c—1.

Proof: We use induction on h. It is obviously true when A = 1. Assume that
Ny < (h—1)(A = pes1) + Ny is true for h. From (3) we obtain

Ny < (h = 1) (A = preg1) + A = pegr + Nog1 = h(A = prey1) + Naa

The lemma is proved.

O
From lemma 3.2, we obtain
N < (C )()‘ N<+1) + chl
= (c=2)(A = piey1) +BOBN (B1U---U B, )]
= (c=2)(A\—ptet1) + BN B/ —|BNBN---NB
< (e= D\ = flen) (4)

Let F €C. For1<h<eg,

k
|F'N Byl > - (5)
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Consider |F' N BY.
|F'N B

> |[FNnBNB;,N---NB,\ (Bi,,,U---UB,,)|

1<s<ec
{i1, -+ ic}
={1,---,c}

> BNByN---NB;, \ (B, U---UB)|

{it, -+ ic}
={1,---,c}

IN

= |BNBiN---NB

+ > |IBNB NB,Nn---NB;._,\(B;,U---UB, )|
1<s<c—1

{1,ig, - ic—1}

S TN

+ > IBNB,N---NB;,\ (B, U---UB;_, UB)|
il
e ST
= |BNB|+MN
< A+ (e=1)(A = pres1) (from (2) and (4))
= cA—(c—Dptes1 (6)
Theorem 3.1 A block design (X, B) is c-exposed if
k>N —clc—1)pen (7)

Proof: Applying (7) to (5) and (6) results in |F' N By| > |F N B|.

4 Existence from SBIBDs

We will show in this section that SBIBDs with parameters satisfying (7) exist.

4.1 Family of 2-exposed SBIBDs

From theorem 2.1, we have obtained that a (v, k, A\)-SBIBD is 2-exposed if k > 4\.
By this we have the following 2-exposed SBIBDs.

Theorem 4.1 Let q be a prime power and n > 2 be an integer.
1. ([2], pp.244) There exists a

q'n+1_1 q'n_l qn—l_l
g—1 7 qg-1" ¢q-1

) -SBIBD.
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2. The (qrzr_ll_l, qq"__ll, q";_ll_l)—SBIBD is 2-exposed if q > 4.

Theorem 4.2 Let p* and ¢° = 3p® + 2 be prime powers.

1. ([2], pp.280) Then there exists a

a b a b
abpq_l Pq—5
-SBIBD
(PQ7 1 ) 16 )

provided that (p°q® — 1)/4 is an odd square.

2. The (p”qb, %, %)—SB[BD s 2-exposed.

Theorem 4.3 Let ¢ be a prime power, d be a positive integer.

1. ([2], pp.280) There exists a

(@@ + - +a+2). ¢+ g+ 1), ¢"(q" + -+ g + 1)) -SBIBD

2. The (¢™ (¢ + -+ +q+2), qMq"+ -+ q+1), ¢"(¢" ' + -+ +q+1))-SBIBD
s 2-exposed if ¢ > 4.

4.2 Family of 3-exposed SBIBDs

From theorem 3.1 we have obtained that a (v, k, A)-SBIBD is 3-exposed if & > 9A.
Therefore we have 3-exposed SBIBDs below.

Theorem 4.4 There exist 3-exposed SBIBDs.

1. The (qnﬂfl -1 qn_lfl)—SBIBD is 3-exposed if ¢ > 9.

-1 > q—1° q-1
2. The (¢™ (¢4 +q+2), Mg’ + -+ q+1), ¢"(¢" + -+ +q+1))-SBIBD
s 3-exposed if ¢ > 9.

5 Existence from Steiner systems

In this section we shall show the existence of 2-exposed designs with parameters
satisfying (7) and p3 > 0. Let S(¢, k,v) be a Steiner system, where v is the size of
X and k is the size of blocks, every ¢ points of X occur in exactly one block.

Theorem 5.1 Let S(3,k,v) be a Steiner system. Its complement is 2-exposed if

v(v—1) v—2
k(k—1) " "k—2

2 (8)
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Proof: Let (X,B) be the Steiner system. It is also a 2 — (v, k, \)-design with
A= (v—2)/(k—2)and b > v. Each point occurs in r = v(v — 1)/k(k — 1) blocks.
Consider its complementary (X', B'). The size of each block is ¥’ = v(v—1)/k(k—
1). Every three blocks intersect in exactly u4 = 1 point. Every two blocks intersect
in exactly X' = (v —2)/(k — 2) points. Theorem 2.1 and (8) indicates that (X', B')
is 2-exposed.
O

Example 5.1 ([1], pp.67) There are known families of Steiner systems:
1. S3,q+ 1,q"+ 1), q is a prime power, n > 2;

2. 8(3,q+1,u’q"+1), q is a prime power, u a prime power satisfying the standard
divisiblity conditions, £ > 0, and n > ng, ng s a constant depending only on
q,u.

6 A note on application

The c-exposure property of a block design provides a capability of revealing all the
blocks used to build a false block. Revealing the block(s) that built a false block
is expected in a traitor tracing schemes (eg [3, 4]). However, to apply a c-exposed
block design to a c-traceability scheme we need an assumption that every block
(representing a traitor) has an equal contribution to the false block (representing a
pirate decoder). In this case up to ¢ blocks are able to be identified provided that
the traitors choose the strategy of avoiding being the sole traitor identified. This
strategy is likely as any pirate decoder who provides more contributions would be
identified before, or instead of, fellow traitors.
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