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SHIFT ESTIMATION METHOD BASED FRINGE PATTERN PROFILOMETRY AND
PERFORMANCE COMPARISON

Yingsong Hu1,2, Jiangtao Xi1, Enbang Li1, Joe Chicharo1 and Zongkai Yang2

1School of Electrical Computer and Telecommunications Engineering,
University of Wollongong, NSW 2522, Australia.

Department of Electronic and Information Engineering,
2Huazhong University of Science and Technology, Wuhan City, 430074, China

ABSTRACT

In this paper, we present and study two approaches to
fringe pattern profilometry (FPP) technique. Based on
generalized analysis model for fringe pattern profilome-
try (FPP), Inverse Function based Shift Estimation (IFSE)
and Gradient-based Shift Estimation (GSE) are proposed
to calculate the shift between the projected and deformed
fringe patterns. Further, computer simulations are utilized
to compare the performance between these two methods.
Meanwhile, we also compare these two algorithms with
Phase Shift profilometry (PSP). It can be seen that both of
these two shift estimation algorithms can significantly im-
prove the measurement accuracy when the fringe patterns
are nonlinearly distorted.

1. INTRODUCTION

Fringe pattern profilometry (FPP) is one of the most pop-
ular non-contact methods for measuring the three dimen-
sional surface of an object in recent years. With FPP, a
Ronchi grating or sinusoidal grating is projected onto a
three dimensional diffuse surface, the height distribution
of which deforms the projected fringe patterns and modu-
lates them in phase domain. Hence by retrieving the phase
difference between the original and deformed fringe pat-
terns, three dimensional profilometry can be achieved. A
number of fringe pattern analysis methods have been de-
veloped for FPP, including Fourier Transform Profilom-
etry (FTP)[1, 2], Phase Shifting Profilometry (PSP)[3],
Spatial Phase Detection (SPD)[4], Phase Locked Loop[5]
and other analysis methods[6, 7], all of which are based
on an assumption that the projected fringe patterns are or
can be filtered to be sinusoidal.

In recent years, because of the simplicity and control-
lability, digital projectors have been widely used to yield
fringe patterns for implementing FPP[8, 9]. However, it
is very difficult for projectors to produce pure sinusoidal
fringe patterns due to the existence of geometrical distor-
tion and colour distortion. Although digital filtering can
be used to reduce the distortion, the resulting fringe pat-
terns may still not be pure sinusoidal, as the digital fil-
ters are usually not ideal either. Additionally, when the
deformed fringe pattern has an overlapped spectra, band-
pass filtering will be unusable if a precise measurement

Fig. 1. Schematic diagram of fringe pattern profilometry
(FPP) system

is required[1]. Therefore, errors will arise if the measure-
ment is still based on pure sinusoidal assumption. This
problem motivates us to look for some new methods to
reconstruct the 3-D profile based on non-sinusoidal fringe
patterns.

In this paper, we present two approaches to FPP based
on generalized analysis model, which are referred to as In-
verse Function based Shift Estimation (IFSE) and Gradient-
based Shift Estimation (GSE) . Compared with existing
FPP approaches, the proposed algorithms does not require
any prior knowledge of projection systems and structures
of projected fringe patterns. Meanwhile, the performances
of these two methods are compared and discussed.

This paper is organized as follows. Section 2 intro-
duces the principle of generalized analysis model. In Sec-
tion 3 two algorithms are proposed for fringe pattern pro-
filometry. In Section 4, simulations are utilized to demon-
strate the improvement of these two methods and compare
the performance between them. Section 5 concludes this
paper.

2. PRINCIPLE OF GENERALIZED ANALYSIS
MODEL

A schematic diagram of a typical FPP system is shown in
Fig.1. For simplicity, we consider a cross section of the
object surface for a given y coordinate. Hence, the inten-
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sity of fringe patterns captured by CCD camera and the
height distribution function can be expressed as a func-
tion with single variable x. Thus we use s(x) and d(x) to
denote the intensity of the projected and deformed fringe
pattern respectively and use h(x) to represent the height
distribution of the object surface.

In order to establish the relationship between s(x) and
d(x), we consider a beam of light corresponding to a pixel
of the fringe pattern, denoted as EpCH in Fig.1. It is seen
that the light beam is projected at point C and reflected
back to the camera if the reference plane exists. When the
reference plane is removed, the same beam will be pro-
jected onto point H and reflected to the camera via the
point D. Assuming that the object surface and the refer-
ence plane have the same reflective characteristics, s(x)
at the location C should exhibit the same intensity as d(x)
does at the location D, because they originate from the
same point of the fringe pattern created by the projector.
Hence we have

d(xd) = s(xc) (1)

where xc and xd are the coordinate locations of point C
and point D respectively. We use u to denote the distance
from C to D, that is

u = xd − xc (2)

From Eq.(1) and Eq.(2), we have

d(xd) = s(xd − u) (3)

Obviously, u varies with the height of the point H on the
object surface.

Meanwhile, because triangles EpHEc and CHD are sim-
ilar, we have

xc − xd

−h(xh)
=

d0

l0 − h(xh)
(4)

where xh is the x coordinate of point H, l0 is the distance
between the camera and the reference plane and d0 is the
distance between the camera and the projector.

As point H and point D are on the same reflected beam
from point H to the camera, point H will have the same
x coordinate as point D does in captured images, which
implies xh = xd. So Eq.(4) can be rewritten as

xc − xd

−h(xd)
=

d0

l0 − h(xd)
(5)

As defined in Eq.(2), Eq.(5) can be expressed as

−u

−h(xd)
=

d0

l0 − h(xd)
(6)

As the height distribution h(x) is a function of xd, u should
also be a function of xd. Then we have

u(xd) =
d0h(xd)

l0 − h(xd)
(7)

Eq.(7) also can be written as

h(xd) =
l0u(xd)

d0 + u(xd)
(8)

Therefore, Eq.(3) can be expressed as

d(xd) = s(xd − u(xd)) (9)

where u(xd) is given by Eq.(7).
As Eq.(8) and Eq.(9) should apply to arbitrary xd, hence

by letting xd = x, we can simplify the mathematical ex-
pressions and derive a general model as follows:

d(x) = s(x− u(x)) (10)

h(x) =
l0u(x)

d0 + u(x)
(11)

Eq.(10) reveals that the deformed signal d(x) is a shifted
version of s(x), and the shift function u(x) can be used to
determine the object height distribution by Eq.(11).

It is interesting to note that by letting s(x) be a cosinu-
soidal signal in Eq.(10), we can easily derive the conven-
tional phase-modulation model. This implies that the con-
ventional model is a special case of our proposed model.

3. ALGORITHMS OF SHIFT ESTIMATION

3.1. Inverse Function based Shift Estimation (IFSE)

A straightforward method to calculate the shift distribu-
tion is to use inverse function. We assume the projected
signal function r = s(t) is a monotonic function or it is
monotonic in intervals of t, in which s(t) has a unique in-
verse function. Denoting the inverse function of s(t) as
s−1(v), we have

s−1(s(t)) = t (12)

Therefore, if we apply the inverse function s−1(v) to de-
formed signal d(t), we will have

s−1(d(t)) = s−1{s[t− u(x)]} = t − u(t) (13)

which means that we can obtain the shift function u(t) by

u(t) = t − s−1(d(t)) (14)

It is obvious that from Eq.(14), the shift distribution can
be calculated based on the fringe pattern projected on the
reference plane and the deformed fringe pattern on the sur-
face of the object. The key to calculating the shift distri-
bution is to obtain the inverse function s−1(v). A possi-
ble way is to employ polynomial curve fitting, which will
consequentially introduce fitting errors. We use the mean
square error to evaluate the curve fitting error, which is
defined as:

ef = E[(yf (x)− y(x))2] (15)

where E(w) is the operation of calculating the mean value
of w, y(x) are the data to be fitting and yf (x) are the val-
ues of the curve fitting results calculated by the approxi-
mate polynomial. The fitting error ef will decrease with
the increasing of the polynomial degree. Therefore, In or-
der to determine the degree of polynomial used for curve
fitting, we setup an upper bound of ef in advance, and
then we find out the minimum degree of polynomial which
makes the curve fitting error ef less than the upper bound
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we have setup. Hence the procedure of surface reconstruc-
tion is as follows:

Step 1. Set an upper bound of curve fitting error, em,
and initialize k, the degree of polynomial used for curve
fitting. The initial value of k equals 1.

Step 2. Based on the captured fringe pattern on the
reference plane, s(t), work out jk, a polynomial of de-
gree k to approximate the inverse function s−1(v) in least
squares sense. More detailedly, at first, we take the straight
line t = r as a symmetry axis to obtain a symmetrical
curve of s(t) in each monotonic interval, which actually
is the curve of the inverse function s−1(v). And then, we
make curve fitting to the obtained symmetrical curve and
obtain the curve fitting result jk. This process is equiva-
lent to directly fitting the inverse function s−1(v) by re-
garding the value of s(t) as the variable and t as the value
of the inverse function, rather than obtaining an approx-
imate polynomial of the original function s(t) before fit-
ting the inverse function s−1(v).

Step 3. By Eq.(15), calculate the curve fitting error
when using jk to approximate s−1(v), if the error is less
than em, continue to do Step 4, otherwise, set k = k + 1
and return to Step 2.

Step 4. Based on the curve fitting result s−1(v) ≈ jk,
and the values of deformed signal d(t), we calculate the
shift function u(t) by Eq.(14).

3.2. Gradient-based Shift Estimation (GSE)

Because the value of shift function u(x) determines the
height distribution h(x), the height can be obtained if we
have u(x). Hence, we should track the values of shift
function u(x) for each point x by using s(x) and d(x).
For this purpose, we use square error defined below as an
objective function with respect to û(x) that denotes the
estimation of u(x) at point x:

e2(û(x)) = [d(x) − s(x− û(x))]2 (16)

In order to minimize the error e2, we use gradient-based
method to obtain the estimation of û(x) in an iterative
way:

ûm+1 = ûm − η
de2

dû
|û=ûm

(17)

where η is the learning rate. The gradient can be derived
as:

de2

dû
|û=ûm

= 2e
de

dû
|û=ûm

= −2e
ds

dû
|û=ûm

= −2e
s(x− (ûm + 1))− s(x− (ûm − 1))

(ûm + 1)− (ûm − 1)
= −e[s(x− ûm − 1)− s(x− ûm + 1)]
= −[d(x)− s(x− ûm)]×

[s(x− ûm − 1)− s(x− ûm + 1)] (18)

Substituting Eq.(18) into Eq.(17), we can have an iterative
equation to calculate the estimation of the value of shift
function u(x) at each point x.

ûm+1(x) = ûm(x) + η[d(x)− s(x− ûm(x))]×
[s(x− ûm(x)− 1)− s(x− ûm(x) + 1)] (19)

For each point x, the iteration continues until convergence.
In other words, if |ûm+1 − ûm| is less than a given lower
bound, we can obtain an estimation of the value of u(x) at
point x, û(x) = ûm(x). Considering the continuity of the
profiles, we can use the converged value û(x) as the initial
value for the next point x+1. i.e. let û1(x+1) = û(x) and
then continue doing the iteration for the next point x + 1,
so that faster convergence can be achieved.

4. SIMULATION RESULTS

Simulations have been performed to verify effectiveness
of our proposed algorithms and compare the different per-
formance between them. In our simulation, we use a para-
boloid object surface whose diameter and maximum height
are 200mm and 160mm respectively. the projected fringe
pattern is generated from a cosinusoidal signal distorted
by a nonlinear function given by:

s(g(x)) = 0.002g2(x) + g(x) + C (20)

where C is a constant which can be ignored as it does not
effect on reconstruction results, and g(x) = A cos(2πf0x),
where f0 is the spatial frequency of the fringe pattern,
which is assumed to be 0.001/mm. For the simplicity of
calculation, the amplitude of the cosinusoidal signal g(x)
is assumed to be 100. Meanwhile, we assume l0 and d0

in Fig.1 equal to 5 meters and 2 meters respectively. The
spatial resolution of the captured image is assumed to be
1 pixel/mm.

Substituting g(x) = A cos(2πf0x) into Eq.(20) and
discarding DC component, we have:

s(x) = 100 cos(2πf0x) + 10 cos(2π · (2f0)x) (21)

Note for the projected fringe pattern given by Eq.(21),
the second order harmonic only has -20db of power com-
pared with the fundamental component. Corresponding
to Eq.(21), the deformed fringe pattern can be expressed
as:[1, 2]

d(x) = 100 cos(2πf0x+φ(x))+10 cos(2π·(2f0)x+2φ(x))
(22)

where φ(x) is the phase shift caused by the object surface.
From Eq.(21) and (22), we can reconstruct the surface
by various algorithms. Comparative reconstruction results
are shown in Fig.2, where dashed lines represent the true
value of the height distribution of the object surface and
solid lines denote the reconstruction results by using dif-
ferent methods. From Fig.2(a), it can seen that nonlin-
ear distortion introduces noticeable errors when PSP is
used, even though the nonlinear distortion is so slight that
coefficient of square item in Eq.(20) is only 0.002 and
the second order harmonic only has -20db of power com-
pared with fundamental component. Comparatively, by
IFSE and GSE, we can have much better results shown in
2(b),(c) and (d). In Fig.2(b), the degree of polynomial is 8
and in Fig.2(c), it is 30. We can see that for IFSE, higher
degree of the polynomial can have better reconstruction
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Fig. 2. Reconstruction results and error comparison

accuracy. In fact, theoretically, if the degree of polyno-
mial is big enough, we always can have good reconstruc-
tion result. However, for big degrees, we need much more
calculation time for curve fitting. i.e. the computation
complexity of using IFSE depends on the polynomial de-
grees we are using. On the other hand, Fig.2(d) shows
GSE also gives much improved measurement results com-
pared with PSP. In a word, both of IFSE and GSE can ob-
tain much better measurement accuracy than PSP when
nonlinear distortion exists.

Further, in order to compare the performance between
IFSE and GSE, Fig.3 shows the distribution of the mea-
surement errors of reconstructed profile by using these
two methods. In Fig.3, we can see that lower degree of

Fig. 3. Reconstruction results and error comparison

polynomial, which is 8 here, can not give reconstruction
result as smooth as GSE does. In order to obtain smooth
reconstruction results like GSE does, the degree of poly-
nomial for IFSE has to be very high, which is 30 here.
However, using higher degree of polynomial will cause
much higher computation complexity.

5. CONCLUSION

In this paper, we have proposed two algorithms, IFSE and
GSE, for fringe pattern profilometry, both of which can
significantly improve the measurement accuracy. Even if
the original signal is nonlinearly distorted, we can still ob-
tain very accurate reconstruction results without any prior
knowledge of the characteristics of the profilometry sys-
tem. The effectiveness of our proposed algorithms have
been confirmed by our simulation results. Meanwhile, ac-
cording to our comparison between these two methods,
it can be seen that the reconstruction accuracy of IFSE is
much dependent on the degree of the polynomial for curve
fitting. When lower degrees are used, IFSE can not recon-
struct the object surface as precise as GSE does. In order
to have accurate results as GSE, IFSE has to use higher
degree polynomials, which will accordingly lead to higher
computation complexity.
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