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High-capacity steganography using a shared colour
palette

G. Brisbane, R. Safavi-Naini and P. Ogunbona

Abstract: Seppanen, Makela and Keskinarkaus (SMK) have proposed a high-capacity
steganographic technique to conceal information within a colour image. The technique is
significant because of the high volume of data that is embedded into pixels but it results in a high
level of noise and so the quality of the resulting image is not acceptable. A new type of coding
structure is proposed, which maintains a high capacity but lowers the level of noise. Secondly, an
adaptive algorithm is used to identify pixel values that have a high capacity to distortion ratio. Also
the maximum size of the coding structures is limited to improve the capacity/distortion tradeoff. For
the tested images, an average capacity of nearly 6 bits/pixel was achieved with a peak signal to
noise ratio of 40 dB.

1 Introduction

Information hiding (IH) is the embedding of a secret
message (stego-data, M) within an ordinary item of
communication (cover-data, I ). An IH system uses two
algorithms to communicate: an embedding algorithm to
produce the modified cover-data ðI0Þ from M and I; and an
extraction algorithm to recover M from I0: Steganography
is ‘secret communication between two parties’ and is one
application area within the IH domain, along with fragile
and robust watermarking ([1]). In this paper we limit
ourselves to using image data as the cover-data.
Simmons allegorises the steganography problem in [2] by

posing it in terms of three participants, two imprisoned
accomplices and a warden. The accomplices are known as
Alice and Bob, while the warden is named Wendy. Alice
and Bob communicate to each other in the hope of
developing an escape plan. They have also shared a short
secret prior to their incarceration.
Wendy permits their communications so long as she is

satisfied that the content is legible. Her purpose for doing
this is to catch them planning and so prove their conspiracy.
The primary objective of the prisoners is to conceal the
stego-data from detection.
The three primary attributes of an IH scheme are

imperceptibility, capacity and robustness [3]:

. The imperceptibility is the level of concealment, which
prevents the warden from being able to distinguish between
a modified cover-data and an unmodified cover-data. It
incorporates both minimising the visible effect of changes to
pixel values (distortion), as well as the level of detectability
of the stego-data by the warden ([4]). The main measure of
the distortion in this paper is the peak signal to noise ratio
(PSNR), defined formally in Section 2.5.2. It is a widely

used measure defined as the ratio of the peak signal to the
average root mean square of the difference between the
stego-data and the modified cover-data.
. The capacity of a scheme is the quantity of stego-data that
can be embedded. For images this is measured in bits per
pixel (bpp).
. The robustness of a scheme is the ability to recover the
stego-data in spite of modifications to the modified cover-
data.

For the problem of steganography, the most important
requirement is high imperceptibility followed by high
capacity. This is because the warden must not be able to
discern, or suspect, the presence of any stego-data in I0:
Robustness is of importance in scenarios where the warden
can alter I0:

In this paper we consider a steganography scheme
proposed by Seppanen, Makela and Keskinarkaus in [5]
(the SMK algorithm for short). They proposed a method for
communicating information in colour images with a
capacity of between 6.9 and 13.3 bpp. The algorithm is
conceptually interesting and because of its high embedding
capacity could be of high interest for subliminal communi-
cation. However, our preliminary experiments with the
algorithm demonstrated that the quality of the resulting
image is very low and so not acceptable. The aim of this
paper is to address this problem. Of course it is always
possible to increase quality by embedding in a smaller
number of pixels. The challenge is to increase impercept-
ibility and maintain a high capacity.

There is no agreed definition for a high-capacity
steganographic scheme. There are many algorithms (e.g.
[6, 7]) that can be used for hiding data in images, which are
lossy compression tolerant, with capacity ranging up to
0.17 bpp. In addition, a number of high capacity algorithms
with less emphasis on imperceptibility and robustness have
been proposed.

An algorithm by Lee and Chen specifically designed for
high capacity embedding is given in [4]. Their scheme
modifies the least significant bits (LSBs) of pixels in an
image and then attenuates the result to control the
imperceptibility. They were able to embed and extract
4.06 bpp from a monochrome image which can be

q IEE, 2005

IEE Proceedings online no. 20045047

doi: 10.1049/ip-vis:20045047

The authors are with the School of Information Technology and Computer
Science, The University of Wollongong, NSW, 2522, Australia

E-mail: gazol@optusnet.com.au

Paper received 7th June 2004

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 6, December 2005 787



extrapolated to 12.18 bpp for a three-colour image. The
imperceptibility is moderate with a PSNR of 34.03 dB.

Kawaguchi and Eason proposed a high-capacity stegano-
graphy algorithm in [8]. They divided an image into bit
planes following a colour transform from the red=green=-
blue domain to ‘canonical Gray coding’. By statistical
analysis they determine regions within each plane that
contain data that appears random, which they substitute for
meaningful information. They claim a capacity of up to
12 bpp for a 24 bit colour image but make no quantitative
statement on the imperceptibility of their technique.

Both the above techniques do not require the original
image to be accessible to the receiver nor to provide any
robustness to modification by a third party. In [9], Brisbane
et al. calculated the maximum capacity for a steganographic
method with no consideration of the robustness. They
considered the model where both parties possess I prior to
communication. Their result gives an upper bound for
steganographic techniques. It encodes the stego-data using
an entropy decoder to construct a sequence of symbols with
a Gaussian distribution. This shows that, for a PSNR of
40 dB, at most 3.40 bpp per colour can be communicated.
The other results above were able to embed at a higher bit
rate only with a lower PSNR.

2 SMK algorithm

The SMK algorithm is a steganography method for colour
images [5]. A colour palette is a subset of colour points in
red=green=blue (RGB) space. It can be used to achieve
image compression when pixels in an image are quantised to
the nearest point in the palette. The basic idea of the SMK
algorithm is to construct a set of coding structures
surrounding the palette elements. Each coding structure is
a set of points in RGB space with each point representing a
unique binary string for embedding message bits.

There are four main sub-algorithms comprising the SMK
method:

. Key generation constructs a secret key and a palette
(Section 2.1).
. Constructing a coding structure where a subset of size 2k

points in RGB space is labelled by k-bit strings and used for
embedding message bits (Section 2.2).
. The embedding and extraction algorithms, which allow
Alice and Bob to communicate (Section 2.3).

2.1 Key generation

There are two pieces of information that are required to be
shared between Alice and Bob: a key K, and a palette of
colours C. The key generates a randomly chosen binary
string that is used to mask the stego-data, M: This is
described in more detail in Section 2.3.

The colour palette is obtained by using the k-means
algorithm trained with the pixels in I. The k-means
algorithm derives a set of N key feature vectors (centroids)
grouped as C ¼ fC0; . . . ;CN�1g: A feature vector is then
classified by identifying the ‘closest’ centroid. Each
centroid, Cj; is the average of all vectors in the training
set that are classified to it. A Voronoi region,Rj; is the set of
all points in the feature space that are classified by Cj: For a
more complete discussion of the algorithm, refer to [10].

To apply the algorithm to images, each pixel p in I is
represented by the feature vector ðpr; pg; pbÞ; where pr; pg
and pb are the values of the red, green and blue components
for the pixel. This produces a set of training data for
k-means. The distance in the feature space between two

pixels p and q is:

Dðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpr � qrÞ2 þ ðpg � qgÞ2 þ ðpb � qbÞ2

q
ð1Þ

The initial locations of the centroids and N are chosen by
Alice. Using the training data, the k-means algorithm
produces the set of centroids, C. This set C can now be
considered as a palette for I. For consistency, we denote
each item within C as a palette element, rather than as a
centroid. We define C( p) as the function that returns the
index of the closest palette element to the pixel p.

Alice provides Bob with C and K by some secure means.
The authors of the SMK scheme propose that N be ‘small’,
although a precise definition is not given. If we assume I is a
24-bit colour image and N ¼ 1024 (the maximum size
discussed), then C is approximately 3 kbyte in size.

2.2 Coding structures

Let Sj be a set of size 2
hjðhj 2 ZÞ contained within Rj: We

use vj to denote the number of points in Sj; that is vj ¼ 2hj :
Each point in Sj is assigned a unique bit label of length hj
and so there is a one-to-one correspondence between binary
strings of length hj and points within Sj:

In the SMK algorithm, each Sj is a ‘cube’ centred at Cj;
with length lj and refers to the set of points fðpr; pg; pbÞ :
pr 2 ½Cjr

� lj;Cjr
þ lj � 1�; ½Cjg

� lj;Cjg
þ lj � 1�; ½Cjb

� lj;
Cjb

þ lj � 1�g; which we denote as cubeðCj; ljÞ: Sj can be
constructed using algorithm 1:

Algorithm 1: Constructing a coding structure, Sj
Input: j, Cj

Output: Sj; hj

1 lj ¼ 1
2 Do
3 lj ¼ 2lj
4 Sj ¼ cubeðCj; ljÞ
5 While Sj is entirely contained within Rj

6 lj ¼
lj
2

7 hj ¼ 3 log2 lj
8 Each point in Sj is assigned a unique binary label of

length hj

2.3 Embedding and extracting the SMK
algorithm

The embedding algorithm is given as algorithm 2. The main
requirement of this algorithm is that CðpÞ ¼ Cðp0Þ; where p0
is the result of embedding in p. M is converted to a
uniformly distributed message to remove the potential for
distortion that could occur when non-uniformly distributed
messages are embedded. When Bob receives I0 from Alice,
he can extract M using algorithm 3:

Algorithm 2: Embedding M into I using {C, K}
Input: I, C, M; K
Output: I0

1 Generate a uniformly distributed bit-sequence MK using
K (e.g. m-sequence)

2 M0 ¼ M�MK ;� is the bit-wise XOR operation
3 Use C to generate the coding structures, S0; . . . ; SN�1

(algorithm 1)
4 For each pixel, p 2 I
5 j ¼ CðpÞ ( j is the index of the Voronoi region

containing p)
6 Let m0 be the next block of hj bits from M0

7 Move p to p0 2 Sj such that m0 ¼ labelðp0Þ
8 Next p

IEE Proc.-Vis. Image Signal Process., Vol. 152, No. 6, December 2005788



Algorithm 3: Extracting M from I0 using {C, K}
Input: I0; C, K
Output: M
1 M0 ¼ ;
2 Generate the same bit-sequence MK using K (e.g. m-

sequence)
3 Use C to generate the same coding structures, S0; . . . ;SN�1

(algorithm 1)
4 For each pixel, p0 2 I0

5 M0 ¼ M0klabelðp0Þ ðwhere k is appendingÞ
6 Next p
7 M ¼ M0 �MK ;� is the bit-wise XOR operation

2.4 Experimental framework

All experiments described in this paper are the average of
ten experiments, using ten predetermined pseudorandomly
chosen values of the secret key K. The images used for
testing are ‘Airplane’, ‘Mandrill’ and ‘Peppers’, found at
[11]. ‘Airplane’ is of size 512� 512 pixels, whereas the
others are 256� 256 pixels. The ‘Airplane’ image contains
the least amount of detail, followed by ‘Peppers’ and then
‘Mandrill’.
Unless otherwise stated, all experiments use a benchmark

imperceptibility of a PSNR of 40 dB. At this threshold, I0 is
considered to be visually indistinguishable from I.

2.5 Performance of SMK algorithm

2.5.1 Capacity: Figure 1 shows the results of our
implementation of the SMK algorithm. The capacity for
N ¼ 32 ranges between 7.9 and 11.9 bpp for the test images,
which matches the authors’ reported values.

2.5.2 Distortion: As mentioned previously, the
imperceptibility includes both the goals of reducing
distortion and reducing the detectability of the stego-data.
In this paper, we focus on reducing the distortion, as
measured by the peak signal to noise ratio (PSNR):

PSNR ¼ 20 log10
255ffiffiffiffiffiffiffiffiffiffi
MSE

p

where MSE is the mean squared error for each pixel in I and
I0: Although the PSNR is not a perfect measure of visual
distortion (see e.g. [12]) it is sufficient to describe the
average difference.

Figure 1 demonstrates that, in nearly all images and values
of N, the level of imperceptibility is lower than our accepted
threshold. For N ¼ 32; the PSNR ranges between 31.5 and
27.4 dB.

2.5.3 Detectability: The detectability of a stegano-
graphic scheme is measured by the success of steganalysis
to prove the existence of some stego-data in I0: The
embedding algorithm transforms the set of pixel values
contained in a Voronoi region, Rj; to be uniformly
distributed throughout its coding structure, Sj: As this
distribution is non-typical, it may be possible to identify the
use of this scheme.

A broad outline of such an attack is nowgiven.As there is a
uniform distribution surrounding the palette elements,
training k-means using the pixel values of I0 will yield a
palette that approximates to that of C. The value of Nmay be
obtained by the use of ‘splitting’ in k-means ([10]). The set of
coding structures, S; is then derived using algorithm 1. Now
if the pixels in each coding structure, Sj; are distributed
approximately uniformly throughout then one can conclude
that the SMK algorithm was used to form I0:

Our modifications to this algorithm reduce the distortion
of the image to control imperceptibility. The main
supplementary benefit to reducing detectability is that we
propose the use of only a subset of pixels for embedding.
This results in fewer pixels being contained in Sj and hence
reducing the ‘non-typicality’ of the distribution. However a
steganalytic technique may still be effective as uniformly
distributed pixel values will still surround palette elements.

2.5.4 Robustness: There is no provision in this
algorithm for any robustness as even the modification of a
single pixel could cause synchronisation loss. That is, any
modification to I0 will result in information loss. In addition,
the embedding algorithm hides information pixel by pixel.
This is equivalent to adding high-frequency noise, which is
targeted for removal by lossy compression algorithms such as
JPEG. Although it is possible to introduce measures that trade
capacity for robustness, they are not addressed in this paper.

3 Improving imperceptibility by pixel selection

The aim of this paper is to improve both the imperceptibility
and capacity of the algorithm. In this Section it is shown that
the imperceptibility can be increased by embedding in a
subset of pixels of the cover-data. However, this higher
imperceptibility is obtained at the cost of capacity.

Fig. 1 Capacity and imperceptibility of SMK algorithm
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Figure 1 shows that the SMK algorithm results in
an excessive amount of distortion. Let I denote the
two-dimensional array of pixel positions in I. An obvious
remedy is to use a set P � I for embedding and trade
capacity for imperceptibility.

Alice will only use pixels in P for embedding. For Bob to
extractM correctly it is required that he is able to determine
P. We consider two algorithms for selecting P:

1 randomly selecting a proportion r of elements from I
2 an adaptive method, which selects elements from I where
the corresponding pixels provide the best tradeoff between
capacity and distortion.

3.1 Random pixel selection

In this approach we assume that all pixels are equivalent in
the amount of distortion that the embedding process
introduces. A trivial algorithm for reducing imperceptibility
is only to embed using a proportion r of pixels in I : Let
N(X) denote the number of pixels in a set X. So NðPÞ ¼
rNðIÞ:

Let c be the MSE caused by the SMK embedding
algorithm. Therefore in the SMK algorithm,

c ¼ 1

NðIÞ
X
8p2I

Dðp; p0Þ2

So by using the set P, the new MSE will be

c0 ¼ 1

NðIÞ
X
8p2P

Dðp; p0Þ2

¼ r c

Therefore there will be a linear decrease of the MSE. Using
a similar argument, the embedding capacity will also be
reduced linearly on average.

The selection of P can be performed by using K as the
seed for a pseudorandom number generator, shared by Alice
and Bob. Of the pixels in I ; r are pseudorandomly selected
for inclusion in P. Alice shares r with Bob, allowing him to
repeat the selection of P from I0:

3.1.1 Results: The capacity for the SMK algorithm
using random pixel selection is shown in Fig. 2 for each
image. There are no figures for ‘Airplane’ for N>256
because the PSNR exceeds 40 dB even when P ¼ I :

This algorithm does not take into account the variation
among pixels by evaluating their ‘suitability’ for
embedding.

3.2 Calculating benefit of a pixel

An alternative pixel selection algorithm is to construct P �
I by considering the pixel values to find an ‘optimal’ subset,
that is, the subset of pixels with the least distortion for a
given capacity. The benefit of a pixel is defined as the ratio
of embedding capacity to the estimated distortion caused by
embedding the pixel. For a pixel, p, the embedding capacity
is hCðpÞ: The average distortion when p is used for
embedding is calculated by:

DðpÞ ¼ 1

vCðpÞ

X
8p2SCðpÞ

Dðp; qÞ

where vCðpÞ is the number of points in the coding structure
SCðpÞ: Because M0 is uniformly distributed, the estimated
distortion resulting from quantising p to p0 is the average
distortion from p to each location in SCðpÞ:

Now we can define the benefit of p as:

BðpÞ ¼
hCðpÞ
DðpÞ ð2Þ

Pixels with a higher benefit are more suitable for
embedding.

3.3 Pixel-adaptive algorithm for deriving P

As Bob does not know I, he identifies P as the set of all pixel
positions in I0 where a pixel p 2 SCðpÞ: As a result, Alice’s
first step is to include all pixel positions in I, where the pixel
p 2 SCðpÞ: This is referred to as the minimum set of P and is
shown in algorithm 4. Although this is slightly inefficient
most pixels in the minimum set would constitute the pixels
with the least values of DðpÞ: After this stage, she then
increases P by including pixel positions with the greatest
benefit.

3.3.1 Algorithm for determining P: Algorithm
4 describes how P is selected for the embedding process.
The algorithm may not succeed in meeting the required
imperceptibility for a given number of segments if the
distortion caused by the minimum set exceeds it. This can be
overcome by decreasing N or using a method such as
random pixel selection, given in Section 3.1.

Fig. 2 Capacity achieved by using pixel selection to limit distortion to 40 dB
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Algorithm 4: Determining the set of pixels P for embedding
Input: I, C
Output: P

1 CurrentDistortion ¼ 0
2 L ¼ ;
3 For each p 2 I
4 If p 2 SCðpÞ Then
5 Insert the location of p in I into P
6 CurrentDistortion¼CurrentDistortionþDðp;SCðpÞÞ
7 Else
8 L ¼ Lkfp;DðpÞ;BðpÞg
9 End If
10 Next p
11 (The minimal set is the current set P)
12 If CurrentDistortion>c Then
13 P could not be selected to meet the required level of

distortion
14 Else
15 L0 ¼ SortðLÞ by B( p) in decreasing order
16 While CurrentDistortion< c
17 Insert the location of L0½0� in I into P
18 CurrentDistortion ¼ CurrentDistortionþ DðL0½0�Þ
19 Remove L0½0� from L0

20 End While
21 End If

3.3.2 Results: The results of using this algorithm are
shown in Fig. 2. The capacities for N< 64 with ‘Mandrill’
and N< 32 with ‘Peppers’ are absent as the distortion from
the minimum set exceeds the imperceptibility threshold.
The pixel adaptive algorithm for constructing P provides a
consistent improvement over the random selection algor-
ithm of between 1 and 1.5 bpp for most values of N. As N
increases the proportion of pixels used also increases to
compensate for the reduced average distortion. Ultimately
the two pixel selection methods converge when all pixels in
I are used in P.
The pixel selection algorithms provide a framework for

comparison of the embedding capacity between the three
test images for an equivalent imperceptibility. ‘Airplane’
performs better for low values of N while the other two
images perform better as N increases. It is not possible to
make a general conclusion about the best sort of image to
use for data hiding from these figures because the final result
depends on:

1 the degree of colour variation that occurs within the
image
2 the degree to which clustering can be represented by a
palette of size N.

For a constant imperceptibility the second factor is of
greater importance than the first because this limits the level
of distortion that occurs.
By using these techniques the imperceptibility can be

lowered to a level determined acceptable by Alice.
The capacity of the algorithm at this level is in the range
4.4–4.7 bpp for the test images.

4 Limiting maximum capacity

Different coding structures possess different properties in
trading capacity for imperceptibility. We estimate this
tradeoff by calculating the benefit for a palette element Cj as
BðCjÞ; using (2). The figures for cubic coding structures of
varying capacities hj are given in Table 1.

For hj>6; the benefit decreases as hj increases, that is, the
tradeoff between capacity and imperceptibility is altered so
that the capacity is reduced against a fixed imperceptibility.
Therefore a capacity increase can be achieved by altering
algorithm 1 to restrict the maximum capacity of the coding
structures to some value max(h). This modification requires
Alice to share max(h) with Bob. The following Section
implements this modification for spherical coding structures
to demonstrate its effectiveness.

5 Spherical coding structures

In this Section we consider a ‘sphere’ as the coding
structure. A sphere of radius r with centre Cj is the set
of points (in feature space) that have a maximum Euclidean

distance of r from Cj; that is, Sj � fðpr; pg; pbÞ : ðCjr
�

prÞ2 þ ðCjg
� pgÞ2 þ ðCjb

� pbÞ2 � r2g; where vj ¼ 2hj ; hj
2 Z: As distortion is measured using Euclidean distance,
this set of points has the property that the average
embedding distortion from the palette element is minimised.

The comparison of this measure against the cubic coding
structures is shown in Table 1. Based on this measure it
outperforms the cubic coding structures for all values of hj:
The algorithm for the construction of the sphere is given as
algorithm 5:

Algorithm 5: Generating a spherical coding structure, Sj
Input: j, Cj; max(h)
Output: Sj

1 Sj ¼ ;
2 p ¼ Cj

3 While p 2 Rj and vj � 2maxðhÞ

4 Sj ¼ Sjkp
5 Let p be the next closest point by distance to Cj

where p=2Sj
6 End While
7 Remove the most recently appended points from Sj until vj

is of the form 2hj ; hj 2 Z:
8 Each point in Sj is assigned a unique binary label of lengthhj

5.1 Results

The results for the spherical encoding algorithm for the
‘Peppers’ image are given in Fig. 3. The ‘Peppers’ image is
chosen as the image with moderate detail of the test images.
The capacity of the spherical coding structures exceeds that
of the cubic coding structures by approximately 1.5 bpp. In
addition, the limitation of the capacity of the coding
structures is also shown to be effective in increasing
capacity. The other images have similar results and the
highest capacities under these conditions are given in
Table 2.

Table 1: Measuring the average benefit for a palette
element

hj

BðCj Þ for cubic

coding structures

BðCj Þ for spherical

coding structures

3 2.68 3.23

6 2.97 3.21

9 2.31 2.42

12 1.56 1.61

15 0.98 1.01

18 0.59 0.60
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Table 2 provides a summary of the results for both coding
structures. Each entry used the adaptive pixel selection
algorithm to provide a PSNR of 40 dB and selected the value
of max(h), which gave the maximum capacity. The capacity
is in the lower end of the range of the claims of the SMK
algorithm, but it has been improved to an acceptable level of
imperceptibility.

6 Conclusions

The SMK algorithm provides a high-capacity steganogra-
phy technique without robustness or imperceptibility. We
have proposed a new algorithm based on the SMK
algorithm, which increases the imperceptibility and embed-
ding capacity.

First, the embedding algorithm is modified only to embed
in the pixels in the cover data, which provide the best
tradeoff of capacity and imperceptibility. As a result, the
algorithm can be used in situations where the impercept-
ibility is required to be at a visually lossless level.

The second improvement has been in recognising that the
generation of coding structures to their maximum volume
can unnecessarily trade away imperceptibility for capacity.
By limiting the maximum capacity of a coding structure it
has been shown that the capacity can be increased relative to
a fixed level of imperceptibility.

The final modification was the introduction of spherical
coding structures, which increased the capacity by between
1.5 and 2.4 bpp for our test images. Further tests of ours on a
‘greedy’ version of the spherical coding structures have
shown that capacity can be further increased by between 0.2
and 0.8 bpp.

Although it is possible to increase capacity without
reducing the incurred distortion, there are two other areas
in which this technique would benefit from further develop-
ment. First, robustness can be increased by altering the
embedding and extraction algorithms to tolerate variations in
pixel values caused by attacks. Secondly, as mentioned
briefly, steganalysis could reveal the use of this scheme in an
image. By adjusting the embedding and extraction algor-
ithms it might be possible to reduce the incidence of
uniformly distributed ‘patches’ in the RGB space. One tactic
could be to alter the probability of the symbols in the coding
structures to present a less obvious transformation in I0:

From tests performed on the three test images, we claim
that it is possible to embed at up to 6 bpp with a PSNR of
40 dB having shared up to approximately 3 kbyte in data.
This compares well with the maximum amount of 10.2 bpp
using the model where I is shared ([9]). This algorithm can
therefore be considered as a high-capacity steganographic
technique where a limited amount of information is able to
be shared.
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Table 2: Best results for each coding structure with a
PSNR of 40dB

Image Structure N max(h) Capacity (bpp)

Airplane cube 16 9 4.68

sphere 16 10 5.75

Mandrill cube 1024 9 4.76

sphere 1024 9 5.85

Peppers cube 512 9 4.48

sphere 1024 10 6.08

Fig. 3 Embedding capacity with spheres using ‘Peppers’ and a PSNR of 40 dB
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