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Abstract-This paper propom an improvement of a super- 
vised learning technique for Self Organizing Maps. The ideas 
presented in this paper differ from Kohonen’s approach to 
supervision in that a.) a rejection term is used, and b.) rejection 
aNects the training only locally. This approach produces superior 

because it does not alfect network weights globally, and 
hence, prevents the addition of noise to the learning p rows  of 
remote neurons. we implemented the ideas into Self-organizing 
Maps for Structured Data ( S 0 M - W  which is a more general data. The algorithm controls the 
form of Self-Organizing Maps capable of processing graphs. The 
capabilities of the proposed ideas are demonstrated by utilizing 
a relatively large real world learning problem from the area of 
image recognition. It will be shown that the proposed method 
produces better classification performances while being more 
robust and flexible than other supervised approach= to SOM. 

ularity of the mapping, which has an effect on the accuracy 
and generalization of the SOM [I]. 

which is most similar to an input vector. This codehook vector, 
and its neighbours are then updated so as to render them more 
similar to the input vector. The result is that, during the training 
phase, the SOM forms an elastic that is shaped by input 

approximate the density of the data. The reference vectors in 
the codebook drift to’areas where the density of the input data 
is high. Eventually, only few codebook vectors lie in areas 
where the input data is sparse [ I ] .  

The standard SOM model is restricted to the processing of 
fixed sized input vectors though extensions to data sequences 
do exist [3]. A more recent extension, called SOM for Struc- 
tured Data (SOM-SD) [4], allows the discovery of similarities 
among more complex objects such as labelled acyclic directed 
graphs (Labelled DAGS). The extension is made possible by 
including structural information about the graph to the input 

These methods are typically trained in an unsupervised 
fashion even if a teacher signal is available. Some attempts 
were made to utilize teacher signals, if available, with the 
goal to improve the mapping precision. Supervised training of 
SOMs is attempted by Kohonen in [ll.There, supervision is 
achieved by attaching information about class membership to 
the input vector while during the recognition phase, the class 
label is omitted. The idea of attaching a class label to the input 
vectors has also been adopted to the training of SOM-SDs in 
151. While it is claimed that the attachment of class information 
leads to a better discrimination between pattem classes, we 
found in practice that this is not always true. In particular, the 
mapping of large sets of concise data may actually worsen. 
We attribute this mainly to the following two factors: 
A.) For every input vector, the SOM is updated globally. 

Hence, the processing of an input belonging to a class 
’a’ adds noise to the mapping of another input from 
another class. The effect worsens the greater the number 
of different classes, and if the number of training samples 
for each class is out of balance. 

B.) The influence of the attached class label to the error 
measure is unbalanced. For example, when training a 
SOM on inputs with a small data label and a large class 
label, the mapping of the input is biased towards the class 
label’resulting in a poor representation of the actual data. 

The network is  trained by finding the codebook 

so that it suives to 

I. INTRODUCTION 

Self Organizing Maps (SOMs), introduced by Kohonen [I], 
are a well known neural model and are popular in areas that 
require visualization and dimension reduction of large, high 
dimensional data sets. SOMs are a vector quantization method 
which can preserve the topological relationships between of the network. 
input vectors when projected to a lower dimensional display 
space. The SOM was developed to help identify clusters in 
multidimensional datasets. The SOM does this by effectively 
packing the dataset onto a q-dimensional plane where often 
q = 2. The result is that data points that are “similar” to 
each other in the original multidimensional data space are 
then mapped onto nearby areas of the q-dimensional output 
space. SOMs combine competitive learning with dimension- 
ality reduction by smoothing the clusters with respect to an 
a priori grid. The SOM is called a topology-preserving map 
because there is a topological structure imposed on the nodes 
in the network. A topological map is simply a mapping that 
preserves neighbourhood relations. 

The basic idea of SOM is simple. Every neuron i of the map 
is associated with an n-dimensional codehook vector mi = 

,mi,)=. The neurons of the map are connected to 
adjacent neurons by a neighbourhood relation, which defines 
the topology, or the structure, of the map. Common topologies 
are rectangular and hexagonal [I]. 

Adjacent neurons belong to the neighbourhood Ni of the 
neuron i. Neurons belonging to Ni are updated according to a 
neighbourhood function f(.). Most often, f(.) is a Gaussian- 
bell function. Typically, the topology and the number of 
neurons remain fixed from the beginning though this is not 
a limitation [2]. The number of neurons determines the gran- 
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Node id Data label Children 

(2.27. 1.30) 
Fig. 1. 
in tabular representation (below). 

An example of a labelled directed graph (tap), and the same graph 

In [5 ] ,  the problem described under item B is overcome by 
weighting the influence of the data label and the class label 
during network training. However, this still produces good 
results only when the number of different classes is small. 

An improvement is achieved in [6] where a rejection term 
is introduced to the learning process. This is made possible by 
dynamically assigning neurons in the map to a class. Rejection 
is performed when the best matching neuron and the input 
data belong to different classes. The approach also allows a 
more sophisticated control over the amount of supervision to 
the learning process. However, network weights are affected 
globally during rejection which introduces noise to the learn- 
ing process of remote neurons. 

In this paper we suggest to reject codebooks only locally 
on a cluster of neurons which are located near the best 
matching neuron and which belong to the same class as the 
best matching neuron. This eliminates both problems, A and B, 
allowing an application of SOM to a wide range of application 
domain. We will demonstrate the capabilities through the 
application to a large set of graph-structured real world data. 

The structure of this paper is as follows: In Section11 
the SOM-SD model is described in some detail. This forms 
the basis for Section111 where we present the supervised 
approach. Experimental results are presented in Section IV. 
Finally, conclusions are drawn in Section V. 

11. A SOM FOR DATA STRUCTURES 

In [4], a SOM capable of processing labelled directed 
acyclic graphs (DAGs) is described. This extended SOM is 
called SOM for Structured Data, or SOM-SD. As is demon- 
strated in [4], a SOM-SD model defines a general mechanism 
which includes standard SOMs as a special case. 

A SOM becomes a SOM-SD through an extension in the 
training algorithm, and through an appropriate presentation 
of DAGs to the network: The following example helps to 
illustrate the mechanism: Figure 1 shows a graph with 3 nodes. 
Each node in the graph is identified by a unique symbol 
(here numbers). Associated with each node is a 2-dimensional 
real valued data label. The node numbered 1 is called roof, 

node 3 is the leaf node of this graph. All other nodes are 
intermediate nodes. The maximum out-degree (the maximum 
number of children at any node) of this graph is 2. A vectorial 
representation is obtain through a transformation into a tabular 
form as demonstrated in Figure 1. These vectors can be made 
constant in size if the maximum out-degree and the maximum 
data label dimension are known. For nodes with missing 
children or smaller data label size, padding with a suitable 
constant value can be deployed. 

Traditionally, SOMs use fixed size data labels as input but 
structural relationships between the data is not considered. In 
the case of graphs, relationships between the data vectors is 
well defined, and hence, can be used to assist network training. 

In SOM-SD this is achieved by adding the spatial location, 
i.e., the location of the winning neuron of the offsprings to 
the set of features of the parent node. As a result, the network 
needs to know where the winning neurons for all children 
nodes are located on the map when processing the parent node. 
This forces the network to process data in a bottom-up fashion, 
from the leaf nodes to the root node. 

In practice, for each node in the graph, the network input 
will be vectors which consist of (a) the pdimensional data 
label I, and (b) the coordinates c of the winning neuron for 
each offspring. 

The vector c is qo-dimensional, where o the maximum out- 
degree of any graph in the data set, and q is the dimension of 
the map. In this paper we will use q = 2. Hence, c consists of 
o tuples, each tuple being a 2-dimensional vector representing 
the x-y coordinates of the winning neuron of an offspring node. 
Offsprings, which essentially are sub-graphs, are represented 
at a particular position within the map. Hence, the tuples in 
c contain the coordinates of codebook vectors which were 
associated with the offsprings of the current node. Once it is 
known where the children are represented on the map, we can 
update the vector component c of the parent node accordingly. 
The input vector x is built through the concatenation of 1 and 
c so that x = [I, c]. As a result, x is a n = p + 2 o  dimensional 
vector. The codebook vectors m are of the same dimension. 

The network architecture of a SOM-SD network corre- 
sponds to that of a classic SOM but the training algorithm 
differs. The difference of the training algorithm arises out of 
the fact that the network input x consists of two components 
1 and c. It is required to modify. the similarity measure (e.g. 
the Euclidean distance) so as to weight the influence of 1 and 
c. This weighting is necessary to balance the influence of the 
elements to the training algorithm. For example, 1 may be high 
dimensional with elements larger than in c. Without balancing 
components, the network would be unable to learn relevant 
information provided through c. 

111. SUPERVISED SOM FOR STRUCTURED INFORMATION 

Kohonen describes in [ l ]  a mechanism for training a SOM 
supervised. The idea is to produce input vectors through the 
concatenation of the (numeric) target vector with the data 
label, and then to proceed training in the usual manner. 
However, the approach produces g o d  results only for some 
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artificial learning tasks where the number of classes is small 
[51. This section describes a method for supervised training 
of SOM which has been developed with considerably more 
success. 

An extension of the SOM-SD algorithm [6], employs a 
teacher signal when processing nodes for which a (symbolic) 
target label exists. The idea is to assign codebook vectors to 
the same class as the node that was mapped at this location. 
Training proceeds in a similar manner as the unsupervised case 
with the difference that codebook entries are rejected if they 
belong to a different class. 

In detail the method works follows: Given a self organizing 
map M with k neurons. Each neuron is associated with a 
codebook entry m E R". The best matching neuron m, for 
an input x is obtained e.g., by using the Euclidean distance: 

T = argmjn II(x - m;)All (1) 

where A is a n x n dimensional diagonal matrix. Its diagonal 
elements A11 . "App are assigned to be f i ~ ,  all remaining 
diagonal elements are set to pz. The values f i1  and 112 weight 
the influence of the components 1 and c in x. Then the i-th 
element of the j-th codebook vector mj is updated as follows: 

f ( A j r )  is a neighbourhood function which will be explained 
later, (I is the learning rate which decreases linearly to zero 
in time, 0 is a rejection rate which weights the influence of 
the rejection term h( . ) ,  The purpose of the rejection term 
is to move m, and its neighbours away from x. The effect 
is a reduction of the likelihood that an input node activates 
a codebook vector which is assigned to a foreign class in 
subsequent iterations. The rejection term is defined as follows: 

h(si,m,j) = sgn(z; - m;j)(p; - 12, - m ; j ) )  (3) 
where sgn(.) is the signum function returning the sign of its 
argument, and p; is the standard deviation defined as follows: 

(4) 

where N is the number of nodes in the training set, and 
z, = 1/N zl=, zl;. pi can be approximated by a constant 
when assuming that the mapping of nodes is random. This 
approximation significantly reduces the computational cost. 
The rejection term dictates stronger actions if a codebook entry 
is very similar to the input node. Note that h(.) retums values 
within the range [-1; 11 eliminating the hannful influence of 
the magnitude of the vector elements. 

The neighbourhood function f (.) controls the amount by 
which the weights of the neighbouring neurons are updated. 
The neighbourhood function f(.) can take the form of a 
Gaussian function: 

- N 
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where u(t )  is the spread decreasing with the number of 
iterations', and 1, is the location of the winning neuron, and 
1; is the location of the i-th neuron in the lattice. Other 
neighbourhood functions are also possible [I] .  

Note that because of Equation 2, the weights will not 
be distributed as a linear function of the input density. The 
approach with Equation 3 resembles MAE quantization. 

Training a supervised SOM-SD network is an extension 
of the training algorithm used by an unsupervised SOM-SD 
network. The difference between the two approaches is that 
codebook vectors are assigned to a class during training, and 
the use of a rejection term for codebook entries that do not 
belong to the same class as the input vector. Training a SOM- 
SD network in a supervised fashion is as follows: 
Step 1: A node j from the training set is chosen and presented 

to the network. When choosing a node special care has 
to be taken that the children of that node have already 
been processed. Hence, at the beginning of this process 
terminal nodes for each graph are processed first, the 
root node is considered last. Then, vector xi is presented 
to the network. A winning neuron T is obtained by 
finding the most similar codebook entry m,, e.g. by 
using Eq. 1. Then, the winning neuron is assigned to 
the same class as the node. Step I is repeated until all 
nodes in the training set have been considered exactly 
once. Codebook vectors that were activated by nodes 
belonging to different classes are assigned to the class 
which activated this neuron most frequently. Neurons that 
were not activated by any node are assigned to the class 
unknown. Note, this step does not involve any training. 
It is solely used to initialize neurons with class labels. 

Step 2: A node j is chosen from the data set in the same way 
as Step 1. Then, vector xj is presented to the network and 
the winning neuron T is obtained by finding the most 
similar codebook entry m,, e.g., by using Equation I .  

Step 3: The winning codebook vector and its neighbours are 
updated according to Equation 2. If either m or x belong 
to an unknown class then updating is performed as if they 
belong to the same class. 

Step 4: The coordinates of the winning neuron are passed on 
to the parent node which updates its vector c accordingly. 

Steps I to 4 are executed until a given number of training 
iterations are performed, or when the network performance 
has reached a given threshold. 

It is not absolutely necessary to execute Step 1 at every 
iteration. It is sufficient to initialize the class membership of 
codebook vectors when training starts. Then, a change of class 
membership can be detected when executing Step2. Hence, 
training can be performed by recursively running Steps 2 to 4. 

The weight values 1.11 and 112 can be computed as they 
depend on the dimension and magnitude of the elements in 
1 and c. Given that the Euclidean distance in Equation I is 

'Generally. the neighbourhood radius in SOMs never decreases to z r o  as 
otherwise. the algorithm reduces Io vector quantization and has no longer 
topalogical ordering properties ([I]. p. 111) 
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computed as follows: 

20 

d = h XOi - mi)' + PZ c ( c j  - m,+j)' (6) j P  i=l  j=1 

Thus, and 112 balance the influence of 1 and c to the 
distance measure. Ideally, the influence of the data label and 
the coordinate vector on the final result is equal. A way to 
obtaining the pair of weight values is suggested in [4]: 

where $(11,1) is the average absolute value of the i-th element 
of all data labels in the data set. Similarly, +(cJ is the average 
of the i-th element of all coordinates. The data label 1 is 
available for all nodes in the data set. The coordinate vector 
$(c,) needs to be approximated by assuming that the mapping 
of nodes is at random. Hence, the values in +(c,) are simply 
half the extensibn of the map. Moreover, o(v,) is the standard 
deviation of the i-th vector element of a vector v. To obtain 
unique value pairs we make the assumption that p1+ = 1. 

In the case where the maximum out-degree of the data is 
zero, the SOM-SD reduces to the standard SOM model. 

We found that in the case that the winning neuron is of 
a different class as the input vector, then all neurons on the 
map are affected by the rejection procedure. This adds noise 
to the leaming procedure of remote neurons which may have 
little relation to the winning neuron. In this paper we propose a 
rejection strategy which is similar to LVQ [I]. To achieve this, 
we apply the rejection term only to a local cluster of neurons 
which is formed by neurons that are of the same class as the 
winning neuron, and are located closest to it. All other neurons 
that are not in this cluster are updated as in the unsupervised 
case. This approach not only eliminates the addition of noise 
during learning but also accelerates the adaption of remote 
neurons. This is because remote neurons are drawn towards 
the input vector even if the vector was classified incorrectly 
increasing the likelihood that the input vector is mapped away 
from the winning neuron in subsequent iterations. 

IV. EXPERIMENTAL RESULTS 

This section investigates the capabilities of the proposed 
method through a comparison with an unsupervised SOM-SD 
and a supervised SOM-SD model which applies the rejection 
term globally [6]. We chose a real world learning problem 
from the area of pattem recognition where the task is to 
classify company logos. 

The task defined by the logo recognition problem is to 
recognize and classify company logos such as those shown 
in Figure 2. This dataset has already been applied to other 
neural models capable of dealing with structured information 
such as recursive cascade correlation architecture and recursive 
multilayer perceptron [7]. The dataset consists of 39 different 
classes of logos which are available in the form of digital 

images *, There are 300 different samples available for each 
of the 39 classes, producing a total set of 11700 images. 

-_  
class'o' class'l' elass'2' class'3' class'l' c l a s ' 5 '  class'6' cla~s'l' 

v 
class'G' class'H class'l' class'I' class'K class'L' class'M class" 

Fig. 2. The original data set of logos. 39 different instances of logos define 
the 39 classes for the learning problem. In this Figure, the images are scaled 
to feature the same horizontal extension. 

A graph representation is extracted From each of the images 
by following procedures based on a contour-tree algorithm 
described in [7]. The result is a training set consisting of 5850 
graphs featuring a total of 55547 sub-tree structures or nodes, 
and a validation data set with 5850 graphs featuring 55654 
sub-trees in total. Each node in the graph had a 12-dimensional 
numeric label attached which consists of: 
(1) The area consumed by the contour, which is the number 
of pixels surrounded by the contour. This value is normalized 
with respect to the maximum value among all contours. 
(2) The outer boundary of the contour in pixels normalized 
with respect to the largest boundary found in the picture. 
(3) The number of pixels found inside the area enclosed 
by a contour that feature a black color value. The value is 
normalized with respect to the maximum number of black 
pixels found in any of the contours of the picture. 
(4) The minimum distance in pixels between the image 
barycenter and the contour. This value is normalized with 
respect to half of the diagonal of the image bounding box. 
(5) The angle between a horizontal line and the line drawn 
through the image barycenter and the contour barycenter. The 
angle is quantized in order to reduce the sensitivity to rotation 
in the image. Eight possible values are coded as real numbers 
in [0,1] with a uniform sampling. 
( 4 7 )  The maximum curvature angle for convex sides, and the 
maximum curvature angle for concave sides. 
(8,9) The number of points for which the curvature angle 
exceeds a given threshold for convex (1st value) and concave 
regions (2nd value). 
(10) The smallest distance in pixels between the contour and 
other contours. 

'The logo dataset was provided by the Document Processing Group, Center 
for Automation Research. University of Maryland. 
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(11,121 The smallest distance between the contour and the 
two contours with the largest outer boundary. 

The root nodes represents an image as a whole, whereas 
its direct descendants represent outer contours. Recursively, a 
descendant represents a contour which is located inside the 
contour represented by its parent node. As a consequence, it 
is the intermediate and leaf nodes that hold information about 
the detail of a logo, and the structure of a graph represents 
the relationship between the components of a logo. The data 
label assigned to the root node holds little information. 

The maximum out-degree is I .  Hence, the dimension of the 
input vectors and codehook vectors is 12 + 2 * 7 = 26. 

We first determine a good choice of value pairs for the 
weight values p1 and pz since it was reported in [4] that in 
practice, p2 needs to be considerably larger than the theoretical 
optimum to achieve a good performance when dealing with 
graphs. To perform this task we trained networks on a range 
of values for p, and used a learning rate a(0) = 1, a rejection 
rate p(0) = 0.05, a neighbourhood spread U = 40, and trained 
it for 250 iterations. These values were chosen arbitrarily but 
seemed reasonable. The result is displayed in figure 3. 

IM I 

1 , , , , , , , _ I ,  , _ I ,  , ,'::, t , ,  , J  

'?d5 o m ,  om, 001 0 1  I 10 ,m 1" Ima 
-1 

Fig. 4. 
Classification performances are shown. 

SOM. It is also seen that by restricting the rejection to a local 
cluster of neurons we generally outperform the global rejection 
method, and that the local rejection approach is considerably 
less sensitive to large rejection rates. We find that the best 
rejection rates are 12 and 15 for the global and local rejec- 
tion approach respectively. At these rates, the classification 
performance is 96.05% when rejecting globally and 97.77% 
when using the local rejection approach. The generalization 
performance is improved from 83.32% to 84.23%. 

Further experiments were conducted to investigate the sen- 
sitivity of the networks to the various learning parameters, 
and to obtain hest initial values. Figure5 trains a number of 
networks by using the best values for p and p as determined 

Performance of the sSOM-SD depending on the rejection rate. 

previously. All other parameters remained unchanged except 

0.2 0 4  0.6 0 8  

Fig. 3. 
generalization performance of a SOM-SD network. Here, 112 = 1 -MI. 

Dependence of lhe weight value 111 on the classification and 

Equation 7 suggests an optimal value for p1 x 
0 . 9 9 9 3 4 7 , ~ ~  = 1 - PI.  However, the experiment confirms 
that pz needs to be chosen considerably larger to achieve a 
good performance. Here, we find that p1 = 0.43 is best for the 
unsupervised case, p1 = 0.01 is best when engaging rejection 
globally, and pl = 0.07 when rejecting local clusters only. 
Nevertheless, the SOM-SD is relatively robust to the choice 
of the weight values given that the performances change only 
little over a wide range of P.  

Using the best weight values we then trained the networks 
with various rejection rate. This experiment will illustrate 
the effect of rejection on the classification performance. In 
Figure4 we show the result for a large range of rejection 
rates. It is seen that the size of the rejection rate can have 
a significant impact on the classification performance of the 

I 
a 40 60 110 IM 120 140 

P..dl". 

Fig. 5. Performance of the sSOM-SD when varying the initial neighborhcad 
radius o(0). Classification performances are shown. 
for the size of the neighborhood radius u(0). It is found that 
the three methods for training a SOM-SD perform best when 
trained with a relatively small u(0). This appears to be a 
common property of SOM-SDs since this has already k e n  
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observed in [4], [ 5 ] ,  [6]. Nevertheless, we find that applying 
rejection to a local cluster of neurons again outperforms the 
other two approaches consistently, and that our. approach is 
least sensitive to very small values for u(0). We find that the 
optimal choice for u(0) is 6 for the unsupervised approach, 
and 4 for both of the supervised approaches. 

Using the best learning parameters as obtained so far, we 
further investigate the influence of the number of training 
iterations on the performances of the networks. The exper- 
imental results shown in Figure6 confirm the advantage of 

I 

ll"" 

Fig. 6. 
iterations. Classification performances are shown in percent. 

supervised network training on the classification and gen- 
eralization performance. Again, the local rejection method 
consistently outperforms the other methods. It is also seen that 
our approach produces good results already after as little as SO 
training iterations while the other approaches require at least 
100 iterations. This confirms a statement made earlier that the 
local rejection method should accelerate network training. 

Further experiments were conducted on initial values for 
a(0). the network size, and the size of the training set. Though 
the details of these experiments are omitted we can report that 
the approach of engaging rejection on local clusters generally 
produced superior results in both, the classification perfor- 
mances as well as robustness to extreme values of training 
parameters. The best overall performance achieved with the 
unsupervised approach was 95.50% classification, and 84.78% 
generalization. The best supervised network which engaged 
the rejection term globally achieved 97.60% classification, and 
85.38% generalization. Our method of restricting rejection to a 
local cluster of neurons improved the performance to 98.78% 
classification, and 86.35% generalization. 

Note that in this paper, we have used the classification 
performance as an indicator on the mapping precision of 
the SOM. The experiments demonstrated that the mapping 
precision is influenced positively by utilizing teacher signals if 
they are available. In addition. the proposed approach extends 
the capabilities of a SOM towards classification tasks. While 

Performance of the sSOM-SD when varying the number of uaining 

SOMs are not typically used for classification tasks it has 
become possible to compare supervised SOMs with other 
neural network models which are commonly used for such 
tasks. Recursive multi-layer perceptron networks (RMLP), and 
recursive cascade correlation networks (RCC) are examples 
of neural models which are commonly trained in a supervised 
fashion, and applied to classification tasks [E]. When applied to 
the dataset used in this paper, a good RMLP achieves 99.81% 
classification, and 89.01% generalization performance. Simi- 
larly, a good RCC network can achieve 99.98% classification, 
and 72.94% generalization [8]. 

V. CONCLUSIONS 
It has become evident that the use of a rejection term 

for the purpose of training a SOM in a supervised fashion 
is an efficient method leading to a significantly improved 
mapping of data. The idea presented in this paper of restricting 
supervision to neurons which are nearby the winning neuron 
and which have a close resemblance to it has lead to a further 
improvement of the network performance. At the same time, 
it was found that the robustness of the SOM to learning 
parameters such as u, a, 0. and p is improved further. We 
also rarely observed problems with local minima which may 
be an indication that the algorithm produces more stable SOMs 
though this needs further investigation. 

The described method of supervision is very general in 
nature in that it can be employed to a very wide range of 
flavors of SOM as was demonstrated through the implementa- 
tion in to SOM-SD. The algorithm also handles missing class 
information in the data set efficiently in that it falls back to 
the unsupervised case in those instances. 

These improvements come at almost no additional compu- 
tational cost. A simple i f  statement in the neuron update 
algorithm is all that is different between the training algorithms 
of supervised and the unsupervised SOM-SD models. 

Note that there is no convergence theorem for this training 
algorithm introduced in this paper. This deficiency also afflicts 
the general SOM model. 
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