
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

July 2004

A supervised self-organizing map for structures A supervised self-organizing map for structures

Markus Hagenbuchner
University of Wollongong, markus@uow.edu.au

Ah Chung Tsoi
University of Wollongong, act@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Hagenbuchner, Markus and Tsoi, Ah Chung: A supervised self-organizing map for structures 2004.
https://ro.uow.edu.au/infopapers/148

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages

A supervised self-organizing map for structures A supervised self-organizing map for structures

Abstract Abstract
This work proposes an improvement of a supervised learning technique for self organizing maps. The
ideas presented in This work differ from Kohonen's approach to supervision in that a.) a rejection term is
used, and b.) rejection affects the training only locally. This approach produces superior results because it
does not affect network weights globally, and hence, prevents the addition of noise to the learning
process of remote neurons. We implemented the ideas into self-organizing maps for structured data
(SOM-SD) which is a more general form of self-organizing maps capable of processing graphs. The
capabilities of the proposed ideas are demonstrated by utilizing a relatively large real world learning
problem from the area of image recognition. It is shown that the proposed method produces better
classification performances while being more robust and flexible than other supervised approaches to
SOM.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
This article was originally published as: Hagenbuchner, M & Tsoi, AC, A supervised self-organizing map
for structures, Proceedings IEEE International Joint Conference on Neural Networks, 25-29 July 2004, vol
3, 1923-1928. Copyright IEEE 2004.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/148

https://ro.uow.edu.au/infopapers/148

A Supervised Self-organizing Map for Structures
Markus Hagenbuchner Ah Chung Tsoi

Information Technology Services
University of Wollongong, Australia

Office of Pro Vice-Chancellor (IT)
University of Wollongong, Australia

markus @artificial-neura1.net act@an~cial-neural .net

Abstract-This paper propom an improvement of a super-
vised learning technique for Self Organizing Maps. The ideas
presented in this paper differ from Kohonen’s approach to
supervision in that a.) a rejection term is used, and b.) rejection
aNects the training only locally. This approach produces superior

because it does not alfect network weights globally, and
hence, prevents the addition of noise to the learning p rows of
remote neurons. we implemented the ideas into Self-organizing
Maps for Structured Data (S 0 M - W which is a more general data. The algorithm controls the
form of Self-Organizing Maps capable of processing graphs. The
capabilities of the proposed ideas are demonstrated by utilizing
a relatively large real world learning problem from the area of
image recognition. It will be shown that the proposed method
produces better classification performances while being more
robust and flexible than other supervised approach= to SOM.

ularity of the mapping, which has an effect on the accuracy
and generalization of the SOM [I].

which is most similar to an input vector. This codehook vector,
and its neighbours are then updated so as to render them more
similar to the input vector. The result is that, during the training
phase, the SOM forms an elastic that is shaped by input

approximate the density of the data. The reference vectors in
the codebook drift to’areas where the density of the input data
is high. Eventually, only few codebook vectors lie in areas
where the input data is sparse [I] .

The standard SOM model is restricted to the processing of
fixed sized input vectors though extensions to data sequences
do exist [3]. A more recent extension, called SOM for Struc-
tured Data (SOM-SD) [4], allows the discovery of similarities
among more complex objects such as labelled acyclic directed
graphs (Labelled DAGS). The extension is made possible by
including structural information about the graph to the input

These methods are typically trained in an unsupervised
fashion even if a teacher signal is available. Some attempts
were made to utilize teacher signals, if available, with the
goal to improve the mapping precision. Supervised training of
SOMs is attempted by Kohonen in [ll.There, supervision is
achieved by attaching information about class membership to
the input vector while during the recognition phase, the class
label is omitted. The idea of attaching a class label to the input
vectors has also been adopted to the training of SOM-SDs in
151. While it is claimed that the attachment of class information
leads to a better discrimination between pattem classes, we
found in practice that this is not always true. In particular, the
mapping of large sets of concise data may actually worsen.
We attribute this mainly to the following two factors:
A.) For every input vector, the SOM is updated globally.

Hence, the processing of an input belonging to a class
’a’ adds noise to the mapping of another input from
another class. The effect worsens the greater the number
of different classes, and if the number of training samples
for each class is out of balance.

B.) The influence of the attached class label to the error
measure is unbalanced. For example, when training a
SOM on inputs with a small data label and a large class
label, the mapping of the input is biased towards the class
label’resulting in a poor representation of the actual data.

The network is trained by finding the codebook

so that it suives to

I. INTRODUCTION

Self Organizing Maps (SOMs), introduced by Kohonen [I],
are a well known neural model and are popular in areas that
require visualization and dimension reduction of large, high
dimensional data sets. SOMs are a vector quantization method
which can preserve the topological relationships between of the network.
input vectors when projected to a lower dimensional display
space. The SOM was developed to help identify clusters in
multidimensional datasets. The SOM does this by effectively
packing the dataset onto a q-dimensional plane where often
q = 2. The result is that data points that are “similar” to
each other in the original multidimensional data space are
then mapped onto nearby areas of the q-dimensional output
space. SOMs combine competitive learning with dimension-
ality reduction by smoothing the clusters with respect to an
a priori grid. The SOM is called a topology-preserving map
because there is a topological structure imposed on the nodes
in the network. A topological map is simply a mapping that
preserves neighbourhood relations.

The basic idea of SOM is simple. Every neuron i of the map
is associated with an n-dimensional codehook vector mi =

,mi,)=. The neurons of the map are connected to
adjacent neurons by a neighbourhood relation, which defines
the topology, or the structure, of the map. Common topologies
are rectangular and hexagonal [I].

Adjacent neurons belong to the neighbourhood Ni of the
neuron i. Neurons belonging to Ni are updated according to a
neighbourhood function f(.). Most often, f(.) is a Gaussian-
bell function. Typically, the topology and the number of
neurons remain fixed from the beginning though this is not
a limitation [2]. The number of neurons determines the gran-

0-7803-8359- 1/04/$20.00 02004 IEEE 1923

mailto:artificial-neura1.net

Node id Data label Children

(2.27. 1.30)
Fig. 1.
in tabular representation (below).

An example of a labelled directed graph (tap), and the same graph

In [5] , the problem described under item B is overcome by
weighting the influence of the data label and the class label
during network training. However, this still produces good
results only when the number of different classes is small.

An improvement is achieved in [6] where a rejection term
is introduced to the learning process. This is made possible by
dynamically assigning neurons in the map to a class. Rejection
is performed when the best matching neuron and the input
data belong to different classes. The approach also allows a
more sophisticated control over the amount of supervision to
the learning process. However, network weights are affected
globally during rejection which introduces noise to the learn-
ing process of remote neurons.

In this paper we suggest to reject codebooks only locally
on a cluster of neurons which are located near the best
matching neuron and which belong to the same class as the
best matching neuron. This eliminates both problems, A and B,
allowing an application of SOM to a wide range of application
domain. We will demonstrate the capabilities through the
application to a large set of graph-structured real world data.

The structure of this paper is as follows: In Section11
the SOM-SD model is described in some detail. This forms
the basis for Section111 where we present the supervised
approach. Experimental results are presented in Section IV.
Finally, conclusions are drawn in Section V.

11. A SOM FOR DATA STRUCTURES

In [4], a SOM capable of processing labelled directed
acyclic graphs (DAGs) is described. This extended SOM is
called SOM for Structured Data, or SOM-SD. As is demon-
strated in [4], a SOM-SD model defines a general mechanism
which includes standard SOMs as a special case.

A SOM becomes a SOM-SD through an extension in the
training algorithm, and through an appropriate presentation
of DAGs to the network: The following example helps to
illustrate the mechanism: Figure 1 shows a graph with 3 nodes.
Each node in the graph is identified by a unique symbol
(here numbers). Associated with each node is a 2-dimensional
real valued data label. The node numbered 1 is called roof,

node 3 is the leaf node of this graph. All other nodes are
intermediate nodes. The maximum out-degree (the maximum
number of children at any node) of this graph is 2. A vectorial
representation is obtain through a transformation into a tabular
form as demonstrated in Figure 1. These vectors can be made
constant in size if the maximum out-degree and the maximum
data label dimension are known. For nodes with missing
children or smaller data label size, padding with a suitable
constant value can be deployed.

Traditionally, SOMs use fixed size data labels as input but
structural relationships between the data is not considered. In
the case of graphs, relationships between the data vectors is
well defined, and hence, can be used to assist network training.

In SOM-SD this is achieved by adding the spatial location,
i.e., the location of the winning neuron of the offsprings to
the set of features of the parent node. As a result, the network
needs to know where the winning neurons for all children
nodes are located on the map when processing the parent node.
This forces the network to process data in a bottom-up fashion,
from the leaf nodes to the root node.

In practice, for each node in the graph, the network input
will be vectors which consist of (a) the pdimensional data
label I, and (b) the coordinates c of the winning neuron for
each offspring.

The vector c is qo-dimensional, where o the maximum out-
degree of any graph in the data set, and q is the dimension of
the map. In this paper we will use q = 2. Hence, c consists of
o tuples, each tuple being a 2-dimensional vector representing
the x-y coordinates of the winning neuron of an offspring node.
Offsprings, which essentially are sub-graphs, are represented
at a particular position within the map. Hence, the tuples in
c contain the coordinates of codebook vectors which were
associated with the offsprings of the current node. Once it is
known where the children are represented on the map, we can
update the vector component c of the parent node accordingly.
The input vector x is built through the concatenation of 1 and
c so that x = [I, c]. As a result, x is a n = p + 2 o dimensional
vector. The codebook vectors m are of the same dimension.

The network architecture of a SOM-SD network corre-
sponds to that of a classic SOM but the training algorithm
differs. The difference of the training algorithm arises out of
the fact that the network input x consists of two components
1 and c. It is required to modify. the similarity measure (e.g.
the Euclidean distance) so as to weight the influence of 1 and
c. This weighting is necessary to balance the influence of the
elements to the training algorithm. For example, 1 may be high
dimensional with elements larger than in c. Without balancing
components, the network would be unable to learn relevant
information provided through c.

111. SUPERVISED SOM FOR STRUCTURED INFORMATION

Kohonen describes in [l] a mechanism for training a SOM
supervised. The idea is to produce input vectors through the
concatenation of the (numeric) target vector with the data
label, and then to proceed training in the usual manner.
However, the approach produces g o d results only for some

1924

artificial learning tasks where the number of classes is small
[51. This section describes a method for supervised training
of SOM which has been developed with considerably more
success.

An extension of the SOM-SD algorithm [6], employs a
teacher signal when processing nodes for which a (symbolic)
target label exists. The idea is to assign codebook vectors to
the same class as the node that was mapped at this location.
Training proceeds in a similar manner as the unsupervised case
with the difference that codebook entries are rejected if they
belong to a different class.

In detail the method works follows: Given a self organizing
map M with k neurons. Each neuron is associated with a
codebook entry m E R". The best matching neuron m, for
an input x is obtained e.g., by using the Euclidean distance:

T = argmjn II(x - m;)All (1)

where A is a n x n dimensional diagonal matrix. Its diagonal
elements A11 . "App are assigned to be f i ~ , all remaining
diagonal elements are set to pz. The values f i1 and 112 weight
the influence of the components 1 and c in x. Then the i-th
element of the j-th codebook vector mj is updated as follows:

f (A j r) is a neighbourhood function which will be explained
later, (I is the learning rate which decreases linearly to zero
in time, 0 is a rejection rate which weights the influence of
the rejection term h(.) , The purpose of the rejection term
is to move m, and its neighbours away from x. The effect
is a reduction of the likelihood that an input node activates
a codebook vector which is assigned to a foreign class in
subsequent iterations. The rejection term is defined as follows:

h(si,m,j) = sgn(z; - m;j)(p; - 12, - m ; j)) (3)
where sgn(.) is the signum function returning the sign of its
argument, and p; is the standard deviation defined as follows:

(4)

where N is the number of nodes in the training set, and
z, = 1/N zl=, zl;. pi can be approximated by a constant
when assuming that the mapping of nodes is random. This
approximation significantly reduces the computational cost.
The rejection term dictates stronger actions if a codebook entry
is very similar to the input node. Note that h(.) retums values
within the range [-1; 11 eliminating the hannful influence of
the magnitude of the vector elements.

The neighbourhood function f (.) controls the amount by
which the weights of the neighbouring neurons are updated.
The neighbourhood function f(.) can take the form of a
Gaussian function:

- N

19

where u(t) is the spread decreasing with the number of
iterations', and 1, is the location of the winning neuron, and
1; is the location of the i-th neuron in the lattice. Other
neighbourhood functions are also possible [I] .

Note that because of Equation 2, the weights will not
be distributed as a linear function of the input density. The
approach with Equation 3 resembles MAE quantization.

Training a supervised SOM-SD network is an extension
of the training algorithm used by an unsupervised SOM-SD
network. The difference between the two approaches is that
codebook vectors are assigned to a class during training, and
the use of a rejection term for codebook entries that do not
belong to the same class as the input vector. Training a SOM-
SD network in a supervised fashion is as follows:
Step 1: A node j from the training set is chosen and presented

to the network. When choosing a node special care has
to be taken that the children of that node have already
been processed. Hence, at the beginning of this process
terminal nodes for each graph are processed first, the
root node is considered last. Then, vector xi is presented
to the network. A winning neuron T is obtained by
finding the most similar codebook entry m,, e.g. by
using Eq. 1. Then, the winning neuron is assigned to
the same class as the node. Step I is repeated until all
nodes in the training set have been considered exactly
once. Codebook vectors that were activated by nodes
belonging to different classes are assigned to the class
which activated this neuron most frequently. Neurons that
were not activated by any node are assigned to the class
unknown. Note, this step does not involve any training.
It is solely used to initialize neurons with class labels.

Step 2: A node j is chosen from the data set in the same way
as Step 1. Then, vector xj is presented to the network and
the winning neuron T is obtained by finding the most
similar codebook entry m,, e.g., by using Equation I .

Step 3: The winning codebook vector and its neighbours are
updated according to Equation 2. If either m or x belong
to an unknown class then updating is performed as if they
belong to the same class.

Step 4: The coordinates of the winning neuron are passed on
to the parent node which updates its vector c accordingly.

Steps I to 4 are executed until a given number of training
iterations are performed, or when the network performance
has reached a given threshold.

It is not absolutely necessary to execute Step 1 at every
iteration. It is sufficient to initialize the class membership of
codebook vectors when training starts. Then, a change of class
membership can be detected when executing Step2. Hence,
training can be performed by recursively running Steps 2 to 4.

The weight values 1.11 and 112 can be computed as they
depend on the dimension and magnitude of the elements in
1 and c. Given that the Euclidean distance in Equation I is

'Generally. the neighbourhood radius in SOMs never decreases to z r o as
otherwise. the algorithm reduces Io vector quantization and has no longer
topalogical ordering properties ([I]. p. 111)

'25

computed as follows:

20

d = h XOi - mi)' + PZ c (c j - m,+j)' (6) j P i=l j=1

Thus, and 112 balance the influence of 1 and c to the
distance measure. Ideally, the influence of the data label and
the coordinate vector on the final result is equal. A way to
obtaining the pair of weight values is suggested in [4]:

where $(11,1) is the average absolute value of the i-th element
of all data labels in the data set. Similarly, +(cJ is the average
of the i-th element of all coordinates. The data label 1 is
available for all nodes in the data set. The coordinate vector
$(c,) needs to be approximated by assuming that the mapping
of nodes is at random. Hence, the values in +(c,) are simply
half the extensibn of the map. Moreover, o(v,) is the standard
deviation of the i-th vector element of a vector v. To obtain
unique value pairs we make the assumption that p1+ = 1.

In the case where the maximum out-degree of the data is
zero, the SOM-SD reduces to the standard SOM model.

We found that in the case that the winning neuron is of
a different class as the input vector, then all neurons on the
map are affected by the rejection procedure. This adds noise
to the leaming procedure of remote neurons which may have
little relation to the winning neuron. In this paper we propose a
rejection strategy which is similar to LVQ [I]. To achieve this,
we apply the rejection term only to a local cluster of neurons
which is formed by neurons that are of the same class as the
winning neuron, and are located closest to it. All other neurons
that are not in this cluster are updated as in the unsupervised
case. This approach not only eliminates the addition of noise
during learning but also accelerates the adaption of remote
neurons. This is because remote neurons are drawn towards
the input vector even if the vector was classified incorrectly
increasing the likelihood that the input vector is mapped away
from the winning neuron in subsequent iterations.

IV. EXPERIMENTAL RESULTS

This section investigates the capabilities of the proposed
method through a comparison with an unsupervised SOM-SD
and a supervised SOM-SD model which applies the rejection
term globally [6]. We chose a real world learning problem
from the area of pattem recognition where the task is to
classify company logos.

The task defined by the logo recognition problem is to
recognize and classify company logos such as those shown
in Figure 2. This dataset has already been applied to other
neural models capable of dealing with structured information
such as recursive cascade correlation architecture and recursive
multilayer perceptron [7]. The dataset consists of 39 different
classes of logos which are available in the form of digital

images *, There are 300 different samples available for each
of the 39 classes, producing a total set of 11700 images.

-_
class'o' class'l' elass'2' class'3' class'l' c l a s ' 5 ' class'6' cla~s'l'

v
class'G' class'H class'l' class'I' class'K class'L' class'M class"

Fig. 2. The original data set of logos. 39 different instances of logos define
the 39 classes for the learning problem. In this Figure, the images are scaled
to feature the same horizontal extension.

A graph representation is extracted From each of the images
by following procedures based on a contour-tree algorithm
described in [7]. The result is a training set consisting of 5850
graphs featuring a total of 55547 sub-tree structures or nodes,
and a validation data set with 5850 graphs featuring 55654
sub-trees in total. Each node in the graph had a 12-dimensional
numeric label attached which consists of:
(1) The area consumed by the contour, which is the number
of pixels surrounded by the contour. This value is normalized
with respect to the maximum value among all contours.
(2) The outer boundary of the contour in pixels normalized
with respect to the largest boundary found in the picture.
(3) The number of pixels found inside the area enclosed
by a contour that feature a black color value. The value is
normalized with respect to the maximum number of black
pixels found in any of the contours of the picture.
(4) The minimum distance in pixels between the image
barycenter and the contour. This value is normalized with
respect to half of the diagonal of the image bounding box.
(5) The angle between a horizontal line and the line drawn
through the image barycenter and the contour barycenter. The
angle is quantized in order to reduce the sensitivity to rotation
in the image. Eight possible values are coded as real numbers
in [0,1] with a uniform sampling.
(4 7) The maximum curvature angle for convex sides, and the
maximum curvature angle for concave sides.
(8,9) The number of points for which the curvature angle
exceeds a given threshold for convex (1st value) and concave
regions (2nd value).
(10) The smallest distance in pixels between the contour and
other contours.

'The logo dataset was provided by the Document Processing Group, Center
for Automation Research. University of Maryland.

1926

(11,121 The smallest distance between the contour and the
two contours with the largest outer boundary.

The root nodes represents an image as a whole, whereas
its direct descendants represent outer contours. Recursively, a
descendant represents a contour which is located inside the
contour represented by its parent node. As a consequence, it
is the intermediate and leaf nodes that hold information about
the detail of a logo, and the structure of a graph represents
the relationship between the components of a logo. The data
label assigned to the root node holds little information.

The maximum out-degree is I . Hence, the dimension of the
input vectors and codehook vectors is 12 + 2 * 7 = 26.

We first determine a good choice of value pairs for the
weight values p1 and pz since it was reported in [4] that in
practice, p2 needs to be considerably larger than the theoretical
optimum to achieve a good performance when dealing with
graphs. To perform this task we trained networks on a range
of values for p, and used a learning rate a(0) = 1, a rejection
rate p(0) = 0.05, a neighbourhood spread U = 40, and trained
it for 250 iterations. These values were chosen arbitrarily but
seemed reasonable. The result is displayed in figure 3.

IM I

1 , , , , , , , _ I , , _ I , , ,'::, t , , , J

'?d5 o m , om, 001 0 1 I 10 ,m 1" Ima
-1

Fig. 4.
Classification performances are shown.

SOM. It is also seen that by restricting the rejection to a local
cluster of neurons we generally outperform the global rejection
method, and that the local rejection approach is considerably
less sensitive to large rejection rates. We find that the best
rejection rates are 12 and 15 for the global and local rejec-
tion approach respectively. At these rates, the classification
performance is 96.05% when rejecting globally and 97.77%
when using the local rejection approach. The generalization
performance is improved from 83.32% to 84.23%.

Further experiments were conducted to investigate the sen-
sitivity of the networks to the various learning parameters,
and to obtain hest initial values. Figure5 trains a number of
networks by using the best values for p and p as determined

Performance of the sSOM-SD depending on the rejection rate.

previously. All other parameters remained unchanged except

0.2 0 4 0.6 0 8

Fig. 3.
generalization performance of a SOM-SD network. Here, 112 = 1 -MI.

Dependence of lhe weight value 111 on the classification and

Equation 7 suggests an optimal value for p1 x
0 . 9 9 9 3 4 7 , ~ ~ = 1 - PI. However, the experiment confirms
that pz needs to be chosen considerably larger to achieve a
good performance. Here, we find that p1 = 0.43 is best for the
unsupervised case, p1 = 0.01 is best when engaging rejection
globally, and pl = 0.07 when rejecting local clusters only.
Nevertheless, the SOM-SD is relatively robust to the choice
of the weight values given that the performances change only
little over a wide range of P.

Using the best weight values we then trained the networks
with various rejection rate. This experiment will illustrate
the effect of rejection on the classification performance. In
Figure4 we show the result for a large range of rejection
rates. It is seen that the size of the rejection rate can have
a significant impact on the classification performance of the

I
a 40 60 110 IM 120 140

P..dl".

Fig. 5. Performance of the sSOM-SD when varying the initial neighborhcad
radius o(0). Classification performances are shown.
for the size of the neighborhood radius u(0). It is found that
the three methods for training a SOM-SD perform best when
trained with a relatively small u(0). This appears to be a
common property of SOM-SDs since this has already k e n

I921

observed in [4], [5] , [6]. Nevertheless, we find that applying
rejection to a local cluster of neurons again outperforms the
other two approaches consistently, and that our. approach is
least sensitive to very small values for u(0). We find that the
optimal choice for u(0) is 6 for the unsupervised approach,
and 4 for both of the supervised approaches.

Using the best learning parameters as obtained so far, we
further investigate the influence of the number of training
iterations on the performances of the networks. The exper-
imental results shown in Figure6 confirm the advantage of

I

ll""

Fig. 6.
iterations. Classification performances are shown in percent.

supervised network training on the classification and gen-
eralization performance. Again, the local rejection method
consistently outperforms the other methods. It is also seen that
our approach produces good results already after as little as SO
training iterations while the other approaches require at least
100 iterations. This confirms a statement made earlier that the
local rejection method should accelerate network training.

Further experiments were conducted on initial values for
a(0). the network size, and the size of the training set. Though
the details of these experiments are omitted we can report that
the approach of engaging rejection on local clusters generally
produced superior results in both, the classification perfor-
mances as well as robustness to extreme values of training
parameters. The best overall performance achieved with the
unsupervised approach was 95.50% classification, and 84.78%
generalization. The best supervised network which engaged
the rejection term globally achieved 97.60% classification, and
85.38% generalization. Our method of restricting rejection to a
local cluster of neurons improved the performance to 98.78%
classification, and 86.35% generalization.

Note that in this paper, we have used the classification
performance as an indicator on the mapping precision of
the SOM. The experiments demonstrated that the mapping
precision is influenced positively by utilizing teacher signals if
they are available. In addition. the proposed approach extends
the capabilities of a SOM towards classification tasks. While

Performance of the sSOM-SD when varying the number of uaining

SOMs are not typically used for classification tasks it has
become possible to compare supervised SOMs with other
neural network models which are commonly used for such
tasks. Recursive multi-layer perceptron networks (RMLP), and
recursive cascade correlation networks (RCC) are examples
of neural models which are commonly trained in a supervised
fashion, and applied to classification tasks [E]. When applied to
the dataset used in this paper, a good RMLP achieves 99.81%
classification, and 89.01% generalization performance. Simi-
larly, a good RCC network can achieve 99.98% classification,
and 72.94% generalization [8].

V. CONCLUSIONS
It has become evident that the use of a rejection term

for the purpose of training a SOM in a supervised fashion
is an efficient method leading to a significantly improved
mapping of data. The idea presented in this paper of restricting
supervision to neurons which are nearby the winning neuron
and which have a close resemblance to it has lead to a further
improvement of the network performance. At the same time,
it was found that the robustness of the SOM to learning
parameters such as u, a, 0. and p is improved further. We
also rarely observed problems with local minima which may
be an indication that the algorithm produces more stable SOMs
though this needs further investigation.

The described method of supervision is very general in
nature in that it can be employed to a very wide range of
flavors of SOM as was demonstrated through the implementa-
tion in to SOM-SD. The algorithm also handles missing class
information in the data set efficiently in that it falls back to
the unsupervised case in those instances.

These improvements come at almost no additional compu-
tational cost. A simple i f statement in the neuron update
algorithm is all that is different between the training algorithms
of supervised and the unsupervised SOM-SD models.

Note that there is no convergence theorem for this training
algorithm introduced in this paper. This deficiency also afflicts
the general SOM model.

REFERENCES
[I1 T. Kohonen, SclfOgoniring Mops, ser. Springer Series in information

Sciences. Berlin, Heidelberg: Springer, 1995. vol. 30.
[2] B. Fritzke. "Supervised learning with growing cell suuctures:' in NIPS,

Denver, 1993.
[3] M. Varsla, 1. Del, R. Millan, and 1. Heikkonen, "A recumnt self-

organizing map for temporal sequence pmcessing," in Pmc. 7th Inl. ConJ
Art@ cia1 Neural Networks. ICANN97, 1997. pp. 421426.

[4] M. Hagenbuchner, A. Sperduti. and A. Tsoi, "A self-organizing map for
adaptive processing of suuctwed data:' IEEE Tranroctonr on Neural
Networks, Accepted for publication in 2W2.

[SI M.Hagenbuchner, A. Tsoi, and A. Sperduti; "A supervised self-organizing
map for suuctured data:' in Advonces in SdfOganising M a p .
N.Allinson, H.Yin, L.Allinson. and 1.Slack. Eds., 2001, pp. 21-28.

[6] M. Hagenbuchner and A. Tsoi, " A supervised self-organiding map for
suuctures," in Special issue PRL 2003.

[7] P. Frasconi. E. Francesconi, M. Go", S. Marinai, 1. Sheng, G. Soda,
and S. A., "Lago recognition by recursive neural networks." in Second
lnremnrioml Workshop on Graphics Recognition. GREC97, R. Kasturi
and L. K. Tombre. Eds.

[8] M. Hagenbuchner and A. Tsoi. "Recursive cascade correlation and
recursive multilayer percepmn. a comparison:' IEEE Tmnroetionr on
Ncuml Networks, 2002 (Submilled).

Elsevier. submined.

Springer-Verlag. 1997, pp. l o b l 1 7 .

1928

	A supervised self-organizing map for structures
	Recommended Citation

	A supervised self-organizing map for structures
	Abstract
	Disciplines
	Publication Details

	A supervised self-organizing map for structures - Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on

