
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

August 2004

Living with inconsistencies in a multidatabase system Living with inconsistencies in a multidatabase system

J. R. Getta
University of Wollongong, jrg@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Getta, J. R.: Living with inconsistencies in a multidatabase system 2004.
https://ro.uow.edu.au/infopapers/144

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37003218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages

Living with inconsistencies in a multidatabase system Living with inconsistencies in a multidatabase system

Abstract Abstract
Integration of autonomous sources of information is one of the most important problems in
implementation of the global information systems. This paper considers multidatabase systems as one
of the typical architectures of global information services and addresses a problem of storing and
processing inconsistent information in such systems. A new data model proposed in the paper separates
sure from inconsistent information and introduces a system of elementary operations on the containers
with sure and inconsistent information. A review of the implementation aspects in an environment of a
typical relational database management system concludes the paper.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
This article was originally published as: Getta, JR, Living with inconsistencies in a multidatabase system,
Proceedings 15th International Workshop on Database and Expert Systems Applications, 30 August-3
September 2004, 905-909. Copyright IEEE 2004.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/144

https://ro.uow.edu.au/infopapers/144

Living with Inconsistencies in a Multidatabase System

Janusz R. Getta
School of Information Technology and Computer Science

University of Wollongong
Wollongong, NSW 2522, Australia

jrg@uow.edu.au

Abstract

Integration of autonomous sources of information
is one of the most important problems in implementa-
tion of the global information systems. This work considers
multidatabase systems as one of the typical architec-
tures of global information services and addresses a prob-
lem of storing and processing inconsistent information
in such systems. A new data model proposed in the pa-
per separates sure from inconsistent information and
introduces a system of elementary operations on the con-
tainers with sure and inconsistent information. A review
of the implementation aspects in an environment of a typi-
cal relational database management system concludes the
paper.

1. Introduction

The integration of a large number of independent
and heterogeneous sources of information requires effi-
cient handling of inconsistent information. A global in-
formation service based on a network of distributed and
heterogeneous database systems, also called as a multi-
database system, is a typical environment where the in-
consistencies between the contents of local databases are
unavoidable[16]. A large number of heterogeneous sys-
tems connected to the service and their full autonomy
makes preservation of global data consistency too time con-
suming and too expensive. A lack of global consistency
control is a source of discrepancies in the contents of com-
mon database domains epresented in the remote systems.
This work assumes, that in a general case, it is too expen-
sive to eliminate the inconsistencies detected at a data in-
tegration stage and because of that we have to deal with
this phenomenon in the ordinary day to day process-
ing of a multidatabase. In particular, we consider repre-
sentation of inconsistent information in a multidatabase
system with a relational view of the integrated and re-

mote databases and we investigate efficient query process-
ing in such a system.

Since the advances in network technologies made the in-
tegration of distributed and heterogeneous database sys-
tems the implementable reality a number of research works
has been performed on both practical and theoretical as-
pects of handling the inconsistencies detected during data
integration. These works included the extensions of rela-
tional, object-oriented, and semi-structured data models
towards storing and processing uncertain and inconsis-
tent data. The works [12, 13] introduced the models of
i-tables and m-tables that partitioned information into three
classes: sure or definite information, indefinite informa-
tion, or maybe information. One of the first practical ap-
proaches [7] proposed the extensions of relational algebra
operations on the relational tables with incompatible at-
tributes. The model of flexible relations [1] considered the
data inconsistencies obtained from integration the multi-
ple autonomous relational databases. A paraconsisted re-
lational model described in [4, 17] and later on extended
on paraconsistent object-oriented and semi-structured
database models [15, 14] defined a paraconsistent rela-
tion as a pair of two relational tables. A positive table
represents all facts know to be true and negative table rep-
resents all facts known to be false. A nonempty intersection
of the positive and negative tables represents the inconsis-
tencies.

The other group of solutions was based on the for-
mal logic and logic programming. [6] investigated a
problem of finding the consistent answers from an in-
consistent database. The same problem caddressed in
[5, 2], and [3] used a concept of residue to derive the con-
sistent answers. Merging of inconsistent databases is
investigated in [11, 9], and [10]. In [8] the integrity con-
straints are expressed as disjunctive DATALOG programs.
These programs are used to remove the inconsisten-
cies from a database and to generate the consistent an-
swers.

The practical and implementation aspects of deal-

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

ing with inconsistencies in a typical commercial database
management system remain an open problem. Detec-
tion of inconsistencies and derivation of consistent answers
from inconsistent data and logical consistency constraints
is hard because the constraints are usually implemented as
small pieces of code embedded either in the client appli-
cations or kept on a database server as stored procedures
or database triggers. Representation of the inconsisten-
cies as different variants of the same rows in a relational
table has a negative impact on performance of query pro-
cessing when the computations are performed over all
combinations of the variants. It is also impossible to ex-
tract the negative facts from the commercial database
system due to the Closed World Assumption main-
tained by these systems. Derivation of correct answers
from the large amounts integrated data with the logic pro-
gramming techniques is too time consuming. This work
is an early attempt to address a problem of handling in-
consistent information in a typical ”of-the-shelf” database
management system. We consider a central site of a hypo-
thetical multidatabase system that stores and maintains data
extracted from a number of local database sites. Our ap-
proach clearly identifies the inconsistencies, separates the
inconsistencies from clean data and searches for the ef-
fective query procesing techniques in a multidatabase sys-
tem.

The paper is organized in the following way. The next
section provides the introduction to integration of mul-
tiple database systems and informally describes the ba-
sic concepts of our model. The formal specification of
the model is presented in Section 3. A system of opera-
tions on the elementary and complex units of inconsistent
information is defined in Section 4. Section 5 consid-
ers the implementation aspect of the model. Finally Section
6 concludes the paper.

2. Concepts

We consider a multidatabase system that integrates
a number of remote and independent database sys-
tems and provides a transparent view of the compo-
nent databases as a single monolithic relational database. A
lack of global consistency control over the local databases
causes inconsistencies later on detected at the data integra-
tion stages. A perfect example is a collection of medical
records integrated from a number of local medical cen-
ters. Each time a patient moves from one suburb to an-
other his/her medical record is recreated from scratch at a
medical center. In the relational model of data, the incon-
sistencies manifest themselves as different sets of tuples
representing the same real world entities and/or relation-
ships. Detection of the inconsistencies is performed in
the following way. Let rdi

and rdj
be the relational ta-

bles defined over the same schema A and obtained from
the remote databases di and dj respectively. If the do-
main constraints over the attributes in A and semantics of
rdi and rdj expressed as the sets of logical consistency con-
straints C over A (e.g. a set of all functional dependen-
cies over A) are the same then rdi

must be the same as
rdj

. To find all inconsistencies we have to find all sub-
sets of (rdi

−rdj
) ∪ (rdj

−rdi
) that do not violate the se-

mantics expressed through the constraints in C. As a
simple example consider a domain of suppliers includ-
ing John, Peter, and Paul supplying only bolts
and nuts. The semantics are expressed through a func-
tional dependency supplier, part→quantity and con-
straint c saying that each supplier performed at least one
shipment. The constraint expresses our beliefs that at least
one shipment performed by each supplier has been cor-
rectly recorded in a database. Assume that the follow-
ing sets of tuples have been extracted from the databases di

and dj .

di supplier part quantity
John nut 100
Peter bolt 200
Paul nut 25

dj supplier part quantity
John nut 100
Peter bolt 20
Paul bolt 25

It is sure that John supplied 100 nuts. Addi-
tionally, the following two sets of cases are possi-
ble. Peter supplied either 200 or 20 bolts. The
third option is eliminated by the functional depen-
dency supplier, part→quantity. Paul supplied either
25 bolts or 25 nuts or 25 bolts and 25 nuts.
The other cases when Peter or Paul supplied noth-
ing are eliminated by the constraint c. All pairs from
two sets of cases above represent all inconsistencies de-
tected during a data integration process. At the end of
integration, sure information is stored in a separate re-
lational table and inconsistencies are represented as the
additional variants. The formal and implementation de-
tails are discussed later.

We introduce a concept of a common context defined
as a set of logical consistency constraints. In the exam-
ple above a context consists of the functional dependency
supplier, part → quantity, constraint c and domain con-
straints: con(supplier) = {John, Peter, Paul},
con(part) = {bolt, nut}, and con(quantity) = N+.
A concept of context allows for clear identification of in-
consistencies, representation of inconsistencies as the vari-
ants of relational tables, and for separation of clean from
inconsistent information. As the result it is possible to con-
struct a system where the applications operate on both

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

clean and inconsistent components of a database and re-
turn both sure information and the variants of unsure
information. In such a system, a decision which vari-
ant is correct is no longer an obstacle for an immediate
access to integrated information. It is also possible that fu-
ture computations performed on both sure and inconsistent
information may contribute to elimination of the inconsis-
tencies.

3. Data objects

Let A be a set of attribute names later on called as a
schema, and let dom(a) denotes a domain of attribute a∈A.
A tuple t over a schema A is a full mapping t : A →
∪a∈Adom(a) and such that ∀a∈x, t(a)∈dom(a). A rela-
tional table constructed over a schema A is a set of tuples
over a schema A. A context C is a pair <A, D> where A is
a set of attribute names and D is a set of domain constraints
imposed on the domains of attributes in A. A domain con-
straint con(a)∈D determines a set of values an attribute a
can take in a given context, i.e. con(a)⊆dom(a). In the rest
of this paper we consider only the contexts defined over the
sets of domain constraints. Domain constraints being the el-
ementary components of contexts are implemented by the
majority of database management systems. A variant v in a
context <A, D> is a pair <d, r> where d is identifier of the
source of information and r is a relational table over schema
A such that ∀t∈r,a∈A t(a)∈con(a). A chunk of inconsis-
tent information (ichunk) is a set of variants v1, . . . vn in the
contexts C1, . . . , Cn respectively. We call ichunk c as a ho-
mogeneous ichunk if all its variants are created in the same
context.

4. Operations

A system of operations on ichunks is a reflection of
a standard system of relational algebra operations. We
start from the operations that change the domain con-
straints in a context of a variant. Let v=(d, r) be a re-
lational variant in context <A, D>. A split of variant v
over an attribute a and constraint c=coni(a), is denoted
by ≺c(v) and it is defined as variants vi=(d, ri) in con-
text <A, Di> and vj=(d, rj) in context <A, Dj> such
that:

(i) ri∩rj=∅ and ri∪rj=r,
(ii)Di∪Dj=D and

coni(a) ∈Di, con(a)−coni(a)∈ Dj

An operation opposite to a split is a merge. A merge
of the variants vi=(d, ri) in a context <A, Di> and
vj=(d, rj) in a context <A, Dj>, Di-coni(a) = Dj-
conj(a) and attribute a is denoted as vi•vj and its re-
sults is a variant v=(d, r) in a context <A, D> such that:

(i) ri∪rj=r,

(ii) coni(a)∪conj(a)=con(a)∈D all other
attributes have the same domain constraints as
Di, Dj .

Let π, σ,×,∪,∩,− denote the operations of projec-
tion, selection, Cartesian product, union, intersection, and
difference of the relational algebra. The respective op-
erations on variants are almost the mirror reflections of
the relational operations. The only difference are the ac-
tions performed by the operations on the contexts of vari-
ants. Consider a variant v=(d, r) in a context <A, D>.
Let X⊆A. Projection of a variant v onto a scheme X
is denoted by projectX(v) and it is equal to a vari-
ant v′=(d, r′) in a context <X, DX> such that:

(i) DX={con(a):a ∈X},
(ii) r′=πX(r)
Let φ be a well-formed formula of the prepositional cal-

culus. Selection from a variant v=(d, r)in a context
<A, D> is denoted by selectφ(v) and it is equal to a vari-
ant v′=(d, r′) in a context <X, Dφ> such that:

(i) Dφ={σφ(con(a)):a∈X},
(ii)r′=σφ(r)
The binary operations on variants are designed to com-

bine the variants from different source of information..
These operations include the set operations and re-
lational join. The set operations are defined only for
the variants in the same context. Then, a set opera-
tion α∈{∪,∩,−} on the variants vi=(di, ri), vj=(dj , rj)
both in the same context <A, D> computes a vari-
ant v=(didj , r) in context <A, D> where r=ri α rj .
Signature of the result v is a concatenation of the signa-
tures of its arguments.

Natural join operation on a variant vi=(di, ri) in a con-
text <Ai, Di> and variant vj=(dj , rj) in a context
<Aj , Dj> an such that Di[Ai ∪ Aj]=Dj [Ai ∪ Aj] is de-
noted as vi��vj and its result is a variant v=(d, r) in a con-
text <A, D> such that:

(i) Ai ∪ Aj=A and Di ∪ Dj=D,
(ii) r = ri ��Ai∪Aj

rj

Unary operations of projection (ΠX) and selection
(Σφ) on ichunk c are performed by application of the re-
spective operations of project and select to each variant
included in ichunk c. Binary operations of union, inter-
section, difference and join of ichunks are performed on
all pairs of customized variants selected from the argu-
ments. Customization to the common context is achieved
through projection and horizontal split of variants, For ex-
ample union of ichunk ci={vi} and ichunk cj={vj}
where vi=(di, ri) in context < {a, b}, {con(a), con(b)} >
and vj=(dj , rj) in context <{a}, con(a)> needs projec-
tion of variant vi into a context <{a}, {con(a)}>. Then,
union of vj and vi1 can be performed in a common con-
text <{a}, {con(a)}>. Finally, union of ci and cj con-
sists of a variant vi and variant vij obtained from union of

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

vj and vi1 . Signature of variant vij is obtained by concate-
nation of the signatures of its arguments.

The heterogeneous operations drop and append vari-
ant complete a set of operations on variants. An operation
dropv(c) removes a variant v from ichunk c and opera-
tion appendv(c) appends a variant v to c.

5. Implementations

This section considers implementation of the model de-
fined above. We use an ordinary ”of-the-shelf” relational
database management system. Implementation of a variant
v = (d, r) in a context <A, D> is a relational table r and
a collection of the ”lookup” relational tables that represent
a set of domain constraint D. An enumerated domain con-
straint with explicitly provided list of values is implemented
as a single column table that contains all values of the do-
main. An analytically defined domain constraint with or
without increment/decrement is implemented as a s CHECK
constraint on the attribute in r and single column table that
contains increment/decrement values. For example, a do-
main constraint age > 30 ∪ {25, 26} is implemented as a
check constraint CHECK(AGE>30) and lookup table with
two rows [25], [26]. A set of attributes A and additional con-
straints for r are implemented in a data dictionary (reposi-
tory) of a selected DBMS.

An ichunk c = {v1, . . . , vn} is implemented a set of re-
lational tables r1, . . . , rn where n ≤ m and table that con-
tains the names tables r1, . . . , rn and names of ”lookup” ta-
bles implementing the domain constraints. A number n of
relational tables is less than a number of variants m because
all homogeneous variants i.e. in the same context are imple-
mented as a single relational table with the columns repre-
senting the characteristic functions. Consider a set of homo-
geneous variants v1 = (d1, r1) vk = (dk, rk) all in a
common context <A, D>. Implementation of the homoge-
neous variants is a relational table r = ∪i=1,...,k(ri) over a
schema A∪{V1, . . . , Vk}. The columns Vi, i = 1, . . . , k im-
plement the characteristics functions that map the tuples in
r into {0, 1} depending on whether a tuple belongs to a vari-
ant vi or not.

Computation of queries in the database systems with in-
consistent information is similar to computation of queries
in the ordinary relational database systems. A query ex-
pressed in a high-level declarative query language is ini-
tially translated into an expression of relational algebra with
ichunks as the arguments and operations on ichunks . Imple-
mentations of the operations on variants are systematically
applied to all variants in ichunk or to all pairs of variants
from two ichunks . Let c = {v1, . . . , vk} be a set of variants
in a common context <A, D>. Then, projection of ichunk ,
ΠY (c) is implemented as
SELECT Y, max(V1), ..., max(Vk)

FROM r
GROUP BY Y;
where r = ∪i=1,...,k(ri). Let c = {v1, . . . , vm} and d =
{w1, . . . , wn} be two sets of variants in a common context
<A, D>. Union of ichunks , c ∪ d is implemented as a join
of the results R(A,Ui,Uj) over a set of attributes A of the
following SELECT statements computed for all pairs vi, wj

of variants in c and d.
R(A,Ui,Uj) :=
SELECT A, max(Ui), max(Uj)
FROM(

SELECT A, Vi Ui

FROM R
UNION

SELECT A, Vj Uj

FROM R)
GROUP BY A;
Intersection and difference of ichunks are also computed

as a join of the results obtained from respective intersec-
tion or difference performed on all pairs of variants from
the arguments. Let c be an ichunk in a context <A, D>
and d be an ichunk in a context <B, E>. Natural join of
ichunks c �� d is implemented as a join of the results R(A
∪ B ,Ui,Uj) over a set of attributes a cup B of the
following SELECT statements computed for all pairs vi, wj

of variants in c and d.
R(A ∪ B,Ui,Uj) :=
SELECT A,B max(Ui), max(Uj)
FROM(

SELECT A, Vi Ui

FROM R JOIN S
ON R.(A∪ B) = S.(A∪ B))

GROUP BY A, B;
Decomposition of ichunks into sure and inconsistent

components eliminates redundancies and speeds up query
processing. It is justified by a fact that the majority of data
belongs to the ”sure” components and for all of them there
is no need to represent and to process the variants. This
part of query computation can be simply done as evalua-
tion of relational algebra expressions. Computation of the
operations on the mixtures of ”sure” and ”imprecise” com-
ponents can be done faster because of the expected small
size of imprecise components. The small ”imprecise” com-
ponents can be kept in a main memory for the computa-
tion time. Finally, decomposition allows for unified evalua-
tion of expressions where only some of the arguments con-
tain inconsistent data and the rest are the plain relational ta-
bles.

6. Summary

This work addresses a problem of dealing with incon-
sistent information in a multidatabase system that integrate

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

a number of independent and heterogeneous database sys-
tems. A concept of context is used to detect the inconsis-
tencies in the descriptions of identical database domain ex-
tracted from the component databases. A model presented
in this paper generalizes a concept of relational table to a
set of variants (ichunk) each valid in a predefined context
and defines a system of algebraic operations on ichunks . We
shown how ichunks and operations on ichunks can be imple-
mented in a typical relational database management system.
The contexts allow for precise identification of the incon-
sistencies and for separation of clean and inconsistent in-
formation in a multidatabase system. This approach also al-
lows for a direct access to the results of integration without
the resolutions of detected inconsistencies. It contributes to
more effective computation of queries and elimination of in-
consistencies from the answers through restrictions on do-
main contexts.

An area that need further work concerns the impact of
the other decomposition methods on efficiency of query
processing. For example, decomposition of ichunks into
”sure” ”maybe” ”exclusive” and the other more specific
sorts of inconsistent information may provide the chances
for faster query processing and more precise specifification
of the results. A vertical decomposition of the variant parts
ofichunks is another idea that also needs to be considered.

References

[1] S. S. Agarwal, A. Keller, G. Wiederhold, and S. Saraswat.
Flexible relation: An approach for integrating data from mul-
tiple, possibly inconsistent databases. In Proc. of IEEE Data
Engineering Conf., 1995.

[2] M. Arenas, L. E. Bertosi, and J. Chomicki. Consistent query
answers in inconsistent database. In Proc. of the 18th ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’99), pages 68–79, 1999.

[3] M. Arenas, L. E. Bertosi, and M. Kifer. Applications
of annotated predicate calculus to querying inconsistent
databases. In Proc. of the First International Conference on
Computational Logic (CL 2000), 2000.

[4] R. Bagai and R. Sunderraman. A paraconsistent relational
data model. International Journal of Computer Mathemat-
ics, 55(1):39–55, 1995.

[5] P. Barcel and L. Bertossi. Logic programs for querying in-
consistent databases. In Proc of 5th Int. Symp. on Practical
Aspects of Declarative Languages, PADL 2003, pages 208–
222, 2003.

[6] F. Bry. Query answering in information systems with in-
tegrity constraints. In IFIP WG 11.5 Working Conf. on In-
tegrity and Control in Information System. Chapman & Hall,
1997.

[7] L. G. DeMichiel. Resolving database incompatibility: An ap-
proach to performing relational operations over mismatched
domains. IEEE Transactions on Knowledge and Data Engi-
neering, 1(4):485–493, 1989.

[8] G. Greco, S. Greco, and E. Zumpano. A logic programming
approach to the integration, repairing, and querying inconsis-
tent databases. In Proc of the 17th Int. Conf. on Logic Pro-
gramming, (ICLP’01), pages 348–346. Springer, 2001.

[9] D. Lembo, M. Lenzerini, and R. Rosati. Inconsistency and
incompleteness in data integration. In Proc. of the 9th Int.
Workshop on Knowledge Representation meets Databases
(KRDB 2002), 2002.

[10] M. Lenzerini. Data integration: A theoretical perspective.
In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS 2002, pages 233–
246, 2002.

[11] J. Lin and A. O. Mendelzon. Merging databases under con-
straints. Int. J. of Cooperative Systems, 7(1):55–76, 1998.

[12] K.-C. Liu and R. Sunderraman. Indefinite and maybe infor-
mation in relational databases. ACM Trans. Database Sys-
tems, 15(1):1–39, 1990.

[13] K.-C. Liu and R. Sunderraman. A generalized relational
model for indefinite and maybe information. IEEE Trans-
actions on Knowledge and Data Engineering, 3(1):65–77,
1991.

[14] L. Mengchi and W. L. Tok. A data model for semistruc-
tured data with partial and inconsistent information. In Ad-
vances in Database Technology - EDBT 2000, 7th Interna-
tional Conference on Extending Database Technology, pages
317–331. Springer Verlag, 2000.

[15] S. J. K. R. Bagai. Paraconsistency in object-oriented
databases. In Soft-Ware 2002: Computing in an Imperfect
World, First International Conference, Soft-Ware 2002, Pro-
ceedings, pages 141–150. Springer, 2002.

[16] A. Sheth and J. Larson. Federated database systems for man-
aging distributed, heterogeneous and autonomous databases.
ACM Computing Surveys, 22(1):183–236, 1990.

[17] N. Q. Trân and R. Bagai. Efficient representation and al-
gebraic manipulations of inifinite relations in paraconsistent
database. Information Systems, 25(8):491–502, 2000.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

	Living with inconsistencies in a multidatabase system
	Recommended Citation

	Living with inconsistencies in a multidatabase system
	Abstract
	Disciplines
	Publication Details

	Living with inconsistencies in a multidatabase system - Database and Expert Systems Applications, 2004. Proceedings. 15th International Workshop on

