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Abstract: We present a five-round algebraic property of the advanced encryption standard 
(AES), and we show that this algebraic property can be used to analyse the internal structure of 
ALPHA-MAC whose underlying block cipher is AES. In the proposed property, we modify 20 
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that after 5 rounds of operations, such modifications do not change the intermediate result and 
finally, still produce the same ciphertext. By employing the proposed five-round algebraic 
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1 Introduction 

The block cipher Rijndael, invented by Daemen and Rijmen 
(2001), was selected as the advanced encryption standard 
(AES) by National Institute of Standards and Technology. 
Rijndael has a simple and elegant structure, and it was 
designed carefully to withstand two well-known 
cryptanalytic attacks: differential cryptanalysis, proposed by 
Biham and Shamir (1993) and linear cryptanalysis, 
described by Matsui (1994). Most operations of Rijndael are 
based on the algebraic Galois field GF(28), which can be 
implemented efficiently in dedicated hardware and in 
software on a wide range of processors. 

Since Rijndael was adopted as a standard by National 
Institute of Standards and Technology (2001), there have 
been many research efforts aiming to evaluate the security 
of this cipher. A block cipher, named big encryption system 
(BES), was defined by Murphy and Robshaw (2002), and 
Rijndael can be embedded into BES. The extended 
linearisation (XL) proposed by Courtois et al. (2000) and 
the extended sparse linearisation (XSL) provided by 
Courtois and Pieprzyk (2002) are new methods to solve 
non-linear algebraic equations. The concept of dual ciphers 
was introduced by Barkan and Biham (2002), and a 
collision attack on seven rounds of Rijndael was described 
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by Gilbert and Minier (2000). The most effective attacks on 
reduced round variants of the AES are square attack which 
was found by Daemen et al. (1997). The idea of the square 
attack was later employed by Ferguson et al. (2001) to 
improve the cryptanalysis of Rijndael, and by Lucks (2000) 
to attack seven rounds of Rijndael under 192- and 256-bit 
keys. A multiplicative masking method of AES was 
proposed by Akkar and Giraud (2001) and further discussed 
by Golic and Tymen (2002). The design of an AES-based 
stream cipher LEX was described by Biryukov (2007).  
A new message authentication code (MAC) construction 
ALRED and a special instance ALPHA-MAC was designed 
by Daemen and Rijmen (2005). So far, no short-cut attack 
against the full-round AES has been found. 

In this paper, we present a five-round property of the 
AES. We modify 20 bytes from 5 intermediate values at 
some fixed locations in 5 consecutive rounds, and we 
demonstrate that after 5 rounds of operations, such 
modifications do not change the intermediate result and 
finally, still produce the same ciphertext. We introduce an 
algorithm named δ, and the δ algorithm takes a plaintext and 
a key as two inputs and outputs 20 bytes, which are used in 
the 5-round property. By employing the δ algorithm, we 
define a modified version of the AES algorithm, the δAES. 
The δAES calls the δ algorithm to generate 20 bytes, and 
uses these 20 bytes to modify the AES round keys. For a 
plaintext and a key, the AES and the δAES produce the 
same ciphertext. By employing the proposed algebraic 
property of the AES, we analyse the internal structure of the 
ALPHA-MAC. Firstly, we present a method to find second 
preimages of the ALPHA-MAC by solving eight groups of 
linear functions based on the assumption that an 
authentication key or an intermediate value of this MAC is 
known. Each of these eight groups of linear functions 
contains two equations. Secondly, we show that the  
second-preimage finding method can also be used to 
generate internal collisions. The proposed collision search 
method can find two five-block messages such that they 
produce 128-bit collisions under a selected key  
(or a selected intermediate value). 

This paper is organised as follows: Section 2 provides a 
brief description of the AES algorithm and Section 3 
describes a five-round algebraic property of the AES. A 
modified version of the AES is defined in Section 4. 
Section 5 shows a description of the ALPHA-MAC 
construction and Section 6 demonstrates how the proposed 
five-round property of the AES is used to find second 
preimages and internal collisions of the ALPAH-MAC. 
Section 7 concludes this paper. Some examples of the AES 
and the AES with 20 extra exclusive-or operations are 
provided in the Appendix. 

2 Description of the AES 

AES is a block cipher with a 128-bit block length and 
supports key lengths of 128, 192 or 256 bits. For encryption, 
the input is a plaintext block and a key, and the output is a 
ciphertext block. The plaintext is first copied to 4 × 4 array 

of bytes, which is called the state. The bytes of a state is 
organised in the following format: 
 

α0 α4 α8 α12 
α1 α5 α9 α13 
α2 α6 α10 α14 
α3 α7 α11 α15 

where αi denote the ith byte of the block. After an initial 
round key addition, the state array is transformed by 
performing a round function 10, 12 or 14 times  
(for 128-, 192- or 256-bit keys, respectively), and the final 
state is the ciphertext. We denote the AES with 128-bit keys 
by AES-128, with 192-bit keys by AES-192 and with  
256-bit keys by AES-256. Each round of AES consists of 
the following four transformations (the final round does not 
include AddRoundKey (ARK)): 
1 The SubBytes (SB) transformation: it is a non-linear 

byte substitution that operates independently on each 
byte of the state using a substitution table. 

2 The ShiftRows (SR) transformation: the bytes of the 
state are cyclically shifted over different numbers of 
bytes. Row 0 is unchanged and row i is shifted to the 
left i byte cyclicly, i ∈ {1, 2, 3}. 

3 The MixColumns (MC) transformation: it operates on 
the state column-by-column, considering each column 
as a four-term polynomial. The columns are treated as 
polynomials over GF(28) and multiplied modulo x4 + 1 
with a fixed polynomial, written as 
{03}x3 + {01}x2 + {01}x + {02}. 

4 The ARK transformation: a round key is added to the 
state by a simple bitwise exclusive-or (XOR) operation. 

The key expansion of the AES generates a total of 
Nb  (Nr+1) words: the algorithm needs an initial set of Nb 
words, and each of the Nr rounds requires Nb words of key 
data, where Nb is 4 and Nr is set to 10, 12 or 14 for  
128-, 192- or 256-bit key sizes, respectively. For a 128-bit 
key K, we denote the round keys by 

0
iK  4

iK  8
iK  12

iK  

1
iK  5

iK  9
iK  13

iK  

2
iK  6

iK  10
iK  14

iK  

3
iK  7

iK  11
iK  15

iK  

where i is the round number, { }1,2, , 10 .i∈ …  We note that 
the round key used in the initial round is the secret key K 
itself, and the secret key is represented without the 
superscript i. The combinations of the key length, block size 
and number of rounds are listed below: 
 

Key length Block size Number of round 
128 bits 4 10 
192 bits 4 12 
256 bits 4 14 
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3 A five-round property of AES 

We describe a five-round property of the AES in this 
section. In the proposed property, we modify 20 bytes from 
5 intermediate values at some fixed locations in 5 
consecutive rounds, and we show that after 5 rounds of 
operations, such modifications do not change the 
intermediate result and finally, still produce the same 
ciphertext. The modifications are carried out by performing 
four extra XOR operations at the end of each round 
(i.e. after the ARK transformation), and in total, we perform 
20 extra XOR operations in 5 rounds. We require that each 
of these 5 rounds must contain SB, SR, MC and ARK 
transformations. 

We use Figures 1–3 to describe this property. The 
layout of the 20 bytes in the 5 intermediate values is shown 
in Figure 1, and the 20 bytes are 0 2 8 10 0, , , , ,G G G G M′ ′ ′ ′ ′  

2 8 10 0 2 8, , , , , ,M M M R R R′ ′ ′ ′ ′ ′ 10 0 2 8 10 0 2 8 10, , , , , , , , and .R V V V V Z Z Z Z′ ′ ′ ′ ′ ′ ′ ′ ′   

Figure 1 20 bytes 

Figure 2 The intermediate values of AES-128 
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Figure 3 The intermediate values of AES-128 with extra 20 XOR operations 

 

In Figure 1, a zero occupied byte means that there is no 
change in that byte, and a variable occupied byte indicates 
that there is a modification in that byte. In Figure 2, all 
intermediate values are listed when using the AES algorithm 
to encrypt a plaintext P under a 128-bit key K, and all bytes 
of the intermediate values are denoted by plain variables. 
Correspondingly, Figure 3 enumerates all intermediate 
values of the AES with 20 extra XOR operations. The  
20-byte modifications take place in Rounds 1–5, and after 
ARK transformation in each of these 5 rounds, we perform 
XOR operations on Bytes 0, 2, 8 and 10. We show that the 
 
 

20-byte modifications do not change the input to Round 6, 
that is, both the AES and the AES with 20 extra XOR 
operations generate the same input to Round 6. In Figure 3, 
a variable marked by a asterisk indicates that the value at 
that location has been affected by the 20-byte modifications, 
and a plain variable shows that the value at that location is 
not affected by the 20-byte modifications. For example, 
after ARK in Round 1 in Figure 3, Byte iG  is XORed with 
Byte ,iG′  and after SB, we have four modified bytes ,iH ∗  
i ∈ {0, 2, 8, 10} and 12 unchanged bytes: H1, H3, H4, H5, 
H6, H7, H9, H11, H12, H13, H14 and H15. 
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3.1 The δ algorithm 
To decide the values of the 20 bytes: , , , and ,i i i i iG M R V Z′ ′ ′ ′ ′  
i ∈ {0, 2, 8, 10}, we introduce an algorithm named δ. For 
any plaintext P and any key K used in the AES algorithm, 
the δ algorithm accepts P and K as two inputs, and generates 
an output which contains 20 bytes { , , , , },i i i i iG M R V Z′ ′ ′ ′ ′  where 

, , , and ,i i i i iG M R V Z′ ′ ′ ′ ′  are bytes, i ∈ {0, 2, 8, 10}. 
The δ algorithm includes a number of steps: 

1 Process the first five rounds of the AES algorithm by 
taking the plaintext P and the key K as the inputs, that 
is, start with the initial round, and process Rounds 1–5 
of the AES. Therefore, we know all intermediate values 
in Figure 2, from initial round to Round 5. 

2 Initialise , , , and ,i i i i iG M R V Z′ ′ ′ ′ ′  to zero, i ∈ {0, 2, 8, 10}. 

3 Choose 0 2 8 10, , andG G G G′ ′ ′ ′  freely. The only requirement 
is that at least one of these four bytes is not equal to 
zero, namely, 0 2 8 10, , andG G G G′ ′ ′ ′  cannot be all zeros. If 

0 2 8 10, , andG G G G′ ′ ′ ′  are all zeros, the δ algorithm outputs 
20 zero bytes. Once 0 2 8 10, , andG G G G′ ′ ′ ′  are decided, the 
remaining 16 bytes will be computed by the procedures 
described in Sections 3.1.1–3.1.4. 

4 Decide 0 2 8 10, , and .M M M M′ ′ ′ ′  

5 Decide 0 2 8 10, , and .R R R R′ ′ ′ ′  

6 Decide 0 2 8 10, , and .V V V V′ ′ ′ ′  

7 Decide 0 2 8 10, , and .Z Z Z Z′ ′ ′ ′  

Remark 1: There are 232−1 combinations of 0 2{G ,G ,′ ′  

8 10G ,G }′ ′ because each byte can have 28 possible values. 

3.1.1 Deciding 0 2 8 10M ,M ,M and M′ ′ ′ ′  

After we have decided the values of 0 2 8 10, , and ,G G G G′ ′ ′ ′  we 
carry out a four-round computation (of the AES with extra 
12 XOR operations), called Routine Computation One, 
which starts with the initial round and ends with MC in 
Round 4 (see Figure 3). 

Routine Computation One 
Initial round : ARKJJJJJG  
Round 1: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 2: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 3: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 4:  SB SR MCJJG JJJG JJJJG . 

All intermediate values from the computation of this time 
are stored in array called Buffer One (note that Routine 
Computation One produces 19 intermediate values). We 
denote the input and output of MC in Round 4 by 

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13
*

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

MC

T T T T U U U U

T T T T U U U U

T T T T U U U U

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

JJJJG  

Next, we will show that there is an algebraic relation 
between Bytes 0 2 8 10{ , , , }M M M M′ ′ ′ ′  and Bytes 4 6{ , ,U U∗ ∗  

12 14, }.U U∗ ∗  Based on this relationship, we can change the 
values of 4 6 12 14{ , , , }U U U U∗ ∗ ∗ ∗  to the values of 4 6{ , ,U U  

12 14, }U U by setting the values of 0 2 8 10{ , , , }.M M M M′ ′ ′ ′  After 
we have decided the values of 0 2 8 10{ , , , },M M M M′ ′ ′ ′  we aim 
to have an intermediate value after MC in Round 4 in the 
format of 

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

U U U U

U U U U

U U U U

U U U U

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The steps of deciding 0 2 8 10{ , , , }M M M M′ ′ ′ ′  are listed as 
follows: 

{ } { } { }
{ } { } { }
{ } { }

0 2 8 10 0 2 8 10 0 2 8 10

* * * *
1 3 9 11 1 3 9 11 1 3 9 11

5 7 13 15 4 6 12 14

, , , , , , , ,

, , , , , , , , ,

, , , , , ,

M M M M N N N N O O O O

Q Q Q Q R R R R S S S S

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

′ ′ ′ ′ ← ←

← ← ←

← ←

After we change the values of 4 6 12 14{ , , , }U U U U∗ ∗ ∗ ∗  to the 
values of 4 6 12 14{ , , , },U U U U  the input and output of MC in 
Round 4 become 

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13
*

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

MC

T T T T U U U U

T T T T U U U U

T T T T U U U U

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

JJJJG  

Our next target is to modify the values 5 7 13 15{ , , , }T T T T∗ ∗ ∗ ∗ of 
according to the values of. 4 6 12 14{ , , , }.U U U U  From the MC 
transformation, we have the following formula: 

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

U U U U

U U U U

U U U U

U U U U

T T T T

T T T T

T T T T

T T T T

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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To find out the values of 5 7 13 15{ , , , },T T T T∗ ∗ ∗ ∗  we need to solve 
the following two groups of linear functions, which are 
marked by (1) and (2). 

[ ]

[ ]

4

5
4

6

7

4

5
6

6

7

02 03 01 01

01 01 02 03

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (1) 

[ ]

[ ]

12

13
12

14

15

12

13
14

14

15

02 03 01 01

01 01 02 03

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (2) 

In Equation (1), there are two linear equations with two 
undecided variables 5 7andT T∗ ∗  and thus we can solve (1) to 
obtain the values of 5 7and .T T∗ ∗  Similarly, there are two 
linear equations in (2) with two undecided variables 

13 15andT T∗ ∗  and therefore we can solve (2) to get the values of 

13 15and .T T∗ ∗  After having 5 7 13 15, , andT T T T∗ ∗ ∗ ∗ , perform SR-1 

(inverse SR) and SB–1 (inverse SB), and we have the values 
of * * * *

1 3 9 11, , andR R R R  after ARK in Round 3. Apply the ARK 
transformation to * * * *

1 3 9 11, , and ,R R R R  we have the values of 
* * * *
1 3 9 11, , and .Q Q Q Q  Our next task is to modify the values of 
* * * *
0 2 8 10, , and .O O O O  In Round 3, the input and output of MC 

are as follows: 

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

O O O O

O O O O

O O O O

O O O O

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

We can form two groups of linear equations, which are 
named (3) and (4), and solve them to decide 

* * * *
0 2 8 10, , and .O O O O  There are two linear equations in (3) with 

two undetermined variables * *
0 2and ,O O  and we can solve 

them to determine the values of * *
0 2and .O O  Also, there are 

two linear equations in (4) with two undecided variables 
* *
8 10and ,O O  and we can get * *

8 10andO O  and by solving (4). 

[ ]

[ ]

0

1 *
4

2

3

0

1
3

2

3

01 02 03 01

03 01 01 02

O

O
Q

O

O

O

O Q
O
O

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

 (3) 

[ ]

[ ]

8

9
9

10

11

8

9
11

10

11

01 02 03 01

03 01 01 02

O
O

Q
O
O

O
O

Q
O
O

∗

∗
∗

∗

∗
∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

 (4) 

Once knowing the values of *
0 2 8 10, , and ,O O O O∗ ∗ ∗  we perform 

SR−1 and thus we get Bytes 0 2 8 10, , andN N N N∗ ∗ ∗ ∗  after SB in 
Round 3. Finally, Bytes 0 2 8 10, , andM M M M′ ′ ′ ′  are decided by 
the following computations (note that 0 2 8 10, , andM M M M∗ ∗ ∗ ∗  
are obtained from Buffer One): 

( ) ( )1 1
0 0 0 2 2 2SB , SBM M N M M N∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕  

( ) ( )1 1
8 8 8 10 10 10SB , SBM M N M M N∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕  

At this stage, we have decided the values of { , }i iG M′ ′  and 
{ , , }i i iR V Z′ ′ ′  are not yet decided (note: they are still initialised 
to zero), i ∈ {0, 2, 8, 10}. 

3.1.2 Deciding 0 2 8 10R ,R ,R and R′ ′ ′ ′  

Perform Routine Computation One second time, and all 
intermediate values from the computation of this time are 
stored in an array called Buffer Two. The intermediate value 
after MC in Round 4 is 

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

U U U U

U U U U

U U U U

U U U U

∗ ∗

∗ ∗ ∗ ∗

∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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We will demonstrate that there is an algebraic relation 
between Bytes 0 2 8 10{ , , , }R R R R′ ′ ′ ′  and Bytes 1 3 9 11{ , , , }.U U U U∗ ∗ ∗ ∗  
By employing this relationship, we are able to change the 
values of 1 3 9 11{ , , , }U U U U∗ ∗ ∗ ∗  to the values of 1 3 9 11{ , , , }U U U U  
by choosing the values of 0 2 8 10{ , , , }.R R R R′ ′ ′ ′  After we have 
determined the values of 0 2 8 10{ , , , }R R R R′ ′ ′ ′  and perform 
Routine Computation One second time, our target is that the 
intermediate value after MC in Round 4 is 

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

U U U U

U U U U

U U U U

U U U U

∗ ∗

∗ ∗

∗

∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The moves of determining the values of 0 2 8 10{ , , , }R R R R′ ′ ′ ′  are 
shown below: 

{ } { } { }
{ }
0 2 8 10 0 2 8 10 0 2 8 10

1 3 9 11

, , , , , , , , ,

, , ,

R R R R S S S S T T T T

U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗′ ′ ′ ′ ← ←

←
 

After we replace the values of 1 3 9 11{ , , , }U U U U∗ ∗ ∗ ∗  with the 
values of 1 3 9 11{ , , , }U U U U  the input and the output of MC in 
Round 4 are 

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13
*

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

MC

T T T T U U U U

T T T T U U U U

T T T T U U U U

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

JJJJG  

We need to modify the values of 0 2 8 10{ , , , }T T T T∗ ∗ ∗ ∗  according 
to the values of 1 3 9 11{ , , , }.U U U U  We can form two groups 
of linear equations, which are named (5) and (6). There are 
two undecided variables 0 2andT T∗ ∗  in Equation (5), and we 
can solve (5) to get the values of 0 2and .T T∗ ∗  In Equation (6), 
there are two undetermined variables 8 10and ,T T∗ ∗  and we can 
find out the values of 8 10andT T∗ ∗  by solving (6). 

[ ]

[ ]

0

1
1

2

3

0

1
3

2

3

01 02 03 01

03 01 01 02

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (5) 

[ ]

[ ]

8

9
9

10

11

8

9
11

10

11

01 02 03 01

03 01 01 02

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

 (6) 

After knowing the values of 0 2 8 10{ , , , },T T T T∗ ∗ ∗ ∗  we perform 
SR−1 and have four corresponding values 0 2 8 10{ , , , }S S S S∗ ∗ ∗ ∗  
after SB in Round 4. Bytes 0 2 8 10{ , , , }R R R R′ ′ ′ ′  are computed as 
follows: (note that 0 2 8 10, , andR R R R∗ ∗ ∗ ∗  are obtained from 
Buffer Two): 

( ) ( )1 1
0 0 0 2 2 2SB , SBR R S R R S∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕  

( ) ( )1 1
8 8 8 10 10 10SB , SBR R S R R S∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕  

At this moment, we have decided the values of 
{ , , } and { , }i i i i iG M R V Z′ ′ ′ ′ ′  are not determined and they are still 
equal to their initial values, i ∈ {0, 2, 8,10}. 

3.1.3 Deciding 0 2 8 10V ,V ,V and V′ ′ ′ ′  

After having the values of 0 2 8 10, , and ,R R R R′ ′ ′ ′  we carry out a 
five-round computation of the AES with 16 extra XOR 
operations, called Routine Computation Two, which begins 
with the initial round and ends with MC in Round 5 (See 
Figure 3). All intermediate values from the computation of 
this time are stored in an array named Buffer Three (note 
that Routine Computation Two generates 24 intermediate 
values). 

Routine Computation Two 
Initial round : ARKJJJJJG  
Round 1: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 2: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 3: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 4:  SB SR MCJJG JJJG JJJJG  

After MC in Round 5, we will have an intermediate value in 
the following format: 

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

Y Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y Y

∗ ∗

∗ ∗

∗

∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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There is an algebraic relation between Bytes 0 2 8 10{ , , , }V V V V′ ′ ′ ′  
and Bytes 1 3 9 11{ , , , },Y Y Y Y∗ ∗ ∗ ∗  and we can change the values of 

1 3 9 11{ , , , }Y Y Y Y∗ ∗ ∗ ∗  to the values of 1 3 9 11{ , , , }Y Y Y Y  by setting the 
values of 0 2 8 10{ , , , }.V V V V′ ′ ′ ′  The steps of determining the 
values of 0 2 8 10{ , , , }V V V V′ ′ ′ ′  are shown below: 

{ } { }
{ } { }

0 2 8 10 0 2 8 10

0 2 8 10 1 3 9 11

, , , , , ,

, , , , , ,

V V V V W W W W

X X X X Y Y Y Y

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

′ ′ ′ ′ ←

← ←
 

We replace Bytes 1 3 9 11{ , , , }Y Y Y Y∗ ∗ ∗ ∗  with Bytes 1 3 9 11{ , , , },Y Y Y Y  
and the input and output of MC in Round 5 are 

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13

2 6 10 14 2 6 10 14

3 7 11 153 7 11 15

MC

X X X X Y Y Y Y
X X X X Y Y Y Y

X X X X Y Y Y Y
Y Y Y YX X X X

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

JJJJG  

We form two groups of linear functions, marked by (7) and 
(8). There are two undecided variables 0 2andX X∗ ∗  in (7), and 
we can solve (7) to get the values of 0 2and .X X∗ ∗  In 
Equation (8), there are two undecided variables 8 10andX X∗ ∗  
and we can obtain the values of 8 10andX X∗ ∗  by solving (8). 
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⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (7)  
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X
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X
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⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (8) 

After deciding the values of 0 2 8 10{ , , , },X X X X∗ ∗ ∗ ∗  we perform 
SR–1 and have four corresponding values 0 2 8 10{ , , , }W W W W∗ ∗ ∗ ∗  
after SB in Round 5. Bytes 0 2 8 10, , andV V V V′ ′ ′ ′  are computed 
as follows (note that 0 2 8 10, , andV V V V∗ ∗ ∗ ∗  are obtained from 
Buffer Three): 

( ) ( )1 1
0 0 0 2 2 2SB , SB ,V V W V V W∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕  

( ) ( )1 1
8 8 8 10 10 10, SB .V V SB W V V W∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕  

At this stage, we have decided the values of 
{ , , , }, andi i i i iG M R V Z′ ′ ′ ′ ′  is not determined and it is equal to 
the initial value, i ∈ {0, 2, 8, 10}. 

3.1.4 Deciding 0 2 8 10Z ,Z ,Z and Z′ ′ ′ ′  

Perform Routine Computation Two second time, and the 
intermediate value after MC in Round 5 is 

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

Y Y Y Y
Y Y Y Y

Y Y Y Y

Y Y Y Y

∗ ∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Apply ARK to the intermediate value above, we have 

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

Z Z Z Z
Z Z Z Z

Z Z Z Z

Z Z Z Z

∗ ∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Bytes 0 2 8 10, , andZ Z Z Z′ ′ ′ ′  are computed as follows (note that 

0 2 8 10, , andZ Z Z Z  are obtained from the computation in 
which the AES algorithm is used to encrypt the plaintext P 
under the key K (see Round 5 in Figure 2)): 

0 0 0 2 2 2, ,Z Z Z Z Z Z∗ ∗′ ′= ⊕ = ⊕  

8 8 8 10 10 10, .Z Z Z Z Z Z∗ ∗′ ′= ⊕ = ⊕  

Finally, we have decided all values of { , , , , },i i i i iG M R V Z′ ′ ′ ′ ′  
{0,2,8,10}.i∈  Now, we carry out a 5-round computation of 

the AES with extra 20 XOR operations, called Routine 
Computation Three, by using Bytes 0 2 8, , ,G G G′ ′ ′  

10 0 2 8 10, , , ,G M M M M′ ′ ′ ′ ′ 0 2 8 10, , , ,R R R R′ ′ ′ ′ 0 2, ,V V′ ′ 8 10, ,V V′ ′ 0 ,Z ′ 2 ,Z ′

8 10andZ Z ′  and we will get the same input to Round 6 as the 
AES algorithm. 

Routine Computation Three 
Initial round : ARKJJJJJG  
Round 1: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 2: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 3: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG  
Round 4: SB SR MCJJG JJJG JJJJG . 

Remark 2: The most important part of the δ algorithm is 
solving those eight groups of linear Equations (1)–(8). 
There is one question needs to be answered. The question 
is: Are these eight groups of linear equations independent? 
The answer to this question is choosing different values of 
Bytes 0 2 8 10, , ,G G G G′ ′ ′ ′  if we face such situations. Among the 
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20 bytes: 0 2 8, , ,G G G′ ′ ′ 10 0 2, ,G M M′ ′ ′ 8 10 0, , ,M M R′ ′ ′ 2 8 10, , ,R R R′ ′ ′ 0 ,V ′  

2 ,V ′ 8 ,V ′ 10 ,V ′ 0 , ,sZ Z′ ′  8 10and ,Z Z ′ we can select the values of 

0 2 8 10, , andG G G G′ ′ ′ ′  freely. As we showed in Remark 1, there 
are 232–1 combinations of these four bytes, and 
correspondingly, we can have 232–1 intermediate values in 
Figure 3, starting with SB in Round 2 and ending with ARK 
in Round 10. If we meet any dependent equations, we can 
overcome this problem by choosing different values of Bytes 

0 2 8 10, , and .G G G G′ ′ ′ ′  Therefore, this question will not cause 
any trouble. So far, we have not met any dependent 
equations in our large-sample experiments. 
Remark 3: From Remark 1, we note that there is more than 
one combination of the 20 output bytes of algorithm δ for a 
given pair of (P, K). 
Remark 4: For distinct plaintext and cipher key pairs (P, K), 
algorithm δ needs to perform individual computations to 
decide the values of the 20 bytes. 

3.2 Variants of algorithm δ 

We show that there are other variants of the δ algorithm. In 
Section 3.1, the locations of the 20 bytes are {0, 2, 8,10}, 
and there are three other combinations, which are {4, 6, 12, 
14}, {1, 3, 9, 11} and {5, 7, 13, 15}. Figure 4 outlines 
different locations of the 20 bytes. In Figure 3, 
{ , , , , }i i i i iG M R V Z′ ′ ′ ′ ′  operate in Round {1, 2, 3, 4, 5}, and they 
can also operate in Rounds {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4, 
5, 6, 7, 8} or {5, 6, 7, 8, 9}. Therefore, there are 4 different 
combinations for the byte locations, and there are five 
different combinations for the round numbers in AES-128. 
In total, there are 20 (= 4 × 5) variants of the δ algorithm for 
AES-128. The δ algorithm has 28 (= 4 × 7) variants for 
AES-192, and 36 (= 4 × 9) variants for AES-256. 

Figure 4 Different locations of the 20 bytes 

 

4 The modified version of the AES: δAES 

By employing the δ algorithm, we propose a modified 
version of the AES, which is named δAES. The major 
difference between the AES and the δAES is that the δAES 
uses modified AES round keys. In Figure 3 in Section 3, we 
apply 20 extra XOR operations to the intermediate values 
after ARK in Rounds 1–5 by using Bytes 
{ , , , , }, {0, 2, 8,10}.i i i i iG M R V Z i′ ′ ′ ′ ′ ∈ The construction of the 
δAES comes from the fact that we can use  
Bytes { , , , , }i i i i iG M R V Z′ ′ ′ ′ ′  to XOR with AES round key 1–5 
(instead of with the intermediate values after ARK), and we 
still get the same result, i ∈ {0, 2, 8, 10}. There are 20-byte 
differences between the AES round keys and the δAES 
round keys. The δAES employs the same key scheduling 
algorithm, constants and round function (i.e. SB, SR, MC 
and ARK) as the AES. 

The construction of the δAES is adding two procedures, 
which are calling the δ algorithm and modifying the AES 
round keys, to the AES algorithm. 
 

1 Suppose for a plaintext P and a cipher key K, the 
AES algorithm produces a ciphertext C, written as 
C = AESK(P). 

2 By accepting P and K as two inputs, use the δ algorithm 
to generate 20 output bytes: 

{ } 1, , , , , {0, 2, 8,10}i i i i iG M R V Z i′ ′ ′ ′ ′ ∈  

3 Apply the AES key scheduling algorithm to K and get 
the round keys. 

4 Use { , , , , }i i i i iG M R V Z′ ′ ′ ′ ′  to XOR with the corresponding 
AES round keys and get the round keys for the δAES, 
i ∈ {0, 2, 8, 10}. The details of computing the δAES 
round keys is described in Section 4.1. 

5 After carrying out the transformations above, the δAES 
uses the same round function (i.e. SB, SR, MC and 
ARK) to process the plaintext P with modified AES 
round keys, and finally, the δAES also generates the 
same cipher-text C, denoted by C = δAES(P). 
Appendix provides some examples of the AES and the 
AES with 20 extra exclusive-or operations. 

4.1 AES round keys and δAES round keys 

Suppose K is a 128-bit AES cipher key, and after key 
expansion, the AES round keys are denoted by 
 

0
iK  4

iK  8
iK  12

iK  

1
iK  5

iK  9
iK  13

iK  

2
iK  6

iK  10
iK  14

iK  

3
iK  7

iK  11
iK  15

iK  
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where i is the round number, {1,2, , 10}.i∈ …  The round key 
used in the initial round is the secret key K itself, and the 
secret key is denoted without the superscript i. 

The δAES round keys come from the following routine 
(see Figure 5): 

1 In Initial Round, Rounds 6–10, use the corresponding 
AES round keys without any changes. 

2 In Rounds 1–5, use the modified AES round keys. 
After applying 20 XOR operations to the AES round 
 

keys, the δAES round key i is calculated by the 
following formulas: 

, {0,2,8,10}

, {1,2,3,4,5,6,7,8,9,11,12,13,14,15}

i
y

i
y

K y

K y

β⎧ ⊕ ∈⎪
⎨

∈⎪⎩
 

where y is the byte index of the block, i ∈ {1, 2, 3, 4, 5} and 
β is equal to , , , ory y y y yG M R V Z′ ′ ′ ′ ′  when i is equal to 1, 2, 3, 4 

or 5, respectively. 
 

Figure 5 AES round keys and the corresponding δAES round keys 
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Compared with the AES algorithm, the δAES needs to do 
some extra transformations, that is, calling the δ algorithm 
and modifying the AES round keys. Moreover, for distinct 
plaintext and cipher key pairs (P, K), the δAES needs to 
carry out individual computations to get Bytes 
{ , , , , } {0,2,8,10}i i i i iG M R V Z′ ′ ′ ′ ′ ∈ . 

5 Description of the ALPHA-MAC 
ALPHA-MAC is a MAC function which uses the building 
blocks of AES. Similarly to AES, the ALPHA-MAC 
supports keys of 128, 192 and 256 bits. The word length is 
32 bits, and the injection layout places the 4 bytes of each 
message word [m0, m1, m2, m3] into a 4 × 4 array. The 
format of the injection layout is shown as follows: 

0 1

2 3

0 0
0 0 0 0

0 0
0 0 0 0

m m

m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Like AES, the ALPHA-MAC round function contains SB, 
SR, MC and ARK, and the output of each injection layout 
acts as the corresponding 128-bit round key. The message 
padding method appends a single 1 followed by the 
minimum number of 0 bits such that the length of the result 
is a multiple of 32. In the initialisation, the state is set to all 
zeros and AES is applied to the state. For every message 
word, the chaining method carries out an iteration, and each 
iteration maps the bits of the message word to an injection 
input. After that, a sequence of AES round functions are 
applied to the state, with the round keys replaced by the 
injection input. In the final transformation, AES is applied 
to the state. The MAC tag is the first lm bits of the resulting 
final state. The length of lm may have any value less than or 
equal to 128. The ALPHA-MAC function is depicted in 
Figure 6. 

Figure 6 ALPHA-MAC construction 

 

6 Applying the property to ALPHA-MAC 

We study the internal structure of the ALPHA-MAC by 
employing the proposed five-round algebraic property of 
AES, which is described in Section 3. Firstly, we present a 
method to find second preimages of the ALPHA-MAC by 
solving eight groups of linear functions, based on the 
assumption that an authentication key or an intermediate 
value of this MAC is known. Each of these eight groups of 
linear functions contains two equations. We divide the 
second-preimage search algorithm into two steps:  
the backwards-and-forwards (BNF) search and the 
backwards-and-backwards (BNB) search. The BNF search 
provides an idea for extending 32- to 128-bit collisions2 by 
solving four groups of linear functions. Given a key (or an 
intermediate value) and one four-block message, the BNB 
search can generate another four-block message such that 
these two messages produce 32-bit collisions, which are a 
prerequisite for the BNF search. To do the BNB search, we 
need to solve another four groups of linear functions. By 
combining the BNB search with the BNF search, we can 
find second preimages of ALPHA-MAC. Secondly, we 
show that the second-preimage finding method can also be 
used to generate internal collisions. The proposed collision 
search method can find two five-block messages such that 
they produce 128-bit collisions under a selected key  
(or a selected intermediate value). 

6.1 The second-preimage search algorithm 

The second-preimage search algorithm aims to find a  
five-block second-preimage M�  for a selected five-block 
message M, under a selected key (or a selected intermediate 
value). The assumption of this search is that we know two 
values: a selected key (or a selected intermediate value) and 
a selected five-block message M. The result of the search is 
that M and M�  generate the same 128-bit value after five 
rounds of ALPHA-MAC iterations, under the selected key 
(or the selected intermediate value). 

We use Figure 7 to illustrate the second-preimage 
search. Figure 7 depicts five consecutive rounds of the 
ALPHA-MAC for two different five-block messages M and 

.M�  We assume that we are able to select an intermediate 
value of the round functions in some round (e.g. in Round 
y − 3), and select five consecutive message blocks 

3 2 1 1( , , , , ).y y y y yM M M M M M− − − +  Then we can find another 

five-block message 3 2 1 1( , , , , )y y y y yM M M M M M− − − +
� � � � � �  such 

that these two five-block messages collide on 128 bits in 
Round y + 1 after ARK. Note that the intermediate value is: 

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Figure 7 The five-block collisions 
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In the case of a selected key, for the sake of simplicity, we 
assume that 3 2 1 1( , , , , )y y y y yM M M M M− − − +  are the first five 

blocks of the selected message. Our search algorithm works 
without assuming that 3 2 1 1( , , , , )y y y y yM M M M M− − − +  are 

the first five blocks of the selected message. 
The second-preimage search algorithm has the following 

form: 
 

Known:  1 A selected key or a selected intermediate 
value. 

 2 A selected five-block message 
3( ,yM M − 2 1, ,y yM M− −  1, )y yM M +  

Find:  Another five-block message 3 2( , ,y yM M M− −
� � �

1 1, , )y y yM M M− +
� � �  such that M and M�  collide 

on 128 bits after ARK in Round y + 1. 

Method:  Solve eight groups of linear functions. These 
eight groups of functions are named as (9)–(16) 
in this section. 

The second-preimage search algorithm consists of two 
steps: the BNF search and the BNB search. The BNF search 
can extend 32- to 128-bit collisions, given two messages M 
and M�  which collide on 32 bits, namely Bytes s4, s12, s6 and 
s14, after MC in Round y (see Figure 7). Given a key (or an 
intermediate value) and one four-block message, the BNB 
search is able to find another four-block message such that 
these two messages collide on Bytes s4, s12, s6 and s14 after 
MC in Round y. The BNB search generates those 32-bit 
collisions which are required for the BNF search. By 
merging the BNB search with the BNF search, we can find 
second preimages of the ALPHA-MAC. 

6.1.1 The BNF search 

The BNF search has the following form: 
Known:  1 A selected key or a selected intermediate value. 

 2 Two four-block messages 3 2( , ,y yM M M− −  

1,yM −  1, )y yM M +  and 3 2( , ,y yM M M− −
� � �  1,yM −

�

1, )y yM M +
� �  colliding on 32 bits (Bytes s4, s12, s6 

and s14) after MC in Round y. 

Extend:  32-bit collisions to 128-bit collisions in Round 
y + 1. 

Method:  Solve four groups of linear functions. These four 
groups of functions are numbered as
(9)–(12) in this section. 

The BNF search assumes that we are able to find two 
messages M and ,M�  which collide on Bytes s4, s12, s6 and 
s14 after MC in Round y. Based on the algebraic property of 
the MC transformation and the structure of ALPHA-MAC,  
 

we can extend these 32- to 128-bit collisions within three 
rounds by solving four groups of linear equations. 

6.1.2 Extending 32- to 64-bit collisions 
We use the differential XOR property before and after the 
MC transformation. In Round y before MC, by XORing 
those two intermediate values, we get the following result: 

0 0 4 4 8 8 12 12

1 1 5 5 9 9 13 13

2 2 6 6 10 10 14 14

3 3 7 7 11 11 15 15

MC

j j j j j j j j
j j j j j j j j
j j j j j j j j
j j j j j j j j

⎡ ⎤⊕ ⊕ ⊕ ⊕
⎢ ⎥⊕ ⊕ ⊕ ⊕⎢ ⎥
⎢ ⎥⊕ ⊕ ⊕ ⊕
⎢ ⎥

⊕ ⊕ ⊕ ⊕⎢ ⎥⎣ ⎦

� � � �
� � � �

JJJJG� � � �
� � � �

 

5 5 13 13

7 7 15 15

? 0 ? 0
0 0
? 0 ? 0
0 0

s s s s

s s s s

⎡ ⎤
⎢ ⎥⊕ ⊕⎢ ⎥
⎢ ⎥
⎢ ⎥

⊕ ⊕⎣ ⎦

� �

� �

 

Here, we use R (to replace 0 0j j⊕� ), S (to replace 8 8j j⊕� ), 
T (to replace 2 2j j⊕� ) and U (to replace 10 10j j⊕� ) so that 
after the MC transformation in Round y, Bytes 

1 1 3 3 9 9 11 11, , ands s s s s s s s⊕ ⊕ ⊕ ⊕� � � � �  become zero. Now the 
question is ‘how to decide R, S, T and U’. The answer is: 

• there exists one and only one pair of (R, T) such that 
after MC, Bytes 1 1 3 3ands s s s⊕ ⊕� � �  are both zero 

• there exists one and only one pair of (S, U) such that 
after MC, 9 9 11 11ands s s s⊕ ⊕� �  are both zero. 

According to the MC transformation, we have the following 
formula: 

5 5 13 13

7 7 15 15

? 0 ? 0
0 0

MC
? 0 ? 0
0 0

s s s s

s s s s

⎡ ⎤
⎢ ⎥⊕ ⊕⎢ ⎥
⎢ ⎥
⎢ ⎥

⊕ ⊕⎣ ⎦

� �
JJJJG

� �

 

4 4 12 12

1 1 5 5 9 9 13 13

6 6 14 13

3 3 7 7 11 11 15 15

R j j S j j
j j j j j j j j

T j j U j j
j j j j j j j j

⎡ ⎤⊕ ⊕
⎢ ⎥⊕ ⊕ ⊕ ⊕⎢ ⎥
⎢ ⎥⊕ ⊕
⎢ ⎥

⊕ ⊕ ⊕ ⊕⎢ ⎥⎣ ⎦

� �
� � � �

� �
� � � �

 

To find out the values of (R, T) and (S, U), we need to solve 
the following two groups of equations. 

[ ]

[ ]

1 1

3 3

1 1

3 3

01 02 03 01 0

03 01 01 02 0

R
j j

T
j j

R
j j

T
j j

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (9) 
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[ ]

[ ]

9 9

11 11

9 9

11 11

01 02 03 01 0

03 01 01 02 0

S
j j

U
j j

S
j j

U
j j

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (10) 

In the two equations in (9), there are two variables R and T, 
and therefore there exists one and only one pair of (R, T) to 
make these two equations hold simultaneously. Similarly, 
we can decide the values of S and U by solving the two 
equations in (10). 

Once we get the values of R, S, T and U, message block 

1yM −
�  can be constructed as follows: 

1 Set the values of new new new new
0 8 2 10, , , ,j j j j� � � �  as follows: 

new new new
10 0 8 8 2 2, ,j j R j j S j j T= ⊕ = ⊕ = ⊕� � � �  and 
new

10 10 .j j U= ⊕�  Use new
0j�  to replace new

0 8,j j� �  to replace 
new

8 2,j j� �  to replace 2j�  and new
10j�  to replace 10 .j�  

2 Perform SR–1 (inverse SR) and SB–1 (inverse SB). As 
SR–1 and SB–1 are permutation and substitution, they do 
not change the properties we have found. Now we have 
the outputs of ARK in Round y – 1. 

3 Compute the value of new
1yM −

�  as follows: 

( ) ( )
( ) ( )

new new new
1 0 0 8 8

new new
10 2 2 10

yM j i j i

j i j i

− = ⊕ ⊕

⊕ ⊕

� � � � �

� � � �
 

Use new
1yM −

�  to replace 1.yM −
�  

At this stage, two messages ( 3 2 1, ,y y yM M M− − − ) and 
new

3 2 1( , , )y y yM M M− − −
� � �  collide on 64 bits (Bytes s4, s12, s6, s14, 

s1, s9, s3 and s11) in Round y after MC. 

6.1.3 Extending 64- to 96-bit collisions 

We only need to focus on Rounds y and y + 1 to extend  
64- to 96-bit collisions. The idea is to choose message block 

yM�  to cancel out the differences between Bytes (s5, s13, s7, 
s15) and Bytes 5 13 7 15( , , , )s s s s� � � �  in Round y. The method of 
choosing yM�  is exactly same as the method for 

constructing 1yM −
�  in Section 6.1.2. 

By taking the outputs of ARK in Round y, we perform 
the SB and SR operations, and then XOR the results after 
SB and SR: 

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

0 0 8 8

1 1 9 9

2 2 10 10

3 3 11 11

0 0 ? 0 ? 0
0 0 0 0 0 0

MC
0 0 ? 0 ?
0 0

n n n n n n n n
n n n n n n n n
n n n n n n n n
n n n n n n n n

n n n n
n n n n
n n n n
n n n n

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊕
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⊕ ⊕⎡ ⎤
⎢ ⎥⊕ ⊕⎢ ⎥=
⎢ ⎥⊕ ⊕
⎢ ⎥

⊕ ⊕⎣ ⎦

� �
� �
� �
� �

� �
� �

JJJJG� �
� �

0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Here, we use π to replace 0 ,on n⊕ �  ρ to replace 8 8 ,n n⊕ �  φ to 
replace 2 2n n⊕ �  and ω to replace 10 10n n⊕ �  so that after MC 
in Round y + 1, Bytes 1 1,w w⊕ �  9 9 3 3,w w w w⊕ ⊕� �  and 

11 11.w w⊕ � are zero: 

1 1 9 9

3 3 11 11

0 0 ? 0 ? 0
0 0 0 0 0 0

MC
0 0 ? 0 ? 0
0 0 0 0 0 0

n n n n

n n n n

π ρ

φ ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⊕ ⊕⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊕ ⊕ ⎣ ⎦⎣ ⎦

� �
JJJJG

� �

 

Now the question is ‘how to decide π, ρ, φ and ω’. The 
answer is: 

• There exists one and only one pair of (π, φ) such that 
after MC, Bytes 1 1 3 3andw w w w⊕ ⊕� �  are both zero. The 
values of (π, φ) can be decided by solving (11). 

• There exists one and only one pair of (ρ, ω) such that 
after MC, Bytes 9 9 11 11andw w w w⊕ ⊕� �  are both zero. By 
solving (12), we get the values of (ρ, ω). 

[ ]

[ ]

1 1

3 3

1 1

3 3

01 02 03 01 0

03 01 01 02 0

n n

n n

n n

n n

π

φ

π

φ

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (11) 

[ ]

[ ]

9 9

11 11

9 9

11 11

01 02 03 01 0

03 01 01 02 0

n n

n n

n n

n n

ρ

ω

ρ

ω

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (12) 
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Once we know the values of π, φ, ρ and ω, message block 
yM�  can be chosen as follows: 

1 Set the values of new new new new
0 8 2 10, , andn n n n� � � �  as follows: 

new new new
0 0 8 8 2 2, ,n n n n n nπ ρ φ= ⊕ = ⊕ = ⊕� � �  and 
new
10 10n n ω= ⊕� . Use new

0n�  to replace new
0 0,n n� �  to replace 

new
8 2,n n� �  to replace 2n�  and new

10n�  to replace 10.n�  

2 Perform SR–1 and SB–1. Since SR–1 and SB–1 are 
permutation and substitution, they do not affect the 
properties we have found. Now we have the outputs of 
ARK in Round y. 

3 Compute the value of yM�  as follows: 

( ) ( )
( ) ( )

new new
0 0 8 8

new new
10 2 2 10

yM n s n s

n s n s

= ⊕ ⊕

⊕ ⊕

� � � � �

� � � �
 

So far, two messages 3 2 1( , , , )y y y yM M M M− − −  and 
new

3 2 1( , , , )y y y yM M M M− − −
� � � �  collide on 96 bits (i.e. Bytes w1, 

w3, w4, w5, w6, w7, w9, w11, w12, w13, w14 and w15) in Round 
y + 1 after MC transformation. 

6.1.4 Extending 96- to 128-bit collisions 

This step is straightforward as we can select message My + 1 

arbitrarily, and construct message 1yM +
�  to cancel the 

differences between Bytes w0, w8, w2 and w10. The 
construction is provided as follows: 

( ) ( )(
( ) ( ))

1 0 0 8 8

2 2 10 10 1

y

y

M w w w w

w w w w M

+

+

= ⊕ ⊕

⊕ ⊕ ⊕

� � �

� �
 

6.1.5 The BNB search 

The BNB search has the following form: 

Known: 1 A selected key or a selected intermediate value. 
2 One selected four-block message 

3 2 1( , , , )y y y yM M M M M− − −  

Find: Another four-block message 

3 2 1( , , , )y y y yM M M M M− − −
� � � � �  such that these two 

messages collide on 32 bits (Bytes s4, s12, s6 and s14) 
after MC in Round y 

Method: Solve four groups of linear functions. These four 
groups of functions are named as (13)–(16). 

We propose a method to find 32-bit collisions on Bytes s4, 
s12, s6 and s14 (see Figure 7) by solving four groups of linear 
 
 
 
 

functions. This search assumes that for a selected key 
(or a selected intermediate value) and a selected four-block 
message 3 2 1( , , , )y y y yM M M M− − − , we can generate another 

four-block message 3 2 1( , , , )y y y yM M M M− − −
� � � �  such that these 

two messages collide on Bytes s4, s12, s6 and s14 after MC in 
Round y. The method used by the BNB search is similar to 
the idea employed by the BNF search, but works in only one 
direction (i.e. only backwards). 

6.1.6 Deciding four values 5 7 13 15(j , j , j and j )� � � �  

In the beginning, we choose 3 2 1( , , , )y y y yM M M M− − −
� � � �  

randomly. Assume that the input and the output of MC in 
Round y are listed as follows: 

0 4 8 12 0 4 8 12
old old

1 5 9 131 5 9 13

2 6 10 142 6 10 14
old old 3 7 11 153 7 11 15

MC

j j j j s s s s
s s s sj j j j
s s s sj j j j
s s s sj j j j

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

� � � � � � � �
� � � � � � � �

JJJJG� � � � � � � �
� � � �� � � �

 

Now we do not use the values of old old old old
5 7 13 15, , or .j j j j� � � �  

Instead, we use 5j�  (to replace old
5j� ), 7j�  (to replace old

7j� ), 

13j�  (to replace old
13j� ), and 15j�  (to replace old

15j� ) such that we 
get values 4 12 6, ,s s s� � �  and 14 ,s�  respectively (illustrated as 
follows): 

0 4 8 120 4 8 12

1 5 9 131 5 9 13

2 6 10 142 6 10 14

3 7 11 153 7 11 15

MC

s s s sj j j j
s s s sj j j j
s s s sj j j j
s s s sj j j j

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

� � � � � � �
� � � � � � � �

JJJJG� � � � � �
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Now the question is ‘how can we make this happen’. Our 
answer is to solve two groups of linear functions. For the 
values of s4 and s6, we have two linear equations in (13) 
with only two unknown variables ( 5j�  and 7j� ). Therefore, 
we can solve (13) to obtain the values of 5j�  and 7j�  

[ ]

[ ]

4

5
4

6

7

4

5
6

6

7

02 03 01 01

01 01 02 03

j
j

s
j
j

j
j

s
j
j

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⎢ ⎥⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
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 (13) 
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[ ]

[ ]

12

13
12

14

15

12

13
14

14

15

02 03 01 01

01 01 02 03

j
j

s
j
j

j
j

s
j
j

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
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Similarly, for the values of s12 and s14, we have two linear 
functions in (14) with two unknown variable 13 15( and ).j j� �  
We can solve (14) to decide the values of 13j�  and 15.j�  After  
getting four vehicles 5 7 13 15( , , and )j j j j� � � �  decided, we 
perform the SR–1 and  SB–1 transformations. As SR–1 
transformation. As SR–1 is permutation and SB–1 is 
substitution 5 7 13 15, , andj j j j� � � �  are first relocated then 
substituted by another four values 9 3 1 11, , andi i i i� � � � , 
respectively. As the message injection layout does not 
change the values of 9 3 1 11, , andi i i i� � � �  these four values are not 
changed after we do ARK. So, we get four known values 

9 3 1 11( , , and )i i i i� � �  after MC in Round y–1. Our next target is 
to modify message block 2yM −

�  so that we get those four 

values 9 3 1 11, , andi i i i� � �  after MC in Round y – 1. 

6.1.7 Modifying message block 2yM −
�  

Suppose by using the original message block 2 ,yM −
�  we 

have the following states in Round y – 1. 

old old*old *old
0 4 8 120 4 8 12

1 5 9 13 1 5 9 13
*old *old old old
2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

4 12

5

SB SR

? ?
? ?

h h h hg g g g
g g g g h h h h

g g g g h h h h
g g g g h h h h

i i
i

MC

⎡ ⎤⎡ ⎤
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⎢ ⎥⎢ ⎥
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JJJJG 13

6 14

7 15

? ?
? ?

i
i i
i i
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Now we replace values old old old old
0 2 8 10( , , , )h h h h� � � �  with 

0 2 8 10( , , , )h h h h� � � �  and then we get those four values 

9 3 1 11( , , and )i i i i� � �  located as follows: 

 

 

 

 

* *
0 4 8 120 4 8 12

1 5 9 13 1 5 9 13
* *

2 6 10 142 6 10 14

3 7 11 15 3 7 11 15

SB SR

h h h hg g g g
g g g g h h h h

h h h hg g g g
g g g g h h h h
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4 12

1 5 9 13

6 14

3 7 11 15

? ?

MC
? ?

i i
i i i i

i i
i i i i
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Based on the property of MC transformation, we can form 
the following two groups of linear functions: 
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We know the values of 1 3 9 11, , and h h h h� � � �  from the original 
message block 2.yM −

�  We can get the values of 0 2( , )h h� �  by 

solving (15), and get the values of 8 10( , )h h� �  by solving (16). 
After finding the values of 0 2 8 10( , , , ),h h h h� � � �  we perform SR–1 
and SB–1, and obtain the corresponding four values 

* * * *
0 2 8 10( , , , ).g g g g� � � �  Once we know the values of 
* * * *
0 2 8 10( , , , ),g g g g� � � �  we replace 2yM −

�  with new
2 .yM −

�  new
2yM −

�  is 

constructed as follows (note that 0 8 2, ,g g g� � �  and 10g�  are 
known from the message block 3yM −

�  in Round y – 3): 

( ) ( ) ( ) ( )new * * * *
3 0 0 8 8 2 2 10 10yM g g g g g g g g− = ⊕ ⊕ ⊕ ⊕� � � � � � � � �  
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6.1.8 Combining the BNB search with the BNF 
search 

The second-preimage search algorithm combines the BNB 
search with the BNF search. To search for a second 
preimage of the ALPHA-MAC, we perform the following 
steps: 

1 Select a key or an intermediate value. 

2 Select a five-block message 
3 2 1 1( , , , , )y y y y yM M M M M M− − − + . 

3 Generate the second preimage 

3 2 1 1( , , , , )y y y y yM M M M M M− − − +
� � � � � �  randomly. We need 

to guarantee that 3yM −
�  is not equal to 3yM − . 

4 Perform the BNB search to generate 32-bit collisions. 
The BNB search is done by modifying message block 

2yM −
� . 

5 Use the BNF search to extend those 32- to 128-bit 
collisions. The BNF search is carried out by modifying 
the values of 1 1, and .y y yM M M− +

� � �  Message 

3 2 1 1( , , , , )y y y y yM M M M M M− − − +
� � � � � �  is a second preimage 

of message 3 2 1 1( , , , , )y y y y yM M M M M M− − − +  under the 

selected key (or the selected intermediate value). 

The routine of finding second preimages is shown in 
Table 1, and Figure 8 depicts this finding. The name of the 
BNB search comes from the fact that searching for 2yM −

�  is 

carried out by moving backwards and then backwards, and 
 

the name of the BNF search comes from the fact that 
searching for 1 1, andy y yM M M− +

� � �  is performed by moving 

backwards and then forwards (see Table 1). A personal 
computer takes about 1 sec to find a second preimage of the 
ALPHA-MAC. A found second preimage of a selected key 
K (see Table 2) and a selected five-block message M 
(see Table 3) is M (shown in Table 3). The 128-bit colliding 
value is listed in Table 4 (note that these two messages are 
listed after injection layout). 

Figure 8 The second-preimage search 

 
Table 1 Second-preimage search = BNB search + BNF search 

Search R Round y − 2 Di Round y − 1 Di Round y 

BNB 1    ⇐ 4 4 12 12

6 6 14 14

, ,
,

s s s s
s s s s
� �
� �

 

 2  ⇐ old old
0 0 2 2
old old
8 8 10 10

, ,

,

h h h h

h h h h� � � �
 

  

 3 new
2 2y yM M− −

     

  Round y − 1 Di Round y Di Round y + 1 

BNF 4 Modify My−1 ⇐ collisions on s4, s12, s6 and s14   
 5  ⇒ collisions on s4, s12, s6, s14, s1, 

s9, s3 and s11 
  

 6   modify yM�  ⇒ 96-bit collisions 

 7     modify My+1 → 128-bit 
collisions 

Note: Di – Direction; R – Routine.
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Table 2 The selected key K 

83 55 2d 81 
88 2c 05 67 
c1 63 be c2 
2a a2 52 a4 
 

Table 3 Two five-block messages 

M (the selected message) 

3yM −  2yM −  1yM −  yM
 1yM +  

c4 0 8c 0 e6 0 2a 0 77 0 fd 0 ef 0 a1 0 81 0 9f 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 f3 0 95 0 04 0 4c 0 37 0 68 0 09 0 25 0 2c 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M�  (the found second preimage)  

3yM −
�

 2yM −
�

 1yM −
�

 yM�
 1yM +

�
 

1d 0 43 0 22 0 04 0 e4 0 83 0 2f 0 e5 0 69 0 06 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1c 0 0d 0 2f 0 30 0 2f 0 9b 0 d4 0 30 0 f4 0 3a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 

Table 4 The 128-bit collisions 

7d 69 88 d7 
02 cb 1f af 
b9 d8 7b 5e 
0e 10 79 21 

6.2 The collision search algorithm 

Known:  A selected key or a selected intermediate value. 

Find: Two five-block messages M and M�  such that they 
collide under the selected key or the intermediate 
value. 

Method: Employ the second-preimage search. 

In the second-preimage search, we choose the first five-
block message arbitrarily, and once it is decided, we do not 
modify it. All we need to do is modify the second five-block 
message so that 128-bit collisions happen. Therefore, the 
second-preimage search can also be used to find two 
colliding five-block messages under a selected key  
(or a selected intermediate value). 

7 Conclusion 
We described a five-round algebraic property of the AES 
algorithm. In the presented property, we change 20 bytes 
from 5 intermediate values at some fixed locations in  
5 consecutive rounds by carrying out 20 extra XOR  

operations, and we show that after 5 rounds of processing, 
such modifications do not change the intermediate result 
and finally, still produce the same ciphertext. We defined an 
algorithm named δ, and by employing the δ algorithm, we 
constructed a modified version of the AES, the δAES. For a 
plaintext and a key, the AES and the δAES produce the 
same ciphertext. 

We then showed that the five-round algebraic property 
of the AES can be used to analyse the internal structure of 
the ALPHA-MAC, a MAC function whose underlying 
block cipher is AES. We provided a second-preimage 
search algorithm and a collision search algorithm. 
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Appendix 

Examples of AES with 20 XOR operations 

We provide seven examples of the outputs of the five algorithm and their corresponding plaintexts, secret keys and ciphertexts 
in Figure A1(a)–(g). 

Figure A1 The values of P, K, AES round keys and the 20 bytes 

 
(a) 
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued) 

 
(b) 

 

 

 



22 J. Huang, J. Seberry and W. Susilo  

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued) 

 
(c) 
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued) 

 
(d) 
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued) 

 
(e) 
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued) 

 
(f) 
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued) 

 
(g) 
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