University of Wollongong

Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

2009

A five-round algebraic property of AES and its application to the ALPHA-MAC

Jianyong Huang University of Wollongong, jyh33@uow.edu.au

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Willy Susilo University of Wollongong, wsusilo@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Huang, Jianyong; Seberry, Jennifer; and Susilo, Willy: A five-round algebraic property of AES and its application to the ALPHA-MAC 2009. https://ro.uow.edu.au/infopapers/3956

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A five-round algebraic property of AES and its application to the ALPHA-MAC

Abstract

We present a five-round algebraic property of the advanced encryption standard (AES), and we show that this algebraic property can be used to analyse the internal structure of ALPHA-MAC whose underlying block cipher is AES. In the proposed property, we modify 20 bytes from five intermediate values at some fixed locations in five consecutive rounds, and we show that after five rounds of operations, such modifications do not change the intermediate result and finally, still produce the same ciphertext. By employing the proposed five-round algebraic property of AES, we provide a method to find second preimages of the ALPHA-MAC based on the assumption that a key or an intermediate value is known. We also show that our idea can also be used to find internal collisions of the ALPHA-MAC under the same assumption.

Disciplines

Physical Sciences and Mathematics

Publication Details

Huang, J., Seberry, J. & Susilo, W. (2009). A five-round algebraic property of AES and its application to the ALPHA-MAC. International Journal of Applied Cryptography, 1 (4), 264-289.

A five-round algebraic property of AES and its application to the ALPHA-MAC

Jianyong Huang*, Jennifer Seberry and Willy Susilo

Centre for Computer and Information Security Research, School of Computer Science and Software Engineering, University of Wollongong, Australia E-mail: jyh33@uow.edu.au E-mail: jennie@uow.edu.au E-mail: wsusilo@uow.edu.au *Corresponding author

Abstract: We present a five-round algebraic property of the advanced encryption standard (AES), and we show that this algebraic property can be used to analyse the internal structure of ALPHA-MAC whose underlying block cipher is AES. In the proposed property, we modify 20 bytes from 5 intermediate values at some fixed locations in 5 consecutive rounds, and we show that after 5 rounds of operations, such modifications do not change the intermediate result and finally, still produce the same ciphertext. By employing the proposed five-round algebraic property of AES, we provide a method to find second preimages of the ALPHA-MAC based on the assumption that a key or an intermediate value is known. We also show that our idea can also be used to find internal collisions of the ALPHA-MAC under the same assumption.

Keywords: AES; advanced encryption standard; algebraic property; ALPHA-MAC; internal collisions; second preimages.

Reference to this paper should be made as follows: Huang, J., Seberry, J. and Susilo, W. (xxxx) 'A five-round algebraic property of AES and its application to the ALPHA-MAC', *Int. J. Applied Cryptography*, Vol. x, No. x, pp.xx–xx.

Biographical notes: Jianyong Huang is a PhD Student at the University of Wollongong. His current research interests include analysis of hash functions and block ciphers.

Jennifer Seberry is the Professor of Computer Science at the University of Wollongong. She graduated PhD in Computation Mathematics from La Trobe University in 1971. She has published extensively in Discrete Mathematics and is renown for her new discoveries on Hadamard Matrices and Statistical Designs. Her studies of the application of discrete mathematics and combinatorial computing via bent functions, S-box design, has led to the design of secure crypto-algorithms and strong hashing algorithms for secure and reliable information transfer in networks. She has over 300 publications and has successfully supervised 28 PhD Theses.

Willy Susilo is an Associate Professor at the School of Computer Science and Software Engineering in the University of Wollongong. He is also the Deputy Director of the ICT Research Institute and the Director of the CCISR research group. His research interests include authentication and digital signature schemes.

1 Introduction

The block cipher Rijndael, invented by Daemen and Rijmen (2001), was selected as the advanced encryption standard (AES) by National Institute of Standards and Technology. Rijndael has a simple and elegant structure, and it was designed carefully to withstand two well-known cryptanalytic attacks: differential cryptanalysis, proposed by Biham and Shamir (1993) and linear cryptanalysis, described by Matsui (1994). Most operations of Rijndael are based on the algebraic Galois field $GF(2^8)$, which can be implemented efficiently in dedicated hardware and in software on a wide range of processors.

Since Rijndael was adopted as a standard by National Institute of Standards and Technology (2001), there have been many research efforts aiming to evaluate the security of this cipher. A block cipher, named big encryption system (BES), was defined by Murphy and Robshaw (2002), and Rijndael can be embedded into BES. The extended linearisation (XL) proposed by Courtois et al. (2000) and the extended sparse linearisation (XSL) provided by Courtois and Pieprzyk (2002) are new methods to solve non-linear algebraic equations. The concept of dual ciphers was introduced by Barkan and Biham (2002), and a collision attack on seven rounds of Rijndael was described by Gilbert and Minier (2000). The most effective attacks on reduced round variants of the AES are square attack which was found by Daemen et al. (1997). The idea of the square attack was later employed by Ferguson et al. (2001) to improve the cryptanalysis of Rijndael, and by Lucks (2000) to attack seven rounds of Rijndael under 192- and 256-bit keys. A multiplicative masking method of AES was proposed by Akkar and Giraud (2001) and further discussed by Golic and Tymen (2002). The design of an AES-based stream cipher LEX was described by Biryukov (2007). A new message authentication code (MAC) construction ALRED and a special instance ALPHA-MAC was designed by Daemen and Rijmen (2005). So far, no short-cut attack against the full-round AES has been found.

In this paper, we present a five-round property of the AES. We modify 20 bytes from 5 intermediate values at some fixed locations in 5 consecutive rounds, and we demonstrate that after 5 rounds of operations, such modifications do not change the intermediate result and finally, still produce the same ciphertext. We introduce an algorithm named δ , and the δ algorithm takes a plaintext and a key as two inputs and outputs 20 bytes, which are used in the 5-round property. By employing the δ algorithm, we define a modified version of the AES algorithm, the δAES . The δAES calls the δ algorithm to generate 20 bytes, and uses these 20 bytes to modify the AES round keys. For a plaintext and a key, the AES and the δ AES produce the same ciphertext. By employing the proposed algebraic property of the AES, we analyse the internal structure of the ALPHA-MAC. Firstly, we present a method to find second preimages of the ALPHA-MAC by solving eight groups of linear functions based on the assumption that an authentication key or an intermediate value of this MAC is known. Each of these eight groups of linear functions contains two equations. Secondly, we show that the second-preimage finding method can also be used to generate internal collisions. The proposed collision search method can find two five-block messages such that they produce 128-bit collisions under a selected key (or a selected intermediate value).

This paper is organised as follows: Section 2 provides a brief description of the AES algorithm and Section 3 describes a five-round algebraic property of the AES. A modified version of the AES is defined in Section 4. Section 5 shows a description of the ALPHA-MAC construction and Section 6 demonstrates how the proposed five-round property of the AES is used to find second preimages and internal collisions of the ALPAH-MAC. Section 7 concludes this paper. Some examples of the AES and the AES with 20 extra exclusive-or operations are provided in the Appendix.

2 Description of the AES

AES is a block cipher with a 128-bit block length and supports key lengths of 128, 192 or 256 bits. For encryption, the input is a plaintext block and a key, and the output is a ciphertext block. The plaintext is first copied to 4×4 array

of bytes, which is called the state. The bytes of a state is organised in the following format:

α_0	α_4	α_8	α_{12}
α_1	α_5	α_9	α_{13}
α ₂	α_6	α_{10}	α_{14}
α ₃	α_7	α_{11}	α_{15}

where α_i denote the *i*th byte of the block. After an initial round key addition, the state array is transformed by performing a round function 10, 12 or 14 times (for 128-, 192- or 256-bit keys, respectively), and the final state is the ciphertext. We denote the AES with 128-bit keys by AES-128, with 192-bit keys by AES-192 and with 256-bit keys by AES-256. Each round of AES consists of the following four transformations (the final round does not include AddRoundKey (ARK)):

- 1 *The SubBytes (SB) transformation*: it is a non-linear byte substitution that operates independently on each byte of the state using a substitution table.
- 2 *The ShiftRows (SR) transformation*: the bytes of the state are cyclically shifted over different numbers of bytes. Row 0 is unchanged and row *i* is shifted to the left *i* byte cyclicly, $i \in \{1, 2, 3\}$.
- 3 The MixColumns (MC) transformation: it operates on the state column-by-column, considering each column as a four-term polynomial. The columns are treated as polynomials over $GF(2^8)$ and multiplied modulo $x^4 + 1$ with a fixed polynomial, written as $\{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\}$.
- 4 *The ARK transformation*: a round key is added to the state by a simple bitwise exclusive-or (XOR) operation.

The key expansion of the AES generates a total of Nb (Nr+1) words: the algorithm needs an initial set of Nb words, and each of the Nr rounds requires Nb words of key data, where Nb is 4 and Nr is set to 10, 12 or 14 for 128-, 192- or 256-bit key sizes, respectively. For a 128-bit key K, we denote the round keys by

K_0^i	K_4^i	K_8^i	K_{12}^i
K_1^i	K_5^i	K_9^i	K_{13}^{i}
K_2^i	K_6^i	K_{10}^i	K_{14}^i
K_3^i	K_7^i	K_{11}^{i}	K_{15}^{i}

where *i* is the round number, $i \in \{1, 2, ..., 10\}$. We note that the round key used in the initial round is the secret key *K* itself, and the secret key is represented without the superscript *i*. The combinations of the key length, block size and number of rounds are listed below:

Key length	Block size	Number of round
128 bits	4	10
192 bits	4	12
256 bits	4	14

3 A five-round property of AES

We describe a five-round property of the AES in this section. In the proposed property, we modify 20 bytes from 5 intermediate values at some fixed locations in 5 consecutive rounds, and we show that after 5 rounds of operations, such modifications do not change the intermediate result and finally, still produce the same ciphertext. The modifications are carried out by performing four extra XOR operations at the end of each round (i.e. after the ARK transformation), and in total, we perform 20 extra XOR operations in 5 rounds. We require that each of these 5 rounds must contain SB, SR, MC and ARK transformations.

We use Figures 1–3 to describe this property. The layout of the 20 bytes in the 5 intermediate values is shown in Figure 1, and the 20 bytes are $G'_0, G'_2, G'_8, G'_{10}, M'_0, M'_2, M'_8, M'_{10}, R'_0, R'_2, R'_8, R'_{10}, V'_0, V'_2, V'_8, V'_{10}, Z'_0, Z'_2, Z'_8, and Z'_{10}$.

Figure 2 The intermediate values of AES-128

							_				
					P_0	$P_4 P_8 P_5$.2	A_0	A_4	A_8	A_{12}
	Initial Ro	und	Plainte	$\mathbf{xt} P$	P_1	$P_5 P_9 P_1$	$3 \xrightarrow{ARK}$	A_1	A_5	A_9	A_{13}
					P_2	$P_6 P_{10} P_7$.4	A_2	A_6	A_{10}	A_{14}
					P_3	$P_7 P_{11} P_7$.5	A_3	A_7	A_{11}	A_{15}
	$B_0 B_4 B_8 B_{12}$	$D_0 D_4$	$D_8 D_{12}$		F_0	F_4 F_8 F_7	.2	G_0	G_4	G_8	G_{12}
David 1 SB	B_1 B_5 B_9 B_{13} $_{SR}$	$D_1 D_5$	$D_9 D_{13}$	MC	F_1	$F_5 \mid F_9 \mid F_7$	3 ARK	G_1	G_5	G_9	G_{13}
Round 1 \longrightarrow	$B_2 B_6 B_{10} B_{14} $	$D_2 D_6$	$D_{10}D_{14}$	\rightarrow	F_2	$F_6 F_{10} F_7$	$.4 \rightarrow$	G_2	G_6	G_{10}	G_{14}
	$B_3 \ B_7 \ B_{11} \ B_{15}$	$D_3 D_7$	$D_{11}D_{15}$		F_3	$F_7 F_{11} F_7$.5	G_3	G_7	G_{11}	G_{15}
	$H_0 H_4 H_8 H_{12}$	$J_0 J_4$	$J_8 \ J_{12}$		L_0	L_4 L_8 L	12	M_0	M_4	M_8	M_{12}
	H_1 H_5 H_9 H_{13} $_{SR}$	$J_1 J_5$	$J_9 \ J_{13}$	MC	L_1	$L_5 L_9 L$	13 ARK	M_1	M_5	M_9	M_{13}
Round 2 \longrightarrow	$H_2 H_6 H_{10} H_{14} \longrightarrow$	J_2 J_6	$J_{10} J_{14}$	\longrightarrow	L_2	$L_6 \ L_{10} \ L$	$14 \rightarrow$	M_2	M_6	M_{10}	M_{14}
	$H_3 H_7 H_{11} H_{15}$	$J_3 \mid J_7$	$J_{11} J_{15}$		L_3	$L_7 \ L_{11} \ L$	15	M_3	M_7	M_{11}	M_{15}
	$N_0 N_4 N_8 N_{12}$	$O_0 O_4$	$O_8 O_{12}$		Q_0	$Q_4 Q_8 Q$	12	R_0	R_4	R_8	R_{12}
D I SB	$N_1 N_5 N_9 N_{13} S_R$	$O_1 O_5$	$O_9 O_{13}$	MC	Q_1	$Q_5 \ Q_9 \ Q$	13 ARK	R_1	R_5	R_9	R_{13}
Round 3 \longrightarrow	$N_2 N_6 N_{10} N_{14} \longrightarrow$	$O_2 O_6$	$O_{10}O_{14}$	\longrightarrow	Q_2	$Q_6 Q_{10} Q$	$14 \rightarrow$	R_2	R_6	R_{10}	R_{14}
	$N_3 N_7 N_{11} N_{15}$	$O_3 O_7$	$O_{11}O_{15}$		Q_3	$Q_7 Q_{11} Q$	15	R_3	R_7	R_{11}	R_{15}
	$S_0 S_4 S_8 S_{12}$	T_0 T_4	$T_8 T_{12}$		U_0	$U_4 \ U_8 \ U$	12	V_0	V_4	V_8	V_{12}
	S_1 S_5 S_9 S_{13} $_{SR}$	T_1 T_5	$T_9 T_{13}$	MC	U_1	$U_5 U_9 U$	13 ARK	V_1	V_5	V_9	V_{13}
Round 4 \longrightarrow	$S_2 \mid S_6 \mid S_{10} \mid S_{14} \mid \longrightarrow$	T_2 T_6	$T_{10} T_{14}$	\rightarrow	U_2	$U_6 \ U_{10} \ U$	$\downarrow 4 \longrightarrow$	V_2	V_6	V_{10}	V_{14}
	$S_3 \ S_7 \ S_{11} \ S_{15}$	T_3 T_7	$T_{11} T_{15}$		U_3	$U_7 \ U_{11} \ U$	15	V_3	V_7	V_{11}	V_{15}
	$W_0 W_4 W_8 W_{12}$	$X_0 X_4$	$X_8 X_{12}$		Y_0	Y_4 Y_8 Y_7	.2	Z_0	Z_4	Z_8	Z_{12}
Den le SB	$W_1 W_5 W_9 W_{13} _{SR}$	$X_1 X_5$	$X_9 X_{13}$	MC	Y_1	$Y_5 \mid Y_9 \mid Y_7$.3 ARK	Z_1	Z_5	Z_9	Z_{13}
Round 5 \longrightarrow	$W_2 W_6 W_{10} W_{14} \longrightarrow$	$X_2 X_6$	$X_{10}X_{14}$	\rightarrow	Y_2	$Y_6 Y_{10} Y_7$.4	Z_2	Z_6	Z_{10}	Z_{14}
	$W_3 W_7 W_{11} W_{15}$	$X_3 X_7$	$X_{11}X_{15}$		Y_3	$Y_7 Y_{11} Y_7$.5	Z_3	Z_7	Z_{11}	Z_{15}
	b_0 b_4 b_8 b_{12}	d_0 d_4	$d_8 \ d_{12}$		f_0	f_4 f_8 f_1	2	g_0	g_4	g_8	g_{12}
Dunde SB	b_1 b_5 b_9 b_{13} $_{SR}$	d_1 d_5	$d_9 d_{13}$	MC	f_1	f_5 f_9 f_1	3 ARK	g_1	g_5	g_9	g_{13}
Round $0 \longrightarrow$	b_2 b_6 b_{10} b_{14} \longrightarrow	$d_2 \mid d_6$	$d_{10} d_{14}$	\rightarrow	f_2	$f_6 \ f_{10} \ f_1$	$4 \rightarrow$	g_2	g_6	g_{10}	g_{14}
	b_3 b_7 b_{11} b_{15}	d_3 d_7	$d_{11} d_{15}$		f_3	$f_7 f_{11} f_1$	5	g_3	g_7	g_{11}	g_{15}
	$h_0 \hspace{0.1in} h_4 \hspace{0.1in} h_8 \hspace{0.1in} h_{12}$	j_0 j_4	$j_8 j_{12}$		l_0	l_4 l_8 l_1	2	m_0	m_4	m_8	m_{12}
Bound 7 \xrightarrow{SB}	h_1 h_5 h_9 h_{13} SR	j_1 j_5	$j_{9} j_{13}$	MC	l_1	$l_5 \ l_9 \ l_1$	3 ARK	m_1	m_5	m_9	m_{13}
riound i	h_2 h_6 h_{10} h_{14}	$j_2 j_6$	j_{10} j_{14}	ŕ	l_2	$l_6 \ l_{10} \ l_1$	4	m_2	m_6	m_{10}	m_{14}
	h_3 h_7 h_{11} h_{15}	$j_{3} j_{7}$	j_{11} j_{15}		l_3	$l_7 \ l_{11} \ l_1$	5	m_3	m_7	m_{11}	m_{15}
	$n_0 \ n_4 \ n_8 \ n_{12}$	00 04	08 012		q_0	$q_4 q_8 q_1$	2	r_0	r_4	r_8	r_{12}
Bound 8 \xrightarrow{SB}	n_1 n_5 n_9 n_{13} SR	01 05	09 013	MC	q_1	$q_5 q_9 q_1$	3 ARK	r_1	r_5	r_9	r_{13}
roound o	n_2 n_6 n_{10} n_{14}	$o_2 \ o_6$	$o_{10} \ o_{14}$		q_2	$q_6 q_{10} q_1$	4	r_2	r_6	r_{10}	r_{14}
	$n_3 n_7 n_{11} n_{15}$	03 07	$o_{11} \ o_{15}$		q_3	$q_7 q_{11} q_1$	5	r_3	r_7	r_{11}	r_{15}
	$s_0 \ s_4 \ s_8 \ s_{12}$	t_0 t_4	$t_8 t_{12}$		u_0	$u_4 \ u_8 \ u_3$.2	v_0	v_4	v_8	v_{12}
Bound 9 \xrightarrow{SB}	s_1 s_5 s_9 s_{13} SR	t_1 t_5	$t_9 t_{13}$	MC	u_1	$u_5 \ u_9 \ u_5$	3 ARK	v_1	v_5	v_9	v_{13}
-tound 0 -	<i>s</i> ₂ <i>s</i> ₆ <i>s</i> ₁₀ <i>s</i> ₁₄	t_2 t_6	t_{10} t_{14}	,	u_2	$u_6 u_{10} u_3$.4	v_2	v_6	v_{10}	v_{14}
	$s_3 \ s_7 \ s_{11} \ s_{15}$	$t_3 t_7$	t_{11} t_{15}		u_3	$u_7 u_{11} u_{1$.5	v_3	v_7	v_{11}	v_{15}
	$w_0 \ w_4 \ w_8 \ w_{12}$	$x_0 \ x_4$	$x_8 x_{12}$					z_0	z_4	z_8	z_{12}
Round $10 \xrightarrow{SB}$	$w_1 w_5 w_9 w_{13} \xrightarrow{SR}$	$x_1 x_5$	$x_9 x_{13}$				$\stackrel{ARK}{\longrightarrow}$	z_1	z_5	z_9	z_{13}
	$w_2 \ w_6 \ w_{10} \ w_{14}$	$x_2 x_6$	$x_{10} x_{14}$					z_2	z_6	z_{10}	z_{14}
	$w_3 w_7 w_{11} w_{15}$	$x_3 x_7$	$x_{11} x_{15}$					z_3	z_7	z_{11}	z_{15}

Figure 1 20 bytes

G_0'	0	G'_8	0
0	0	0	0
G'_2	0	G'_{10}	0
0	0	0	0
M_0'	0	M_8'	0
0	0	0	0
M_2'	0	M'_{10}	0
0	0	0	0
R'_0	0	R'_8	0
0	0	0	0
R'_2	0	R'_{10}	0
0	0	0	0
V_0'	0	V'_8	0
0	0	0	0
V_2'	0	V_{10}'	0
0	0	0	0
Z'_0	0	Z'_8	0
0	0	0	0
Z'_2	0	Z'_{10}	0
0	0	0	0

Figure 3 The intermediate values of AES-128 with extra 20 XOR operations

		Initial 1	Rou	nd	Plair	ntex	t P	P_0 P_1 P_2 P_3	 P4 P5 P6 P7 	$\begin{array}{c} P_8 \\ P_9 \\ P_{10} \\ P_{11} \\ P \end{array}$	212 213 214 215	$\stackrel{ARK}{\longrightarrow}$	$ \begin{array}{c} A_0\\ A_1\\ A_2\\ A_3 \end{array} $	A_4 A_5 A_6 A_7	$A_8 \\ A_9 \\ A_{10} \\ A_{11}$	$A_{12} \\ A_{13} \\ A_{14} \\ A_{15}$						1
	$B_0 B_4 B_8$	$_{3}B_{12}$		$D_0 D_1$	$4 D_8 I$	D_{12}		F_0	F_4	F ₈ F	12		G_0	G_4	G_8	G_{12}		G'_0	0	G'_8	0	
$1 \xrightarrow{SB}$	Bo Be Bu	$\frac{B_{13}}{B_{14}} = \frac{B_{13}}{S}$	\xrightarrow{R}	$D_1 D_2$	$\frac{D_9}{2} D_{10} D_{10}$	D_{13}	$\stackrel{MC}{\longrightarrow}$	F_1	F ₅	Г9 Г F10 F	13	$\stackrel{ARK}{\longrightarrow}$	G_1	G5 Ge	G_9	G_{13} G_{14}	\oplus	$\frac{0}{G'}$	0	$\frac{0}{G'}$	0	-
	B_3 B_7 B_1	$1 B_{15}$		$D_3 D$	$\frac{10}{7} D_{11} I$	D_{15}		- 2 F3	F ₇	F ₁₁ F	14 15		-2 G_3	$=$ 0 G_7	G_{11}	G_{15}		0	0	0	0	
	$H_0^* H_4 H_8^*$	$_{2}^{*}H_{12}$		J_0^* J_2	J_{8}^{*} .	J_{12}		L_0^*	L_4	$L_8^* L$	12		M_0^*	M_4	M_8^*	M_{12}		M'_0	0	M'_{\diamond}	0	
SB	H_1 H_5 H_5	H_{13}	B	J_1 J_5	J_9 .	J_{13}	MC	L_{1}^{*}	L_5	$L_9^* L$	13	ARK	M_{1}^{*}	M_5	M_{9}^{*}	M_{13}		0	0	0	0	
$2 \xrightarrow{D}{\longrightarrow}$	$H_2^* H_6 H_1^*$	0 H14	\xrightarrow{n}	$J_2^* = J_6$	$_{5} J_{10}^{*}$.	J_{14}	\xrightarrow{m}	L_2^*	L_6	$L_{10}^{*}L$	14	$\xrightarrow{\Lambda_{1}}$	M_2^*	M_6	M_{10}^{*}	M_{14}	⊕	M_2'	0	M_{10}'	0	-
	$H_3 H_7 H_1$	$_{1}H_{15}$		$J_3 J_7$	J_{11} .	J_{15}		L_3^*	L_7	$L_{11}^{*}L_{11}$	15		M_3^*	M_7	M_{11}^{*}	M_{15}		0	0	0	0	
	$N_0^* N_4 N_8^*$	$^{*}_{3} N_{12}$		$O_0^* O_0$	${}_{4} O_{8}^{*} O_{8}$	O_{12}		Q_0^*	Q_4^*	$Q_8^* Q$	$^{*}_{12}$		R_0^*	R_4^*	R_8^*	R_{12}^{*}		R'_0	0	R'_8	0	
SB	$N_1^* N_5 N_0^*$	[*] N ₁₃ S	R	01 0	$^{*}_{5} O_{9} O_{9}$	O_{13}^{*}	MC	Q_1^*	Q_5^*	Q_9^* Q	$^{*}_{13}$	ARK	R_1^*	R_5^*	R_9^*	R_{13}^{*}	~	0	0	0	0	
$3 \rightarrow$	$N_2^* N_6 N_1^*$	0 N14	\rightarrow	$O_2^* = O_1^*$	0^*_{10}	014	\rightarrow	Q_2^*	Q_6^*	$Q_{10}^{*}Q$	$^{*}_{14}$	\rightarrow	R_2^*	R_6^*	R_{10}^{*}	R_{14}^{*}	Ð	R'_2	0	R_{10}^{\prime}	0	-
	$N_3^* N_7 N_1^*$	$1^{N_{15}}$		03 03	$^{*}_{7}O_{11}O_$	O_{15}^{*}		Q_3^*	Q_7^*	Q_{11}^*Q	$^{*}_{15}$		R_{3}^{*}	R_7^*	R_{11}^{*}	R_{15}^{*}		0	0	0	0	
	$S_0^* \ S_4^* \ S_8^*$	S_{12}^*		$T_0^* T_4^*$	T_8^*	T_{12}^{*}		U_0^*	U_4	$U_{8}^{*} U$	12		V_0^*	V_4	V_8^*	V_{12}		V'_0	0	V'_8	0	
$4 \xrightarrow{SB}$	$S_1^* \ S_5^* \ S_9^*$	5 ^s [*] 13 s	$\stackrel{R}{\longrightarrow}$	$T_1^* T_5$	T_9^*	T_{13}^{*}	$\stackrel{MC}{\longrightarrow}$	<i>U</i> ₁	U_{5}^{*}	U9 U	13	$ARK \rightarrow$	V1	V_5^*	V_9	V_{13}^{*}	A	0	0	0	0	_
_	S ² S ⁶ S ¹	0 ^S 14		T_2^{*} T_6^{*}	T_{10}^{T}	$\frac{T_{14}}{T^*}$		U_2^{π}	U ₆	$U_{\hat{1}0} U$	14		V_2^{τ}	V_6	V_{10}	V_{14}	Ŷ	$\frac{V'_2}{0}$	0	V_{10}^{\prime}	0	
	³ 3 ³ 7 ³ 1	1 215		13 17	¹ 11	¹ 15		03	07	0110	15		v3	v7	v11	v 15	ſ		0		0	1
	$W_0^{} W_4 W_8^{}$	$\frac{3}{8}W_{12}$		X_0^{π} X	$4 X_{8}^{-2}$	x_{12}		Y_0^{π}	Y_4	$Y_8^{\pi} Y$	12		$Z_{\hat{0}}$	z_4	$Z_{\hat{8}}$	z_{12}		Z'_0	0	Z'_8	0	
$5 \xrightarrow{SB}$	$W_1 W_5 W_2$ $W_*^* W_c W_*^*$	$\frac{9}{W_{13}} \frac{9}{V_{14}} = \frac{9}{V_{14}}$	\xrightarrow{R}	$\begin{array}{c c} x_1 \\ x_2 \\ x_2 \\ x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1 \\ x_2 \\ x_1 \\ x_1$	$5 A_9 Z \approx D$	×13 X14	$\stackrel{MC}{\longrightarrow}$	$\frac{1}{V_{-}^{*}}$	$\frac{15}{Yc}$	$\frac{19}{V^*}$	13	$\stackrel{ARK}{\longrightarrow}$	21 Z*	25 Ze	Z9	$^{2}13$	\oplus	$\frac{0}{Z'}$	0	$\frac{0}{Z'}$	0	-
	$W_3 W_7^* W_1$	$1W_{15}^{*}$		$X_2^* X_2^*$	$\frac{5}{7} \frac{10}{X_{11}^*}$	X_{15}		Y_{3}^{12}	Y_7	$\frac{Y_{10}}{Y_{11}}$	14 15		Z_2 Z_3	Z_7	$\frac{Z_{10}}{Z_{11}}$	Z_{14} Z ₁₅		$\frac{2}{0}$	0	$\frac{2}{10}$	0	
	ba ha ha	1 15		o do d		10		fo	f,	fo f	10				11	10						
	b_1 b_5 b_0	b12		d_1 d_1		d12		10 f1	54 fs	$f_0 = f$	12		90 91	94 95	98 90	912 913						
$6 \xrightarrow{SB}{\longrightarrow}$	b_2 b_6 b_{10}	$b_{14} = \frac{b_{14}}{b_{14}}$	\xrightarrow{R}	d_2 d_6	d_{10}	d ₁₄	\xrightarrow{MC}	f_2	f_6	f10 f	13	$ARK \rightarrow$	g ₂	<i>g</i> 6	g10	g14						
	$b_3 \ b_7 \ b_{11}$	$\frac{b_{15}}{1}$		d3 d	$-d_{11}$	d ₁₅		f_3	f_7	f ₁₁ f	15		g_3	g_7	g_{11}	g_{15}						
	h_0 h_4 h_8	h_{12}		$j_0 j_4$	j8;	j_{12}		l_0	l_A	18 1	12		m_0	m_4	m_8	m_{12}						
C D	h_1 h_5 h_9	h ₁₃	D	j_1 j_5	j9 :	j ₁₃	MC	<i>l</i> ₁	l ₅	l9 l	13	ADK	m_1	m_5	m_9	m_{13}						
$7 \xrightarrow{BB}$	h2 h6 h10	0 h14	\xrightarrow{n}	j_2 j_6	j_{10}	j_{14}	\xrightarrow{M}	l_2	l_6	$l_{10} \ l_{10}$	14	$\xrightarrow{A n n}$	m_2	m_6	m_{10}	m_{14}						
	h3 h7 h1	$_{1}$ h_{15}		j ₃ j ₇	, j ₁₁ ;	j_{15}		l_3	l_7	l_{11} l_{1}	15		m_3	m_7	m_{11}	m_{15}						
	n_0 n_4 n_8	n_{12}		o ₀ o ₄	08	$^{o}12$		q_0	q_4	q_8 q	12		r_0	r_4	r_8	r_{12}						
SB	n_1 n_5 n_9) ⁿ 13 S	R	01 05	5 09 0	$^{o}13$	MC	q_1	q_5	q_9 q	13	ARK	r_1	r_5	r_9	r_{13}						
8 -→	$n_2 \ n_6 \ n_1$	$0 n_{14}$ -	\rightarrow	02 06	s ⁰ 10 a	$^{o}14$	\rightarrow	q_2	q_6	$q_{10} q$	14	\rightarrow	r_2	r_6	r_{10}	r_{14}						
	$n_3 n_7 n_1$	$1 n_{15}$		03 07	, o ₁₁ o	⁰ 15		q_3	q_7	$q_{11} q$	15		r_3	r_7	r_{11}	r_{15}						
	^s 0 ^s 4 ^s 8	s_{12}		t_0 t_4		t_{12}		u_0	u_4	u_8 u	12		v_0	v_4	v_8	v_{12}						
$a \xrightarrow{SB}$	^s 1 ^s 5 ^s 9	^s 13 S	R	t_1 t_5	t_9	t_{13}	MC	u_1	u_5	u_9 u	13	ARK	v_1	v_5	v_9	v_{13}						
	^s 2 ^s 6 ^s 10	0 ⁸ 14		t_2 t_6	t_{10}	t_{14}		u_2	u_6	$u_{10} u_{10}$	14		<i>v</i> ₂	v_6	v_{10}	v_{14}						
	*3 *7 *11	1 ^s 15		$t_3 t_7$	t ₁₁	^t 15		u_3	u_7	^{<i>u</i>} 11 ^{<i>u</i>}	15		<i>v</i> 3	<i>v</i> 7	v11	^v 15						
	w ₀ w ₄ w ₈	$^{w_{12}}$		$x_0 x_4$	4 ^x 8 ^x	x12							<i>z</i> 0	^z 4	^z 8	^z 12						
$10 \xrightarrow{SB}$	$w_1 w_5 w_0$	$\frac{w_{13}}{s}$	$\stackrel{R}{\longrightarrow}$	$x_1 x_3$	5 x9 a	x13						$A \xrightarrow{R K}$	<i>z</i> ₁	<i>z</i> 5	<i>z</i> 9	≈13						
	$w_2 \ w_6 \ w_1$	$0^{w}14$		$x_2 x_6$	x_{10}	x14							² 2	26 2-	^z 10	^z 14						
	~3 w7 w1	1 4 15		23 X	^{w11}	~15							~3	~7	~11	~15						

In Figure 1, a zero occupied byte means that there is no change in that byte, and a variable occupied byte indicates that there is a modification in that byte. In Figure 2, all intermediate values are listed when using the AES algorithm to encrypt a plaintext P under a 128-bit key K, and all bytes of the intermediate values are denoted by plain variables. Correspondingly, Figure 3 enumerates all intermediate values of the AES with 20 extra XOR operations. The 20-byte modifications take place in Rounds 1–5, and after ARK transformation in each of these 5 rounds, we perform XOR operations on Bytes 0, 2, 8 and 10. We show that the

20-byte modifications do not change the input to Round 6, that is, both the AES and the AES with 20 extra XOR operations generate the same input to Round 6. In Figure 3, a variable marked by a asterisk indicates that the value at that location has been affected by the 20-byte modifications, and a plain variable shows that the value at that location is not affected by the 20-byte modifications. For example, after ARK in Round 1 in Figure 3, Byte G_i is XORed with Byte G'_i , and after SB, we have four modified bytes H_i^* , $i \in \{0, 2, 8, 10\}$ and 12 unchanged bytes: H_1 , H_3 , H_4 , H_5 , H_6 , H_7 , H_9 , H_{11} , H_{12} , H_{13} , H_{14} and H_{15} .

3.1 The δ algorithm

To decide the values of the 20 bytes: G'_i, M'_i, R'_i, V'_i and Z'_i , $i \in \{0, 2, 8, 10\}$, we introduce an algorithm named δ . For any plaintext *P* and any key *K* used in the AES algorithm, the δ algorithm accepts *P* and *K* as two inputs, and generates an output which contains 20 bytes $\{G'_i, M'_i, R'_i, V'_i, Z'_i\}$, where

 $G'_i, M'_i, R'_i, V'_i \text{ and } Z'_i, \text{ are bytes, } i \in \{0, 2, 8, 10\}.$

The δ algorithm includes a number of steps:

- Process the first five rounds of the AES algorithm by taking the plaintext *P* and the key *K* as the inputs, that is, start with the initial round, and process Rounds 1–5 of the AES. Therefore, we know all intermediate values in Figure 2, from initial round to Round 5.
- 2 Initialise G'_i, M'_i, R'_i, V'_i and Z'_i , to zero, $i \in \{0, 2, 8, 10\}$.
- 3 Choose G'_0, G'_2, G'_8 and G'_{10} freely. The only requirement is that at least one of these four bytes is not equal to zero, namely, G'_0, G'_2, G'_8 and G'_{10} cannot be all zeros. If G'_0, G'_2, G'_8 and G'_{10} are all zeros, the δ algorithm outputs 20 zero bytes. Once G'_0, G'_2, G'_8 and G'_{10} are decided, the remaining 16 bytes will be computed by the procedures described in Sections 3.1.1-3.1.4.
- 4 Decide M'_{0}, M'_{2}, M'_{8} and M'_{10} .
- 5 Decide R'_0, R'_2, R'_8 and R'_{10} .
- 6 Decide V'_0, V'_2, V'_8 and V'_{10} .
- 7 Decide Z'_0, Z'_2, Z'_8 and Z'_{10} .

Remark 1: There are $2^{32}-l$ combinations of $\{G'_0, G'_2, G'_8, G'_{10}\}$ because each byte can have 2^8 possible values.

3.1.1 Deciding M'_0, M'_2, M'_8 and M'_{10}

After we have decided the values of G'_0, G'_2, G'_8 and G'_{10} , we carry out a four-round computation (of the AES with extra 12 XOR operations), called Routine Computation One, which starts with the initial round and ends with MC in Round 4 (see Figure 3).

Routine Com	Routine Computation One								
Initial round : <u>ARK</u>									
Round 1:	<u>SB</u>	<u>SR</u>	<u>MC</u>	<u>ARK</u>	⊕				
Round 2:	<u>SB</u>	<u>SR</u>	<u>MC</u>	<u>ARK</u>	⊕				
Round 3:	<u>SB</u>	<u>SR</u>	<u>MC</u>	<u>ARK</u>	⊕				
Round 4:	<u>SB</u>	<u>SR</u>	<u>MC</u> .						

All intermediate values from the computation of this time are stored in array called Buffer One (note that Routine Computation One produces 19 intermediate values). We denote the input and output of MC in Round 4 by

T_0^*	T_4^*	T_8^*	T_{12}^{*}		U_0^*	U_4^*	U_8^*	U_{12}^{*}
T_1^*	T_5^*	T_{9}^{*}	T_{13}^{*}	MC	U_1^*	U_5^*	U_9^*	U_{13}^{*}
T_2^*	T_6^*	T_{10}^{*}	T_{14}^{*}		U_2^*	U_6^*	U_{10}^{*}	U_{14}^{*}
T_3^*	T_7^*	T_{11}^{*}	T_{15}^{*}		U_3^*	U_7^*	U_{11}^{*}	U_{15}^{*}

Next, we will show that there is an algebraic relation between Bytes $\{M'_0, M'_2, M'_8, M'_{10}\}$ and Bytes $\{U^*_4, U^*_6, U^*_{12}, U^*_{14}\}$. Based on this relationship, we can change the values of $\{U^*_4, U^*_6, U^*_{12}, U^*_{14}\}$ to the values of $\{U_4, U_6, U_{12}, U_{14}\}$ by setting the values of $\{M'_0, M'_2, M'_8, M'_{10}\}$. After we have decided the values of $\{M'_0, M'_2, M'_8, M'_{10}\}$, we aim to have an intermediate value after MC in Round 4 in the format of

$$\begin{bmatrix} U_0^* & U_4^* & U_8^* & U_{12}^* \\ U_1^* & U_5^* & U_9^* & U_{13}^* \\ U_2^* & U_6^* & U_{10}^* & U_{14}^* \\ U_3^* & U_7^* & U_{11}^* & U_{15}^* \end{bmatrix}$$

The steps of deciding $\{M'_0, M'_2, M'_8, M'_{10}\}$ are listed as follows:

$$\begin{split} & \left\{ M_0', M_2', M_8', M_{10}' \right\} \leftarrow \left\{ N_0^*, N_2^*, N_8^* N_{10}^* \right\} \leftarrow \left\{ O_0^*, O_2^*, O_8^*, O_{10}^* \right\} \\ & \leftarrow \left\{ Q_1^*, Q_3^*, Q_9^*, Q_{11}^* \right\} \leftarrow \left\{ R_1^*, R_3^*, R_9^*, R_{11}^* \right\} \leftarrow \left\{ S_1^*, S_3^*, S_9^*, S_{11}^* \right\} \\ & \leftarrow \left\{ T_5^*, T_7^*, T_{13}^*, T_{15}^* \right\} \leftarrow \left\{ U_4, U_6, U_{12}, U_{14} \right\} \end{split}$$

After we change the values of $\{U_4^*, U_6^*, U_{12}^*, U_{14}^*\}$ to the values of $\{U_4, U_6, U_{12}, U_{14}\}$, the input and output of MC in Round 4 become

T_0^*	T_4^*	T_8^*	T_{12}^{*}		U_0^*	U_4^*	U_8^*	U_{12}^{*}
T_1^*	T_5^*	T_{9}^{*}	T_{13}^{*}	MC	U_1^*	U_5^*	U_9^*	U_{13}^{*}
T_2^*	T_6^*	T_{10}^{*}	T_{14}^{*}		U_2^*	U_6^*	U_{10}^{*}	U_{14}^{*}
T_{3}^{*}	T_7^*	T_{11}^{*}	T_{15}^{*}		U_3^*	U_7^*	U_{11}^{*}	U_{15}^{*}

Our next target is to modify the values $\{T_5^*, T_7^*, T_{13}^*, T_{15}^*\}$ of according to the values of. $\{U_4, U_6, U_{12}, U_{14}\}$. From the MC transformation, we have the following formula:

ΓĽ	J_{0}^{*}	U_4^*	U_8^*	U_{12}^{*}				
U	J_{1}^{*}	U_5^*	U_9^*	U_{13}^{*}				
U	J_{2}^{*}	U_6^*	U_{10}^{*}	U_{14}^{*}				
L	J_{3}^{*}	U_7^*	U_{11}^{*}	U_{15}^{*}				
	02	03	01	01]	T_0^*	T_4^*	T_8^*	T_{12}^{*}
_	01	02	03	01	T_1^*	T_5^*	T_{9}^{*}	T_{13}^{*}
_	01	01	02	03	T_2^*	T_6^*	T_{10}^{*}	T_{14}^{*}
	03	01	01	02	T_3^*	T_7^*	T_{11}^{*}	T_{15}^{*}

To find out the values of $\{T_5^*, T_7^*, T_{13}^*, T_{15}^*\}$, we need to solve the following two groups of linear functions, which are marked by (1) and (2).

$$\begin{cases} \begin{bmatrix} 02 & 03 & 01 & 01 \end{bmatrix} \begin{bmatrix} T_4^* \\ T_5^* \\ T_6^* \\ T_7^* \end{bmatrix} = U_4 \\ \begin{bmatrix} 01 & 01 & 02 & 03 \end{bmatrix} \begin{bmatrix} T_4^* \\ T_5^* \\ T_6^* \\ T_7^* \end{bmatrix} = U_6 \\ \begin{bmatrix} 02 & 03 & 01 & 01 \end{bmatrix} \begin{bmatrix} T_{12}^* \\ T_{13}^* \\ T_{14}^* \\ T_{15}^* \end{bmatrix} = U_{12} \\ \begin{bmatrix} 01 & 01 & 02 & 03 \end{bmatrix} \begin{bmatrix} T_{12}^* \\ T_{13}^* \\ T_{14}^* \\ T_{15}^* \end{bmatrix} = U_{14} \end{cases}$$
(2)

In Equation (1), there are two linear equations with two undecided variables T_5^* and T_7^* and thus we can solve (1) to obtain the values of T_5^* and T_7^* . Similarly, there are two linear equations in (2) with two undecided variables T_{13}^* and T_{15}^* and therefore we can solve (2) to get the values of T_{13}^* and T_{15}^* . After having T_5^*, T_7^*, T_{13}^* and T_{15}^* , perform SR⁻¹ (inverse SR) and SB⁻¹ (inverse SB), and we have the values of R_1^*, R_3^*, R_9^* and R_{11}^* after ARK in Round 3. Apply the ARK transformation to R_1^*, R_3^*, R_9^* and R_{11}^* , we have the values of Q_1^*, Q_3^*, Q_9^* and Q_{11}^* . Our next task is to modify the values of O_0^*, O_2^*, O_8^* and O_{10}^* . In Round 3, the input and output of MC are as follows:

Ę	Q_{0}^{*}	Q_4^*	Q_8^*	Q_{12}^{*}				
Q	Q_1^*	Q_5^*	Q_9^*	Q_{13}^{*}				
Q	P_{2}^{*}	Q_6^*	Q_{10}^{*}	Q_{14}^{*}				
Į	Q_{3}^{*}	Q_7^*	Q_{11}^{*}	Q_{15}^{*}				
	02	03	01	01]	O_0^*	O_4	O_8^*	<i>O</i> ₁₂
_	01	02	03	01	O_1	O_5^*	O_9	O_{13}^{*}
	01	01	02	03	O_2^*	<i>O</i> ₆	$O_{\!10}^*$	<i>O</i> ₁₄
	03	01	01	02	O_3	O_7^*	<i>O</i> ₁₁	O_{15}^{*}
					_			

-

 O_0^*, O_2^*, O_8^* and O_{10}^* . There are two linear equations in (3) with two undetermined variables O_0^* and O_2^* , and we can solve them to determine the values of O_0^* and O_2^* . Also, there are two linear equations in (4) with two undecided variables O_8^* and O_{10}^* , and we can get O_8^* and O_{10}^* and by solving (4).

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} O_0^* \\ O_1 \\ O_2^* \\ O_3 \end{bmatrix} = Q_4^* \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} O_0 \\ O_1 \\ O_2^* \\ O_3^* \\ O_3 \end{bmatrix} = Q_3^* \\ \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} O_8^* \\ O_9 \\ O_{10}^* \\ O_{11} \end{bmatrix} = Q_9^* \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} O_8^* \\ O_9 \\ O_{10}^* \\ O_{10} \\ O_{11} \end{bmatrix} = Q_{11}^* \\ \end{cases}$$
(4)

Once knowing the values of O_0^*, O_2^*, O_8^* and O_{10}^* , we perform SR⁻¹ and thus we get Bytes N_0^*, N_2^*, N_8^* and N_{10}^* after SB in Round 3. Finally, Bytes M'_0, M'_2, M'_8 and M'_{10} are decided by the following computations (note that M_0^*, M_2^*, M_8^* and M_{10}^* are obtained from Buffer One):

$$M'_{0} = M^{*}_{0} \oplus SB^{-1}(N^{*}_{0}), M'_{2} = M^{*}_{2} \oplus SB^{-1}(N^{*}_{2})$$
$$M'_{8} = M^{*}_{8} \oplus SB^{-1}(N^{*}_{8}), M'_{10} = M^{*}_{10} \oplus SB^{-1}(N^{*}_{10})$$

At this stage, we have decided the values of $\{G'_i, M'_i\}$ and $\{R'_i, V'_i, Z'_i\}$ are not yet decided (*note*: they are still initialised to zero), $i \in \{0, 2, 8, 10\}$.

3.1.2 Deciding R'_0, R'_2, R'_8 and R'_{10}

Perform Routine Computation One second time, and all intermediate values from the computation of this time are stored in an array called Buffer Two. The intermediate value after MC in Round 4 is

$$\begin{bmatrix} U_0^* & U_4 & U_8^* & U_{12} \\ U_1^* & U_5^* & U_9^* & U_{13}^* \\ U_2^* & U_6 & U_{10}^* & U_{14} \\ U_3^* & U_7^* & U_{11}^* & U_{15}^* \end{bmatrix}$$

We will demonstrate that there is an algebraic relation between Bytes $\{R'_0, R'_2, R'_8, R'_{10}\}$ and Bytes $\{U^*_1, U^*_3, U^*_9, U^*_{11}\}$. By employing this relationship, we are able to change the values of $\{U^*_1, U^*_3, U^*_9, U^*_{11}\}$ to the values of $\{U_1, U_3, U_9, U_{11}\}$ by choosing the values of $\{R'_0, R'_2, R'_8, R'_{10}\}$. After we have determined the values of $\{R'_0, R'_2, R'_8, R'_{10}\}$ and perform Routine Computation One second time, our target is that the intermediate value after MC in Round 4 is

$$\begin{bmatrix} U_0^* & U_4 & U_8^* & U_{12} \\ U_1 & U_5^* & U_9 & U_{13}^* \\ U_2^* & U_6 & U_{10}^* & U_{14} \\ U_3 & U_7^* & U_{11} & U_{15}^* \end{bmatrix}$$

The moves of determining the values of $\{R'_0, R'_2, R'_8, R'_{10}\}$ are shown below:

$$\{R'_0, R'_2, R'_8, R'_{10}\} \leftarrow \{S^*_0, S^*_2, S^*_8, S^*_{10}\} \leftarrow \{T^*_0, T^*_2, T^*_8, T^*_{10}\}$$

$$\leftarrow \{U_1, U_3, U_9, U_{11}\}$$

After we replace the values of $\{U_1^*, U_3^*, U_9^*, U_{11}^*\}$ with the values of $\{U_1, U_3, U_9, U_{11}\}$ the input and the output of MC in Round 4 are

$$\begin{bmatrix} T_0^* & T_4^* & T_8^* & T_{12}^* \\ T_1^* & T_5^* & T_9^* & T_{13}^* \\ T_2^* & T_6^* & T_{10}^* & T_{14}^* \\ T_3^* & T_7^* & T_{11}^* & T_{15}^* \end{bmatrix} \mathbf{MC} \begin{bmatrix} U_0^* & U_4 & U_8^* & U_{12} \\ U_1 & U_5^* & U_9 & U_{13}^* \\ U_2^* & U_6 & U_{10}^* & U_{14} \\ U_3 & U_7^* & U_{11} & U_{15}^* \end{bmatrix}$$

We need to modify the values of $\{T_0^*, T_2^*, T_8^*, T_{10}^*\}$ according to the values of $\{U_1, U_3, U_9, U_{11}\}$. We can form two groups of linear equations, which are named (5) and (6). There are two undecided variables T_0^* and T_2^* in Equation (5), and we can solve (5) to get the values of T_0^* and T_2^* . In Equation (6), there are two undetermined variables T_8^* and T_{10}^* , and we can find out the values of T_8^* and T_{10}^* by solving (6).

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} T_0^* \\ T_1^* \\ T_2^* \\ T_3^* \end{bmatrix} = U_1 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} T_0^* \\ T_1^* \\ T_2^* \\ T_3^* \end{bmatrix} = U_3$$
(5)

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} T_8^* \\ T_9^* \\ T_{10}^* \\ T_{11}^* \end{bmatrix} = U_9 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} T_8^* \\ T_9^* \\ T_{10}^* \\ T_{11}^* \end{bmatrix} = U_{11} \end{cases}$$
(6)

After knowing the values of $\{T_0^*, T_2^*, T_8^*, T_{10}^*\}$, we perform SR⁻¹ and have four corresponding values $\{S_0^*, S_2^*, S_8^*, S_{10}^*\}$ after SB in Round 4. Bytes $\{R_0', R_2', R_8', R_{10}'\}$ are computed as follows: (note that R_0^*, R_2^*, R_8^* and R_{10}^* are obtained from Buffer Two):

$$R'_{0} = R^{*}_{0} \oplus SB^{-1}(S^{*}_{0}), R'_{2} = R^{*}_{2} \oplus SB^{-1}(S^{*}_{2})$$
$$R'_{8} = R^{*}_{8} \oplus SB^{-1}(S^{*}_{8}), R'_{10} = R^{*}_{10} \oplus SB^{-1}(S^{*}_{10})$$

At this moment, we have decided the values of $\{G'_i, M'_i, R'_i\}$ and $\{V'_i, Z'_i\}$ are not determined and they are still equal to their initial values, $i \in \{0, 2, 8, 10\}$.

3.1.3 Deciding V'_0, V'_2, V'_8 and V'_{10}

After having the values of R'_0, R'_2, R'_8 and R'_{10} , we carry out a five-round computation of the AES with 16 extra XOR operations, called Routine Computation Two, which begins with the initial round and ends with MC in Round 5 (See Figure 3). All intermediate values from the computation of this time are stored in an array named Buffer Three (note that Routine Computation Two generates 24 intermediate values).

Routine Computation Two Initial round : ARK Round 1: SBSR ARK MC \oplus Round 2: SR <u>SB</u> MC \oplus <u>ARK</u> Round 3: SB SR MC ARK \oplus Round 4: SBSR MC

After MC in Round 5, we will have an intermediate value in the following format:

Y_0^*	Y_4	Y_8^*	<i>Y</i> ₁₂
Y_1^*	Y_5	Y_9^*	<i>Y</i> ₁₃
Y_2^*	Y_6	Y_{10}^{*}	<i>Y</i> ₁₄
Y_3^*	Y_7	Y_{11}^{*}	Y_{15}

There is an algebraic relation between Bytes $\{V'_0, V'_2, V'_8, V'_{10}\}$ and Bytes $\{Y_1^*, Y_3^*, Y_9^*, Y_{11}^*\}$, and we can change the values of $\{Y_1^*, Y_3^*, Y_9^*, Y_{11}^*\}$ to the values of $\{Y_1, Y_3, Y_9, Y_{11}\}$ by setting the values of $\{V'_0, V'_2, V'_8, V'_{10}\}$. The steps of determining the values of $\{V'_0, V'_2, V'_8, V'_{10}\}$ are shown below:

$$\{V'_0, V'_2, V'_8, V'_{10}\} \leftarrow \{W^*_0, W^*_2, W^*_8, W^*_{10}\}$$

$$\leftarrow \{X^*_0, X^*_2, X^*_8, X^*_{10}\} \leftarrow \{Y_1, Y_3, Y_9, Y_{11}\}$$

We replace Bytes $\{Y_1^*, Y_3^*, Y_9^*, Y_{11}^*\}$ with Bytes $\{Y_1, Y_3, Y_9, Y_{11}\}$, and the input and output of MC in Round 5 are

$$\begin{bmatrix} X_0^* & X_4 & X_8^* & X_{12} \\ X_1^* & X_5 & X_9^* & X_{13} \\ X_2^* & X_6 & X_{10}^* & X_{14} \\ X_3^* & X_7 & X_{11}^* & X_{15} \end{bmatrix} \underbrace{\mathsf{MC}} \begin{bmatrix} Y_0^* & Y_4 & Y_8^* & Y_{12} \\ Y_1 & Y_5 & Y_9 & Y_{13} \\ Y_2^* & Y_6 & Y_{10}^* & Y_{14} \\ Y_3 & Y_7 & Y_{11} & Y_{15} \end{bmatrix}$$

We form two groups of linear functions, marked by (7) and (8). There are two undecided variables X_0^* and X_2^* in (7), and we can solve (7) to get the values of X_0^* and X_2^* . In Equation (8), there are two undecided variables X_8^* and X_{10}^* and we can obtain the values of X_8^* and X_{10}^* by solving (8).

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} X_0^* \\ X_1^* \\ X_2^* \\ X_3^* \end{bmatrix} = Y_1 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} X_0^* \\ X_1^* \\ X_2^* \\ X_3^* \end{bmatrix} = Y_3 \\ \begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} X_8^* \\ X_9^* \\ X_{10}^* \\ X_{11}^* \end{bmatrix} = Y_9 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} X_8^* \\ X_9^* \\ X_{10}^* \\ X_{10}^* \\ X_{10}^* \end{bmatrix} = Y_{11} \\ \end{cases}$$
(8)

After deciding the values of $\{X_0^*, X_2^*, X_8^*, X_{10}^*\}$, we perform SR⁻¹ and have four corresponding values $\{W_0^*, W_2^*, W_8^*, W_{10}^*\}$ after SB in Round 5. Bytes V'_0, V'_2, V'_8 and V'_{10} are computed as follows (note that V_0^*, V_2^*, V_8^* and V_{10}^* are obtained from Buffer Three):

$$V_0' = V_0^* \oplus SB^{-1}(W_0^*), V_2' = V_2^* \oplus SB^{-1}(W_2^*),$$
$$V_8' = V_8^* \oplus SB^{-1}(W_8^*), V_{10}' = V_{10}^* \oplus SB^{-1}(W_{10}^*).$$

At this stage, we have decided the values of $\{G'_i, M'_i, R'_i, V'_i\}$, and Z'_i is not determined and it is equal to the initial value, $i \in \{0, 2, 8, 10\}$.

3.1.4 Deciding Z'_0, Z'_2, Z'_8 and Z'_{10}

Perform Routine Computation Two second time, and the intermediate value after MC in Round 5 is

Y_0^*	Y_4	Y_8^*	<i>Y</i> ₁₂
Y_1	Y_5	Y_9	<i>Y</i> ₁₃
Y_2^*	Y_6	Y_{10}^{*}	<i>Y</i> ₁₄
Y_3	Y_7	<i>Y</i> ₁₁	<i>Y</i> ₁₅

Apply ARK to the intermediate value above, we have

Z_0^*	Z_4	Z_8^*	Z_{12}
Z_1	Z_5	Z_9	Z_{13}
Z_2^*	Z_6	Z_{10}^{*}	Z_{14}
Z_3	Z_7	Z_{11}	Z_{15}

Bytes Z'_0, Z'_2, Z'_8 and Z'_{10} are computed as follows (note that Z_0, Z_2, Z_8 and Z_{10} are obtained from the computation in which the AES algorithm is used to encrypt the plaintext *P* under the key *K* (see Round 5 in Figure 2)):

$$Z'_{0} = Z^{*}_{0} \oplus Z_{0}, Z'_{2} = Z^{*}_{2} \oplus Z_{2},$$
$$Z'_{8} = Z^{*}_{8} \oplus Z_{8}, Z'_{10} = Z^{*}_{10} \oplus Z_{10}.$$

Finally, we have decided all values of $\{G'_i, M'_i, R'_i, V'_i, Z'_i\}$, $i \in \{0, 2, 8, 10\}$. Now, we carry out a 5-round computation of the AES with extra 20 XOR operations, called Routine Computation Three, by using Bytes G'_0, G'_2, G'_8 , $G'_{10}, M'_0M'_2, M'_8, M'_{10}, R'_0, R'_2, R'_8, R'_{10}, V'_0, V'_2, V'_8, V'_{10}, Z'_0, Z'_2,$ Z_8 and Z'_{10} and we will get the same input to Round 6 as the AES algorithm.

Routine Computation Three										
Initial round : <u>ARK</u>										
Round 1:	<u>SB</u>	<u>SR</u>	MC	<u>ARK</u>	⊕					
Round 2:	<u>SB</u>	<u>SR</u>	<u>MC</u>	<u>ARK</u>	⊕					
Round 3:	<u>SB</u>	<u>SR</u>	MC	<u>ARK</u>	⊕					
Round 4:	SB	<u>SR</u>	<u>MC</u> .							

Remark 2: The most important part of the δ algorithm is solving those eight groups of linear Equations (1)–(8). There is one question needs to be answered. The question is: Are these eight groups of linear equations independent? The answer to this question is choosing different values of Bytes $G'_0, G'_2, G'_8, G'_{10}$ if we face such situations. Among the 20 bytes: $G'_0, G'_2, G'_8, G'_{10}, M'_0M'_2, M'_8, M'_{10}, R'_0, R'_2, R'_8, R'_{10}, V'_0,$ V'_2 , V'_8 , V'_{10} , Z'_0 , Z'_s , Z_8 and Z'_{10} , we can select the values of G'_0, G'_2, G'_8 and G'_{10} freely. As we showed in Remark 1, there are $2^{32}-1$ combinations of these four bytes, and correspondingly, we can have $2^{32}-1$ intermediate values in Figure 3, starting with SB in Round 2 and ending with ARK in Round 10. If we meet any dependent equations, we can overcome this problem by choosing different values of Bytes G'_0, G'_2, G'_8 and G'_{10} . Therefore, this question will not cause any trouble. So far, we have not met any dependent equations in our large-sample experiments.

Remark 3: From Remark 1, we note that there is more than one combination of the 20 output bytes of algorithm δ for a given pair of (P, K).

Remark 4: For distinct plaintext and cipher key pairs (P, K), algorithm δ needs to perform individual computations to decide the values of the 20 bytes.

3.2 Variants of algorithm δ

We show that there are other variants of the δ algorithm. In Section 3.1, the locations of the 20 bytes are $\{0, 2, 8, 10\}$, and there are three other combinations, which are $\{4, 6, 12, ...$ 14}, {1, 3, 9, 11} and {5, 7, 13, 15}. Figure 4 outlines different locations of the 20 bytes. In Figure 3, $\{G'_i, M'_i, R'_i, V'_i, Z'_i\}$ operate in Round $\{1, 2, 3, 4, 5\}$, and they can also operate in Rounds {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4, 5, 6, 7, 8} or {5, 6, 7, 8, 9}. Therefore, there are 4 different combinations for the byte locations, and there are five different combinations for the round numbers in AES-128. In total, there are 20 (= 4×5) variants of the δ algorithm for AES-128. The δ algorithm has 28 (= 4 × 7) variants for AES-192, and 36 (= 4×9) variants for AES-256.

Figure 4 Different locations of the 20 bytes

0

0

0 0 0

0 0

0

0

0 0

0

0 0 0

0

0

0

0

-8			
0	0	0	0
G'_1	0	G'_9	0
0	0	0	0
G'_3	0	G'_{11}	0
0	0	0	0
M'_1	0	M'_9	0
0	0	0	0
M'_3	0	M'_{11}	0
0	0	0	0
R'_1	0	R'_9	0
0	0	0	0
R'_3	0	R'_{11}	0
0	0	0	0
V_1'	0	V'_9	0
0	0	0	0
V'_3	0	V_{11}'	0
0	0	0	0
Z'_1	0	Z'_9	0
0	0	0	0
Z'_3	0	Z'_{11}	0

G'_4	0	G'_{12}	0
0	0	0	0
G'_6	0	G'_{14}	0
0	0	0	0
M'_4	0	M_{12}'	0
0	0	0	0
M'_6	0	M'_{14}	0
0	0	0	0
R'_4	0	R'_{12}	0
0	0	0	0
R'_6	0	R'_{14}	0
0	0	0	0
V'_4	0	V_{12}^{\prime}	0
0	0	0	0
V'_6	0	V_{14}^{\prime}	0
0	0	0	0
Z'_4	0	Z'_{12}	0
0	0	0	0
Z'_6	0	Z'_{14}	0
0	0	0	0

0 0 0

 $\overline{G'_5}$ 0 G'_{13}

000

 G'_7 0

0 00

 M'_5 0 M'_1

0 0 0

 M'_7 0 M'_{15}

00 0

 R'_5 0 R'_{13}

0 0 0

 R'_7 0 R'_{15}

00 0 V_{13}'

 V'_5 0

0 0 0

 $\overline{V_7'}$ 0 V'_{15}

 Z'_5 0 Z'_{13}

00 0

 Z'_7 0 Z'_{15}

0 0

0

 G'_{15}

4 The modified version of the AES: δ AES

By employing the δ algorithm, we propose a modified version of the AES, which is named δAES . The major difference between the AES and the δAES is that the δAES uses modified AES round keys. In Figure 3 in Section 3, we apply 20 extra XOR operations to the intermediate values after ARK in Rounds 1–5 by using **B**vtes $\{G'_i, M'_i, R'_i, V'_i, Z'_i\}, i \in \{0, 2, 8, 10\}$. The construction of the δAES comes from the fact that we can use Bytes $\{G'_i, M'_i, R'_i, V'_i, Z'_i\}$ to XOR with AES round key 1–5 (instead of with the intermediate values after ARK), and we still get the same result, $i \in \{0, 2, 8, 10\}$. There are 20-byte differences between the AES round keys and the δAES round keys. The δAES employs the same key scheduling algorithm, constants and round function (i.e. SB, SR, MC and ARK) as the AES.

The construction of the δAES is adding two procedures, which are calling the δ algorithm and modifying the AES round keys, to the AES algorithm.

- Suppose for a plaintext P and a cipher key K, the 1 AES algorithm produces a ciphertext C, written as $C = AES_{\kappa}(P).$
- By accepting P and K as two inputs, use the δ algorithm 2 to generate 20 output bytes:

 $\{G'_i, M'_i, R'_i, V'_i, Z'_i\}, i \in \{0, 2, 8, 10\}^1$

- Apply the AES key scheduling algorithm to K and get 3 the round keys.
- Use $\{G'_i, M'_i, R'_i, V'_i, Z'_i\}$ to XOR with the corresponding 4 AES round keys and get the round keys for the δAES , $i \in \{0, 2, 8, 10\}$. The details of computing the δAES round keys is described in Section 4.1.
- 5 After carrying out the transformations above, the δAES uses the same round function (i.e. SB, SR, MC and ARK) to process the plaintext P with modified AES round keys, and finally, the δAES also generates the same cipher-text C, denoted by $C = \delta AES(P)$. Appendix provides some examples of the AES and the AES with 20 extra exclusive-or operations.

4.1 AES round keys and SAES round keys

Suppose K is a 128-bit AES cipher key, and after key expansion, the AES round keys are denoted by

K_0^i	K_4^i	K_8^i	K_{12}^i	
K_1^i	K_5^i	K_9^i	K_{13}^{i}	
K_2^i	K_6^i	K_{10}^i	K_{14}^i	
K_3^i	K_7^i	K_{11}^{i}	K_{15}^{i}	

10 J. Huang, J. Seberry and W. Susilo

where *i* is the round number, $i \in \{1, 2, ..., 10\}$. The round key used in the initial round is the secret key *K* itself, and the secret key is denoted without the superscript *i*.

The δAES round keys come from the following routine (see Figure 5):

- 1 In Initial Round, Rounds 6–10, use the corresponding AES round keys without any changes.
- 2 In Rounds 1–5, use the modified AES round keys. After applying 20 XOR operations to the AES round

AES Round Keys

keys, the δAES round key *i* is calculated by the following formulas:

$$\begin{cases} K_y^i \oplus \beta, & y \in \{0, 2, 8, 10\} \\ K_y^i, & y \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15\} \end{cases}$$

where y is the byte index of the block, $i \in \{1, 2, 3, 4, 5\}$ and β is equal to G'_y, M'_y, R'_y, V'_y or Z'_y when *i* is equal to 1, 2, 3, 4 or 5, respectively.

The Corresponding δAES Round Keys

	$egin{array}{c c c c c c c c c c c c c c c c c c c $				K_0	K_4	K_8	K_{12}
cipher Key K	K_1 K_5 K_9 K_{13}			_	K_1	K_5	K_9	K_{13}
Initial Round	$K_2 K_6 K_{10} K_{14}$			_	K_2	K_6	K_{10}	K_{14}
	$K_3 K_7 K_{11} K_{15}$				K_3	K_7	K_{11}	K_{15}
	$\begin{bmatrix} K_0^1 & K_4^1 & K_8^1 & K_{12}^1 \end{bmatrix}$		$egin{array}{c c c c c c c c c c c c c c c c c c c $		$K_0^1\oplus G_0'$	K_4^1	$K_8^1\oplus G_8'$	K_{12}^{1}
Round Koy 1	$ \begin{array}{c c} K_1^1 & K_5^1 & K_9^1 & K_{13}^1 \\ \end{array} $	Φ	0 0 0 0	_	K_1^1	K_5^1	K_{9}^{1}	K_{13}^1
Round Rey 1	$\begin{array}{c c} K_2^1 & K_6^1 & K_{10}^1 & K_{14}^1 \\ \hline \end{array}$	Φ	$G_2' 0 G_{10}' 0$	_	$K_2^1 \oplus G_2'$	K_6^1	$K_{10}^1 \oplus G_{10}'$	K_{14}^{1}
	$K_3^1 K_7^1 K_{11}^1 K_{15}^1$		0 0 0 0		K_{3}^{1}	K_7^1	K_{11}^1	K_{15}^{1}
	$K_0^2 K_4^2 K_8^2 K_{12}^2$		$M_0' 0 M_8' 0$		$K_0^2 \oplus M_0'$	K_4^2	$K_8^2\oplus M_8'$	K_{12}^{2}
Bound Key 2	$\begin{array}{c cccc} K_1^2 & K_5^2 & K_9^2 & K_{13}^2 \\ \end{array}$	Ф	0 0 0 0	_	K_{1}^{2}	K_{5}^{2}	K_{9}^{2}	K_{13}^2
Round Rey 2	$K_2^2 K_6^2 K_{10}^2 K_{14}^2$	Ψ	$M_2' = 0 M_{10}' = 0$	_	$K_2^2 \oplus M_2'$	K_{6}^{2}	$K_{10}^2 \oplus M_{10}'$	K_{14}^2
	$K_3^2 K_7^2 K_{11}^2 K_{15}^2$		0 0 0 0		K_{3}^{2}	K_{7}^{2}	K_{11}^2	K_{15}^2
	$K_0^3 \ K_4^3 \ K_8^3 \ K_{12}^3$		R_0' 0 R_8' 0		$K_0^3\oplus R_0'$	K_{4}^{3}	$K_8^3 \oplus R_8'$	K_{12}^{3}
Bound Key 3	$K_1^3 K_5^3 K_9^3 K_{13}^3$	Æ	0 0 0 0	_	K_{1}^{3}	K_{5}^{3}	K_{9}^{3}	K_{13}^{3}
rtound rieg o	$K_2^3 K_6^3 K_{10}^3 K_{14}^3$	Ψ	$R'_2 \ 0 \ R'_{10} \ 0$		$K_2^3 \oplus R_2'$	$\frac{K_6^3}{2}$	$K_{10}^3 \oplus R_{10}'$	$\frac{K_{14}^{3}}{K_{14}^{2}}$
	$K_3^3 K_7^3 K_{11}^3 K_{15}^3$		0 0 0 0		K_3^5	K ₇	K ₁₁	K ³ ₁₅
	$K_0^4 K_4^4 K_8^4 K_{12}^4$		$V_0' \ 0 \ V_8' \ 0$		$K_0^4 \oplus V_0'$	K_4^4	$K_8^4 \oplus V_8'$	K_{12}^{4}
Round Kev 4	K_1^4 K_5^4 K_9^4 K_{13}^4	\oplus		=	K_1^4	K ₅ ⁴	K_{9}^{4}	K_{13}^4
Round Rey 4	$K_{2}^{4} K_{6}^{4} K_{10}^{4} K_{14}^{4}$		$V_2' = 0 = V_{10}' = 0$		$K_2^{\star} \oplus V_2'$	K_{6}^{4}	$K_{10}^{4} \oplus V_{10}^{\prime}$	K_{14}^{4}
	$K_{3} K_{7} K_{11} K_{15}$				<i>K</i> ₃	K ₇	K_{11}	K ₁₅
	$K_0^5 K_4^5 K_8^5 K_{12}^5$		$Z'_0 \ 0 \ Z'_8 \ 0$		$K_0^{\mathfrak{s}} \oplus Z_0'$	$\frac{K_4^5}{5}$	$K_8^{\mathfrak{d}} \oplus Z_8'$	K_{12}^{5}
Round Key 5	$K_1^3 K_5^3 K_9^3 K_{13}^3$	\oplus	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=	K_1^5	K_{5}^{3}	K_{9}^{3}	K_{13}^{3}
0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$Z_2 = 0 = Z_{10} = 0$		$K_2^{\circ} \oplus Z_2^{\circ}$ K^5	$\frac{K_6^{\circ}}{K^5}$	$K_{10}^{\circ} \oplus Z_{10}^{\circ}$ κ^{5}	$\frac{K_{14}^{\circ}}{K^{5}}$
					Λ ₃	<u>π</u> ₇	Λ ₁₁	Λ ₁₅
	$K_0^6 K_4^6 K_8^6 K_{12}^6$				K_0^0	$\frac{K_{4}^{0}}{K_{4}^{0}}$	K_8^0	K_{12}^{0}
Round Key 6	$K_1^6 K_5^6 K_9^6 K_{13}^6$			=	K_1°	$\frac{K_5^\circ}{K_5^\circ}$	K_9°	K_{13}°
					$\frac{K_2}{K^6}$	$\frac{K_6}{K^6}$	K_{10}^{6}	$\frac{\kappa_{14}}{\kappa^6}$
	1_3 1_7 1_{11} 1_{15}				113	117 17	<i>n</i> ₁₁	15 15
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				K_0^+	$\frac{K_4}{V^7}$	K_8^+	$\frac{K_{12}^{+}}{V^{7}}$
Round Key 7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			—	$\frac{K_1}{K^7}$	$\frac{K_5}{K^7}$	$\frac{K_9}{K^7}$	$\frac{K_{13}}{K^7}$
	$K_2^7 K_6^7 K_{10}^7 K_{14}^7$				$\frac{K_2}{K_2^7}$	$\frac{K_{6}^{7}}{K_{-}^{7}}$	K_{10}^{7}	$\frac{K_{14}}{K_{17}^7}$
	$V^8 V^8 V^8 V^8$				113 1/8		1111 118	115 128
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				K^8	$\frac{\kappa_4}{\kappa^8}$	$\frac{\kappa_8}{K^8}$	$\frac{K_{12}}{K^8}$
Round Key 8	K_{1}^{8} K_{2}^{8} K_{10}^{8} K_{14}^{8}			=	K_{2}^{8}	$\frac{K_5^8}{K_2^8}$	K_{10}^{8}	$\frac{K_{13}^8}{K_{14}^8}$
	$K_{3}^{8} K_{7}^{8} K_{11}^{8} K_{15}^{8}$				K_{3}^{8}	K_{7}^{8}	K_{11}^{8}	K_{15}^{8}
	$K^{9} K^{9} K^{9} K^{9} K^{9}$				K^9	K ⁹	K^9	K ⁹ .
	$K_0^9 K_1^9 K_2^9 K_1^9 K_1^9$				K_{1}^{9}	$\frac{K_4}{K_r^9}$	K_{8}^{9}	$\frac{K_{12}^{9}}{K_{12}^{9}}$
Round Key 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			=	K_{2}^{9}	K_{6}^{9}	K_{10}^{9}	K_{14}^{9}
	$K_3^9 K_7^9 K_{11}^9 K_{15}^9$				K_{3}^{9}	K_{7}^{9}	K_{11}^{9}	K_{15}^{9}
	$K_0^{10} K_4^{10} K_8^{10} K_{10}^{10}$				K_{0}^{10}	K_{4}^{10}	K_{\circ}^{10}	K_{12}^{10}
	$K_1^{10}K_5^{10}K_{lpha}^{10}K_{12}^{10}$				K_{1}^{10}	K_{5}^{4}	K_{α}^{10}	K_{12}^{12}
Round Key 10	$\frac{1}{K_2^{10}} \frac{3}{K_6^{10}} \frac{13}{K_{10}^{10}} \frac{13}{K_{14}^{10}}$			=	K_{2}^{10}	K_{6}^{10}	K_{10}^{10}	K_{14}^{10}
	$K_3^{10}K_7^{10}K_{11}^{10}K_{15}^{10}$				$\tilde{K_{3}^{10}}$	K_{7}^{10}	K_{11}^{10}	K_{15}^{10}

Compared with the AES algorithm, the δ AES needs to do some extra transformations, that is, calling the δ algorithm and modifying the AES round keys. Moreover, for distinct plaintext and cipher key pairs (*P*, *K*), the δ AES needs to carry out individual computations to get Bytes $\{G'_i, M'_i, R'_i, V'_i, Z'_i\} \in \{0, 2, 8, 10\}$.

5 Description of the ALPHA-MAC

ALPHA-MAC is a MAC function which uses the building blocks of AES. Similarly to AES, the ALPHA-MAC supports keys of 128, 192 and 256 bits. The word length is 32 bits, and the injection layout places the 4 bytes of each message word $[m_0, m_1, m_2, m_3]$ into a 4 × 4 array. The format of the injection layout is shown as follows:

	m_0	0	m_1	0
	0	0	0	0
	<i>m</i> ₂	0	<i>m</i> ₃	0
L	0	0	0	0

Like AES, the ALPHA-MAC round function contains SB, SR, MC and ARK, and the output of each injection layout acts as the corresponding 128-bit round key. The message padding method appends a single 1 followed by the minimum number of 0 bits such that the length of the result is a multiple of 32. In the initialisation, the state is set to all zeros and AES is applied to the state. For every message word, the chaining method carries out an iteration, and each iteration maps the bits of the message word to an injection input. After that, a sequence of AES round functions are applied to the state, with the round keys replaced by the injection input. In the final transformation, AES is applied to the state. The MAC tag is the first l_m bits of the resulting final state. The length of l_m may have any value less than or equal to 128. The ALPHA-MAC function is depicted in Figure 6.

	Figure 6	ALPHA-MAC construction
--	----------	------------------------

6 Applying the property to ALPHA-MAC

We study the internal structure of the ALPHA-MAC by employing the proposed five-round algebraic property of AES, which is described in Section 3. Firstly, we present a method to find second preimages of the ALPHA-MAC by solving eight groups of linear functions, based on the assumption that an authentication key or an intermediate value of this MAC is known. Each of these eight groups of linear functions contains two equations. We divide the second-preimage search algorithm into two steps: the backwards-and-forwards (BNF) search and the backwards-and-backwards (BNB) search. The BNF search provides an idea for extending 32- to 128-bit collisions² by solving four groups of linear functions. Given a key (or an intermediate value) and one four-block message, the BNB search can generate another four-block message such that these two messages produce 32-bit collisions, which are a prerequisite for the BNF search. To do the BNB search, we need to solve another four groups of linear functions. By combining the BNB search with the BNF search, we can find second preimages of ALPHA-MAC. Secondly, we show that the second-preimage finding method can also be used to generate internal collisions. The proposed collision search method can find two five-block messages such that they produce 128-bit collisions under a selected key (or a selected intermediate value).

6.1 The second-preimage search algorithm

The second-preimage search algorithm aims to find a five-block second-preimage \tilde{M} for a selected five-block message M, under a selected key (or a selected intermediate value). The assumption of this search is that we know two values: a selected key (or a selected intermediate value) and a selected five-block message M. The result of the search is that M and \tilde{M} generate the same 128-bit value after five rounds of ALPHA-MAC iterations, under the selected key (or the selected intermediate value).

We use Figure 7 to illustrate the second-preimage search. Figure 7 depicts five consecutive rounds of the ALPHA-MAC for two different five-block messages M and \tilde{M} . We assume that we are able to select an intermediate value of the round functions in some round (e.g. in Round y-3), and select five consecutive message blocks $M(M_{y-3}, M_{y-2}, M_{y-1}, M_y, M_{y+1})$. Then we can find another five-block message $\tilde{M}(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}, \tilde{M}_y, \tilde{M}_{y+1})$ such that these two five-block messages collide on 128 bits in Round y + 1 after ARK. Note that the intermediate value is:

a_0	a_4	a_8	<i>a</i> ₁₂
a_1	a_5	a_9	<i>a</i> ₁₃
a_2	a_6	a_{10}	<i>a</i> ₁₄
a_3	a_7	a_{11}	a_{15}

Figure 7 The five-block collisions

								Roi	ınd <u>ı</u>	y — 3	3:							
a_0	a_4	a_8	a_{12}]	b_0	b_4	b_8	b_{12}		d_0	d_4	d_8	d_{12}	(M_{\cdots})	d_0^*	d_4	d_8^*	d_{12}
a_1	a_5	a_9	a_{13}	$SB \circ SR$	b_1	b_5	b_9	b_{13}	MC	d_1	d_5	d_9	d_{13}	(IMy=3) ARK	d_1	d_5	d_9	d_{13}
a_2	a_6	a_{10}	a_{14}	\longrightarrow	b_2	b_6	b_{10}	b_{14}	\longrightarrow	d_2	d_6	d_{10}	d_{14}	\longrightarrow	d_2^*	d_6	d_{10}^*	d_{14}
a_3	a_7	a_{11}	a_{15}		b_3	b_7	b_{11}	b_{15}		d_3	d_7	d_{11}	d_{15}		d_3	d_7	d_{11}	d_{15}
\tilde{a}_0	\tilde{a}_4	\tilde{a}_8	\tilde{a}_{12}]	\tilde{b}_0	\tilde{b}_4	\tilde{b}_8	\tilde{b}_{12}		\tilde{d}_0	\tilde{d}_4	\tilde{d}_8	\tilde{d}_{12}	(\tilde{M}_{-})	\tilde{d}_0^*	\tilde{d}_4	\tilde{d}_8^*	\tilde{d}_{12}
\tilde{a}_1	\tilde{a}_5	\tilde{a}_9	\tilde{a}_{13}	$SB \circ SR$	\tilde{b}_1	\tilde{b}_5	$ ilde{b}_9$	\tilde{b}_{13}	MC	\tilde{d}_1	\tilde{d}_5	$ ilde{d}_9$	\tilde{d}_{13}	$(M_{y=3})$ ARK	\tilde{d}_1	\tilde{d}_5	\tilde{d}_9	\tilde{d}_{13}
\tilde{a}_2	\tilde{a}_6	\tilde{a}_{10}	\tilde{a}_{14}	$ \longrightarrow $	\tilde{b}_2	\tilde{b}_6	\tilde{b}_{10}	\tilde{b}_{14}	\longrightarrow	\tilde{d}_2	\tilde{d}_6	\tilde{d}_{10}	\tilde{d}_{14}	\longrightarrow	\tilde{d}_2^*	\tilde{d}_6	$ ilde{d}_{10}^*$	\tilde{d}_{14}
\tilde{a}_3	\tilde{a}_7	\tilde{a}_{11}	\tilde{a}_{15}		\tilde{b}_3	\tilde{b}_7	\tilde{b}_{11}	\tilde{b}_{15}		$ ilde{d}_3$	\tilde{d}_7	\tilde{d}_{11}	\tilde{d}_{15}		$ ilde{d}_3$	\tilde{d}_7	\tilde{d}_{11}	\tilde{d}_{15}
								Roi	und y	y - 2	2:							
d_0^*	d_4	d_{8}^{*}	d_{12}]	f_0	f_4	f_8	f_{12}		g_0	g_4	g_8	g_{12}	$(M_{\rm max})$	g_0^*	g_4	g_8^*	g_{12}
d_1	d_5	d_9	d_{13}	$SB \circ SR$	f_1	f_5	f_9	f_{13}	MC	g_1	g_5	g_9	g_{13}	(IVI y=2) ARK	g_1	g_5	g_9	g_{13}
d_2^*	d_6	d_{10}^{*}	d_{14}	\longrightarrow	f_2	f_6	f_{10}	f_{14}	\rightarrow	g_2	g_6	g_{10}	g_{14}	\longrightarrow	g_2^*	g_6	g_{10}^*	g_{14}
d_3	d_7	d_{11}	d_{15}]	f_3	f_7	f_{11}	f_{15}		g_3	g_7	g_{11}	g_{15}		g_3	g_7	g_{11}	g_{15}
\tilde{d}_0^*	\tilde{d}_4	\tilde{d}_8^*	\tilde{d}_{12}		\tilde{f}_0	\tilde{f}_4	\tilde{f}_8	\tilde{f}_{12}		$ ilde{g}_0$	\tilde{g}_4	\tilde{g}_8	\tilde{g}_{12}	(\tilde{M})	$ ilde{g}_0^*$	\tilde{g}_4	\tilde{g}_8^*	\tilde{g}_{12}
\tilde{d}_1	\tilde{d}_5	\tilde{d}_9	\tilde{d}_{13}	$SB \circ SR$	\tilde{f}_1	\tilde{f}_5	\tilde{f}_9	\tilde{f}_{13}	MC	\tilde{g}_1	\tilde{g}_5	$ ilde{g}_9$	\tilde{g}_{13}	(M_{y-2}) ARK	\tilde{g}_1	\tilde{g}_5	$ ilde{g}_9$	\tilde{g}_{13}
\tilde{d}_2^*	\tilde{d}_6	\tilde{d}_{10}^*	\tilde{d}_{14}	\longrightarrow	\tilde{f}_2	\tilde{f}_6	\tilde{f}_{10}	\tilde{f}_{14}	\longrightarrow	$ ilde{g}_2$	$ ilde{g}_6$	$ ilde{g}_{10}$	\tilde{g}_{14}	\longrightarrow	\tilde{g}_2^*	$ ilde{g}_6$	\tilde{g}_{10}^*	\tilde{g}_{14}
\tilde{d}_3	\tilde{d}_7	\tilde{d}_{11}	\tilde{d}_{15}]	\tilde{f}_3	\tilde{f}_7	\tilde{f}_{11}	\tilde{f}_{15}		$ ilde{g}_3$	\tilde{g}_7	\tilde{g}_{11}	\tilde{g}_{15}		$ ilde{g}_3$	\tilde{g}_7	\tilde{g}_{11}	\tilde{g}_{15}
								Roi	ınd y	<i>j</i> — 1	:							
g_0^*	g_4	g_8^*	g_{12}]	h_0	h_4	h_8	h_{12}		i_0	i_4	i_8	i_{12}	(M_{-1})	i_0^*	i_4	i_8^*	i_{12}
g_1	g_5	g_9	g_{13}	$SB \circ SR$	h_1	h_5	h_9	h_{13}	MC	i_1	i_5	i_9	i_{13}	(IVI y=1) ARK	i_1	i_5	i_9	i_{13}
g_2^*	g_6	g_{10}^*	g_{14}	\longrightarrow	h_2	h_6	h_{10}	h_{14}	\longrightarrow	i_2	i_6	i_{10}	i_{14}	\longrightarrow	i_2^*	i_6	i_{10}^{*}	i_{14}
g_3	g_7	g_{11}	g_{15}]	h_3	h_7	h_{11}	h_{15}		i_3	i_7	i_{11}	i_{15}		i_3	i_7	i_{11}	i_{15}
\tilde{g}_0^*	\tilde{g}_4	\tilde{g}_8^*	\tilde{g}_{12}		\tilde{h}_0	\tilde{h}_4	\tilde{h}_8	\tilde{h}_{12}		\tilde{i}_0	\tilde{i}_4	\tilde{i}_8	\tilde{i}_{12}	(\tilde{M}_{-})	\tilde{i}_0^*	\tilde{i}_4	\tilde{i}_8^*	\tilde{i}_{12}
\tilde{g}_1	\tilde{g}_5	$ ilde{g}_9$	$ ilde{g}_{13}$	$SB \circ SR$	\tilde{h}_1	\tilde{h}_5	$ ilde{h}_9$	$ ilde{h}_{13}$	MC	\tilde{i}_1	\tilde{i}_5	\tilde{i}_9	\tilde{i}_{13}	(My=1) ARK	\tilde{i}_1	\tilde{i}_5	\tilde{i}_9	\tilde{i}_{13}
\tilde{g}_2^*	$ ilde{g}_6$	\tilde{g}_{10}^*	\tilde{g}_{14}	$ \longrightarrow $	\tilde{h}_2	\tilde{h}_6	${ ilde h}_{10}$	\tilde{h}_{14}	\rightarrow	\tilde{i}_2	\tilde{i}_6	\tilde{i}_{10}	\tilde{i}_{14}	\longrightarrow	\tilde{i}_2^*	\tilde{i}_6	$ \tilde{i}_{10}^{*} $	\tilde{i}_{14}
$ ilde{g}_3$	\tilde{g}_7	\tilde{g}_{11}	\tilde{g}_{15}		$ ilde{h}_3$	\tilde{h}_7	\tilde{h}_{11}	\tilde{h}_{15}		\tilde{i}_3	\tilde{i}_7	\tilde{i}_{11}	\tilde{i}_{15}		\tilde{i}_3	\tilde{i}_7	$ \tilde{i}_{11} $	\tilde{i}_{15}
								Roi	und y	<i>j</i> :								
i_0^*	i_4	i_8^*	i_{12}]	j_0	j_4	j_8	j_{12}		s_0	s_4	s_8	s_{12}	(M)	s_0^*	s_4	s_8^*	s_{12}
i_1	i_5	i_9	i_{13}	$SB \circ SR$	j_1	j_5	j_9	j_{13}	MC	s_1	s_5	s_9	s_{13}	$\left(M_{y} \right)$ ARK	s_1	s_5	s_9	s_{13}
i_2^*	i_6	i_{10}^{*}	i_{14}	\longrightarrow	j_2	j_6	j_{10}	j_{14}	\longrightarrow	s_2	s_6	s_{10}	s_{14}	\longrightarrow	s_2^*	s_6	s_{10}^{*}	s_{14}
i_3	i_7	i_{11}	i_{15}]	j_3	j_7	j_{11}	j_{15}		s_3	s_7	s_{11}	s_{15}		s_3	s_7	s_{11}	s_{15}
\tilde{i}_0^*	\tilde{i}_4	\tilde{i}_8^*	\tilde{i}_{12}		\widetilde{j}_0	\tilde{j}_4	\tilde{j}_8	\tilde{j}_{12}		\tilde{s}_0	\tilde{s}_4	\tilde{s}_8	\tilde{s}_{12}	(\tilde{M})	$ ilde{s}_0^* $	\tilde{s}_4	\tilde{s}_8^*	\tilde{s}_{12}
\tilde{i}_1	\tilde{i}_5	\tilde{i}_9	\tilde{i}_{13}	$SB \circ SR$	\tilde{j}_1	\tilde{j}_5	$ ilde{j}_9$	$ ilde{j}_{13}$	MC	\tilde{s}_1	\tilde{s}_5	$ ilde{s}_9$	\tilde{s}_{13}	$\binom{My}{ARK}$	\tilde{s}_1	\tilde{s}_5	$ ilde{s}_9$	\tilde{s}_{13}
\tilde{i}_2^*	\tilde{i}_6	\tilde{i}_{10}^*	\tilde{i}_{14}	\longrightarrow	\widetilde{j}_2	\widetilde{j}_6	$ ilde{j}_{10}$	\tilde{j}_{14}	\longrightarrow	\tilde{s}_2	\tilde{s}_6	\tilde{s}_{10}	\tilde{s}_{14}	\longrightarrow	\tilde{s}_2^*	\tilde{s}_6	\tilde{s}_{10}^*	\tilde{s}_{14}
\tilde{i}_3	\tilde{i}_7	\tilde{i}_{11}	\tilde{i}_{15}		$ ilde{j}_3$	\tilde{j}_7	\tilde{j}_{11}	\tilde{j}_{15}		$ ilde{s}_3$	\tilde{s}_7	\tilde{s}_{11}	\tilde{s}_{15}		\widetilde{s}_3	\tilde{s}_7	\tilde{s}_{11}	\tilde{s}_{15}
								Roi	ınd y	i + 1	:							
s_0^*	s_4	s_8^*	s_{12}		n_0	n_4	n_8	n_{12}		\overline{w}_0	w_4	w_8	w_{12}	(M)	w_0^*	w_4	w_8^*	w_{12}
s_1	s_5	s_9	s_{13}	$SB \circ SR$	n_1	n_5	n_9	n_{13}	MC	w_1	w_5	w_9	w_{13}	$\binom{My+1}{ARK}$	w_1	w_5	w_9	w_{13}
s_2^*	s_6	s_{10}^*	s_{14}	\longrightarrow	n_2	n_6	n_{10}	n_{14}	\longrightarrow	w_2	w_6	w_{10}	w_{14}	\longrightarrow	w_2^*	w_6	w_{10}^{*}	w_{14}
s_3	s_7	s_{11}	s_{15}		n_3	n_7	$\overline{n_{11}}$	n_{15}		$\overline{w_3}$	$\overline{w_7}$	w_{11}	w_{15}		w_3	\overline{w}_7	\overline{w}_{11}	\overline{w}_{15}
\tilde{s}_0^*	\tilde{s}_4	\tilde{s}_8^*	\tilde{s}_{12}		\tilde{n}_0	\tilde{n}_4	\tilde{n}_8	\tilde{n}_{12}		$ ilde w_0$	\tilde{w}_4	\tilde{w}_8	\tilde{w}_{12}	(\tilde{M})	\tilde{w}_0^*	\tilde{w}_4	\tilde{w}_8^*	\tilde{w}_{12}
\tilde{s}_1	\tilde{s}_5	$ ilde{s}_9$	\tilde{s}_{13}	$SB \circ SR$	\tilde{n}_1	\tilde{n}_5	$ ilde{n}_9$	\tilde{n}_{13}	MC	\tilde{w}_1	\tilde{w}_5	\tilde{w}_9	\tilde{w}_{13}	$\binom{My+1}{ARK}$	\tilde{w}_1	\tilde{w}_5	\tilde{w}_9	\tilde{w}_{13}
\tilde{s}_2^*	\tilde{s}_6	\tilde{s}_{10}^*	\tilde{s}_{14}	$ \longrightarrow $	\tilde{n}_2	\tilde{n}_6	\tilde{n}_{10}	\tilde{n}_{14}	\longrightarrow	\tilde{w}_2	$ ilde{w}_6$	\tilde{w}_{10}	\tilde{w}_{14}	\longrightarrow	\tilde{w}_2^*	\tilde{w}_6	\tilde{w}_{10}^*	\tilde{w}_{14}
${ ilde s}_3$	\tilde{s}_7	\tilde{s}_{11}	\tilde{s}_{15}		$ ilde{n}_3$	\tilde{n}_7	\tilde{n}_{11}	\tilde{n}_{15}		$ ilde{w}_3$	\tilde{w}_7	\tilde{w}_{11}	\tilde{w}_{15}		$ ilde{w}_3$	\tilde{w}_7	\tilde{w}_{11}	$\overline{\tilde{w}}_{15}$

In the case of a selected key, for the sake of simplicity, we assume that $(M_{y-3}, M_{y-2}, M_{y-1}, M_y, M_{y+1})$ are the first five blocks of the selected message. Our search algorithm works without assuming that $(M_{y-3}, M_{y-2}, M_{y-1}, M_y, M_{y+1})$ are the first five blocks of the selected message.

The second-preimage search algorithm has the following form:

Known:	1 A selected key or a selected intermediate value.
	2 A selected five-block message $M(M_{y-3}, M_{y-2}, M_{y-1}, M_y, M_{y+1})$
Find:	Another five-block message $\tilde{M}(\tilde{M}_{y-3}, \tilde{M}_{y-2},$
	$\tilde{M}_{y-1}, \tilde{M}_{y}, \tilde{M}_{y+1})$ such that M and \tilde{M} collide
	on 128 bits after ARK in Round $y + 1$.
Method:	Solve eight groups of linear functions. These eight groups of functions are named as (9) – (16) in this section

The second-preimage search algorithm consists of two steps: the BNF search and the BNB search. The BNF search can extend 32- to 128-bit collisions, given two messages Mand \tilde{M} which collide on 32 bits, namely Bytes s₄, s₁₂, s₆ and s₁₄, after MC in Round y (see Figure 7). Given a key (or an intermediate value) and one four-block message, the BNB search is able to find another four-block message such that these two messages collide on Bytes s₄, s₁₂, s₆ and s₁₄ after MC in Round y. The BNB search generates those 32-bit collisions which are required for the BNF search. By merging the BNB search with the BNF search, we can find second preimages of the ALPHA-MAC.

6.1.1 The BNF search

The BNF search has the following form:

Known: 1 A selected key or a selected intermediate value. 2 Two four-block messages $M(M_{y-3}, M_{y-2}, M_{y-1}, M_y, M_{y+1})$ and $\tilde{M}(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}, \tilde{M}_y, \tilde{M}_{y+1})$ colliding on 32 bits (Bytes s_4 , s_{12} , s_6 and s_{14}) after MC in Round y.

- *Extend*: 32-bit collisions to 128-bit collisions in Round y + 1.
- Method: Solve four groups of linear functions. These four groups of functions are numbered as (9)–(12) in this section.

The BNF search assumes that we are able to find two messages M and \tilde{M} , which collide on Bytes s₄, s_{12} , s₆ and s₁₄ after MC in Round y. Based on the algebraic property of the MC transformation and the structure of ALPHA-MAC,

we can extend these 32- to 128-bit collisions within three rounds by solving four groups of linear equations.

6.1.2 Extending 32- to 64-bit collisions

We use the differential XOR property before and after the MC transformation. In Round y before MC, by XORing those two intermediate values, we get the following result:

$\left[\tilde{j}_{0}\right]$	$\oplus j_0$	$\tilde{j}_4 \oplus j$	$\tilde{j}_4 \tilde{j}_8 \oplus 1$	j ₈	$\tilde{j}_{12} \oplus j_{12}$]
\tilde{j}_1	$\oplus j_1$	$\tilde{j}_5 \oplus j$	$\tilde{j}_9 \oplus$	j ₉	$\tilde{j}_{13} \oplus j_{13}$	MC
\tilde{j}_2	$\oplus j_2$	$\tilde{j}_6 \oplus j$	$\tilde{j}_{10} \oplus$	\dot{J}_{10}	$\tilde{j}_{14} \oplus j_{14}$	
\tilde{j}_3	$\oplus j_3$	$\tilde{j}_7 \oplus j$	$\tilde{j}_{11} \oplus$	j_{11}	$\tilde{j}_{15} \oplus j_{15}$	
[?	0	?	0	٦		
0	$\tilde{s}_5 \oplus s$	s ₅ 0	$\tilde{s}_{13} \oplus s_{13}$			
?	0	?	0			
0	$\tilde{s}_7 \oplus s$	s ₇ 0	$\tilde{s}_{15} \oplus s_{15}$			

Here, we use *R* (to replace $\tilde{j}_0 \oplus j_0$), *S* (to replace $\tilde{j}_8 \oplus j_8$), *T* (to replace $\tilde{j}_2 \oplus j_2$) and *U* (to replace $\tilde{j}_{10} \oplus j_{10}$) so that after the MC transformation in Round *y*, Bytes $\tilde{s}_1 \oplus s_1, \tilde{s}_3 \oplus \tilde{s}_3, \tilde{s}_9 \oplus s_9$ and $\tilde{s}_{11} \oplus s_{11}$ become zero. Now the question is 'how to decide *R*, *S*, *T* and *U*'. The answer is:

- there exists one and only one pair of (R, T) such that after MC, Bytes $\tilde{s}_1 \oplus s_1$ and $\tilde{s}_3 \oplus \tilde{s}_3$ are both zero
- there exists one and only one pair of (S, U) such that after MC, s₉ ⊕ s₉ and s₁₁ ⊕ s₁₁ are both zero.

According to the MC transformation, we have the following formula:

$$\begin{bmatrix} ? & 0 & ? & 0 \\ 0 & \tilde{s}_5 \oplus s_5 & 0 & \tilde{s}_{13} \oplus s_{13} \\ ? & 0 & ? & 0 \\ 0 & \tilde{s}_7 \oplus s_7 & 0 & \tilde{s}_{15} \oplus s_{15} \end{bmatrix} \mathbf{MC}$$
$$\begin{bmatrix} R & \tilde{j}_4 \oplus j_4 & S & \tilde{j}_{12} \oplus j_{12} \\ \tilde{j}_1 \oplus j_1 & \tilde{j}_5 \oplus j_5 & \tilde{j}_9 \oplus j_9 & \tilde{j}_{13} \oplus j_{13} \\ T & \tilde{j}_6 \oplus j_6 & U & \tilde{j}_{14} \oplus j_{13} \\ \tilde{j}_3 \oplus j_3 & \tilde{j}_7 \oplus j_7 & \tilde{j}_{11} \oplus j_{11} & \tilde{j}_5 \oplus j_5 \end{bmatrix}$$

To find out the values of (R, T) and (S, U), we need to solve the following two groups of equations.

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} R \\ \tilde{j}_1 \oplus j_1 \\ T \\ \tilde{j}_3 \oplus j_3 \end{bmatrix} = 0 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} R \\ \tilde{j}_1 \oplus j_1 \\ T \\ \tilde{j}_3 \oplus j_3 \end{bmatrix} = 0$$
(9)

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} S \\ \tilde{j}_9 \oplus j_9 \\ U \\ \tilde{j}_{11} \oplus j_{11} \end{bmatrix} = 0 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} S \\ \tilde{j}_9 \oplus j_9 \\ U \\ \tilde{j}_{11} \oplus j_{11} \end{bmatrix} = 0 \end{cases}$$
(10)

In the two equations in (9), there are two variables R and T, and therefore there exists one and only one pair of (R, T) to make these two equations hold simultaneously. Similarly, we can decide the values of S and U by solving the two equations in (10).

Once we get the values of *R*, *S*, *T* and *U*, message block \tilde{M}_{v-1} can be constructed as follows:

- 1 Set the values of \tilde{j}_0^{new} , \tilde{j}_8^{new} , \tilde{j}_2^{new} , $\tilde{j}_{10}^{\text{new}}$, as follows: $\tilde{j}_{10}^{\text{new}} = j_0 \oplus R$, $\tilde{j}_8^{\text{new}} = j_8 \oplus S$, $\tilde{j}_2^{\text{new}} = \tilde{j}_2 \oplus T$ and $\tilde{j}_{10}^{\text{new}} = j_{10} \oplus U$. Use \tilde{j}_0^{new} to replace \tilde{j}_0 , \tilde{j}_8^{new} to replace \tilde{j}_8 , \tilde{j}_2^{new} to replace \tilde{j}_2 and $\tilde{j}_{10}^{\text{new}}$ to replace \tilde{j}_{10} .
- 2 Perform SR^{-1} (inverse SR) and SB^{-1} (inverse SB). As SR^{-1} and SB^{-1} are permutation and substitution, they do not change the properties we have found. Now we have the outputs of ARK in Round y 1.
- 3 Compute the value of $\tilde{M}_{\nu-1}^{\text{new}}$ as follows:

$$\begin{split} \tilde{\mathcal{M}}_{y-1}^{\text{new}} &= \left(\tilde{j}_0^{\text{new}} \oplus \tilde{i}_0\right) \Big\| \left(\tilde{j}_8^{\text{new}} \oplus \tilde{i}_8\right) \\ & \left\| \left(\tilde{j}_{10}^{\text{new}} \oplus \tilde{i}_2\right) \right\| \left(\tilde{j}_2^{\text{new}} \oplus \tilde{i}_{10}\right) \end{split}$$

Use $\tilde{M}_{v-1}^{\text{new}}$ to replace \tilde{M}_{v-1} .

At this stage, two messages $(M_{y-3}, M_{y-2}, M_{y-1})$ and $(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}^{\text{new}})$ collide on 64 bits (Bytes $s_4, s_{12}, s_6, s_{14}, s_1, s_9, s_3$ and s_{11}) in Round y after MC.

6.1.3 Extending 64- to 96-bit collisions

We only need to focus on Rounds y and y + 1 to extend 64- to 96-bit collisions. The idea is to choose message block \tilde{M}_y to cancel out the differences between Bytes (s_5 , s_{13} , s_7 , s_{15}) and Bytes ($\tilde{s}_5, \tilde{s}_{13}, \tilde{s}_7, \tilde{s}_{15}$) in Round y. The method of choosing \tilde{M}_y is exactly same as the method for constructing \tilde{M}_{y-1} in Section 6.1.2.

By taking the outputs of ARK in Round y, we perform the SB and SR operations, and then XOR the results after SB and SR:

$\lceil n \rceil$	l_0	n_4	n_8	<i>n</i> ₁₂		$\left\lceil \tilde{n}_{0} \right\rceil$	n	$i_4 \tilde{n}$	ĩ ₈	<i>n</i> ₁₂		
n	<i>i</i> 1	n_5	n_9	<i>n</i> ₁₃	A	\tilde{n}_1	n	5 ñ	ĭ9	<i>n</i> ₁₃		
n	<i>l</i> ₂	n_6	n_{10}	n_{14}		\tilde{n}_2	n	6 <i>î</i>	<i>ĭ</i> 10	<i>n</i> ₁₄		
ln	ı ₃	n_7	n_{11}	<i>n</i> ₁₅		\tilde{n}_3	n	$r_7 \hat{n}$	ĭ ₁₁	<i>n</i> ₁₅		
	$\int n_0$	$\oplus \tilde{n}$	0 0	$n_8 \in$	Ðñ	3	0		[?	0	?	0
_	$ n_1 $	$\oplus \tilde{n}_{l}$	0	$n_9 \in$	Ðñ	9	0	MC	0	0	0	0
_	$ n_2 $	$\oplus \tilde{n}$	2 0	<i>n</i> ₁₀	⊕í	\tilde{i}_{10}	0	<u>IVIÇ</u>	?	0	?	0
	n_3	$\oplus \tilde{n}$	3 0	<i>n</i> ₁₁	⊕ñ	<i>ĭ</i> 11	0		0	0	0	0

Here, we use π to replace $n_o \oplus \tilde{n}_0$, ρ to replace $n_8 \oplus \tilde{n}_8$, ϕ to replace $n_2 \oplus \tilde{n}_2$ and ω to replace $n_{10} \oplus \tilde{n}_{10}$ so that after MC in Round y + 1, Bytes $w_1 \oplus \tilde{w}_1$, $w_9 \oplus \tilde{w}_9$, $w_3 \oplus \tilde{w}_3$ and $w_{11} \oplus \tilde{w}_{11}$ are zero:

π	0	ρ	0		?	0	?	0]	
$n_1 \oplus \tilde{n}_1$	0	$n_9 \oplus \tilde{n}_9$	0	MC	0	0	0	0	
ϕ	0	ω	0	<u>IVIÇ</u>	?	0	?	0	
$n_3 \oplus \tilde{n}_3$	0	$n_{11} \oplus \tilde{n}_{11}$	0		0	0	0	0	

Now the question is 'how to decide π , ρ , ϕ and ω '. The answer is:

- There exists one and only one pair of (π, φ) such that after MC, Bytes w₁⊕w₁ and w₃ ⊕w₃ are both zero. The values of (π, φ) can be decided by solving (11).
- There exists one and only one pair of (ρ, ω) such that after MC, Bytes w₉ ⊕ w̃₉ and w₁₁ ⊕ w̃₁₁ are both zero. By solving (12), we get the values of (ρ, ω).

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} \pi & \\ n_{1} & \oplus & \tilde{n}_{1} \\ \phi & \\ n_{3} & \oplus & \tilde{n}_{3} \end{bmatrix} = 0 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} \pi & \\ n_{1} & \oplus & \tilde{n}_{1} \\ \phi & \\ n_{3} & \oplus & \tilde{n}_{3} \end{bmatrix} = 0 \\ \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} \begin{bmatrix} \rho & \\ n_{9} & \oplus & \tilde{n}_{9} \\ \omega & \\ n_{11} & \oplus & \tilde{n}_{11} \end{bmatrix} = 0 \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} \rho & \\ n_{9} & \oplus & \tilde{n}_{9} \\ \omega & \\ n_{11} & \oplus & \tilde{n}_{11} \end{bmatrix} = 0$$
(12)

Once we know the values of π , ϕ , ρ and ω , message block \tilde{M}_{ν} can be chosen as follows:

- 1 Set the values of $\tilde{n}_0^{\text{new}}, \tilde{n}_8^{\text{new}}, \tilde{n}_2^{\text{new}}$ and $\tilde{n}_{10}^{\text{new}}$ as follows: $\tilde{n}_0^{\text{new}} = n_0 \oplus \pi, \tilde{n}_8^{\text{new}} = n_8 \oplus \rho, \tilde{n}_2^{\text{new}} = n_2 \oplus \phi$ and $\tilde{n}_{10}^{\text{new}} = n_{10} \oplus \omega$. Use \tilde{n}_0^{new} to replace $\tilde{n}_0, \tilde{n}_0^{\text{new}}$ to replace $\tilde{n}_8, \tilde{n}_2^{\text{new}}$ to replace \tilde{n}_2 and $\tilde{n}_{10}^{\text{new}}$ to replace \tilde{n}_{10} .
- 2 Perform SR⁻¹ and SB⁻¹. Since SR⁻¹ and SB⁻¹ are permutation and substitution, they do not affect the properties we have found. Now we have the outputs of ARK in Round *y*.
- 3 Compute the value of \tilde{M}_{y} as follows:

$$\begin{split} \tilde{M}_{y} &= \left(\tilde{n}_{0}^{\text{new}} \oplus \tilde{s}_{0}\right) \Big\| \left(\tilde{n}_{8}^{\text{new}} \oplus \tilde{s}_{8}\right) \\ & \left\| \left(\tilde{n}_{10}^{\text{new}} \oplus \tilde{s}_{2}\right) \right\| \left(\tilde{n}_{2}^{\text{new}} \oplus \tilde{s}_{10}\right) \end{split}$$

So far, two messages $(M_{y-3}, M_{y-2}, M_{y-1}, M_y)$ and $(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}, \tilde{M}_y)$ collide on 96 bits (i.e. Bytes w_1 , w_3 , w_4 , w_5 , w_6 , w_7 , w_9 , w_{11} , w_{12} , w_{13} , w_{14} and w_{15}) in Round y + 1 after MC transformation.

6.1.4 Extending 96- to 128-bit collisions

This step is straightforward as we can select message M_{y+1} arbitrarily, and construct message \tilde{M}_{y+1} to cancel the differences between Bytes w_0 , w_8 , w_2 and w_{10} . The construction is provided as follows:

$$\tilde{M}_{y+1} = \left(\left(w_0 \oplus \tilde{w}_0 \right) \| \left(w_8 \oplus \tilde{w}_8 \right) \\ \| \left(w_2 \oplus \tilde{w}_2 \right) \| \left(w_{10} \oplus \tilde{w}_{10} \right) \right) \oplus M_{y+1}$$

6.1.5 The BNB search

The BNB search has the following form:

Known:	1 A selected key or a selected intermediate value.
	2 One selected four-block message
	$M(M_{y-3}, M_{y-2}, M_{y-1}, M_y)$
Find:	Another four-block message
	$M(M_{y-3}, M_{y-2}, M_{y-1}, M_y)$ such that these two
	messages collide on 32 bits (Bytes s_4 , s_{12} , s_6 and s_{14}) after MC in Round <i>y</i>
Method:	Solve four groups of linear functions. These four groups of functions are named as (13)–(16).

We propose a method to find 32-bit collisions on Bytes s_4 , s_{12} , s_6 and s_{14} (see Figure 7) by solving four groups of linear

functions. This search assumes that for a selected key (or a selected intermediate value) and a selected four-block message $(M_{y-3}, M_{y-2}, M_{y-1}, M_y)$, we can generate another four-block message $(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}, \tilde{M}_y)$ such that these two messages collide on Bytes s_4 , s_{12} , s_6 and s_{14} after MC in Round y. The method used by the BNB search is similar to the idea employed by the BNF search, but works in only one direction (i.e. only backwards).

6.1.6 Deciding four values $(\tilde{j}_5, \tilde{j}_7, \tilde{j}_{13} \text{ and } \tilde{j}_{15})$

In the beginning, we choose $(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}, \tilde{M}_y)$ randomly. Assume that the input and the output of MC in Round *y* are listed as follows:

1~	~	~	~					
J_0	J_4	J_8	J_{12}		\tilde{s}_0	\tilde{s}_4	\tilde{s}_8	\tilde{s}_{12}
\tilde{j}_1	$\tilde{j}_5^{\mathrm{old}}$	\tilde{j}_9	$\tilde{j}_{13}^{\text{old}}$	MC	\tilde{s}_1	\tilde{s}_5	\tilde{s}_9	\tilde{s}_{13}
\tilde{j}_2	\tilde{j}_6	\tilde{j}_{10}	\tilde{j}_{14}		<i>š</i> ₂	\tilde{s}_6	\tilde{s}_{10}	\tilde{s}_{14}
$\left\lfloor \tilde{j}_3 \right\rfloor$	$\tilde{j}_7^{\mathrm{old}}$	\tilde{j}_{11}	$\tilde{j}_{15}^{\text{old}}$] [3	ŝ3	\tilde{s}_7	\tilde{s}_{11}	<i>ŝ</i> ₁₅

Now we do not use the values of $\tilde{j}_5^{\text{old}}, \tilde{j}_7^{\text{old}}, \tilde{j}_{13}^{\text{old}}$ or $\tilde{j}_{15}^{\text{old}}$. Instead, we use \tilde{j}_5 (to replace \tilde{j}_5^{old}), \tilde{j}_7 (to replace \tilde{j}_7^{old}), \tilde{j}_{13} (to replace $\tilde{j}_{13}^{\text{old}}$), and \tilde{j}_{15} (to replace $\tilde{j}_{15}^{\text{old}}$) such that we get values $\tilde{s}_4, \tilde{s}_{12}, \tilde{s}_6$ and \tilde{s}_{14} , respectively (illustrated as follows):

$\left[\tilde{j}_0\right]$	\tilde{j}_4	\tilde{j}_8	\tilde{j}_{12}		\tilde{s}_0	\tilde{s}_4	\tilde{s}_8	s_{12}
\tilde{j}_1	\tilde{j}_5	\tilde{j}_9	\tilde{j}_{13}	MC	\tilde{s}_1	\tilde{s}_5	\tilde{s}_9	<i>š</i> ₁₃
$ \tilde{j}_2 $	\tilde{j}_6	\tilde{j}_{10}	\tilde{j}_{14}		\tilde{s}_2	<i>s</i> ₆	\tilde{s}_{10}	<i>s</i> ₁₄
\tilde{j}_3	\tilde{j}_7	\tilde{j}_{11}	\tilde{j}_{15}		\tilde{s}_3	\tilde{s}_7	\tilde{s}_{11}	\tilde{s}_{15}

Now the question is 'how can we make this happen'. Our answer is to solve two groups of linear functions. For the values of s_4 and s_6 , we have two linear equations in (13) with only two unknown variables (\tilde{j}_5 and \tilde{j}_7). Therefore, we can solve (13) to obtain the values of \tilde{j}_5 and \tilde{j}_7

$$\begin{cases} \begin{bmatrix} 02 & 03 & 01 & 01 \end{bmatrix} \begin{bmatrix} \tilde{j}_4 \\ \tilde{j}_5 \\ \tilde{j}_6 \\ \tilde{j}_7 \end{bmatrix} = s_4 \\ \begin{bmatrix} 01 & 01 & 02 & 03 \end{bmatrix} \begin{bmatrix} \tilde{j}_4 \\ \tilde{j}_5 \\ \tilde{j}_6 \\ \tilde{j}_7 \end{bmatrix} = s_6 \end{cases}$$
(13)

$$\begin{cases} \begin{bmatrix} 02 & 03 & 01 & 01 \end{bmatrix} & \begin{bmatrix} \tilde{j}_{12} \\ \tilde{j}_{13} \\ \tilde{j}_{14} \\ \tilde{j}_{15} \end{bmatrix} = s_{12} \\ \begin{bmatrix} 01 & 01 & 02 & 03 \end{bmatrix} & \begin{bmatrix} \tilde{j}_{12} \\ \tilde{j}_{13} \\ \tilde{j}_{14} \\ \tilde{j}_{15} \end{bmatrix} = s_{14} \end{cases}$$
(14)

Similarly, for the values of s_{12} and s_{14} , we have two linear functions in (14) with two unknown variable $(\tilde{j}_{13} \text{ and } \tilde{j}_{15})$. We can solve (14) to decide the values of \tilde{j}_{13} and \tilde{j}_{15} . After getting four vehicles $(\tilde{j}_5, \tilde{j}_7, \tilde{j}_{13} \text{ and } \tilde{j}_{15})$ decided, we perform the SR⁻¹ and SB⁻¹ transformations. As SR⁻¹ transformation. As SR⁻¹ is permutation and SB⁻¹ is substitution $\tilde{j}_5, \tilde{j}_7, \tilde{j}_{13}$ and \tilde{j}_{15} are first relocated then substituted by another four values $\tilde{i}_9, \tilde{i}_3, \tilde{i}_1$ and \tilde{i}_{11} , respectively. As the message injection layout does not change the values of $\tilde{i}_9, \tilde{i}_3, \tilde{i}_1$ and \tilde{i}_{11} these four values are not changed after we do ARK. So, we get four known values $(\tilde{i}_9, \tilde{i}_3, \tilde{i}_1$ and i_{11}) after MC in Round y-1. Our next target is to modify message block \tilde{M}_{y-2} so that we get those four values $\tilde{i}_9, \tilde{i}_3, \tilde{i}_1$ and i_{11} after MC in Round y-1.

6.1.7 Modifying message block \tilde{M}_{v-2}

Suppose by using the original message block \tilde{M}_{y-2} , we have the following states in Round y-1.

$$\begin{bmatrix} \tilde{g}_{0}^{*\text{old}} & \tilde{g}_{4} & \tilde{g}_{8}^{*\text{old}} & \tilde{g}_{12} \\ \tilde{g}_{1} & \tilde{g}_{5} & \tilde{g}_{9} & \tilde{g}_{13} \\ \tilde{g}_{2}^{*\text{old}} & \tilde{g}_{6} & \tilde{g}_{10}^{*\text{old}} & \tilde{g}_{14} \\ \tilde{g}_{3} & \tilde{g}_{7} & \tilde{g}_{11} & \tilde{g}_{15} \end{bmatrix} \underline{SB \circ SR} \begin{bmatrix} \tilde{h}_{0}^{\text{old}} & \tilde{h}_{4} & \tilde{h}_{8}^{\text{old}} & \tilde{h}_{12} \\ \tilde{h}_{1} & \tilde{h}_{5} & \tilde{h}_{9} & \tilde{h}_{13} \\ \tilde{h}_{2}^{\text{old}} & \tilde{h}_{6} & \tilde{h}_{10}^{\text{old}} & \tilde{h}_{14} \\ \tilde{h}_{3} & \tilde{h}_{7} & \tilde{h}_{11} & \tilde{h}_{15} \end{bmatrix}$$
$$\underline{MC} \begin{bmatrix} ? & \tilde{i}_{4} & ? & \tilde{i}_{12} \\ ? & \tilde{i}_{5} & ? & \tilde{i}_{13} \\ ? & \tilde{i}_{6} & ? & \tilde{i}_{14} \\ ? & \tilde{i}_{7} & ? & \tilde{i}_{15} \end{bmatrix}$$

Now we replace values $(\tilde{h}_0^{\text{old}}, \tilde{h}_2^{\text{old}}, \tilde{h}_8^{\text{old}}, \tilde{h}_{10}^{\text{old}})$ with $(\tilde{h}_0, \tilde{h}_2, \tilde{h}_8, \tilde{h}_{10})$ and then we get those four values $(\tilde{i}_9, \tilde{i}_3, \tilde{i}_1 \text{ and } i_{11})$ located as follows:

$$\begin{bmatrix} \tilde{g}_{0}^{*} & \tilde{g}_{4} & \tilde{g}_{8}^{*} & \tilde{g}_{12} \\ \tilde{g}_{1} & \tilde{g}_{5} & \tilde{g}_{9} & \tilde{g}_{13} \\ \tilde{g}_{2}^{*} & \tilde{g}_{6} & \tilde{g}_{10}^{*} & \tilde{g}_{14} \\ \tilde{g}_{3} & \tilde{g}_{7} & \tilde{g}_{11} & \tilde{g}_{15} \end{bmatrix} \underbrace{ \mathbf{SB} \circ \mathbf{SR}} \begin{bmatrix} \tilde{h}_{0} & \tilde{h}_{4} & \tilde{h}_{8} & \tilde{h}_{12} \\ \tilde{h}_{1} & \tilde{h}_{5} & \tilde{h}_{9} & \tilde{h}_{13} \\ \tilde{h}_{2} & \tilde{h}_{6} & \tilde{h}_{10} & \tilde{h}_{14} \\ \tilde{h}_{3} & \tilde{h}_{7} & \tilde{h}_{11} & \tilde{h}_{15} \end{bmatrix} \\ \underbrace{ \mathbf{MC}} \begin{bmatrix} ? & \tilde{i}_{4} & ? & \tilde{i}_{12} \\ \tilde{i}_{1} & \tilde{i}_{5} & \tilde{i}_{9} & \tilde{i}_{13} \\ ? & \tilde{i}_{6} & ? & \tilde{i}_{14} \\ \tilde{i}_{3} & \tilde{i}_{7} & \tilde{i}_{11} & \tilde{i}_{15} \end{bmatrix}$$

Based on the property of MC transformation, we can form the following two groups of linear functions:

$$\begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} & \begin{bmatrix} \tilde{h}_{0} \\ \tilde{h}_{1} \\ \tilde{h}_{2} \\ \tilde{h}_{3} \end{bmatrix} = \tilde{i}_{1} \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} & \begin{bmatrix} \tilde{h}_{0} \\ \tilde{h}_{1} \\ \tilde{h}_{2} \\ \tilde{h}_{3} \end{bmatrix} = \tilde{i}_{3} \\ \begin{cases} \begin{bmatrix} 01 & 02 & 03 & 01 \end{bmatrix} & \begin{bmatrix} \tilde{h}_{8} \\ \tilde{h}_{9} \\ \tilde{h}_{10} \\ \tilde{h}_{11} \end{bmatrix} = \tilde{i}_{9} \\ \begin{bmatrix} 03 & 01 & 01 & 02 \end{bmatrix} & \begin{bmatrix} \tilde{h}_{8} \\ \tilde{h}_{9} \\ \tilde{h}_{10} \\ \tilde{h}_{10} \\ \tilde{h}_{10} \\ \tilde{h}_{10} \end{bmatrix} = \tilde{i}_{11} \end{cases}$$
(16)

We know the values of $\tilde{h}_1, \tilde{h}_3, \tilde{h}_9$ and \tilde{h}_{11} from the original message block \tilde{M}_{y-2} . We can get the values of $(\tilde{h}_0, \tilde{h}_2)$ by solving (15), and get the values of $(\tilde{h}_8, \tilde{h}_{10})$ by solving (16). After finding the values of $(\tilde{h}_0, \tilde{h}_2, \tilde{h}_8, \tilde{h}_{10})$, we perform SR⁻¹ and SB⁻¹, and obtain the corresponding four values $(\tilde{g}_0^*, \tilde{g}_2^*, \tilde{g}_8^*, \tilde{g}_{10}^*)$. Once we know the values of $(\tilde{g}_0^*, \tilde{g}_2^*, \tilde{g}_8^*, \tilde{g}_{10}^*)$, we replace \tilde{M}_{y-2} with $\tilde{M}_{y-2}^{\text{new}}$. $\tilde{M}_{y-2}^{\text{new}}$ is constructed as follows (note that $\tilde{g}_0, \tilde{g}_8, \tilde{g}_2$ and \tilde{g}_{10} are known from the message block \tilde{M}_{y-3} in Round y-3):

$$\tilde{\mathcal{M}}_{y-3}^{\text{new}} = \left(\tilde{g}_0^* \oplus \tilde{g}_0\right) \left\| \left(\tilde{g}_8^* \oplus \tilde{g}_8\right) \right\| \left(\tilde{g}_2^* \oplus \tilde{g}_2\right) \left\| \left(\tilde{g}_{10}^* \oplus \tilde{g}_{10}\right) \right\|$$

6.1.8 Combining the BNB search with the BNF search

The second-preimage search algorithm combines the BNB search with the BNF search. To search for a second preimage of the ALPHA-MAC, we perform the following steps:

- 1 Select a key or an intermediate value.
- 2 Select a five-block message $M(M_{y-3}, M_{y-2}, M_{y-1}, M_y, M_{y+1})$.
- 3 Generate the second preimage $\tilde{M}(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}, \tilde{M}_y, \tilde{M}_{y+1})$ randomly. We need to guarantee that \tilde{M}_{y-3} is not equal to M_{y-3} .
- 4 Perform the BNB search to generate 32-bit collisions. The BNB search is done by modifying message block $\tilde{M}_{\nu-2}$.
- 5 Use the BNF search to extend those 32- to 128-bit collisions. The BNF search is carried out by modifying the values of $\tilde{M}_{\nu-1}, \tilde{M}_{\nu}$ and $\tilde{M}_{\nu+1}$. Message

 $\tilde{M}(\tilde{M}_{y-3}, \tilde{M}_{y-2}, \tilde{M}_{y-1}, \tilde{M}_{y}, \tilde{M}_{y+1})$ is a second preimage of message $M(M_{y-3}, M_{y-2}, M_{y-1}, M_{y}, M_{y+1})$ under the selected key (or the selected intermediate value).

The routine of finding second preimages is shown in Table 1, and Figure 8 depicts this finding. The name of the BNB search comes from the fact that searching for \tilde{M}_{y-2} is carried out by moving backwards and then backwards, and

the name of the BNF search comes from the fact that searching for \tilde{M}_{y-1} , \tilde{M}_y and \tilde{M}_{y+1} is performed by moving backwards and then forwards (see Table 1). A personal computer takes about 1 sec to find a second preimage of the ALPHA-MAC. A found second preimage of a selected key K (see Table 2) and a selected five-block message M(see Table 3) is M (shown in Table 3). The 128-bit colliding value is listed in Table 4 (note that these two messages are listed after injection layout).

Table 1Second-preimage search = BNB search + BNF search

Search	R	Round $y - 2$	Di	Round y – 1	Di	Round y
BNB	1				¢	$ \begin{split} \tilde{s}_4 &\rightharpoonup s_4, \tilde{s}_{12} \rightharpoonup s_{12}, \\ \tilde{s}_6 &\rightharpoonup s_6, \tilde{s}_{14} \rightharpoonup s_{14} \end{split} $
	2		¢	$\begin{split} h_0^{\text{old}} &\rightharpoonup h_0, h_2^{\text{old}} \rightharpoonup h_2, \\ \tilde{h}_8^{\text{old}} &\rightharpoonup \tilde{h}_8, \tilde{h}_{10}^{\text{old}} \rightharpoonup \tilde{h}_{10} \end{split}$		
	3	$M_{y-2} \rightarrow M_{y-2}^{\text{new}}$				
		Round y – 1	Di	Round y	Di	Round $y + 1$
BNF	4	Modify $M_{\underline{y}-1}$	¢	collisions on s_4 , s_{12} , s_6 and s_{14}		
	5		\Rightarrow	collisions on s_4 , s_{12} , s_6 , s_{14} , s_1 , s_9 , s_3 and s_{11}		
	6			modify \tilde{M}_y	\Rightarrow	96-bit collisions
	7					modify $M_{y+1} \rightarrow 128$ -bit collisions

Note: Di - Direction; R - Routine.

Table 2The selected key K

83	55	2d	81
88	2c	05	67
c1	63	be	c2
2a	a2	52	a4

Table 3Two five-block messages

. . . .

M	M (the selected message)																		
М	y-3	3		M	y-2	2		M	y−1			$M_{\underline{\cdot}}$	y			$M_{\underline{\cdot}}$	v+1		
c4	0	8c	0	e6	0	2a	0	77	0	fd	0	ef	0	al	0	81	0	9f	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
94	0	f3	0	95	0	04	0	4c	0	37	0	68	0	09	0	25	0	2c	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

M (the found second preimage)

Ñ	y-3	;		Ñ	y-2	2		<i>Ñ</i>	v-1			\tilde{M}_{\cdot}	v			\tilde{M}_{\pm}	v+1		
1d	0	43	0	22	0	04	0	e4	0	83	0	2f	0	e5	0	69	0	06	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1c	0	0d	0	2f	0	30	0	2f	0	9b	0	d4	0	30	0	f4	0	3a	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4The 128-bit collisions

7d	69	88	d7
02	cb	1f	af
b9	d8	7b	5e
0e	10	79	21

6.2 The collision search algorithm

Known:	A selected key or a selected intermediate value.
Find:	Two five-block messages M and \tilde{M} such that they collide under the selected key or the intermediate value.

Method: Employ the second-preimage search.

In the second-preimage search, we choose the first fiveblock message arbitrarily, and once it is decided, we do not modify it. All we need to do is modify the second five-block message so that 128-bit collisions happen. Therefore, the second-preimage search can also be used to find two colliding five-block messages under a selected key (or a selected intermediate value).

7 Conclusion

We described a five-round algebraic property of the AES algorithm. In the presented property, we change 20 bytes from 5 intermediate values at some fixed locations in 5 consecutive rounds by carrying out 20 extra XOR

operations, and we show that after 5 rounds of processing, such modifications do not change the intermediate result and finally, still produce the same ciphertext. We defined an algorithm named δ , and by employing the δ algorithm, we constructed a modified version of the AES, the δ AES. For a plaintext and a key, the AES and the δ AES produce the same ciphertext.

We then showed that the five-round algebraic property of the AES can be used to analyse the internal structure of the ALPHA-MAC, a MAC function whose underlying block cipher is AES. We provided a second-preimage search algorithm and a collision search algorithm.

References

- Akkar, M.L. and Giraud, C. (2001) 'An implementation of DES and AES, secure against some attacks', *Cryptographic Hardware and Embedded Systems – CHES 2001, Lecture Notes in Computer Science*, Vol. 2162, Springer-Verlag, pp.309–318.
- Barkan, E. and Biham, E. (2002) 'How many ways can you write Rijndael?', Advances in Cryptology – ASIACRYPT 2002, Lecture Notes in Computer Science, Vol. 2501, Springer-Verlag, pp.160–175.
- Biham, E. and Shamir, A. (1993) Differential Cryptanalysis of the Data Encryption Standard, New York, NY: Springer-Verlag.
- Biryukov, A. (2007) 'The design of a stream cipher LEX', *Selected Areas in Cryptography – SAC 2006, Lecture Notes in Computer Science*, Vol. 4356, Springer-Verlag, pp.67–75.
- Courtois, N., Klimov, A., Patarin, J. and Shamir, A. (2000) 'Efficient algorithms for solving overdefined systems of multivariate polynomial equations', *Advances in Cryptology – EUROCRYPT 2000, Lecture Notes in Computer Science*, Vol. 1807, Springer-Verlag, pp.392–407.
- Courtois, N. and Pieprzyk, J. (2002) 'Cryptanalysis of block ciphers with overdefined systems of equations', Advances in Cryptology – ASIACRYPT 2002, Lecture Notes in Computer Science, Vol. 2501, Springer-Verlag, pp.267–287.
- Daemen, J., Knudsen, L. and Rijmen, V. (1997) 'The block cipher square', Fast Software Encryption – FSE 1997, Lecture Notes in Computer Science, Vol. 1267, Springer-Verlag, pp.149–165.
- Daemen, J. and Rijmen, V. (2001) 'AES proposal: Rijndael', AES Round 1 Technical Evaluation CD-1: Documentation, National Institute of Standards and Technology.
- Daemen, J. and Rijmen, V. (2005) 'A new MAC construction ALRED and a specific instance ALPHA-MAC', Fast Software Encryption – FSE 2005, Lecture Notes in Computer Science, Vol. 3557, Springer-Verlag, pp.1–17.
- Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D. and Whiting, D. (2001) 'Improved cryptanalysis of Rijndael', *Fast Software Encryption – FSE 2000, Lecture Notes in Computer Science*, Vol. 1978, Springer-Verlag, pp.213–230.
- Gilbert, H. and Minier, M. (2000) 'A collision attack on 7 rounds of Rijndael', *The Third Advanced Encryption Standard Candidate Conference*, pp.230–241.
- Golic, J. and Tymen, C. (2002) 'Multiplicative masking and power analysis of AES', Cryptographic Hardware and Embedded Systems – CHES 2002, Lecture Notes in Computer Science, Vol. 2523, Springer-Verlag, pp.198–212.

- Lucks, S. (2000) 'Attacking seven rounds of Rijndael under 192 bit and 256-bit keys', *The Third Advanced Encryption Standard Candidate Conference*, pp.215–229.
- Matsui, M. (1994) 'Linear cryptoanalysis method for DES cipher', Advances in Cryptology – EUROCRYPT '93, Workshop on the Theory and Application of Cryptographic Techniques, Lecture Notes in Computer Science, Vol. 765, Springer-Verlag, pp.386–397.
- Murphy, S. and Robshaw, M. (2002) 'Essential algebraic structure within the AES', Advances in Cryptology – CRYPTO 2002, Lecture Notes in Computer Science, Vol. 2442, Springer-Verlag, pp.1–16.
- National Institute of Standards and Technology (2001) Federal Information Processing Standards (FIPS) 197: Advanced Encryption Standard (AES).

Notes

- ¹For simplicity, we use only one variant of the δ algorithm here. Other variants of the δ algorithm also work.
- ²Here and in the rest of this section 'collisions' stands for 'internal collisions'.

Appendix

Examples of AES with 20 XOR operations

d1 bd

29ad

3b

87

4d1d \mathbf{cf}

d2d707

We provide seven examples of the outputs of the five algorithm and their corresponding plaintexts, secret keys and ciphertexts in Figure A1(a)–(g).

Figure A1 The values of *P*, *K*, AES round keys and the 20 bytes

Plaintext ${\cal P}$ cipher KeyK – Key Expansion $% {\mathbb C} (K)$ AES Round Keys

7c		03	43	9c	c9			03	43	9c	c9
25		a6	f4	57	9f	Initial Round Key		a6	f4	57	9f
41		26	c5	90	29			26	c5	90	29
ae		11	30	39	e2		v	11	30	39	e2
								d9	9a	06	\mathbf{cf}
						D 1	77 4	03	f7	a0	3f
						Round	Key I	be	7b	eb	c2
								сс	fc	c5	27
								ae	34	32	fd
								26	d1	71	4e
						Round	Key 2	72	09	e^2	20
								46	ba	7f	58
								85	b1	83	7e
								91	40	31	7f
				Round	Key 3	18	11	f3	d3		
								12	a8	d7	8f
								5f	ee	6d	13
						f7	b7	86	f9		
						Round	Key 4	6b	7a	89	5a
								e1	49	9e	11
								d6	38	55	46
								49	fe	78	81
						Round	Key 5	e9	93	1a	40
								9c	d5	4b	5a
								fa	c2	97	d1
								40	be	c6	47
						Round	Key 6	57	c4	de	9e
								c6	13	58	02
								19	48	/f	90
								$\frac{1a}{4h}$	f5	33	74
						Round	Key 7	20	e4	3a	a4
								f8	eb	b3	b1
								08	40	Of	01
								02	f7	c^4	b0
						Round	Key 8	e8	00	36	92
								f3	18	ab	1a
								£4	24	hh	
								14 44	⊿4 ba		Da
						Round	Key 9	4u 49	16 10	70	e2
								4a 8f	40 07	30	26
								01	91	10	<u> </u>
a0								49	6d	d6	бс 16
09						Round I	d Key 10	d5	6t	11	dt
ða 40								bd	tb	8b 40	69 fe
48								7b	ec	d0	16

The	twei	nty b	oytes
ed	0	dc	0
0	0	0	0
9b	0	04	0
0	0	0	0
58	0	81	0
0	0	0	0
fd	0	81	0
0	0	0	0
72	0	ed	0
0	0	0	0
5d	0	26	0
0	0	0	0
cd	0	3e	0
0	0	0	0
c6	0	9f	0
0	0	0	0
69	0	19	0
0	0	0	0
4f	0	04	0
0	0	0	0

Cip	her	text
Cip	her	text

da	68	03	a0
c9	7e	сс	09
4d	b6	93	8a
38	ea	62	48

Figure A1 The values of *P*, *K*, AES round keys and the 20 bytes (continued)

Plaintext Pcipher Key K Key Expansion AES Round Keys

b7	4d	6b	86		6d	4e	e7	cf		6b	4e	e7	cf
9b	8a	36	53		db	c1	c7	0c	T., 14 1 - 1	db	c1	c7	0c
4e	f8	$^{\rm ca}$	1c		27	86	33	23	Initial Round Key	27	86	33	23
5d	63	08	2b		b4	70	4a	5c	nound ney	b4	70	4a	5c
										92	dc	3b	f4
										fd	3c	fb	f7
									Round Key 1	6d	eb	d8	fb
										3e	4e	04	58
										f8	24	1f	eb
										f2	ce	35	c2
									Round Key 2	07	ec	34	cf
										81	\mathbf{cf}	cb	93
										d9	fd	e2	ff
									D 17	78	b6	83	cc
									Round Key 3	db	37	03	41
										68	a7	6c	09
										52	af	4d	44
										33	85	06	47
									Round Key 4	cd	fa	f9	35
									69	ce	a2	5d	
										e2	4d	00	44
										a5	20	26	61
				Rour	Round Key 5	81	7b	82	b7				
										72	bc	1e	43
										2d	60	60	24
									David Varia	0c	2c	0a	6b
									Round Key 6	9b	e0	62	d5
										69	d5	$^{\rm cb}$	88
										12	72	12	36
									Pound Var 7	Of	23	29	42
									Round Key 7	5f	bf	dd	08
										5f	8a	41	c9
										be	cc	de	e8
									Dound Var P	3f	1c	35	77
									nound Key 8	82	3d	e0	e8
										5a	d0	91	58
										50	9c	42	aa
									Dound Var 0	a4	b8	8b	fa
									nouna Key 9	e8	d5	35	dd
Ci_{j}	pher	text								c1	11	80	d8
f8	05	b3	09							4b	d7	95	3f
e6	f8	42	45						Round Voy 10	65	dd	50	aa
36	b8	4d	e3						nouna Key 10	89	5c	69	b4
bb	44	a0	21							6d	7c	fc	24

fb	0	$^{\rm bb}$	0
0	0	0	0
07	0	11	0
0	0	0	0
74	0	64	0
0	0	0	0
67	0	af	0
0	0	0	0
85	0	e3	0
0	0	0	0
39	0	1b	0
0	0	0	0
9b	0	ec	0
0	0	0	0
10	0	bb	0
0	0	0	0
ca	0	05	0
0	0	0	0
90	0	0d	0
0	0	0	0

The twenty bytes

(b)

J. Huang, J. Seberry and W. Susilo

c6a80f

2fc51c

Figure A1 The values of *P*, *K*, AES round keys and the 20 bytes (continued)

Plaintext Pcipher Key K Key Expansion AES Round Keys

16	2f	90	60	48	f1	43	a0		48	f1	43	a0	
1c	c5	84	f8	c5	59	7b	bd	T: 1	c5	59	7b	bd	
a8	c6	c1	a4	68	d5	21	32	Round Key	68	d5	21	32	
0f	00	c2	ae	88	ca	43	fb	roound rroy	88	ca	43	fb	
									33	c2	81	21	İ
									e6	bf	c4	79	Í
								Round Key 1	67	b2	93	a1	
									68	a2	e1	1a	
									87	45	c4	e5	
								D l V 0	d4	6b	\mathbf{af}	d6	
								Round Key 2	c5	77	e4	45	
									95	37	d6	cc	ĺ
									75	30	f4	11	1
									ba	d1	7e	a8	
								Round Key 3	8e	f9	1d	58	
									4c	7b	ad	61	
									bf	8f	7b	6a	ĺ
									d0	01	7f	d7	
								Round Key 4	61	98	85	dd	
									ce	b5	18	79	
									a1	2e	55	3f	
								David Vari f	11	10	6f	b8	
								Kound Key 5	d7	4f	ca	17	
									cc	79	61	18	l
									ed	c3	96	a9	
								Pound Koy 6	e1	f1	9e	26	
								Round Key o	7a	35	ff	e8	
									b9	c0	a1	b9	
									5a	99	0f	a6	
								David Var. 7	7a	8b	15	33	
								Round Rey 7	2c	19	e6	0e	
									6a	aa	0b	b2	
									4e	80	8f	29	
								Round Koy 9	1b	5a	4f	7c	
								noulid Key o	d1	02	e4	ea	
									19	e4	ef	5d	
									12	92	1d	34	
								Pound Voy 0	56	0c	43	3f	
								nound Ney 9	57	55	b1	5b	
Ci	pher	text							eb	0f	e0	bd	
69	2d	52	ad						51	c3	de	ea	
27	7b	50	8d					Bound Key 10	6f	63	20	1f	
69	2c	d3	8c					Round Rey 10	2d	78	c9	92	
42	72	a6	ac						f3	fc	1c	a1	

The twenty bytes

72 a6 ac

2d

7b

(c)

Figure A1 The values of *P*, *K*, AES round keys and the 20 bytes (continued)

Plaintext Pcipher Key K Key Expansion AES Round Keys

87 d8 b0 e1 04 bd 51 ef a6 8d 77 b0 67 3f a2 8b	Initial Round Key	2c 17 2a 46	03 35 a7 64	f5 f9 82 91	c7 5d c3 58	The	twe	nty b	oytes
	Round Key 1	3c 5b ec 2c	3f 6e 4b 48	ca 97 c9 d9	92 74 94 1e	26 0 b5 0	0 0 0	8e 0 bc 0	0 0 0
	Round Key 2	ac 79 9e 63	93 17 d5 2b	59 80 1c f2	ec 88 f4 cb	db 0 5a 0	0 0 0	de 0 82 0	0 0 0 0
	Round Key 3	17 bd 50 7c	84 aa 85 57	dd 2a 99 a5	16 de 11 49	3d 0 49 0	0 0 0	44 0 ad 0	0 0 0 0
	Round Key 4	02 3f 6b 3b	86 95 ee 6c	5b bf 77 c9	4d 61 66 80	$\begin{array}{c} 4c \\ 0 \\ 00 \\ 0 \end{array}$	0 0 0	79 0 de 0	0 0 0 0 0
	Round Key 5	fd 0c a6 d8	7b 99 48 b4	20 26 3f 7d	6d 47 59 fd	57 0 3f	0 0 0 0	e9 0 1b 0	0 0 0 0
	Round Key 6	7d 7d c7 f2 e4	06 5e ba 50	26 78 85 2d	4b 3f dc d0		0		
	Round Key 7	48 41 82 57	4e 1f 38 07	68 67 bd 2a	23 58 61 fa				
	Round Key 8	a2 ae af 71	ec b1 97 76	84 d6 2a 5c	a7 8e 4b a6				
Ciphertext	Round Key 9	a0 1d 8b 2d	4c ac 1c 5b	c8 7a 36 07	6f f4 7d a1				
79 9c 7e 58 bd b7 2b 11 5b eb b0 48 56 b0 37 b7	Round Key 10	29 e2 b9 85	65 4e a5 de	ad 34 93 d9	c2 c0 ee 78				

24 J. Huang, J. Seberry and W. Susilo

Figure A1 The values of *P*, *K*, AES round keys and the 20 bytes (continued)

Plaintext Pcipher Key K Key Expansion AES Round Keys

b9	22	bd	ea	10	db	32	b9		10	db	32	b9	
ca	e9	4b	ac	db	d6	e0	43	T 1	db	d6	e0	43	
66	b4	67	96	4c	c3	8c	10	Initial Bound Koy	4c	c3	8c	10	
de	3b	64	fc	68	f8	63	00	Round Rey	68	f8	63	00	
									0h	d0	e2	5h	
									11	c7	27	64	
								Round Key 1	2d	ce	42	52	
									3e	c6	a5	a5	
									4a	9a	78	23	
									11	d6	f1	95	
								Round Key 2	2b	e5	a7	f5	
									07	c1	64	c1	
									64	fe	86	a5	
									f7	21	d0	45	
								Round Key 3	53	b6	11	e4	
									21	e0	84	45	
									02	fc	7a	df	
									9e	bf	6f	2a	
								Round Key 4	3d	8b	9a	7e	
									27	c7	43	06	
									f7	0b	71	ae	
									6d	d2	bd	97	
								Round Key 5	52	d9	43	3d	
									b9	7e	3d	3b	
									5f	54	25	8b	
									4a	98	25	b2	
								Round Key 6	b0	69	2a	17	
									5d	23	1e	25	
									28	7c	59	d2	
								David V C	ba	22	07	b5	
								Round Key /	8f	e6	сс	db	
									60	43	5d	78	
									7d	01	58	8a	
								D. I.V. C	03	21	26	93	
								Round Key 8	33	d5	19	c2	
									d5	96	$^{\rm cb}$	b3	
									ba	bb	e3	69	
								Daniel V. – C	26	07	21	b2	
								Kound Key 9	5e	8b	92	50	
$Ci_{]}$	pher	text							ab	3d	f6	45	
ad	75	0e	98						bb	00	e3	8a	
d1	b6	06	f7					Dound IZ: 10	75	72	53	e1	
9f	92	00	d4					Kouna Key 10	30	bb	29	79	
a2	$^{\rm cb}$	6f	e2						52	6f	99	dc	

The twenty bytes										
b4	0	bb	0							
0	0	0	0							
c9	0	17	0							
0	0	0	0							
81	0	2a	0							
0	0	0	0							
e4	0	9c	0							
0	0	0	0							
36	0	e4	0							
0	0	0	0							
bc	0	3d	0							
0	0	0	0							
9b	0	1f	0							
0	0	0	0							
ae	0	f8	0							
0	0	0	0							
0	0	73	0							
0	0	0	0							
45	0	75	0							
0	0	0	0							

(e)

Figure A1 The values of *P*, *K*, AES round keys and the 20 bytes (continued)

Plaintext Pcipher KeyK – Key Expansion $\,$ AES Round Keys

$^{\rm eb}$	6b	cb	f3	f	f4	b2	70	19		f4	b2	70	19	1	
90	15	45	68	9	9e	76	c7	a4	Initial	9e	76	c7	a4	1	
25	$^{\rm db}$	57	7c	7	73	1f	96	c2	Round Kev	73	1f	96	c2	1	
55	37	26	6c	8	3b	8c	36	39	roound rroy	8b	8c	36	39	ı	The
										bc	0e	7e	67	1	42
										bb	cd	0a	ae	1	0
									Round Key 1	61	7e	e8	2a	1	de
										5f	d3	e5	dc	l	0
										5a	54	2a	4d	1	6c
										5e	93	99	37		0
									Round Key 2	e7	99	71	5b		f5
										da	09	ec	30		0
										c4	90	ba	f7		94
										67	f4	6d	5a		0
									Round Key 3	e3	7a	0b	50	1	1b
										39	30	dc	ec	I	0
										72	e2	58	af		35
										34	c0	ad	f7	1	0
									Round Key 4	2d	57	5c	0c		67
										51	61	bd	51		0
										0a	e8	b0	1f		f3
										ca	0a	a7	50		0
									Round Key 5	fc	ab	f7	fb		b1
										28	49	f4	a5	I	0
										79	91	21	3e		
										c5	cf	68	38	1	
									Round Key 6	fa	51	a6	5d		
										e8	a1	55	f0	l	
										3e	af	8e	b0		
										89	46	2e	16	1	
									Round Key 7	76	27	81	dc	1	
										5a	fb	ae	5e	ı	
										f9	56	d8	68	l	
									D I V	0f	49	67	71	l	
									Round Key 8	2e	09	88	54	1	
										bd	46	e8	b6	l	
										41	17	cf	a7		
										2f	66	01	70		
									Round Key 9	60	69	e1	b5	l	
Ci	pher	text								f8	be	56	e0	ı	
79	45	9a	b1							26	31	fe	59		
69	34	69	9d							fa	9c	9d	ed		
04	ae	3b	5d						Round Key 10	81	e8	09	bc	l	
78	2a	47	01							a4	1a	4c	ac		

twenty bytes 0 e9 0

79	45	9a	b1
69	34	69	9d
04	ae	3b	5d
78	2a	47	01

(f)

Figure A1 The values of *P*, *K*, AES round keys and the 20 bytes (continued)

Plaintext ${\cal P}$

21b0

99

cipher KeyK – Key Expansion $\,$ AES Round Keys

99 30 d8 1f 11 b2 60 3c		11	b2	60	3c
7e 99 08 84 2f 30 c2 6b	Initial Round Key	2f	30	c2	6b
c4 24 91 d1 3a c5 8c c4		3a	c5	8c	c4
b0 21 92 1e d0 82 1e 5b	Ū	d0	82	1e	5b
		6f	dd	bd	81
		33	03	c1	aa
	Round Key 1	03	c6	48	8c
		3b	b9	a7	fc
		c1	1c	a1	20
		57	54	95	3f
	Round Key 2	b3	75	3d	b1
		37	8e	29	d5
		b0	ac	0d	2d
		9f	cb	5e	61
	Round Key 3	b0	c5	f8	49
		80	0e	27	f2
		57	fb	f6	db
		a4	6f	31	50
	Round Key 4	39	fc	04	4d
		58	56	71	83
		14	ef	19	c2
	Round Key 5	47	28	19	49
		d5	29	2d	60
		e1	b7	c6	45
		0f	e0	f9	3b
	Daniel Varia C	97	bf	a6	ef
	Round Key o	bb	92	bf	df
		c4	73	b5	f0
		90	70	89	b2
		09	b6	10	ff
	Round Key 7	37	a5	1a	c5
		26	55	e0	10
		06	76	ff	4d
	Round Key 8	af	19	09	f6
		fd	58	42	87
		11	44	a4	b4
		5f	29	d6	9b
	D	b8	a1	a8	5e
	Kound Key 9	70	28	6a	ed
Ciphertext		f2	b6	12	a6
f2 c4 0a 90		31	18	ce	55
5b 8f 0a 41		ed	4c	e4	ba
05 ae 83 56	Round Key 10	54	7c	16	fb
26 df 06 0d		e6	50	42	e4

The twenty bytes						
fd	0	93	0			
0	0	0	0			
de	0	c7	0			
0	0	0	0			
7c	0	fa	0			
0	0	0	0			
e9	0	48	0			
0	0	0	0			
d4	0	3e	0			
0	0	0	0			
2d	0	60	0			
0	0	0	0			
e4	0	fb	0			
0	0	0	0			
d6	0	02	0			
0	0	0	0			
8f	0	aa	0			
0	0	0	0			
33	0	4f	0			
0	0	0	0			

05

26

(g)