
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2009

A five-round algebraic property of AES and its application to the ALPHA-A five-round algebraic property of AES and its application to the ALPHA-

MAC MAC

Jianyong Huang
University of Wollongong, jyh33@uow.edu.au

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Huang, Jianyong; Seberry, Jennifer; and Susilo, Willy: A five-round algebraic property of AES and its
application to the ALPHA-MAC 2009.
https://ro.uow.edu.au/infopapers/3956

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3956&utm_medium=PDF&utm_campaign=PDFCoverPages

A five-round algebraic property of AES and its application to the ALPHA-MAC A five-round algebraic property of AES and its application to the ALPHA-MAC

Abstract Abstract
We present a five-round algebraic property of the advanced encryption standard (AES), and we show that
this algebraic property can be used to analyse the internal structure of ALPHA-MAC whose underlying
block cipher is AES. In the proposed property, we modify 20 bytes from five intermediate values at some
fixed locations in five consecutive rounds, and we show that after five rounds of operations, such
modifications do not change the intermediate result and finally, still produce the same ciphertext. By
employing the proposed five-round algebraic property of AES, we provide a method to find second
preimages of the ALPHA-MAC based on the assumption that a key or an intermediate value is known. We
also show that our idea can also be used to find internal collisions of the ALPHA-MAC under the same
assumption.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Huang, J., Seberry, J. & Susilo, W. (2009). A five-round algebraic property of AES and its application to the
ALPHA-MAC. International Journal of Applied Cryptography, 1 (4), 264-289.

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/3956

https://ro.uow.edu.au/infopapers/3956

 1

Copyright © 200x Inderscience Enterprises Ltd.

A five-round algebraic property of AES and its
application to the ALPHA-MAC

Jianyong Huang*, Jennifer Seberry
and Willy Susilo
Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering,
University of Wollongong, Australia
E-mail: jyh33@uow.edu.au
E-mail: jennie@uow.edu.au
E-mail: wsusilo@uow.edu.au
*Corresponding author

Abstract: We present a five-round algebraic property of the advanced encryption standard
(AES), and we show that this algebraic property can be used to analyse the internal structure of
ALPHA-MAC whose underlying block cipher is AES. In the proposed property, we modify 20
bytes from 5 intermediate values at some fixed locations in 5 consecutive rounds, and we show
that after 5 rounds of operations, such modifications do not change the intermediate result and
finally, still produce the same ciphertext. By employing the proposed five-round algebraic
property of AES, we provide a method to find second preimages of the ALPHA-MAC based on
the assumption that a key or an intermediate value is known. We also show that our idea can also
be used to find internal collisions of the ALPHA-MAC under the same assumption.

Keywords: AES; advanced encryption standard; algebraic property; ALPHA-MAC; internal
collisions; second preimages.

Reference to this paper should be made as follows: Huang, J., Seberry, J. and Susilo, W. (xxxx)
‘A five-round algebraic property of AES and its application to the ALPHA-MAC’, Int. J. Applied
Cryptography, Vol. x, No. x, pp.xx–xx.

Biographical notes: Jianyong Huang is a PhD Student at the University of Wollongong. His
current research interests include analysis of hash functions and block ciphers.

Jennifer Seberry is the Professor of Computer Science at the University of Wollongong. She
graduated PhD in Computation Mathematics from La Trobe University in 1971. She has
published extensively in Discrete Mathematics and is renown for her new discoveries on
Hadamard Matrices and Statistical Designs. Her studies of the application of discrete
mathematics and combinatorial computing via bent functions, S-box design, has led to the design
of secure crypto-algorithms and strong hashing algorithms for secure and reliable information
transfer in networks. She has over 300 publications and has successfully supervised 28 PhD
Theses.

Willy Susilo is an Associate Professor at the School of Computer Science and Software
Engineering in the University of Wollongong. He is also the Deputy Director of the ICT
Research Institute and the Director of the CCISR research group. His research interests include
authentication and digital signature schemes.

1 Introduction

The block cipher Rijndael, invented by Daemen and Rijmen
(2001), was selected as the advanced encryption standard
(AES) by National Institute of Standards and Technology.
Rijndael has a simple and elegant structure, and it was
designed carefully to withstand two well-known
cryptanalytic attacks: differential cryptanalysis, proposed by
Biham and Shamir (1993) and linear cryptanalysis,
described by Matsui (1994). Most operations of Rijndael are
based on the algebraic Galois field GF(28), which can be
implemented efficiently in dedicated hardware and in
software on a wide range of processors.

Since Rijndael was adopted as a standard by National
Institute of Standards and Technology (2001), there have
been many research efforts aiming to evaluate the security
of this cipher. A block cipher, named big encryption system
(BES), was defined by Murphy and Robshaw (2002), and
Rijndael can be embedded into BES. The extended
linearisation (XL) proposed by Courtois et al. (2000) and
the extended sparse linearisation (XSL) provided by
Courtois and Pieprzyk (2002) are new methods to solve
non-linear algebraic equations. The concept of dual ciphers
was introduced by Barkan and Biham (2002), and a
collision attack on seven rounds of Rijndael was described

2 J. Huang, J. Seberry and W. Susilo

by Gilbert and Minier (2000). The most effective attacks on
reduced round variants of the AES are square attack which
was found by Daemen et al. (1997). The idea of the square
attack was later employed by Ferguson et al. (2001) to
improve the cryptanalysis of Rijndael, and by Lucks (2000)
to attack seven rounds of Rijndael under 192- and 256-bit
keys. A multiplicative masking method of AES was
proposed by Akkar and Giraud (2001) and further discussed
by Golic and Tymen (2002). The design of an AES-based
stream cipher LEX was described by Biryukov (2007).
A new message authentication code (MAC) construction
ALRED and a special instance ALPHA-MAC was designed
by Daemen and Rijmen (2005). So far, no short-cut attack
against the full-round AES has been found.

In this paper, we present a five-round property of the
AES. We modify 20 bytes from 5 intermediate values at
some fixed locations in 5 consecutive rounds, and we
demonstrate that after 5 rounds of operations, such
modifications do not change the intermediate result and
finally, still produce the same ciphertext. We introduce an
algorithm named δ, and the δ algorithm takes a plaintext and
a key as two inputs and outputs 20 bytes, which are used in
the 5-round property. By employing the δ algorithm, we
define a modified version of the AES algorithm, the δAES.
The δAES calls the δ algorithm to generate 20 bytes, and
uses these 20 bytes to modify the AES round keys. For a
plaintext and a key, the AES and the δAES produce the
same ciphertext. By employing the proposed algebraic
property of the AES, we analyse the internal structure of the
ALPHA-MAC. Firstly, we present a method to find second
preimages of the ALPHA-MAC by solving eight groups of
linear functions based on the assumption that an
authentication key or an intermediate value of this MAC is
known. Each of these eight groups of linear functions
contains two equations. Secondly, we show that the
second-preimage finding method can also be used to
generate internal collisions. The proposed collision search
method can find two five-block messages such that they
produce 128-bit collisions under a selected key
(or a selected intermediate value).

This paper is organised as follows: Section 2 provides a
brief description of the AES algorithm and Section 3
describes a five-round algebraic property of the AES. A
modified version of the AES is defined in Section 4.
Section 5 shows a description of the ALPHA-MAC
construction and Section 6 demonstrates how the proposed
five-round property of the AES is used to find second
preimages and internal collisions of the ALPAH-MAC.
Section 7 concludes this paper. Some examples of the AES
and the AES with 20 extra exclusive-or operations are
provided in the Appendix.

2 Description of the AES

AES is a block cipher with a 128-bit block length and
supports key lengths of 128, 192 or 256 bits. For encryption,
the input is a plaintext block and a key, and the output is a
ciphertext block. The plaintext is first copied to 4 × 4 array

of bytes, which is called the state. The bytes of a state is
organised in the following format:

α0 α4 α8 α12
α1 α5 α9 α13
α2 α6 α10 α14
α3 α7 α11 α15

where αi denote the ith byte of the block. After an initial
round key addition, the state array is transformed by
performing a round function 10, 12 or 14 times
(for 128-, 192- or 256-bit keys, respectively), and the final
state is the ciphertext. We denote the AES with 128-bit keys
by AES-128, with 192-bit keys by AES-192 and with
256-bit keys by AES-256. Each round of AES consists of
the following four transformations (the final round does not
include AddRoundKey (ARK)):
1 The SubBytes (SB) transformation: it is a non-linear

byte substitution that operates independently on each
byte of the state using a substitution table.

2 The ShiftRows (SR) transformation: the bytes of the
state are cyclically shifted over different numbers of
bytes. Row 0 is unchanged and row i is shifted to the
left i byte cyclicly, i ∈ {1, 2, 3}.

3 The MixColumns (MC) transformation: it operates on
the state column-by-column, considering each column
as a four-term polynomial. The columns are treated as
polynomials over GF(28) and multiplied modulo x4 + 1
with a fixed polynomial, written as
{03}x3 + {01}x2 + {01}x + {02}.

4 The ARK transformation: a round key is added to the
state by a simple bitwise exclusive-or (XOR) operation.

The key expansion of the AES generates a total of
Nb  (Nr+1) words: the algorithm needs an initial set of Nb
words, and each of the Nr rounds requires Nb words of key
data, where Nb is 4 and Nr is set to 10, 12 or 14 for
128-, 192- or 256-bit key sizes, respectively. For a 128-bit
key K, we denote the round keys by

0
iK 4

iK 8
iK 12

iK

1
iK 5

iK 9
iK 13

iK

2
iK 6

iK 10
iK 14

iK

3
iK 7

iK 11
iK 15

iK

where i is the round number, { }1,2, , 10 .i∈ … We note that
the round key used in the initial round is the secret key K
itself, and the secret key is represented without the
superscript i. The combinations of the key length, block size
and number of rounds are listed below:

Key length Block size Number of round
128 bits 4 10
192 bits 4 12
256 bits 4 14

 A five-round algebraic property of AES and its application 3

3 A five-round property of AES

We describe a five-round property of the AES in this
section. In the proposed property, we modify 20 bytes from
5 intermediate values at some fixed locations in 5
consecutive rounds, and we show that after 5 rounds of
operations, such modifications do not change the
intermediate result and finally, still produce the same
ciphertext. The modifications are carried out by performing
four extra XOR operations at the end of each round
(i.e. after the ARK transformation), and in total, we perform
20 extra XOR operations in 5 rounds. We require that each
of these 5 rounds must contain SB, SR, MC and ARK
transformations.

We use Figures 1–3 to describe this property. The
layout of the 20 bytes in the 5 intermediate values is shown
in Figure 1, and the 20 bytes are 0 2 8 10 0, , , , ,G G G G M′ ′ ′ ′ ′

2 8 10 0 2 8, , , , , ,M M M R R R′ ′ ′ ′ ′ ′ 10 0 2 8 10 0 2 8 10, , , , , , , , and .R V V V V Z Z Z Z′ ′ ′ ′ ′ ′ ′ ′ ′

Figure 1 20 bytes

Figure 2 The intermediate values of AES-128

4 J. Huang, J. Seberry and W. Susilo

Figure 3 The intermediate values of AES-128 with extra 20 XOR operations

In Figure 1, a zero occupied byte means that there is no
change in that byte, and a variable occupied byte indicates
that there is a modification in that byte. In Figure 2, all
intermediate values are listed when using the AES algorithm
to encrypt a plaintext P under a 128-bit key K, and all bytes
of the intermediate values are denoted by plain variables.
Correspondingly, Figure 3 enumerates all intermediate
values of the AES with 20 extra XOR operations. The
20-byte modifications take place in Rounds 1–5, and after
ARK transformation in each of these 5 rounds, we perform
XOR operations on Bytes 0, 2, 8 and 10. We show that the

20-byte modifications do not change the input to Round 6,
that is, both the AES and the AES with 20 extra XOR
operations generate the same input to Round 6. In Figure 3,
a variable marked by a asterisk indicates that the value at
that location has been affected by the 20-byte modifications,
and a plain variable shows that the value at that location is
not affected by the 20-byte modifications. For example,
after ARK in Round 1 in Figure 3, Byte iG is XORed with
Byte ,iG′ and after SB, we have four modified bytes ,iH ∗
i ∈ {0, 2, 8, 10} and 12 unchanged bytes: H1, H3, H4, H5,
H6, H7, H9, H11, H12, H13, H14 and H15.

 A five-round algebraic property of AES and its application 5

3.1 The δ algorithm
To decide the values of the 20 bytes: , , , and ,i i i i iG M R V Z′ ′ ′ ′ ′
i ∈ {0, 2, 8, 10}, we introduce an algorithm named δ. For
any plaintext P and any key K used in the AES algorithm,
the δ algorithm accepts P and K as two inputs, and generates
an output which contains 20 bytes { , , , , },i i i i iG M R V Z′ ′ ′ ′ ′ where

, , , and ,i i i i iG M R V Z′ ′ ′ ′ ′ are bytes, i ∈ {0, 2, 8, 10}.
The δ algorithm includes a number of steps:

1 Process the first five rounds of the AES algorithm by
taking the plaintext P and the key K as the inputs, that
is, start with the initial round, and process Rounds 1–5
of the AES. Therefore, we know all intermediate values
in Figure 2, from initial round to Round 5.

2 Initialise , , , and ,i i i i iG M R V Z′ ′ ′ ′ ′ to zero, i ∈ {0, 2, 8, 10}.

3 Choose 0 2 8 10, , andG G G G′ ′ ′ ′ freely. The only requirement
is that at least one of these four bytes is not equal to
zero, namely, 0 2 8 10, , andG G G G′ ′ ′ ′ cannot be all zeros. If

0 2 8 10, , andG G G G′ ′ ′ ′ are all zeros, the δ algorithm outputs
20 zero bytes. Once 0 2 8 10, , andG G G G′ ′ ′ ′ are decided, the
remaining 16 bytes will be computed by the procedures
described in Sections 3.1.1–3.1.4.

4 Decide 0 2 8 10, , and .M M M M′ ′ ′ ′

5 Decide 0 2 8 10, , and .R R R R′ ′ ′ ′

6 Decide 0 2 8 10, , and .V V V V′ ′ ′ ′

7 Decide 0 2 8 10, , and .Z Z Z Z′ ′ ′ ′

Remark 1: There are 232−1 combinations of 0 2{G ,G ,′ ′

8 10G ,G }′ ′ because each byte can have 28 possible values.

3.1.1 Deciding 0 2 8 10M ,M ,M and M′ ′ ′ ′

After we have decided the values of 0 2 8 10, , and ,G G G G′ ′ ′ ′ we
carry out a four-round computation (of the AES with extra
12 XOR operations), called Routine Computation One,
which starts with the initial round and ends with MC in
Round 4 (see Figure 3).

Routine Computation One
Initial round : ARKJJJJJG
Round 1: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 2: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 3: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 4: SB SR MCJJG JJJG JJJJG .

All intermediate values from the computation of this time
are stored in array called Buffer One (note that Routine
Computation One produces 19 intermediate values). We
denote the input and output of MC in Round 4 by

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13
*

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

MC

T T T T U U U U

T T T T U U U U

T T T T U U U U

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

JJJJG

Next, we will show that there is an algebraic relation
between Bytes 0 2 8 10{ , , , }M M M M′ ′ ′ ′ and Bytes 4 6{ , ,U U∗ ∗

12 14, }.U U∗ ∗ Based on this relationship, we can change the
values of 4 6 12 14{ , , , }U U U U∗ ∗ ∗ ∗ to the values of 4 6{ , ,U U

12 14, }U U by setting the values of 0 2 8 10{ , , , }.M M M M′ ′ ′ ′ After
we have decided the values of 0 2 8 10{ , , , },M M M M′ ′ ′ ′ we aim
to have an intermediate value after MC in Round 4 in the
format of

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

U U U U

U U U U

U U U U

U U U U

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The steps of deciding 0 2 8 10{ , , , }M M M M′ ′ ′ ′ are listed as
follows:

{ } { } { }
{ } { } { }
{ } { }

0 2 8 10 0 2 8 10 0 2 8 10

* * * *
1 3 9 11 1 3 9 11 1 3 9 11

5 7 13 15 4 6 12 14

, , , , , , , ,

, , , , , , , , ,

, , , , , ,

M M M M N N N N O O O O

Q Q Q Q R R R R S S S S

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

′ ′ ′ ′ ← ←

← ← ←

← ←

After we change the values of 4 6 12 14{ , , , }U U U U∗ ∗ ∗ ∗ to the
values of 4 6 12 14{ , , , },U U U U the input and output of MC in
Round 4 become

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13
*

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

MC

T T T T U U U U

T T T T U U U U

T T T T U U U U

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

JJJJG

Our next target is to modify the values 5 7 13 15{ , , , }T T T T∗ ∗ ∗ ∗ of
according to the values of. 4 6 12 14{ , , , }.U U U U From the MC
transformation, we have the following formula:

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

U U U U

U U U U

U U U U

U U U U

T T T T

T T T T

T T T T

T T T T

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

6 J. Huang, J. Seberry and W. Susilo

To find out the values of 5 7 13 15{ , , , },T T T T∗ ∗ ∗ ∗ we need to solve
the following two groups of linear functions, which are
marked by (1) and (2).

[]

[]

4

5
4

6

7

4

5
6

6

7

02 03 01 01

01 01 02 03

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (1)

[]

[]

12

13
12

14

15

12

13
14

14

15

02 03 01 01

01 01 02 03

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (2)

In Equation (1), there are two linear equations with two
undecided variables 5 7andT T∗ ∗ and thus we can solve (1) to
obtain the values of 5 7and .T T∗ ∗ Similarly, there are two
linear equations in (2) with two undecided variables

13 15andT T∗ ∗ and therefore we can solve (2) to get the values of

13 15and .T T∗ ∗ After having 5 7 13 15, , andT T T T∗ ∗ ∗ ∗ , perform SR-1

(inverse SR) and SB–1 (inverse SB), and we have the values
of * * * *

1 3 9 11, , andR R R R after ARK in Round 3. Apply the ARK
transformation to * * * *

1 3 9 11, , and ,R R R R we have the values of
* * * *
1 3 9 11, , and .Q Q Q Q Our next task is to modify the values of
* * * *
0 2 8 10, , and .O O O O In Round 3, the input and output of MC

are as follows:

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

O O O O

O O O O

O O O O

O O O O

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

We can form two groups of linear equations, which are
named (3) and (4), and solve them to decide

* * * *
0 2 8 10, , and .O O O O There are two linear equations in (3) with

two undetermined variables * *
0 2and ,O O and we can solve

them to determine the values of * *
0 2and .O O Also, there are

two linear equations in (4) with two undecided variables
* *
8 10and ,O O and we can get * *

8 10andO O and by solving (4).

[]

[]

0

1 *
4

2

3

0

1
3

2

3

01 02 03 01

03 01 01 02

O

O
Q

O

O

O

O Q
O
O

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

 (3)

[]

[]

8

9
9

10

11

8

9
11

10

11

01 02 03 01

03 01 01 02

O
O

Q
O
O

O
O

Q
O
O

∗

∗
∗

∗

∗
∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

 (4)

Once knowing the values of *
0 2 8 10, , and ,O O O O∗ ∗ ∗ we perform

SR−1 and thus we get Bytes 0 2 8 10, , andN N N N∗ ∗ ∗ ∗ after SB in
Round 3. Finally, Bytes 0 2 8 10, , andM M M M′ ′ ′ ′ are decided by
the following computations (note that 0 2 8 10, , andM M M M∗ ∗ ∗ ∗
are obtained from Buffer One):

() ()1 1
0 0 0 2 2 2SB , SBM M N M M N∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕

() ()1 1
8 8 8 10 10 10SB , SBM M N M M N∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕

At this stage, we have decided the values of { , }i iG M′ ′ and
{ , , }i i iR V Z′ ′ ′ are not yet decided (note: they are still initialised
to zero), i ∈ {0, 2, 8, 10}.

3.1.2 Deciding 0 2 8 10R ,R ,R and R′ ′ ′ ′

Perform Routine Computation One second time, and all
intermediate values from the computation of this time are
stored in an array called Buffer Two. The intermediate value
after MC in Round 4 is

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

U U U U

U U U U

U U U U

U U U U

∗ ∗

∗ ∗ ∗ ∗

∗

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 A five-round algebraic property of AES and its application 7

We will demonstrate that there is an algebraic relation
between Bytes 0 2 8 10{ , , , }R R R R′ ′ ′ ′ and Bytes 1 3 9 11{ , , , }.U U U U∗ ∗ ∗ ∗
By employing this relationship, we are able to change the
values of 1 3 9 11{ , , , }U U U U∗ ∗ ∗ ∗ to the values of 1 3 9 11{ , , , }U U U U
by choosing the values of 0 2 8 10{ , , , }.R R R R′ ′ ′ ′ After we have
determined the values of 0 2 8 10{ , , , }R R R R′ ′ ′ ′ and perform
Routine Computation One second time, our target is that the
intermediate value after MC in Round 4 is

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

U U U U

U U U U

U U U U

U U U U

∗ ∗

∗ ∗

∗

∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The moves of determining the values of 0 2 8 10{ , , , }R R R R′ ′ ′ ′ are
shown below:

{ } { } { }
{ }
0 2 8 10 0 2 8 10 0 2 8 10

1 3 9 11

, , , , , , , , ,

, , ,

R R R R S S S S T T T T

U U U U

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗′ ′ ′ ′ ← ←

←

After we replace the values of 1 3 9 11{ , , , }U U U U∗ ∗ ∗ ∗ with the
values of 1 3 9 11{ , , , }U U U U the input and the output of MC in
Round 4 are

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13
*

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

MC

T T T T U U U U

T T T T U U U U

T T T T U U U U

T T T T U U U U

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

JJJJG

We need to modify the values of 0 2 8 10{ , , , }T T T T∗ ∗ ∗ ∗ according
to the values of 1 3 9 11{ , , , }.U U U U We can form two groups
of linear equations, which are named (5) and (6). There are
two undecided variables 0 2andT T∗ ∗ in Equation (5), and we
can solve (5) to get the values of 0 2and .T T∗ ∗ In Equation (6),
there are two undetermined variables 8 10and ,T T∗ ∗ and we can
find out the values of 8 10andT T∗ ∗ by solving (6).

[]

[]

0

1
1

2

3

0

1
3

2

3

01 02 03 01

03 01 01 02

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (5)

[]

[]

8

9
9

10

11

8

9
11

10

11

01 02 03 01

03 01 01 02

T

T
U

T

T

T

T
U

T

T

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

 (6)

After knowing the values of 0 2 8 10{ , , , },T T T T∗ ∗ ∗ ∗ we perform
SR−1 and have four corresponding values 0 2 8 10{ , , , }S S S S∗ ∗ ∗ ∗
after SB in Round 4. Bytes 0 2 8 10{ , , , }R R R R′ ′ ′ ′ are computed as
follows: (note that 0 2 8 10, , andR R R R∗ ∗ ∗ ∗ are obtained from
Buffer Two):

() ()1 1
0 0 0 2 2 2SB , SBR R S R R S∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕

() ()1 1
8 8 8 10 10 10SB , SBR R S R R S∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕

At this moment, we have decided the values of
{ , , } and { , }i i i i iG M R V Z′ ′ ′ ′ ′ are not determined and they are still
equal to their initial values, i ∈ {0, 2, 8,10}.

3.1.3 Deciding 0 2 8 10V ,V ,V and V′ ′ ′ ′

After having the values of 0 2 8 10, , and ,R R R R′ ′ ′ ′ we carry out a
five-round computation of the AES with 16 extra XOR
operations, called Routine Computation Two, which begins
with the initial round and ends with MC in Round 5 (See
Figure 3). All intermediate values from the computation of
this time are stored in an array named Buffer Three (note
that Routine Computation Two generates 24 intermediate
values).

Routine Computation Two
Initial round : ARKJJJJJG
Round 1: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 2: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 3: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 4: SB SR MCJJG JJJG JJJJG

After MC in Round 5, we will have an intermediate value in
the following format:

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

Y Y Y Y

Y Y Y Y

Y Y Y Y

Y Y Y Y

∗ ∗

∗ ∗

∗

∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

8 J. Huang, J. Seberry and W. Susilo

There is an algebraic relation between Bytes 0 2 8 10{ , , , }V V V V′ ′ ′ ′
and Bytes 1 3 9 11{ , , , },Y Y Y Y∗ ∗ ∗ ∗ and we can change the values of

1 3 9 11{ , , , }Y Y Y Y∗ ∗ ∗ ∗ to the values of 1 3 9 11{ , , , }Y Y Y Y by setting the
values of 0 2 8 10{ , , , }.V V V V′ ′ ′ ′ The steps of determining the
values of 0 2 8 10{ , , , }V V V V′ ′ ′ ′ are shown below:

{ } { }
{ } { }

0 2 8 10 0 2 8 10

0 2 8 10 1 3 9 11

, , , , , ,

, , , , , ,

V V V V W W W W

X X X X Y Y Y Y

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

′ ′ ′ ′ ←

← ←

We replace Bytes 1 3 9 11{ , , , }Y Y Y Y∗ ∗ ∗ ∗ with Bytes 1 3 9 11{ , , , },Y Y Y Y
and the input and output of MC in Round 5 are

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13

2 6 10 14 2 6 10 14

3 7 11 153 7 11 15

MC

X X X X Y Y Y Y
X X X X Y Y Y Y

X X X X Y Y Y Y
Y Y Y YX X X X

∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

JJJJG

We form two groups of linear functions, marked by (7) and
(8). There are two undecided variables 0 2andX X∗ ∗ in (7), and
we can solve (7) to get the values of 0 2and .X X∗ ∗ In
Equation (8), there are two undecided variables 8 10andX X∗ ∗
and we can obtain the values of 8 10andX X∗ ∗ by solving (8).

[]

[]

0

1
1

2

3

0

1
3

2

3

01 02 03 01

03 01 01 02

X

X
Y

X

X

X

X
Y

X

X

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (7)

[]

[]

8

9
9

10

11

8

9
11

10

11

01 02 03 01

03 01 01 02

X

X
Y

X

X

X

X
Y

X

X

∗

∗

∗

∗

∗

∗

∗

∗

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥

=⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪
⎣ ⎦⎩

 (8)

After deciding the values of 0 2 8 10{ , , , },X X X X∗ ∗ ∗ ∗ we perform
SR–1 and have four corresponding values 0 2 8 10{ , , , }W W W W∗ ∗ ∗ ∗
after SB in Round 5. Bytes 0 2 8 10, , andV V V V′ ′ ′ ′ are computed
as follows (note that 0 2 8 10, , andV V V V∗ ∗ ∗ ∗ are obtained from
Buffer Three):

() ()1 1
0 0 0 2 2 2SB , SB ,V V W V V W∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕

() ()1 1
8 8 8 10 10 10, SB .V V SB W V V W∗ − ∗ ∗ − ∗′ ′= ⊕ = ⊕

At this stage, we have decided the values of
{ , , , }, andi i i i iG M R V Z′ ′ ′ ′ ′ is not determined and it is equal to
the initial value, i ∈ {0, 2, 8, 10}.

3.1.4 Deciding 0 2 8 10Z ,Z ,Z and Z′ ′ ′ ′

Perform Routine Computation Two second time, and the
intermediate value after MC in Round 5 is

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

Y Y Y Y
Y Y Y Y

Y Y Y Y

Y Y Y Y

∗ ∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Apply ARK to the intermediate value above, we have

0 4 8 12

1 5 9 13
*

2 6 10 14

3 7 11 15

Z Z Z Z
Z Z Z Z

Z Z Z Z

Z Z Z Z

∗ ∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Bytes 0 2 8 10, , andZ Z Z Z′ ′ ′ ′ are computed as follows (note that

0 2 8 10, , andZ Z Z Z are obtained from the computation in
which the AES algorithm is used to encrypt the plaintext P
under the key K (see Round 5 in Figure 2)):

0 0 0 2 2 2, ,Z Z Z Z Z Z∗ ∗′ ′= ⊕ = ⊕

8 8 8 10 10 10, .Z Z Z Z Z Z∗ ∗′ ′= ⊕ = ⊕

Finally, we have decided all values of { , , , , },i i i i iG M R V Z′ ′ ′ ′ ′
{0,2,8,10}.i∈ Now, we carry out a 5-round computation of

the AES with extra 20 XOR operations, called Routine
Computation Three, by using Bytes 0 2 8, , ,G G G′ ′ ′

10 0 2 8 10, , , ,G M M M M′ ′ ′ ′ ′ 0 2 8 10, , , ,R R R R′ ′ ′ ′ 0 2, ,V V′ ′ 8 10, ,V V′ ′ 0 ,Z ′ 2 ,Z ′

8 10andZ Z ′ and we will get the same input to Round 6 as the
AES algorithm.

Routine Computation Three
Initial round : ARKJJJJJG
Round 1: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 2: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 3: SB SR MC ARK ⊕JJJJJGJJG JJJG JJJJG JG
Round 4: SB SR MCJJG JJJG JJJJG .

Remark 2: The most important part of the δ algorithm is
solving those eight groups of linear Equations (1)–(8).
There is one question needs to be answered. The question
is: Are these eight groups of linear equations independent?
The answer to this question is choosing different values of
Bytes 0 2 8 10, , ,G G G G′ ′ ′ ′ if we face such situations. Among the

 A five-round algebraic property of AES and its application 9

20 bytes: 0 2 8, , ,G G G′ ′ ′ 10 0 2, ,G M M′ ′ ′ 8 10 0, , ,M M R′ ′ ′ 2 8 10, , ,R R R′ ′ ′ 0 ,V ′

2 ,V ′ 8 ,V ′ 10 ,V ′ 0 , ,sZ Z′ ′ 8 10and ,Z Z ′ we can select the values of

0 2 8 10, , andG G G G′ ′ ′ ′ freely. As we showed in Remark 1, there
are 232–1 combinations of these four bytes, and
correspondingly, we can have 232–1 intermediate values in
Figure 3, starting with SB in Round 2 and ending with ARK
in Round 10. If we meet any dependent equations, we can
overcome this problem by choosing different values of Bytes

0 2 8 10, , and .G G G G′ ′ ′ ′ Therefore, this question will not cause
any trouble. So far, we have not met any dependent
equations in our large-sample experiments.
Remark 3: From Remark 1, we note that there is more than
one combination of the 20 output bytes of algorithm δ for a
given pair of (P, K).
Remark 4: For distinct plaintext and cipher key pairs (P, K),
algorithm δ needs to perform individual computations to
decide the values of the 20 bytes.

3.2 Variants of algorithm δ

We show that there are other variants of the δ algorithm. In
Section 3.1, the locations of the 20 bytes are {0, 2, 8,10},
and there are three other combinations, which are {4, 6, 12,
14}, {1, 3, 9, 11} and {5, 7, 13, 15}. Figure 4 outlines
different locations of the 20 bytes. In Figure 3,
{ , , , , }i i i i iG M R V Z′ ′ ′ ′ ′ operate in Round {1, 2, 3, 4, 5}, and they
can also operate in Rounds {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4,
5, 6, 7, 8} or {5, 6, 7, 8, 9}. Therefore, there are 4 different
combinations for the byte locations, and there are five
different combinations for the round numbers in AES-128.
In total, there are 20 (= 4 × 5) variants of the δ algorithm for
AES-128. The δ algorithm has 28 (= 4 × 7) variants for
AES-192, and 36 (= 4 × 9) variants for AES-256.

Figure 4 Different locations of the 20 bytes

4 The modified version of the AES: δAES

By employing the δ algorithm, we propose a modified
version of the AES, which is named δAES. The major
difference between the AES and the δAES is that the δAES
uses modified AES round keys. In Figure 3 in Section 3, we
apply 20 extra XOR operations to the intermediate values
after ARK in Rounds 1–5 by using Bytes
{ , , , , }, {0, 2, 8,10}.i i i i iG M R V Z i′ ′ ′ ′ ′ ∈ The construction of the
δAES comes from the fact that we can use
Bytes { , , , , }i i i i iG M R V Z′ ′ ′ ′ ′ to XOR with AES round key 1–5
(instead of with the intermediate values after ARK), and we
still get the same result, i ∈ {0, 2, 8, 10}. There are 20-byte
differences between the AES round keys and the δAES
round keys. The δAES employs the same key scheduling
algorithm, constants and round function (i.e. SB, SR, MC
and ARK) as the AES.

The construction of the δAES is adding two procedures,
which are calling the δ algorithm and modifying the AES
round keys, to the AES algorithm.

1 Suppose for a plaintext P and a cipher key K, the
AES algorithm produces a ciphertext C, written as
C = AESK(P).

2 By accepting P and K as two inputs, use the δ algorithm
to generate 20 output bytes:

{ } 1, , , , , {0, 2, 8,10}i i i i iG M R V Z i′ ′ ′ ′ ′ ∈

3 Apply the AES key scheduling algorithm to K and get
the round keys.

4 Use { , , , , }i i i i iG M R V Z′ ′ ′ ′ ′ to XOR with the corresponding
AES round keys and get the round keys for the δAES,
i ∈ {0, 2, 8, 10}. The details of computing the δAES
round keys is described in Section 4.1.

5 After carrying out the transformations above, the δAES
uses the same round function (i.e. SB, SR, MC and
ARK) to process the plaintext P with modified AES
round keys, and finally, the δAES also generates the
same cipher-text C, denoted by C = δAES(P).
Appendix provides some examples of the AES and the
AES with 20 extra exclusive-or operations.

4.1 AES round keys and δAES round keys

Suppose K is a 128-bit AES cipher key, and after key
expansion, the AES round keys are denoted by

0
iK 4

iK 8
iK 12

iK

1
iK 5

iK 9
iK 13

iK

2
iK 6

iK 10
iK 14

iK

3
iK 7

iK 11
iK 15

iK

10 J. Huang, J. Seberry and W. Susilo

where i is the round number, {1,2, , 10}.i∈ … The round key
used in the initial round is the secret key K itself, and the
secret key is denoted without the superscript i.

The δAES round keys come from the following routine
(see Figure 5):

1 In Initial Round, Rounds 6–10, use the corresponding
AES round keys without any changes.

2 In Rounds 1–5, use the modified AES round keys.
After applying 20 XOR operations to the AES round

keys, the δAES round key i is calculated by the
following formulas:

, {0,2,8,10}

, {1,2,3,4,5,6,7,8,9,11,12,13,14,15}

i
y

i
y

K y

K y

β⎧ ⊕ ∈⎪
⎨

∈⎪⎩

where y is the byte index of the block, i ∈ {1, 2, 3, 4, 5} and
β is equal to , , , ory y y y yG M R V Z′ ′ ′ ′ ′ when i is equal to 1, 2, 3, 4

or 5, respectively.

Figure 5 AES round keys and the corresponding δAES round keys

 A five-round algebraic property of AES and its application 11

Compared with the AES algorithm, the δAES needs to do
some extra transformations, that is, calling the δ algorithm
and modifying the AES round keys. Moreover, for distinct
plaintext and cipher key pairs (P, K), the δAES needs to
carry out individual computations to get Bytes
{ , , , , } {0,2,8,10}i i i i iG M R V Z′ ′ ′ ′ ′ ∈ .

5 Description of the ALPHA-MAC
ALPHA-MAC is a MAC function which uses the building
blocks of AES. Similarly to AES, the ALPHA-MAC
supports keys of 128, 192 and 256 bits. The word length is
32 bits, and the injection layout places the 4 bytes of each
message word [m0, m1, m2, m3] into a 4 × 4 array. The
format of the injection layout is shown as follows:

0 1

2 3

0 0
0 0 0 0

0 0
0 0 0 0

m m

m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Like AES, the ALPHA-MAC round function contains SB,
SR, MC and ARK, and the output of each injection layout
acts as the corresponding 128-bit round key. The message
padding method appends a single 1 followed by the
minimum number of 0 bits such that the length of the result
is a multiple of 32. In the initialisation, the state is set to all
zeros and AES is applied to the state. For every message
word, the chaining method carries out an iteration, and each
iteration maps the bits of the message word to an injection
input. After that, a sequence of AES round functions are
applied to the state, with the round keys replaced by the
injection input. In the final transformation, AES is applied
to the state. The MAC tag is the first lm bits of the resulting
final state. The length of lm may have any value less than or
equal to 128. The ALPHA-MAC function is depicted in
Figure 6.

Figure 6 ALPHA-MAC construction

6 Applying the property to ALPHA-MAC

We study the internal structure of the ALPHA-MAC by
employing the proposed five-round algebraic property of
AES, which is described in Section 3. Firstly, we present a
method to find second preimages of the ALPHA-MAC by
solving eight groups of linear functions, based on the
assumption that an authentication key or an intermediate
value of this MAC is known. Each of these eight groups of
linear functions contains two equations. We divide the
second-preimage search algorithm into two steps:
the backwards-and-forwards (BNF) search and the
backwards-and-backwards (BNB) search. The BNF search
provides an idea for extending 32- to 128-bit collisions2 by
solving four groups of linear functions. Given a key (or an
intermediate value) and one four-block message, the BNB
search can generate another four-block message such that
these two messages produce 32-bit collisions, which are a
prerequisite for the BNF search. To do the BNB search, we
need to solve another four groups of linear functions. By
combining the BNB search with the BNF search, we can
find second preimages of ALPHA-MAC. Secondly, we
show that the second-preimage finding method can also be
used to generate internal collisions. The proposed collision
search method can find two five-block messages such that
they produce 128-bit collisions under a selected key
(or a selected intermediate value).

6.1 The second-preimage search algorithm

The second-preimage search algorithm aims to find a
five-block second-preimage M� for a selected five-block
message M, under a selected key (or a selected intermediate
value). The assumption of this search is that we know two
values: a selected key (or a selected intermediate value) and
a selected five-block message M. The result of the search is
that M and M� generate the same 128-bit value after five
rounds of ALPHA-MAC iterations, under the selected key
(or the selected intermediate value).

We use Figure 7 to illustrate the second-preimage
search. Figure 7 depicts five consecutive rounds of the
ALPHA-MAC for two different five-block messages M and

.M� We assume that we are able to select an intermediate
value of the round functions in some round (e.g. in Round
y − 3), and select five consecutive message blocks

3 2 1 1(, , , ,).y y y y yM M M M M M− − − + Then we can find another

five-block message 3 2 1 1(, , , ,)y y y y yM M M M M M− − − +
� � � � � � such

that these two five-block messages collide on 128 bits in
Round y + 1 after ARK. Note that the intermediate value is:

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

a a a a
a a a a
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

12 J. Huang, J. Seberry and W. Susilo

Figure 7 The five-block collisions

 A five-round algebraic property of AES and its application 13

In the case of a selected key, for the sake of simplicity, we
assume that 3 2 1 1(, , , ,)y y y y yM M M M M− − − + are the first five

blocks of the selected message. Our search algorithm works
without assuming that 3 2 1 1(, , , ,)y y y y yM M M M M− − − + are

the first five blocks of the selected message.
The second-preimage search algorithm has the following

form:

Known: 1 A selected key or a selected intermediate
value.

 2 A selected five-block message
3(,yM M − 2 1, ,y yM M− − 1,)y yM M +

Find: Another five-block message 3 2(, ,y yM M M− −
� � �

1 1, ,)y y yM M M− +
� � � such that M and M� collide

on 128 bits after ARK in Round y + 1.

Method: Solve eight groups of linear functions. These
eight groups of functions are named as (9)–(16)
in this section.

The second-preimage search algorithm consists of two
steps: the BNF search and the BNB search. The BNF search
can extend 32- to 128-bit collisions, given two messages M
and M� which collide on 32 bits, namely Bytes s4, s12, s6 and
s14, after MC in Round y (see Figure 7). Given a key (or an
intermediate value) and one four-block message, the BNB
search is able to find another four-block message such that
these two messages collide on Bytes s4, s12, s6 and s14 after
MC in Round y. The BNB search generates those 32-bit
collisions which are required for the BNF search. By
merging the BNB search with the BNF search, we can find
second preimages of the ALPHA-MAC.

6.1.1 The BNF search

The BNF search has the following form:
Known: 1 A selected key or a selected intermediate value.

 2 Two four-block messages 3 2(, ,y yM M M− −

1,yM − 1,)y yM M + and 3 2(, ,y yM M M− −
� � � 1,yM −

�

1,)y yM M +
� � colliding on 32 bits (Bytes s4, s12, s6

and s14) after MC in Round y.

Extend: 32-bit collisions to 128-bit collisions in Round
y + 1.

Method: Solve four groups of linear functions. These four
groups of functions are numbered as
(9)–(12) in this section.

The BNF search assumes that we are able to find two
messages M and ,M� which collide on Bytes s4, s12, s6 and
s14 after MC in Round y. Based on the algebraic property of
the MC transformation and the structure of ALPHA-MAC,

we can extend these 32- to 128-bit collisions within three
rounds by solving four groups of linear equations.

6.1.2 Extending 32- to 64-bit collisions
We use the differential XOR property before and after the
MC transformation. In Round y before MC, by XORing
those two intermediate values, we get the following result:

0 0 4 4 8 8 12 12

1 1 5 5 9 9 13 13

2 2 6 6 10 10 14 14

3 3 7 7 11 11 15 15

MC

j j j j j j j j
j j j j j j j j
j j j j j j j j
j j j j j j j j

⎡ ⎤⊕ ⊕ ⊕ ⊕
⎢ ⎥⊕ ⊕ ⊕ ⊕⎢ ⎥
⎢ ⎥⊕ ⊕ ⊕ ⊕
⎢ ⎥

⊕ ⊕ ⊕ ⊕⎢ ⎥⎣ ⎦

� � � �
� � � �

JJJJG� � � �
� � � �

5 5 13 13

7 7 15 15

? 0 ? 0
0 0
? 0 ? 0
0 0

s s s s

s s s s

⎡ ⎤
⎢ ⎥⊕ ⊕⎢ ⎥
⎢ ⎥
⎢ ⎥

⊕ ⊕⎣ ⎦

� �

� �

Here, we use R (to replace 0 0j j⊕�), S (to replace 8 8j j⊕�),
T (to replace 2 2j j⊕�) and U (to replace 10 10j j⊕�) so that
after the MC transformation in Round y, Bytes

1 1 3 3 9 9 11 11, , ands s s s s s s s⊕ ⊕ ⊕ ⊕� � � � � become zero. Now the
question is ‘how to decide R, S, T and U’. The answer is:

• there exists one and only one pair of (R, T) such that
after MC, Bytes 1 1 3 3ands s s s⊕ ⊕� � � are both zero

• there exists one and only one pair of (S, U) such that
after MC, 9 9 11 11ands s s s⊕ ⊕� � are both zero.

According to the MC transformation, we have the following
formula:

5 5 13 13

7 7 15 15

? 0 ? 0
0 0

MC
? 0 ? 0
0 0

s s s s

s s s s

⎡ ⎤
⎢ ⎥⊕ ⊕⎢ ⎥
⎢ ⎥
⎢ ⎥

⊕ ⊕⎣ ⎦

� �
JJJJG

� �

4 4 12 12

1 1 5 5 9 9 13 13

6 6 14 13

3 3 7 7 11 11 15 15

R j j S j j
j j j j j j j j

T j j U j j
j j j j j j j j

⎡ ⎤⊕ ⊕
⎢ ⎥⊕ ⊕ ⊕ ⊕⎢ ⎥
⎢ ⎥⊕ ⊕
⎢ ⎥

⊕ ⊕ ⊕ ⊕⎢ ⎥⎣ ⎦

� �
� � � �

� �
� � � �

To find out the values of (R, T) and (S, U), we need to solve
the following two groups of equations.

[]

[]

1 1

3 3

1 1

3 3

01 02 03 01 0

03 01 01 02 0

R
j j

T
j j

R
j j

T
j j

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (9)

14 J. Huang, J. Seberry and W. Susilo

[]

[]

9 9

11 11

9 9

11 11

01 02 03 01 0

03 01 01 02 0

S
j j

U
j j

S
j j

U
j j

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (10)

In the two equations in (9), there are two variables R and T,
and therefore there exists one and only one pair of (R, T) to
make these two equations hold simultaneously. Similarly,
we can decide the values of S and U by solving the two
equations in (10).

Once we get the values of R, S, T and U, message block

1yM −
� can be constructed as follows:

1 Set the values of new new new new
0 8 2 10, , , ,j j j j� � � � as follows:

new new new
10 0 8 8 2 2, ,j j R j j S j j T= ⊕ = ⊕ = ⊕� � � � and
new

10 10 .j j U= ⊕� Use new
0j� to replace new

0 8,j j� � to replace
new

8 2,j j� � to replace 2j� and new
10j� to replace 10 .j�

2 Perform SR–1 (inverse SR) and SB–1 (inverse SB). As
SR–1 and SB–1 are permutation and substitution, they do
not change the properties we have found. Now we have
the outputs of ARK in Round y – 1.

3 Compute the value of new
1yM −

� as follows:

() ()
() ()

new new new
1 0 0 8 8

new new
10 2 2 10

yM j i j i

j i j i

− = ⊕ ⊕

⊕ ⊕

� � � � �

� � � �

Use new
1yM −

� to replace 1.yM −
�

At this stage, two messages (3 2 1, ,y y yM M M− − −) and
new

3 2 1(, ,)y y yM M M− − −
� � � collide on 64 bits (Bytes s4, s12, s6, s14,

s1, s9, s3 and s11) in Round y after MC.

6.1.3 Extending 64- to 96-bit collisions

We only need to focus on Rounds y and y + 1 to extend
64- to 96-bit collisions. The idea is to choose message block

yM� to cancel out the differences between Bytes (s5, s13, s7,
s15) and Bytes 5 13 7 15(, , ,)s s s s� � � � in Round y. The method of
choosing yM� is exactly same as the method for

constructing 1yM −
� in Section 6.1.2.

By taking the outputs of ARK in Round y, we perform
the SB and SR operations, and then XOR the results after
SB and SR:

0 4 8 12 0 4 8 12

1 5 9 13 1 5 9 13

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

0 0 8 8

1 1 9 9

2 2 10 10

3 3 11 11

0 0 ? 0 ? 0
0 0 0 0 0 0

MC
0 0 ? 0 ?
0 0

n n n n n n n n
n n n n n n n n
n n n n n n n n
n n n n n n n n

n n n n
n n n n
n n n n
n n n n

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊕
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⊕ ⊕⎡ ⎤
⎢ ⎥⊕ ⊕⎢ ⎥=
⎢ ⎥⊕ ⊕
⎢ ⎥

⊕ ⊕⎣ ⎦

� �
� �
� �
� �

� �
� �

JJJJG� �
� �

0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Here, we use π to replace 0 ,on n⊕ � ρ to replace 8 8 ,n n⊕ � φ to
replace 2 2n n⊕ � and ω to replace 10 10n n⊕ � so that after MC
in Round y + 1, Bytes 1 1,w w⊕ � 9 9 3 3,w w w w⊕ ⊕� � and

11 11.w w⊕ � are zero:

1 1 9 9

3 3 11 11

0 0 ? 0 ? 0
0 0 0 0 0 0

MC
0 0 ? 0 ? 0
0 0 0 0 0 0

n n n n

n n n n

π ρ

φ ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⊕ ⊕⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊕ ⊕ ⎣ ⎦⎣ ⎦

� �
JJJJG

� �

Now the question is ‘how to decide π, ρ, φ and ω’. The
answer is:

• There exists one and only one pair of (π, φ) such that
after MC, Bytes 1 1 3 3andw w w w⊕ ⊕� � are both zero. The
values of (π, φ) can be decided by solving (11).

• There exists one and only one pair of (ρ, ω) such that
after MC, Bytes 9 9 11 11andw w w w⊕ ⊕� � are both zero. By
solving (12), we get the values of (ρ, ω).

[]

[]

1 1

3 3

1 1

3 3

01 02 03 01 0

03 01 01 02 0

n n

n n

n n

n n

π

φ

π

φ

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (11)

[]

[]

9 9

11 11

9 9

11 11

01 02 03 01 0

03 01 01 02 0

n n

n n

n n

n n

ρ

ω

ρ

ω

⎧ ⎡ ⎤
⎪ ⎢ ⎥⊕⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⊕⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪ ⊕⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⊕⎣ ⎦⎩

�

�

�

�

 (12)

 A five-round algebraic property of AES and its application 15

Once we know the values of π, φ, ρ and ω, message block
yM� can be chosen as follows:

1 Set the values of new new new new
0 8 2 10, , andn n n n� � � � as follows:

new new new
0 0 8 8 2 2, ,n n n n n nπ ρ φ= ⊕ = ⊕ = ⊕� � � and
new
10 10n n ω= ⊕� . Use new

0n� to replace new
0 0,n n� � to replace

new
8 2,n n� � to replace 2n� and new

10n� to replace 10.n�

2 Perform SR–1 and SB–1. Since SR–1 and SB–1 are
permutation and substitution, they do not affect the
properties we have found. Now we have the outputs of
ARK in Round y.

3 Compute the value of yM� as follows:

() ()
() ()

new new
0 0 8 8

new new
10 2 2 10

yM n s n s

n s n s

= ⊕ ⊕

⊕ ⊕

� � � � �

� � � �

So far, two messages 3 2 1(, , ,)y y y yM M M M− − − and
new

3 2 1(, , ,)y y y yM M M M− − −
� � � � collide on 96 bits (i.e. Bytes w1,

w3, w4, w5, w6, w7, w9, w11, w12, w13, w14 and w15) in Round
y + 1 after MC transformation.

6.1.4 Extending 96- to 128-bit collisions

This step is straightforward as we can select message My + 1

arbitrarily, and construct message 1yM +
� to cancel the

differences between Bytes w0, w8, w2 and w10. The
construction is provided as follows:

() ()(
() ())

1 0 0 8 8

2 2 10 10 1

y

y

M w w w w

w w w w M

+

+

= ⊕ ⊕

⊕ ⊕ ⊕

� � �

� �

6.1.5 The BNB search

The BNB search has the following form:

Known: 1 A selected key or a selected intermediate value.
2 One selected four-block message

3 2 1(, , ,)y y y yM M M M M− − −

Find: Another four-block message

3 2 1(, , ,)y y y yM M M M M− − −
� � � � � such that these two

messages collide on 32 bits (Bytes s4, s12, s6 and s14)
after MC in Round y

Method: Solve four groups of linear functions. These four
groups of functions are named as (13)–(16).

We propose a method to find 32-bit collisions on Bytes s4,
s12, s6 and s14 (see Figure 7) by solving four groups of linear

functions. This search assumes that for a selected key
(or a selected intermediate value) and a selected four-block
message 3 2 1(, , ,)y y y yM M M M− − − , we can generate another

four-block message 3 2 1(, , ,)y y y yM M M M− − −
� � � � such that these

two messages collide on Bytes s4, s12, s6 and s14 after MC in
Round y. The method used by the BNB search is similar to
the idea employed by the BNF search, but works in only one
direction (i.e. only backwards).

6.1.6 Deciding four values 5 7 13 15(j , j , j and j)� � � �

In the beginning, we choose 3 2 1(, , ,)y y y yM M M M− − −
� � � �

randomly. Assume that the input and the output of MC in
Round y are listed as follows:

0 4 8 12 0 4 8 12
old old

1 5 9 131 5 9 13

2 6 10 142 6 10 14
old old 3 7 11 153 7 11 15

MC

j j j j s s s s
s s s sj j j j
s s s sj j j j
s s s sj j j j

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

� � � � � � � �
� � � � � � � �

JJJJG� � � � � � � �
� � � �� � � �

Now we do not use the values of old old old old
5 7 13 15, , or .j j j j� � � �

Instead, we use 5j� (to replace old
5j�), 7j� (to replace old

7j�),

13j� (to replace old
13j�), and 15j� (to replace old

15j�) such that we
get values 4 12 6, ,s s s� � � and 14 ,s� respectively (illustrated as
follows):

0 4 8 120 4 8 12

1 5 9 131 5 9 13

2 6 10 142 6 10 14

3 7 11 153 7 11 15

MC

s s s sj j j j
s s s sj j j j
s s s sj j j j
s s s sj j j j

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

� � � � � � �
� � � � � � � �

JJJJG� � � � � �
� � � � � � � �

Now the question is ‘how can we make this happen’. Our
answer is to solve two groups of linear functions. For the
values of s4 and s6, we have two linear equations in (13)
with only two unknown variables (5j� and 7j�). Therefore,
we can solve (13) to obtain the values of 5j� and 7j�

[]

[]

4

5
4

6

7

4

5
6

6

7

02 03 01 01

01 01 02 03

j
j

s
j
j

j
j

s
j
j

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⎢ ⎥⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⎢ ⎥⎣ ⎦⎩

�
�
�
�

�
�
�
�

 (13)

16 J. Huang, J. Seberry and W. Susilo

[]

[]

12

13
12

14

15

12

13
14

14

15

02 03 01 01

01 01 02 03

j
j

s
j
j

j
j

s
j
j

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⎢ ⎥⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =
⎢ ⎥⎪
⎢ ⎥⎪ ⎢ ⎥⎣ ⎦⎩

�
�
�
�

�
�
�
�

 (14)

Similarly, for the values of s12 and s14, we have two linear
functions in (14) with two unknown variable 13 15(and).j j� �
We can solve (14) to decide the values of 13j� and 15.j� After 
getting four vehicles 5 7 13 15(, , and)j j j j� � � � decided, we
perform the SR–1 and  SB–1 transformations. As SR–1
transformation. As SR–1 is permutation and SB–1 is
substitution 5 7 13 15, , andj j j j� � � �  are first relocated then
substituted by another four values 9 3 1 11, , andi i i i� � � � ,
respectively. As the message injection layout does not
change the values of 9 3 1 11, , andi i i i� � � � these four values are not
changed after we do ARK. So, we get four known values

9 3 1 11(, , and)i i i i� � � after MC in Round y–1. Our next target is
to modify message block 2yM −

� so that we get those four

values 9 3 1 11, , andi i i i� � � after MC in Round y – 1.

6.1.7 Modifying message block 2yM −
�

Suppose by using the original message block 2 ,yM −
� we

have the following states in Round y – 1.

old old*old *old
0 4 8 120 4 8 12

1 5 9 13 1 5 9 13
*old *old old old
2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

4 12

5

SB SR

? ?
? ?

h h h hg g g g
g g g g h h h h

g g g g h h h h
g g g g h h h h

i i
i

MC

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

� � � �� � � �
� � � �� � � �

DJJJJJJJJG � � � �� � � �
� � � �� � � �

� �
� �

JJJJG 13

6 14

7 15

? ?
? ?

i
i i
i i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

� �
� �

Now we replace values old old old old
0 2 8 10(, , ,)h h h h� � � � with

0 2 8 10(, , ,)h h h h� � � � and then we get those four values

9 3 1 11(, , and)i i i i� � � located as follows:

* *
0 4 8 120 4 8 12

1 5 9 13 1 5 9 13
* *

2 6 10 142 6 10 14

3 7 11 15 3 7 11 15

SB SR

h h h hg g g g
g g g g h h h h

h h h hg g g g
g g g g h h h h

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

� � � �� � � �
� � � �� � � �

DJJJJJJJJG � � � �� � � �
� � � �� � � �

4 12

1 5 9 13

6 14

3 7 11 15

? ?

MC
? ?

i i
i i i i

i i
i i i i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

� �
� � � �

JJJJG � �
� � � �

Based on the property of MC transformation, we can form
the following two groups of linear functions:

[]

[]

0

1
1

2

3

0

1
3

2

3

01 02 03 01

03 01 01 02

h

h
i

h

h

h

h
i

h

h

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

�
�

�
�

�

�
�

�
�
�

 (15)

[]

[]

8

9
9

10

11

8

9
11

10

11

01 02 03 01

03 01 01 02

h

h
i

h

h

h

h
i

h

h

⎧ ⎡ ⎤
⎪ ⎢ ⎥
⎪ ⎢ ⎥ =⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎣ ⎦
⎨

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ =⎢ ⎥⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

�
�

�
�
�

�
�

�
�

�

 (16)

We know the values of 1 3 9 11, , and h h h h� � � � from the original
message block 2.yM −

� We can get the values of 0 2(,)h h� � by

solving (15), and get the values of 8 10(,)h h� � by solving (16).
After finding the values of 0 2 8 10(, , ,),h h h h� � � � we perform SR–1
and SB–1, and obtain the corresponding four values

* * * *
0 2 8 10(, , ,).g g g g� � � � Once we know the values of
* * * *
0 2 8 10(, , ,),g g g g� � � � we replace 2yM −

� with new
2 .yM −

� new
2yM −

� is

constructed as follows (note that 0 8 2, ,g g g� � � and 10g� are
known from the message block 3yM −

� in Round y – 3):

() () () ()new * * * *
3 0 0 8 8 2 2 10 10yM g g g g g g g g− = ⊕ ⊕ ⊕ ⊕� � � � � � � � �

 A five-round algebraic property of AES and its application 17

6.1.8 Combining the BNB search with the BNF
search

The second-preimage search algorithm combines the BNB
search with the BNF search. To search for a second
preimage of the ALPHA-MAC, we perform the following
steps:

1 Select a key or an intermediate value.

2 Select a five-block message
3 2 1 1(, , , ,)y y y y yM M M M M M− − − + .

3 Generate the second preimage

3 2 1 1(, , , ,)y y y y yM M M M M M− − − +
� � � � � � randomly. We need

to guarantee that 3yM −
� is not equal to 3yM − .

4 Perform the BNB search to generate 32-bit collisions.
The BNB search is done by modifying message block

2yM −
� .

5 Use the BNF search to extend those 32- to 128-bit
collisions. The BNF search is carried out by modifying
the values of 1 1, and .y y yM M M− +

� � � Message

3 2 1 1(, , , ,)y y y y yM M M M M M− − − +
� � � � � � is a second preimage

of message 3 2 1 1(, , , ,)y y y y yM M M M M M− − − + under the

selected key (or the selected intermediate value).

The routine of finding second preimages is shown in
Table 1, and Figure 8 depicts this finding. The name of the
BNB search comes from the fact that searching for 2yM −

� is

carried out by moving backwards and then backwards, and

the name of the BNF search comes from the fact that
searching for 1 1, andy y yM M M− +

� � � is performed by moving

backwards and then forwards (see Table 1). A personal
computer takes about 1 sec to find a second preimage of the
ALPHA-MAC. A found second preimage of a selected key
K (see Table 2) and a selected five-block message M
(see Table 3) is M (shown in Table 3). The 128-bit colliding
value is listed in Table 4 (note that these two messages are
listed after injection layout).

Figure 8 The second-preimage search

Table 1 Second-preimage search = BNB search + BNF search

Search R Round y − 2 Di Round y − 1 Di Round y

BNB 1 ⇐ 4 4 12 12

6 6 14 14

, ,
,

s s s s
s s s s
� �
� �

 2 ⇐ old old
0 0 2 2
old old
8 8 10 10

, ,

,

h h h h

h h h h� � � �

 3 new
2 2y yM M− −

 Round y − 1 Di Round y Di Round y + 1

BNF 4 Modify My−1 ⇐ collisions on s4, s12, s6 and s14
 5 ⇒ collisions on s4, s12, s6, s14, s1,

s9, s3 and s11

 6 modify yM� ⇒ 96-bit collisions

 7 modify My+1 → 128-bit
collisions

Note: Di – Direction; R – Routine.

18 J. Huang, J. Seberry and W. Susilo

Table 2 The selected key K

83 55 2d 81
88 2c 05 67
c1 63 be c2
2a a2 52 a4

Table 3 Two five-block messages

M (the selected message)

3yM − 2yM − 1yM − yM
 1yM +

c4 0 8c 0 e6 0 2a 0 77 0 fd 0 ef 0 a1 0 81 0 9f 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 0 f3 0 95 0 04 0 4c 0 37 0 68 0 09 0 25 0 2c 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M� (the found second preimage)

3yM −
�

 2yM −
�

 1yM −
�

 yM�
 1yM +

�

1d 0 43 0 22 0 04 0 e4 0 83 0 2f 0 e5 0 69 0 06 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1c 0 0d 0 2f 0 30 0 2f 0 9b 0 d4 0 30 0 f4 0 3a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4 The 128-bit collisions

7d 69 88 d7
02 cb 1f af
b9 d8 7b 5e
0e 10 79 21

6.2 The collision search algorithm

Known: A selected key or a selected intermediate value.

Find: Two five-block messages M and M� such that they
collide under the selected key or the intermediate
value.

Method: Employ the second-preimage search.

In the second-preimage search, we choose the first five-
block message arbitrarily, and once it is decided, we do not
modify it. All we need to do is modify the second five-block
message so that 128-bit collisions happen. Therefore, the
second-preimage search can also be used to find two
colliding five-block messages under a selected key
(or a selected intermediate value).

7 Conclusion
We described a five-round algebraic property of the AES
algorithm. In the presented property, we change 20 bytes
from 5 intermediate values at some fixed locations in
5 consecutive rounds by carrying out 20 extra XOR

operations, and we show that after 5 rounds of processing,
such modifications do not change the intermediate result
and finally, still produce the same ciphertext. We defined an
algorithm named δ, and by employing the δ algorithm, we
constructed a modified version of the AES, the δAES. For a
plaintext and a key, the AES and the δAES produce the
same ciphertext.

We then showed that the five-round algebraic property
of the AES can be used to analyse the internal structure of
the ALPHA-MAC, a MAC function whose underlying
block cipher is AES. We provided a second-preimage
search algorithm and a collision search algorithm.

References
Akkar, M.L. and Giraud, C. (2001) ‘An implementation of DES

and AES, secure against some attacks’, Cryptographic
Hardware and Embedded Systems – CHES 2001, Lecture
Notes in Computer Science, Vol. 2162, Springer-Verlag,
pp.309–318.

Barkan, E. and Biham, E. (2002) ‘How many ways can you write
Rijndael?’, Advances in Cryptology – ASIACRYPT 2002,
Lecture Notes in Computer Science, Vol. 2501,
Springer-Verlag, pp.160–175.

Biham, E. and Shamir, A. (1993) Differential Cryptanalysis of the
Data Encryption Standard, New York, NY: Springer-Verlag.

Biryukov, A. (2007) ‘The design of a stream cipher LEX’, Selected
Areas in Cryptography – SAC 2006, Lecture Notes in
Computer Science, Vol. 4356, Springer-Verlag, pp.67–75.

Courtois, N., Klimov, A., Patarin, J. and Shamir, A. (2000)
‘Efficient algorithms for solving overdefined systems
of multivariate polynomial equations’, Advances in
Cryptology – EUROCRYPT 2000, Lecture Notes in Computer
Science, Vol. 1807, Springer-Verlag, pp.392–407.

Courtois, N. and Pieprzyk, J. (2002) ‘Cryptanalysis of block
ciphers with overdefined systems of equations’, Advances in
Cryptology – ASIACRYPT 2002, Lecture Notes in Computer
Science, Vol. 2501, Springer-Verlag, pp.267–287.

Daemen, J., Knudsen, L. and Rijmen, V. (1997) ‘The block cipher
square’, Fast Software Encryption – FSE 1997, Lecture Notes
in Computer Science, Vol. 1267, Springer-Verlag,
pp.149–165.

Daemen, J. and Rijmen, V. (2001) ‘AES proposal: Rijndael’, AES
Round 1 Technical Evaluation CD-1: Documentation,
National Institute of Standards and Technology.

Daemen, J. and Rijmen, V. (2005) ‘A new MAC construction
ALRED and a specific instance ALPHA-MAC’, Fast
Software Encryption – FSE 2005, Lecture Notes in Computer
Science, Vol. 3557, Springer-Verlag, pp.1–17.

Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M.,
Wagner, D. and Whiting, D. (2001) ‘Improved cryptanalysis
of Rijndael’, Fast Software Encryption – FSE 2000, Lecture
Notes in Computer Science, Vol. 1978, Springer-Verlag,
pp.213–230.

Gilbert, H. and Minier, M. (2000) ‘A collision attack on 7 rounds
of Rijndael’, The Third Advanced Encryption Standard
Candidate Conference, pp.230–241.

Golic, J. and Tymen, C. (2002) ‘Multiplicative masking and power
analysis of AES’, Cryptographic Hardware and Embedded
Systems – CHES 2002, Lecture Notes in Computer Science,
Vol. 2523, Springer-Verlag, pp.198–212.

 A five-round algebraic property of AES and its application 19

Lucks, S. (2000) ‘Attacking seven rounds of Rijndael under 192
bit and 256-bit keys’, The Third Advanced Encryption
Standard Candidate Conference, pp.215–229.

Matsui, M. (1994) ‘Linear cryptoanalysis method for DES cipher’,
Advances in Cryptology – EUROCRYPT ’93, Workshop on
the Theory and Application of Cryptographic Techniques,
Lecture Notes in Computer Science, Vol. 765,
Springer-Verlag, pp.386–397.

Murphy, S. and Robshaw, M. (2002) ‘Essential algebraic structure
within the AES’, Advances in Cryptology – CRYPTO
2002, Lecture Notes in Computer Science, Vol. 2442,
Springer-Verlag, pp.1–16.

National Institute of Standards and Technology (2001) Federal
Information Processing Standards (FIPS) 197: Advanced
Encryption Standard (AES).

Notes
1For simplicity, we use only one variant of the δ algorithm here.
Other variants of the δ algorithm also work.

2Here and in the rest of this section ‘collisions’ stands for ‘internal
collisions’.

20 J. Huang, J. Seberry and W. Susilo

Appendix

Examples of AES with 20 XOR operations

We provide seven examples of the outputs of the five algorithm and their corresponding plaintexts, secret keys and ciphertexts
in Figure A1(a)–(g).

Figure A1 The values of P, K, AES round keys and the 20 bytes

(a)

 A five-round algebraic property of AES and its application 21

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

(b)

22 J. Huang, J. Seberry and W. Susilo

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

(c)

 A five-round algebraic property of AES and its application 23

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

(d)

24 J. Huang, J. Seberry and W. Susilo

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

(e)

 A five-round algebraic property of AES and its application 25

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

(f)

26 J. Huang, J. Seberry and W. Susilo

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

(g)

	A five-round algebraic property of AES and its application to the ALPHA-MAC
	Recommended Citation

	A five-round algebraic property of AES and its application to the ALPHA-MAC
	Abstract
	Disciplines
	Publication Details

	Microsoft Word - 02_Huang.doc

