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Introduction

Since Rijndael was adopted as a standard by National
Institute of Standards and Technology (2001), there have

The block cipher Rijndael, invented by Daemen and Rijmen
(2001), was selected as the advanced encryption standard
(AES) by National Institute of Standards and Technology.
Rijndael has a simple and elegant structure, and it was
designed carefully to withstand two well-known
cryptanalytic attacks: differential cryptanalysis, proposed by
Biham and Shamir (1993) and linear -cryptanalysis,
described by Matsui (1994). Most operations of Rijndael are
based on the algebraic Galois field GF(2%), which can be
implemented efficiently in dedicated hardware and in
software on a wide range of processors.

Copyright © 200x Inderscience Enterprises Ltd.

been many research efforts aiming to evaluate the security
of this cipher. A block cipher, named big encryption system
(BES), was defined by Murphy and Robshaw (2002), and
Rijndael can be embedded into BES. The extended
linearisation (XL) proposed by Courtois et al. (2000) and
the extended sparse linearisation (XSL) provided by
Courtois and Pieprzyk (2002) are new methods to solve
non-linear algebraic equations. The concept of dual ciphers
was introduced by Barkan and Biham (2002), and a
collision attack on seven rounds of Rijndael was described



2 J. Huang, J. Seberry and W. Susilo

by Gilbert and Minier (2000). The most effective attacks on
reduced round variants of the AES are square attack which
was found by Daemen et al. (1997). The idea of the square
attack was later employed by Ferguson etal. (2001) to
improve the cryptanalysis of Rijndael, and by Lucks (2000)
to attack seven rounds of Rijndael under 192- and 256-bit
keys. A multiplicative masking method of AES was
proposed by Akkar and Giraud (2001) and further discussed
by Golic and Tymen (2002). The design of an AES-based
stream cipher LEX was described by Biryukov (2007).
A new message authentication code (MAC) construction
ALRED and a special instance ALPHA-MAC was designed
by Daemen and Rijmen (2005). So far, no short-cut attack
against the full-round AES has been found.

In this paper, we present a five-round property of the
AES. We modify 20 bytes from 5 intermediate values at
some fixed locations in 5 consecutive rounds, and we
demonstrate that after 5 rounds of operations, such
modifications do not change the intermediate result and
finally, still produce the same ciphertext. We introduce an
algorithm named J, and the J algorithm takes a plaintext and
a key as two inputs and outputs 20 bytes, which are used in
the 5-round property. By employing the J algorithm, we
define a modified version of the AES algorithm, the JAES.
The 0AES calls the 0 algorithm to generate 20 bytes, and
uses these 20 bytes to modify the AES round keys. For a
plaintext and a key, the AES and the JAES produce the
same ciphertext. By employing the proposed algebraic
property of the AES, we analyse the internal structure of the
ALPHA-MAC. Firstly, we present a method to find second
preimages of the ALPHA-MAC by solving eight groups of
linear functions based on the assumption that an
authentication key or an intermediate value of this MAC is
known. Each of these eight groups of linear functions
contains two equations. Secondly, we show that the
second-preimage finding method can also be used to
generate internal collisions. The proposed collision search
method can find two five-block messages such that they
produce 128-bit collisions under a selected key
(or a selected intermediate value).

This paper is organised as follows: Section 2 provides a
brief description of the AES algorithm and Section 3
describes a five-round algebraic property of the AES. A
modified version of the AES is defined in Section 4.
Section 5 shows a description of the ALPHA-MAC
construction and Section 6 demonstrates how the proposed
five-round property of the AES is used to find second
preimages and internal collisions of the ALPAH-MAC.
Section 7 concludes this paper. Some examples of the AES
and the AES with 20 extra exclusive-or operations are
provided in the Appendix.

2 Description of the AES

AES is a block cipher with a 128-bit block length and
supports key lengths of 128, 192 or 256 bits. For encryption,
the input is a plaintext block and a key, and the output is a
ciphertext block. The plaintext is first copied to 4 x 4 array

of bytes, which is called the state. The bytes of a state is
organised in the following format:

0o n og 012
ay as Q9 a3
1053 (213 a0 014
a3 a7 any ays

where ¢; denote the ith byte of the block. After an initial
round key addition, the state array is transformed by
performing a round function 10, 12 or 14 times
(for 128-, 192- or 256-bit keys, respectively), and the final
state is the ciphertext. We denote the AES with 128-bit keys
by AES-128, with 192-bit keys by AES-192 and with
256-bit keys by AES-256. Each round of AES consists of
the following four transformations (the final round does not
include AddRoundKey (ARK)):

1 The SubBytes (SB) transformation: it is a non-linear
byte substitution that operates independently on each
byte of the state using a substitution table.

2 The ShiftRows (SR) transformation: the bytes of the
state are cyclically shifted over different numbers of
bytes. Row 0 is unchanged and row i is shifted to the
left i byte cyclicly, i € {1, 2, 3}.

3 The MixColumns (MC) transformation: it operates on
the state column-by-column, considering each column
as a four-term polynomial. The columns are treated as
polynomials over GF(2*) and multiplied modulo x* + 1
with a fixed polynomial, written as
{03}x° + {01}x*+ {01}x + {02}.

4 The ARK transformation: a round key is added to the
state by a simple bitwise exclusive-or (XOR) operation.

The key expansion of the AES generates a total of
Nb (Nr+1) words: the algorithm needs an initial set of Nb
words, and each of the Nr rounds requires Nb words of key
data, where Nb is 4 and Nr is set to 10, 12 or 14 for
128-, 192- or 256-bit key sizes, respectively. For a 128-bit
key K, we denote the round keys by

K§ K} K Ki
K K; K; K3
K K§ Ko K4
K} < i< Kis

where i is the round number, ie{1,2,...,10}. We note that

the round key used in the initial round is the secret key K
itself, and the secret key is represented without the
superscript i. The combinations of the key length, block size
and number of rounds are listed below:

Key length Block size Number of round
128 bits 4 10
192 bits 4 12
256 bits 4 14
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3 A five-round property of AES

Figure 1 20 bytes

. . . G/ G/
We describe a five-round property of the AES in this 0‘—’ g 08 g
section. In the proposed property, we modify 20 bytes from aTolc 1o
. . . . 2 10
5 intermediate values at some fixed locations in 5 olololo
consecutive rounds, and we show that after 5 rounds of M| o [Mz] o
operations, such modifications do not change the olofJo]o
intermediate result and finally, still produce the same M| 0 |Mid O
ciphertext. The modifications are carried out by performing 0]0]0]0
. ! ’
four extra XOR operations at the end of each round Ro| 0 |Rs] 0
(i.e. after the ARK transformation), and in total, we perform 12, g R(f g
20 extra XOR operations in 5 rounds. We require that each o ToToTo
of these 5 rounds must contain SB, SR, MC and ARK oo
. i 8
transformations. olTololo
We use Figures 1-3 to describe this property. The ARAD
layout of the 20 bytes in the 5 intermediate values is shown 0jojojo
in Figure 1, and the 20 bytes are Gj,G,,Gs, G|y, M}, zi] o]z o
' ' ' 0]J]0|0]O
M3, Mg, M{y, Ry, Ry, R, Rio, Vg, V3, Vs, Vs Zos 23, Zg, and Zj. 7 7
Z,| 0 |z 0
0J]0f0]0O
Figure 2 The intermediate values of AES-128
Po | Ps | Ps |P12 Aog|Ag|As |Ar2
Initial Round Plaintext P Pu| Ps | Py [Prg ARK A1 A5 | Ao |Ars
P> | Ps |Pro|P1a Az | As |A10|A14
Ps | P7 |P11|P1s Az | A7 |A11]|Ass
Bo | Ba| Bs |B12 Do |D4|Dsg|D12 Fo | Fu | Fs |Fi2 Go|G4|Gs|Gi2
R d1 SB Bl BS BQ Blij SR Dl DG D9 D13 MC Fl FS F‘J Fl:j ARK Gl G5 G‘.) G13
25 25 RS LAEA
oun Bs | Bg |B1o|B14 D3| D¢ |D1o[D14 Fy | Fs |Fio|Fia G2 |G |G1o|G1a
Bs | B7 |B11|Bis D3| D7|D11[D1s Fs | Fr |Fi1|Fis G3|G7|G11|Gis
Ho|Ha|Hg |H12 Jo | Ja| Jg |J12 Lo|La|Ls|L1i2 Mo | My |Mg|My2
Round 2 55 Hqi|Hs|Ho|H3 SR Ji | Js | Jo |Jis| v | Lo | Ls | Lo |Lis| g pg | M| Ms| Mo M3
oun Hy | He [Hyo[Hi4 Jo | Js | J10] 14 Lo | Lo |Lio|L1a Mo | Mg MM 4
H3|H7|Hy1|H1s J3 | J7 |J11]|J1s L3 | L7 |L11|L1s M3z | M7 |M11M15
No|[N4|Ns|Ni2 00 [04]0s [O12 Qo |Q4[Qs|Q12 Ro| R4 | Rs|R12
Round 3 5B Ni|Ns|No|Nis| sp [O1[O05]00[013] pe Q1] Q5 [Qo|RQ13| ark [ R1]|Rs|Ro|Ris
oun N3 |Ng|Nio|N1a 0206 |010|014] T [Q2] Q6 [Q10|@14 Ry | Re |R10|R14
N3 | N7|N11|Nis 03]071011|015 Q3|Q7|Q11|Q1s Rs | R7 |R11|R1s
So | Sa|Ss|S12 To | Ty | Ts |Th2 Uo |Ua [Us [U12 Vo | Va| Vs |Via
Round 4 5B S1|Ss|So[S13| sr |T1|Ts | To [T13| e |Us |Us |Us [Uss| apk | Vi | Vs [ Vo |Vis
oun S2 | S6 |S10]|S14 T> | Te |T10|T14 Uz |Us [U10|U14 Vo | Vi |Vio|Via
S3 | S7|511]S15 Ts | T7 |Th1|Ths Us | U7 [U11|Uss Vs | Vr |Vi1|Vis
Wo | W4 |Ws Wi Xo | Xa|Xs|X12 Yo | Ya|Ys|Yi2 Zo | Za | Zs | Z12
Round 5 52 Wi |Ws|WoWis| sp | X1 | Xs | Xo [ Xus| pe | Yo | Ys | Yo |Yis| ark | 21| Zs | Zo|Z13
OURE Y T W (W WadWid] ™ [ X [ X6 [Xuo[Xua] ™ [ ¥ [ Y6 [Yio|Yia| T [Z2]Z6 [Z10]Z14
W5 |Wr [W11[Whs| Xa | X7 [X11| X5 Y3 | Y7 [Y11]Yis Z3 | Z7 |Z11|Z1s
bo | ba | bs |b12 do | ds | ds |d12 fo | fa | fs | f12 go | 94 | 98 |912
Round 6 52 by | bs | bo [bis| sg [d1|ds |do|dis| e | f1|Ss | fo|f13| apk | 91|95 |99 |913
oun b2 | be |b1o[b1a do | ds |d1o|dia fo | fo | fro|f1a g2 | g6 |g10|914
b3 | by |b11|b1s ds | d7 |di1|d1s fs | fr | fr1]f1s 93 | 97 |911|915
ho | ha | hs |h12 Jo | Ja | Js [J12 lo [ la]ls [li2 mo | ma|msmio
Round 7 52 hi | hs | ho |h13 SR Ji | s | do |dis| pe |l | s | Lo |lis| apk |Ma|ms|mofmis
oun ha | he |hio|hi1a J2 | Je |J10|J14 l2 | l6 |lio|l1a ma | me Mmiofmi4
hs | hr |hi1]his Ja | 7 |Ji1|dis I | 17 |l11|l1s m3|m7[miifmis|
no | 4 | N8 (N12 00 | 04 | 08 [012 qo | 94 | 98 |912 To | T4 | T8 [T12
) op | 1| ns |no nis| gp [01] 05 |00 |013] ae | @1 | @5 | @0 |913 | apsc | 72 | 75 | 7o |T1s
. nz [ne [niofnia] 7 [0z [ o6 [or0[ora] T g2 | g6 |q10|914 7 [r2]re|riofria
n3 [n7 niifnis 03 | 07 011015 g3 | 97 |911 915 r3 |7 |T11|T15
S0 | S4 | 88 |S12 to | ta | ts |t12 uo | ua | us (U2 Vo | V4 | U8 |V12
- sp | S1[S5|So[S13| gp [T1[ts | to [t13| pye [W1|Us | U0 |UIB| 4pp | V1| Vs Vo |U13
Round 9 = s2 | s6 [s10]s1a| — |t | te |t1o|t1ia| | w2 |ue [uio|uia] T [v2 |ve |vio|via
83 | 87 |s11|S15 ts | t7 |t11|t1s us | u7 |ui1|uis v3 | v7 |V11|V15
wo | we |ws W12 ZTo | Ta | T8 |T12 Zo | 24 | 28 | 212
sp | wi|ws|wo |wis| gp [21 |25 |20 [213 anrk | 71| #5 | 20 |213
Round 10 == o ofwra] — [@2 | @6 [#10]@1a T [ 22|26 |z10[214
wy |wr lwit|wis z3 | x7 |T11|Tis 23 | 27 211|215
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Figure 3 The intermediate values of AES-128 with extra 20 XOR operations

Po | P4 | Ps |12 Ap | Aq | As |A12
" ) P1| Ps | Po |P13| apk | A1 |As | Ao |[A13
Initial Round Plaintext P -
Py | Ps |P1o|P14 Az [ Ag [A10]A14
P3| P7 P11 P15 Az [ A7 |A11]A1s
Bo | B4 | Bs |B12 Do | D4 Dg|D12 o | Fa | Fs | 712 Golaalaslais Ghl o les] o
By | Bs | By [B1: D1 | D5 | Do |Dq: Fy | Fs | Fo [P Gy |as|aglan:
| 5B 1]Ps] 50 [P1s] sp L D5 | Do lP1s) o | M1 75 ] 7o || gy |91 95 ] o [Fas o oloflol]o -
Ba | Bg |B1o|B14 D3| De [D1o|P1a Fo | Fg |Fro|F14 G2 | Ge [G10|C1a chl o |eio| o
Bs | B7 |B11|B1s Ds | D7 |D11|D1s s | 77 || Fys Gs|arlaii]ars olo]lofo
HE|Hy | HE |H12 JE Ja | g |12 Ly | La | LE L2 ME| Mg |ME Mo Myl o M4 o
Hqy |Hs | Hg |H J1 | Is | Jo [I1: L¥|Ls|LE|L M| Mg Mg
, SB L Hs | Ho s g | J1 15 ) Jo | as] gy [ LT 0S| RO P18 ) g [ MT] M5 [M9 13@ olofol]o -
H3 | He |Hp| 14 I35 Je |50 714 L5 | Le |Lio| 14 M| Mg |M{o|M14 Myl o Mgl o
Hy | Hy [H1q|H s Jg | a7 [a11]d1s Li|or o |eas MG | M7 MM olo]lofo
NG| Na | NG V12 og |oa o 012 yles|ei|eis Ry | RE | RS |RTo ROl o |Rs| o
* * * * * * * * * * * *
, sB N Ns [N N1 SR o1 o | og |0t Ve eilez|ed s ARK RY|RE|RE [RT4 o olo]lofo -
N3 | N6 [N{o|N14 03196 |910|O14 Q5| Q5 |R10|R14 RS | RS |RIo[Ri4 Ry | 0 |Rrig| ©
N3 | N7 |IN{i|N1s Oz oz [011]075 Q3 |R% |RT1|RTs RE | R |RT{|RTs oloJo]o
sg|silsg|sis T TE | TE | T uglua|ug Uiz Vi | Va [ vg Ve vgl o |vé]| o
o ¥ ¥ ok 3 s+ s+ # s+ * > H *
. sB ST 155156 |S1s SR T T8 | Ty | T3 mMC Uy |Ug |Ug U3 ARK Vi|Vvs | Vo |Vis o 0 0 0 0 -~
85 |56 |Sio|S1a T3 | T8 | o] U3 | Us |Uio|V14 V3 | Ve |Vio|Via Va | 0o [Vip| ©
S5 157 |511]51s g7 | T |1 Us |U7 [U11|UT5 v | Vi Vit Vi olololo
Wi |Wa |Wg Wiz X& | Xa [ X§ [X12 Yo | Ya | Y |Y12 25| 24| 25 |Z12 Z(/) 0 Zé 0
wy [wr|wg W x| xg [ xx X vi | Y5 | Yo |Yas Z1| %5 | 29 |%1-
. 5B 1 5 91"13 SR 1 5 9|13 MC 1 5 9 |Y13 ARK 1 5 9 |413 ® 0 0 0 0 R
W3 We [Wio]W14 X3 | X6 [Xio|X14 Yo' [ Yo |Yio[Y14 23 | %6 |Zi0|%1a| 7 | Za | 0 |Zio| ©
Wa |WF W11 |W g X3 X7 [X11|X1s Y3 | Y7 [Y11|Y15 Z3 | Z7 |Z11|%15 olo]ofo
bg | bg | bg |b12 do | dg | dg |d12 fol fa | 8 | f12 g0 | 94 | 98 |912
sB by | bs | bo |b13 SR dq | ds | dg |d13 MO f1 | fs | fo | f13 ARK g1 | 95 | 99 |913
6 23 =5 gl - - LAl g
by | bg |b10|b14 do | de |d10]|d14 fo | fe | f10]f14 g2 | 96 |910|914
b3 | b7 |P11|b15 dz | d7 [d11|d1s I3 | f7 |11 /15 93 | 97 |911|915
ho | ha | hg |h12 jo | a4 | 98 |712 lo | la]ls |hi2 mo | mg|msg [m12
sp [P Ps | ho 13| g [0 |95 [d9 |18 e b s | b |Rs | 4 i 7L ™S ™o [
7 28 LSS e I rs EAZ
ha | he |h10o|h14 J2 | de |i10|d14 lo | t6 [ti0]t1a mo | mg [miofmig
h3 | b7 |P11|P15 iz | g7 |11 ]715 i3 | t7 |t11 15 mg | myfmiifmis
ng | ng | ng |n12 o0 | o4 | o8 |12 q0 | a4 | a8 |12 ro | 4 | T8 |r12
. n n ng |nq- . o og | o 01« q q qg |a1- [ T g |T1°
Cop [P ms o mas] g |1 o5 [0 fers] o (9|95 |99 |98 4 e [T 75 ] 70 |78
s 28 2% iy pRaZs
ng | ne |n10|n14 o2 | o6 |o10|°14 92 | 96 910914 r2 | 6 [r10|r14
ng | n7 [n11l|m1s o3 | o7 |o11 |15 a3 | a7 |411 915 rs | 77 |711 715
s0 | s4 | s8 |s12 to | ta | ts |t12 wo | ug | w8 w12 vy | va | v8 |v12
s s 816 t ts t L u u u wUq - v v v CRE:
sp Lorles oo s8] o [ttt |t18 ] o 2] s |0 |“18] 4 i [ V2] V5 | VO |V18
0 28 20 s EAZ
s2 | s6 |s10]514 ta2 | tg [t10]t14 w2 | ug |vi10|wi4 v2 | Y6 |v10|v14
s3 | s7 [s11]515 tz | t7 [t11|t1s w3z [ wr |u11|v1s v3 | vr [vi1|vis
wo | wy | wg |wi2 zo | 24 | w8 |*12 z0 | #4 | #8 |*12
w we wqg w1 - x Ty x x z z5 zZQ z
sp Wi ws|wowis| op [ ®1 ] @5 [®0 718 Ark 21|28 [ =0 |513
10 22 Eat Ltk
wy |wg |wigfwia zg | wg [z10|®14 z2 | z6 |#10|*14
’lL73 ’LU7 LL.‘11 'LL115 1153 1117 11111 1115 23 Z7 211 215
In Figure 1, a zero occupied byte means that there is no 20-byte modifications do not change the input to Round 6,

change in that byte, and a variable occupied byte indicates
that there is a modification in that byte. In Figure 2, all
intermediate values are listed when using the AES algorithm
to encrypt a plaintext P under a 128-bit key K, and all bytes
of the intermediate values are denoted by plain variables.
Correspondingly, Figure 3 enumerates all intermediate
values of the AES with 20 extra XOR operations. The
20-byte modifications take place in Rounds 1-5, and after
ARK transformation in each of these 5 rounds, we perform
XOR operations on Bytes 0, 2, 8 and 10. We show that the

that is, both the AES and the AES with 20 extra XOR
operations generate the same input to Round 6. In Figure 3,
a variable marked by a asterisk indicates that the value at
that location has been affected by the 20-byte modifications,
and a plain variable shows that the value at that location is
not affected by the 20-byte modifications. For example,
after ARK in Round 1 in Figure 3, Byte G; is XORed with

Byte G, and after SB, we have four modified bytes H,

i € {0, 2, 8, 10} and 12 unchanged bytes: H,, H;, H,, Hs,
H65 H77 H95 Hll’ H12, H13, H14 and H15.
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3.1 The dalgorithm

To decide the values of the 20 bytes: G!,M/,R/,V; and Z/,
i €{0,2, 8, 10}, we introduce an algorithm named 6. For
any plaintext P and any key K used in the AES algorithm,
the ¢ algorithm accepts P and K as two inputs, and generates
an output which contains 20 bytes {G/,M/,R/,V/,Z!}, where
G/,M/,R,,Vand Z], are bytes,i e {0,2, 8, 10}.
The Jalgorithm includes a number of steps:
1 Process the first five rounds of the AES algorithm by
taking the plaintext P and the key K as the inputs, that
is, start with the initial round, and process Rounds 1-5
of the AES. Therefore, we know all intermediate values
in Figure 2, from initial round to Round 5.

2 Initialise G/,M/,R/,V;andZ], to zero, i € {0, 2, 8, 10}.

3 Choose G,,G;,Gg and Gy, freely. The only requirement

is that at least one of these four bytes is not equal to
zero, namely, Gj,G;,G; and G|, cannot be all zeros. If

G,,G;,Gg and G, are all zeros, the ¢ algorithm outputs
20 zero bytes. Once G, G, G; and Gy, are decided, the

remaining 16 bytes will be computed by the procedures
described in Sections 3.1.1-3.1.4.

4  Decide My, M}, M and M{,.
5 Decide Rj,R;,R; and Ry.

6  Decide Vy,V,, Vg and V.

7 Decide Z{,Z},Z; and Zj,.

Remark 1: There are 2’1 combinations of {G),G),

G}, G, } because each byte can have 2° possible values.

3.1.1 Deciding M),M’,M}; and M},

After we have decided the values of G;,G;,Gg and G|, we

carry out a four-round computation (of the AES with extra
12 XOR operations), called Routine Computation One,
which starts with the initial round and ends with MC in
Round 4 (see Figure 3).

Routine Computation One

Iy i Ty T Ug Uy Ug Up
T* T* T* T* * U* U* U*
IS | (€
I Ts Ty Ty Uy Us Uypy Uy
LT L) \Us U U U

Next, we will show that there is an algebraic relation

between Bytes {M{,M},M§, M|} and Bytes {U;,Ug,
U},,Uf,}. Based on this relationship, we can change the
values of {U,,U;,U,,,Up,} to the values of {U,,U,
U,,,U,4} by setting the values of {Mj, M), Mg, M|,}. After
we have decided the values of {M, M}, Mg, M|}, we aim

to have an intermediate value after MC in Round 4 in the
format of

Us Uy Uy Up
Ur Us Uy Uy
Us U Uy U
Uy U Un U

The steps of deciding {Mj,M,, M, M|,} are listed as
follows:

(M M3 MG Mg [N N3 NN | {05,05,05,05
<« {Ql*aQ;aQ;an*l} <« {Rl*ﬂR;’R‘;ﬂRl*l} “{Sl*,S;,S;anfl}
AL TS U3 U Ui Un)

After we change the values of {U),U¢,U},,Us,} to the
values of {U,,U,,U,,,U,,}, the input and output of MC in
Round 4 become

Iy I, T T Uy Us Ug Up
" T Ty T U U; U, U
B O S
I Ts Ty Ty Uy Us Uypy Uy
I, T Ty T Uy U; Uy U

Our next target is to modify the values {T',7,,T3,T5} of
according to the values of. {U,,U,,U,,,U,,}. From the MC

transformation, we have the following formula:

Initial round : ARK

Round 1: SB SR MC ARK @
Round 2: SB SR MC ARK @
Round 3: SB SR MC ARK @
Round 4: SB SR MC.

All intermediate values from the computation of this time
are stored in array called Buffer One (note that Routine
Computation One produces 19 intermediate values). We
denote the input and output of MC in Round 4 by

*

UO
Uy

*

Uy
Us

*

Ug
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To find out the values of {70, 7;,T3,T5}, we need to solve

the following two groups of linear functions, which are
marked by (1) and (2).

715*
[02 03 o1 01] ° |=U,

]16*
- (D

[o1 o1 02 03] |=U;

[02 03 01 o1]

-0 (@)

[01 01 02 03]

In Equation (1), there are two linear equations with two
undecided variables 7. and7, and thus we can solve (1) to

obtain the values of 7. and7,. Similarly, there are two

linear equations in (2) with two undecided variables
75 and T} and therefore we can solve (2) to get the values of

ThandT5. After having 77,7775 and 73, perform SR’
(inverse SR) and SB™' (inverse SB), and we have the values
of R',R;,R, and R, after ARK in Round 3. Apply the ARK

transformation to R, R;,R, and R;;, we have the values of
0/,05,0, andQ;,. Our next task is to modify the values of
0,,05,0; andOj,. In Round 3, the input and output of MC
are as follows:

% 0 & O
o 05 O 0O
0 O O Ou
o5 05 O O
02 03 01 0110 Os O5 Op
0ol 02 03 oll|lo, 0f 0, O
01 01 02 03105 Oy O Oy,
03 01 01 02)lp o o o

We can form two groups of linear equations, which are
named (3) and (4), and solve them to decide

0,.0,,0; andOj,. There are two linear equations in (3) with
two undetermined variables O, and 0, and we can solve
them to determine the values of O; and O; . Also, there are
two linear equations in (4) with two undecided variables
0O; and Oy, and we can get O; and O;, and by solving (4).

0,
[o1 02 03 o1]| ' |=0;
- 3

[03 01 01 02] =0;

i 4

[03 01 01 02] =0}

Once knowing the values of O;,05,0; and Of,, we perform
SR™" and thus we get Bytes N;,N;,N; and N}, after SB in
Round 3. Finally, Bytes M, M}, Mg and M/, are decided by
the following computations (note that M, M5, Mg and M,
are obtained from Buffer One):

Mg =M ®SB™ (N; ), M = M; ®SB™ (N;)
Mg = M; ®SB™ (N7 ), M, = M, @SB~ (N, )

At this stage, we have decided the values of {G/,M} and
{R!,V/,Z]} are not yet decided (note: they are still initialised
to zero), i € {0, 2, 8, 10}.

3.1.2 Deciding R}, R}, R; and R},

Perform Routine Computation One second time, and all
intermediate values from the computation of this time are
stored in an array called Buffer Two. The intermediate value
after MC in Round 4 is

Ug U4 Ug Ul 2

Ui Us Uy Uy
U; U6 UlO U14
Uy U; Uy U
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We will demonstrate that there is an algebraic relation
between Bytes {R),R),R;, Ry} and Bytes {U;,U;,U;, U}
By employing this relationship, we are able to change the
values of {U7,U;,U;, Uy} to the values of {U,,U;,U,,U,,}
by choosing the values of {R;,R;,Ri,R/,}. After we have
determined the values of {Rj,R;,Rs,Rj,} and perform

Routine Computation One second time, our target is that the
intermediate value after MC in Round 4 is

*

U;; U4 U8 Ul 2
Uy Us Uy Ug
U; U6 UI*O Ul4
U3 U; Ul 1 Ul* 5

The moves of determining the values of {R;,R},R;,R/,} are
shown below:

Ry R R Rl < {53,55,50, 55 ) e {13755 7|
<_{U1,U3,U9,U11}
After we replace the values of {U},U;,U;, Uy} with the

values of {U,,U;,U,,U,,} the input and the output of MC in
Round 4 are

Iy I, T T Uy Uy Ug Up
" T Ty T u U; U, U
1* 5* 9* 13 MC 1* s Y9 Y
Iy Ts Ty Ty Uy Us Uypy Uy
T T Ty T U, U; Uy U

We need to modify the values of {T;,7;,,T;,T;,} according
to the values of {U,,U;,U,,U,,}. We can form two groups
of linear equations, which are named (5) and (6). There are
two undecided variables 7; and 7, in Equation (5), and we

can solve (5) to get the values of 7; and 7,". In Equation (6),
there are two undetermined variables 7; and Tj;,, and we can

find out the values of Ty and 7;; by solving (6).

[o1 02 03 o01] " |=U,

i (%)

[03 o1 o1 02] ' |=U;

[o1 02 03 o01] ° |=U,
- (6)
[03 o1 o1 02] ° |=U,

*

T

*
K

After knowing the values of (7,7, ,T;,T,}, we perform
SR™" and have four corresponding values {S,S3,S;,S5}
after SB in Round 4. Bytes {R;,R;,Rs, R/} are computed as
follows: (note that Rj,R;,R; and R, are obtained from
Buffer Two):

Ry = R; ®SB™'(S7 ), R, = R @SB! (S7)
Ry =R; ®SB™ (57 ), R}, = R ®SB™' (S}, )

At this moment, we have decided the values of
{G/,M/,R]} and {V/,Z]} are not determined and they are still

equal to their initial values, i € {0, 2, 8,10}.

3.1.3 Deciding V,,V, Vg and V},

After having the values of Rj, R}, R; and R/, we carry out a

five-round computation of the AES with 16 extra XOR
operations, called Routine Computation Two, which begins
with the initial round and ends with MC in Round 5 (See
Figure 3). All intermediate values from the computation of
this time are stored in an array named Buffer Three (note
that Routine Computation Two generates 24 intermediate
values).

Routine Computation Two

Initial round : ARK

Round 1: SB SR MC ARK

Round 2: SB SR MC ARK

Round 3: SB SR MC ARK

Round 4: SB SR MC

1® 1® 1D

After MC in Round 5, we will have an intermediate value in
the following format:

oY X

VAD AED A 1

yoY XYy Y

A ED TER
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There is an algebraic relation between Bytes {V,V,,V5,V}}
and Bytes {¥",¥;", ¥y, Y]}, and we can change the values of
', Y5, Y,Y}} to the values of {¥},1;,Y%,,Y,,} by setting the
values of {V,V,,V5,Vjy}. The steps of determining the
values of {V,V,,V5,V},} are shown below:

o V3 TV}« (o 5 W i |
(X0 X5, X5, X | 0, X 1 )

We replace Bytes {Y",Y;,Y,Y}} with Bytes {¥},%;,%,Y,},
and the input and output of MC in Round 5 are

Xo Xo X5 Xo| | v % X,
Xi X5 X, XISMCYI s Yy X
X, Xg Xig Xu| |V Y5 Y Yy
X5 X, X, X n oY Y Ys

We form two groups of linear functions, marked by (7) and
(8). There are two undecided variables X and X; in (7), and

we can solve (7) to get the values of Xjand X5. In
Equation (8), there are two undecided variables X and X7,

and we can obtain the values of X and X7, by solving (8).

X5

[o1 02 03 01] 7! |=¥
- @)

[03 o1 01 02]] 7! |=V

[01 02 03 o1] =Y,

- (®)

Vo =Vs ®SB™ (W ).vs =5 @SB (7)),
Vi=Vs @SB (W)W = Vi @SB ().
At this stage, we have decided the values of

{G/,M[,R!,V;},and Z/ is not determined and it is equal to
the initial value, i € {0, 2, 8, 10}.

3.1.4 Deciding 7;,7,Z; and Z},

Perform Routine Computation Two second time, and the
intermediate value after MC in Round 5 is

Y, % ¥,
Y, % Y Y
Y, Yo Ky Yy
Y, Y, Y, ¥

Apply ARK to the intermediate value above, we have

Zy, Z, Zs Iy
Zy Zs Zy Iy
Z, Zs Zyy Zy
Zy Z7 Zy s

Bytes Z,Z,,Z; and Z], are computed as follows (note that
Zy,Z,,Zs and Z,, are obtained from the computation in

which the AES algorithm is used to encrypt the plaintext P
under the key K (see Round 5 in Figure 2)):

Ty =7y @7y, 25 =7;®7,,
Z4 =73 ®Zg, Z)y = 23y ® Zy.

Finally, we have decided all values of {G/,M/,R/,V/,Z},
i €{0,2,8,10}. Now, we carry out a 5-round computation of
the AES with extra 20 XOR operations, called Routine
Computation Three, by wusing Bytes Gj,G;,Gg,
Glow MyM 3. My Mg, Ry, Ry ResRlg, Vi Vo Zi. 23,
Z; and Z;, and we will get the same input to Round 6 as the
AES algorithm.

Routine Computation Three
Initial round : ARK

[03

01

01 02]

Round 1: SB SR MC ARK @
Round 2: SB SR MC ARK @
Round 3: SB SR MC ARK &
Round 4: SB SR MC.

After deciding the values of {X;,X;, Xz, X],}, we perform
SR™" and have four corresponding values (W, Wy Wy, Wiy}
after SB in Round 5. Bytes V,V;,V; and V};, are computed
as follows (note that Vi, 1, .,V and /, are obtained from
Buffer Three):

Remark 2: The most important part of the 6 algorithm is
solving those eight groups of linear Equations (1)—(8).
There is one question needs to be answered. The question
is: Are these eight groups of linear equations independent?
The answer to this question is choosing different values of
Bytes G,G;,Gg, G, if we face such situations. Among the
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20 bytes: G;,Gy,Gy, Gy, MM, Mg, M|y, R}, Ry, R, Ry, Vg,
Va, Vis Vios 24,24, Zg and Z,, we can select the values of
G,,G;,Gg and G|, freely. As we showed in Remark 1, there

are 27-1 combinations of these four bytes, and
correspondingly, we can have 2%_1 intermediate values in
Figure 3, starting with SB in Round 2 and ending with ARK
in Round 10. If we meet any dependent equations, we can
overcome this problem by choosing different values of Bytes
Gy,G;,Gg and Gy. Therefore, this question will not cause

any trouble. So far, we have not met any dependent
equations in our large-sample experiments.

Remark 3: From Remark 1, we note that there is more than
one combination of the 20 output bytes of algorithm ¢ for a
given pair of (P, K).

Remark 4: For distinct plaintext and cipher key pairs (P, K),
algorithm 0 needs to perform individual computations to
decide the values of the 20 bytes.

3.2 Variants of algorithm &

We show that there are other variants of the & algorithm. In
Section 3.1, the locations of the 20 bytes are {0, 2, 8,10},
and there are three other combinations, which are {4, 6, 12,
14}, {1, 3, 9, 11} and {5, 7, 13, 15}. Figure 4 outlines
different locations of the 20 bytes. In Figure 3,
{G/,M/,R,V/,Z]} operate in Round {1, 2, 3, 4, 5}, and they
can also operate in Rounds {2, 3, 4, 5, 6}, {3,4, 5,6, 7}, {4,
5,6,7,8} or {5, 6,7, 8,9}. Therefore, there are 4 different
combinations for the byte locations, and there are five
different combinations for the round numbers in AES-128.
In total, there are 20 (= 4 x 5) variants of the ¢ algorithm for
AES-128. The ¢ algorithm has 28 (=4 x 7) variants for
AES-192, and 36 (=4 x 9) variants for AES-256.

Figure 4 Different locations of the 20 bytes

ofoJofo 0 |G4| 0 |Gla ofojJo]o
Gl o |Gil o oJo]Jofo 0 |GL] 0 |G,
ofoJofo 0 |Gs| 0 |Gla ofojJo]o
Gs] 0 |G14] 0 ofofofo 0 |G7| 0 |G
oJojJofo 0 ML 0 M7y ojlofo]o
M| o |M4] o oloJofo 0 |MI| o M7,
ojJojofo 0 |Mg| o My, ojJofo]o
M| o My 0 ofofofo 0 |M;| 0 M1y
oJojJofo 0 |R,| 0 [R], ojJofo]o
Rl 0 |R| O ojJojJofo 0 |R{| 0 |RLs
oJojJofo 0 |Rg| 0 [R1, ojJofo]o
Rl 0 |R14| O oJojJofo 0 |R:] 0 |Ris
oJojJofo 0 |v)|o [V, ojJofo]o
vilo|Vy| o olofofo 0 |Ve| o |vs
ofofofo o |vylo v, ofoJo]o
vilo V{0 oJlojJofo 0 (V7] o |Vis
olojofo 012y 0 |21, oJoJofo
zilo|zi| o ojloJofo 0zi| 0 |Z15
oJojJofo o|zi|lo |z, ojJofo]o
zil o |z, o oloJofo 0z5] 0 |Z15

4 The modified version of the AES: SAES

By employing the ¢ algorithm, we propose a modified
version of the AES, which is named SAES. The major
difference between the AES and the JAES is that the JAES
uses modified AES round keys. In Figure 3 in Section 3, we
apply 20 extra XOR operations to the intermediate values
after ARK in  Rounds1-5 by using Bytes
{G/,M[,R,V\Z!},i €{0,2,8,10}. The construction of the
0AES comes from the fact that we can use
Bytes {G/,M/,R/,V;,Z!} to XOR with AES round key 1-5
(instead of with the intermediate values after ARK), and we
still get the same result, i € {0, 2, 8, 10}. There are 20-byte
differences between the AES round keys and the J0AES
round keys. The SAES employs the same key scheduling
algorithm, constants and round function (i.e. SB, SR, MC
and ARK) as the AES.

The construction of the SAES is adding two procedures,
which are calling the 6 algorithm and modifying the AES
round keys, to the AES algorithm.

1 Suppose for a plaintext P and a cipher key K, the
AES algorithm produces a ciphertext C, written as
C = AES(P).

2 By accepting P and K as two inputs, use the ¢ algorithm

to generate 20 output bytes:
(GL,M,R.VZ]}, ie{0,2,8,10}'

3 Apply the AES key scheduling algorithm to K and get
the round keys.

4 Use {G/,M/,R,V;,Z]} to XOR with the corresponding
AES round keys and get the round keys for the SAES,
i €{0,2,8, 10}. The details of computing the JAES
round keys is described in Section 4.1.

5  After carrying out the transformations above, the SAES
uses the same round function (i.e. SB, SR, MC and
ARK) to process the plaintext P with modified AES
round keys, and finally, the SAES also generates the
same cipher-text C, denoted by C = SAES(P).
Appendix provides some examples of the AES and the
AES with 20 extra exclusive-or operations.

4.1 AES round keys and 0AES round keys

Suppose K is a 128-bit AES cipher key, and after key
expansion, the AES round keys are denoted by

Kj K} K Ki
K K; Kj K3
K K§ Kiy Kiy
K3 K; <t Kis
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where i is the round number, i € {1,2,...,10}. The round key keys, the JAES round key i is calculated by the

used in the initial round is the secret key K itself, and the following formulas:
secret key is denoted without the superscript i. ;

The SAES round keys come from the following routine K, ®p, »e{0.2,810}
(see Figure 5): K;, y€il,2,3,4,5,6,7,8,9,11,12,13,14,15}

1 In Initial Round, Rounds 6—10, use the corresponding

AES round keys without any changes where y is the byte index of the block, i € {1, 2, 3,4, 5} and

fis equal to G,,M},R,,V ot Z, when i is equal to 1, 2, 3, 4
2 In Rounds 1-5, use the modified AES round keys. .

5, tively.
After applying 20 XOR operations to the AES round or 2, Tespectively

Figure 5 AES round keys and the corresponding JAES round keys

AES Round Keys The Corresponding 6AES Round Keys
Ko |K4|Ks|K12 Ko Ky Ky Kio
cipher Key K |£1|Ks5| Ko [Kis _ Ky Ks Ky Kqs
Initial Round |2 [#6 [K10]K14 Ko Ko Ko K14
K3 | K7 |[K11|K15 K3 K~ K1 Kis
Ko | Ky | Ks |Kis Gol 0 |Gsl o Ky@Go| Ki [Ks@Gi|l Kip
Round Kev 1 KKK KL o ofofo]o K1 K} Kl K1,
oun e =
Yo KK KK Gyl 0 |Gho[ 0 Ko®Gy| Ki [K1,®G{ Kiy
K5 | K7 [K1|Kis ojofjofo K3 K7 Ky Kis
Ko | K3 | K2 |Kiy M| o |Mg] 0 Koo M| Ki |KioMg| Ki,
Rewmd By 2 KI|K2|K3|K3, oJo|ofo K3 K2 K2 K3,
oun e : = -
M ] P e [ B IO LV KioMj| K: fq oM K,
K| K7 [K3[KTs 0oJojo]o K3 K7 K Kis
Ko | KG| K& KTy Ry| 0 [Ry| O Ko @Ry Ki |KS@®Ri| Ky,
Round Kev 3 K| K2 | K |KY, ojJojofo K3 K2 K K3,
oun e : =T : = - - - :
M S P 5 A I A I [ KoR| K [hoR] K,
KRk [0 ]o oo | K| KL | K
Ko | K | Ky KT, Volofvefo KooVy| Ki |KeoW| Ki
Round Kev 4 KKK |KY, oJo|ofo K K2 K Ki,
oun e &) =
e e LS Vo]0 [Vip| 0 KyoVy| Ki KoV Kiy
K5 | K7 [K]KTs ojofofo K K7 Ky K
Ko | K3 | K8 |KTs Z5) 0 | Zi| 0 KoozZy| Ki |KioZi| Ki,
K| KE| K |KY, ofofofo K7 K? K3 K7,
Round Key 5 5125175 |5 | © 7 7 = 5 7 5 5 7 5
K3 | K¢ |[K oK1y Z3] 0 |Z16[ O K5 @ Z,y K¢ K10 @ 2y Ky,
K7 kulkn [0 ]0]o0 o | K| Ka | Ko
Kg Kf; Kg Kfz Kg K;’ Kg Kfz
SN I 4 5 2 B S I T
S 7S] I 57 5 B Ky K¢ Ko Ky
Ky | K7 [K7 K5 Ky K7 K1 Kis
KoK | KL KT, Ko K K K7,
o (R A I I
oun ey 7 777 7 = 7 7 7 7
Ky | K [Kqo[K1y K, Kg Ky, Ky
17 7 w7 7 7 7 7
K3 | K7 |K4|Ks Ky K7 Ky Kis
Ko | K5 | Kx KTy Ko K3 Ky KTy
IO i 4 5 5 I
oune By 5 | K6 | KoK B K K¢ Ko K1y
B 778 708 |8 8 ] 8 8
K3 | K7 [K1|Kys Ky K7 K7, Kis
Ko | K3 | Kz |KT, Ko K K K7,
o R R, S I S S
oun ey 9 9 9 9 9 = 9 5] 9 9
Ky | K¢ [Kio[K14 K, K¢ Kiq Ky
K3 | K7 K7 |KTs K3 K7 K1y Kis
K(;()Ki”Ké”Kllg Kd” Ki” Ké“ Kig
R d K 10 K%[)K;()KéUKllg KllU Ksl() K;U Kllg
oun ey 10| 7-10|7- 10| 7~ 10 = 10 10 10 10
Ko1K [KiolK s Ky Kg Ky Ky
10 10 10 10 10 10 10 10
K |K7 K11|Kys K3 K7 Ky Kig
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Compared with the AES algorithm, the JAES needs to do
some extra transformations, that is, calling the ¢ algorithm
and modifying the AES round keys. Moreover, for distinct
plaintext and cipher key pairs (P, K), the JAES needs to
carry out individual computations to get Bytes
{G/,M/,R|,V/\Z]} €{0,2,8,10} .

12712

5 Description of the ALPHA-MAC

ALPHA-MAC is a MAC function which uses the building
blocks of AES. Similarly to AES, the ALPHA-MAC
supports keys of 128, 192 and 256 bits. The word length is
32 bits, and the injection layout places the 4 bytes of each
message word [mg, my, my, m;] into a 4 x4 array. The
format of the injection layout is shown as follows:

my 0 m O

0 00 O
m, 0 my; O
0 00 O

Like AES, the ALPHA-MAC round function contains SB,
SR, MC and ARK, and the output of each injection layout
acts as the corresponding 128-bit round key. The message
padding method appends a single 1 followed by the
minimum number of 0 bits such that the length of the result
is a multiple of 32. In the initialisation, the state is set to all
zeros and AES is applied to the state. For every message
word, the chaining method carries out an iteration, and each
iteration maps the bits of the message word to an injection
input. After that, a sequence of AES round functions are
applied to the state, with the round keys replaced by the
injection input. In the final transformation, AES is applied
to the state. The MAC tag is the first /, bits of the resulting
final state. The length of /,, may have any value less than or
equal to 128. The ALPHA-MAC function is depicted in
Figure 6.

Figure 6 ALPHA-MAC construction

[ key F——— AES |
Round

€« Injection Layout —{ M; |
Round

cj<—| Injection Layout |<—| Mo \

Round
&« Injection Layout —{Mg;..]

Truncation

6 Applying the property to ALPHA-MAC

We study the internal structure of the ALPHA-MAC by
employing the proposed five-round algebraic property of
AES, which is described in Section 3. Firstly, we present a
method to find second preimages of the ALPHA-MAC by
solving eight groups of linear functions, based on the
assumption that an authentication key or an intermediate
value of this MAC is known. Each of these eight groups of
linear functions contains two equations. We divide the
second-preimage search algorithm into two steps:
the backwards-and-forwards (BNF) search and the
backwards-and-backwards (BNB) search. The BNF search
provides an idea for extending 32- to 128-bit collisions® by
solving four groups of linear functions. Given a key (or an
intermediate value) and one four-block message, the BNB
search can generate another four-block message such that
these two messages produce 32-bit collisions, which are a
prerequisite for the BNF search. To do the BNB search, we
need to solve another four groups of linear functions. By
combining the BNB search with the BNF search, we can
find second preimages of ALPHA-MAC. Secondly, we
show that the second-preimage finding method can also be
used to generate internal collisions. The proposed collision
search method can find two five-block messages such that
they produce 128-bit collisions under a selected key
(or a selected intermediate value).

6.1 The second-preimage search algorithm

The second-preimage search algorithm aims to find a
five-block second-preimage M for a selected five-block
message M, under a selected key (or a selected intermediate
value). The assumption of this search is that we know two
values: a selected key (or a selected intermediate value) and
a selected five-block message M. The result of the search is
that M and M generate the same 128-bit value after five
rounds of ALPHA-MAC iterations, under the selected key
(or the selected intermediate value).

We use Figure 7 to illustrate the second-preimage
search. Figure 7 depicts five consecutive rounds of the
ALPHA-MAC for two different five-block messages M and
M. We assume that we are able to select an intermediate
value of the round functions in some round (e.g. in Round

y—3), and select five consecutive message blocks
MM, M, )M, | ,M,,M,). Then we can find another

y=1»

five-block message M (M, 5,M _Z,M M My+1) such

y=3> y=1

that these two five-block messages collide on 128 bits in
Round y + 1 after ARK. Note that the intermediate value is:

Qp a4 dg 4y

4 4s a9 di3

A dg G Ay

az a; 4 dgs
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Figure 7 The five-block collisions

Round y — 3:
ap | a4 | ag |a12 bo b4 bg b12 d() d4 dg dlz (M'L/—B) :; d4 ; dlz
a1|as51a9 |13 |gBosRk b1 | bs | bg |b13 MC di1 | ds | do |d1s AF;’,K di | ds | do |d13
- - -5 —_— Jlhiny - -
a2 | ae |G10|Q14 ba | bg |b1o|b14 dz | ds |d1o|d14 d2 de 10 dis
as |ar ai1|a1s b3 | bz |b11|b1is dz | dr |di1]d1s ds | d7 |d11]|d1s
do @4 ds C~L12 bo b4 bs b12 do d4 dg d12 (M 3) E’; d4 ; d12

p ry = 1= = = =1 = = I y— = = = 1=
ai|as a9 |ais SBoSR b1 | bs | bo |bis| mc|di|ds |do |di3| arkx | di|ds|do|dis
az | ag |arola14a bs | bs |b10|b1a da | ds |d1o]di4 5> | ds |dio|dia
&3 d? &11 &15 b3 b7 b11 b15 d3 d7 d11 d15 dg d7 d11 d15

Round y — 2:

* * * * j
do | da | dg |di2 fo| fa | fs |f12 g0 {94198 1912 | (pg, _,)| 90 | 94 |95 |912
d]_ d5 dg d]_3 SBoSR fl f5 fQ f13 MC g1 gs g9 |g13 ARK g1 gs g9 |g13

- " - —_— _— -
d3 | ds |dip|ld1a fa | fe | fio]f14 g2 | g6 |910]|914 g5 | 96 |g70|914
ds | d7 |di1]d1is s | fr 1 fiilfis g3 | g7 |911]|915 g3 | 97 |g11|915
Tk 7 T | 7 rs r ry ry ot et ot a ax q ax g
olds]ds |diz fol fal fs |fi2 go | 94 | g8 |912 (N, _2) 9o | 94 | 95 |912
= = = = = = = = = = = = y— = = = =
dilds | do |dis|sBosr| f1 | f5 | folfizs| mc| 91 |95 )99 1918 arx | 91|95 |99 |913
- = T = —_— = = ~ = — = = = ~ — ~% | ~ ~% | =

5 | de |di0]d14 fo | fo | fiolfia g2 | g6 |g10]914 9> | 96 910|914
ds | d7 |d11]d1s fa | fr | f11]fis g3 | g7 |911|915 gs | g7 1911|915

Round y — 1:
Jdo | 94 | gs |912 ho [ ha | hs |h12 Go | ia ) is |hi2 | (g, ;)| %0 [ 4 | G5 |12
91195199 913 |sposr| P1 | hs | ho |P13| prel 41 | 45 | G0 |d13| ark 21 | 25 | 29 |213
g5 | 96 970|914 ha | he |hio|hi14 22 | 26 |t10] %14 L2 | %6 [t10]%14
93 | 97 |911]915 hs | h7 |h11]lh1s i3 | 27 |211 | %15 i3 | i7 211 ]%1s
~x | = ~% | ~ =~ N N =~ = ~ ~ 2 ~x | > ~x |~
9o | 94 | 9s |912 ho | ha | hs |h12 20 | 24 | 18 | 212 (]\N[ 1) i | 24 | 25 |212

~ ~ ~ ~ = o 2 2 e ~ 53 7 Yy— 53 5 = 3
g1 |95 |99 |913|sBoskr| hi|hs | ho lhis| mc| 21 | @5 | %0 |13 | ark [ %1 |45 | 40 |%13
~* 1 = 1=* |~ e = = = = —[ = ~ ~ . —_— ~x | ~ ~x |~
go | 96 |910]|914 ha | he |hiolh1a 12 | %26 |%10]%14 Ly | %6 |%10 214
93 | 97 |911]915 hs | h7 |hi1]his i3 | 17 |411)915 23 | i7 |11 |15

Round y
g | 24 | 28 [212 J0 | 74 | 78 | 212 S0 | S4 | S8 |S12 (]\/f) 8o | 84 | ss |S12
t1 )% |9 |43 |spospr[ L | J5 | J9 |J13 | po| 81|85 |89 |S13 | apk | S1 |85 )89 |S13
i5 | i6 %70 | 214 Jz2 | Js |J10|J14 52 | 86 |S10]S14 55 | 86 |s1p[s14
i3 | 17 [%11|%15 73 | g7 |11 |J1s 83 | 87 |511|515 s3 | 87 |s11|815
T il Tk - i - bt o ot - ~ e P oy el oy
2o | 24 | 28 |212 Jo | J4 | g8 |12 S0 | S4 | S8 |S12 (Nfu) Sg | S4 | Sg |S12

11 | 35 | %o |i1s [sBoskr|l J1 | Js | Jo |J1s| mc| 51 ]85 | S0 |S13] ark | S1]38s |30 |S1s
e = ~ = — ~ = 3 =2 — [ ~ ~ ~ ~ — ~% ~ % ~
22 | %6 |ti0]%14 J2 | Je |J10)J14 52 | 56 |510]514 S2 | 56 |810]514
iz | 47 |411 |15 73 | g7 |711 715 53|87 |S11]315 53| 87 |S11|S15

Round y + 1
sg | sa ]85 |s12 no | na [ ns [ni2 wo w4 | ws fwiz (Myi1) wy | wa |wg |wiz2
y+1
S1 S5 S9 |S13 SBoSR ni1|ns|ng |nis MC wi |Ws | Wy W13 ARK wi | Ws | Wy (W13

* * — — — * *
s3 | se |sTy|s14 na | ne [n1o|ni4a w2 |we [wiolwi4 Wy | W6 [wyo|Wid
s3 | s7 |s11]81s n3 | nr [ni1|nis w3 |wr jwitjwis w3 |wr [wiifwis
* ~ ~x |~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ % [ ~
So | 84 | Sg [S12 no|nga|ns ni2 wo |wa | wg (W12 (]\2 ) Wy |we |Wg W12

= pe pes = = pos ~ pey = = y+1 = = ~ P
S$1 |85 ]S99 513 |sBospr| 1| N5 |No M13| o | WL | Ws | W9 |[W13| ARK wi | Ws 9 |wi1s
po — =1 — = p- = — —1 = — p = T =
55 | 56 |570]514 n2 | e [R10|14 W2 | We |Wi1o|Wia Wo | We |Wip|W14
53| 87 |511|315 n3 |17 [R11|R1s w3 | w7 |Wi1|wis w3 | W7 |Wi1|W1s
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In the case of a selected key, for the sake of simplicity, we

assume that (M, 3, M, ,,M, .M ,, M) are the first five

blocks of the selected message. Our search algorithm works

without assuming that (M, ;,M, ,,M, .M, ,M,.,) are

the first five blocks of the selected message.
The second-preimage search algorithm has the following
form:

Known: 1 A selected key or a selected intermediate

value.

2 A selected
MM, 5, M M

five-block
M, M,.,)

message

y=2> y-

Find. Another five-block message M (M, ,, M

y=3>

My l,M My+1) such that M and M collide

on 128 bits after ARK in Round y + 1.

y=2

Method: Solve eight groups of linear functions. These
eight groups of functions are named as (9)—(16)

in this section.

The second-preimage search algorithm consists of two
steps: the BNF search and the BNB search. The BNF search
can extend 32- to 128-bit collisions, given two messages M
and M which collide on 32 bits, namely Bytes s, 512, 8¢ and
s14, after MC in Round y (see Figure 7). Given a key (or an
intermediate value) and one four-block message, the BNB
search is able to find another four-block message such that
these two messages collide on Bytes sy, 512, ¢ and sy4 after
MC in Round y. The BNB search generates those 32-bit
collisions which are required for the BNF search. By
merging the BNB search with the BNF search, we can find
second preimages of the ALPHA-MAC.

6.1.1 The BNF search

The BNF search has the following form:
1 A selected key or a selected intermediate value.

IKnown:

2 Two four-block messages M(M, ;, M, ,,

y=3>
M M

M,,M,, ) and MM, 5, M

y—=1» y=-3>My-2> y-1»

My, A;[yH) colliding on 32 bits (Bytes sy, 12, S¢
and s4) after MC in Round y.

[Extend: 32-bit collisions to 128-bit collisions in Round

y+1.

Method: Solve four groups of linear functions. These four
groups of functions are numbered as
(9)—(12) in this section.

The BNF search assumes that we are able to find two
messages M and M, which collide on Bytes sq, 5,5, ¢ and

814 after MC in Round y. Based on the algebraic property of
the MC transformation and the structure of ALPHA-MAC,

we can extend these 32- to 128-bit collisions within three
rounds by solving four groups of linear equations.

6.1.2 Extending 32- to 64-bit collisions

We use the differential XOR property before and after the
MC transformation. In Round y before MC, by XORing
those two intermediate values, we get the following result:

G0®j0 a®js Js®js i ®jn

]jl D ji st D Js Jj9 ® Jjo ]13 D Jji3 MC
2@ Je®is 10D ]14 D Jjis
5@ 1®j i ®in s ®is

2 0 ? 0

0 §55@s5 0 §;Dsp4

? 0 ? 0

10 §5,@s;, 0 §5Ds5

Here, we use R (to replace j, @ j,), S (to replace j; @ jo),
T (to replace j, ® j,) and U (to replace j,, @ j,,) so that
after the MC transformation in Round y, Bytes
5 ®5,,5 98,5 Dsgand§;; s, become zero. Now the
question is ‘how to decide R, S, T and U’. The answer is:

e there exists one and only one pair of (R, T) such that
after MC, Bytes §, @ s, and §; @ §; are both zero

o there exists one and only one pair of (S, U) such that
after MC, §, ®s,and5§;; @ s, are both zero.

According to the MC transformation, we have the following
formula:

2 0 ? 0
0 5. 0 §5,.®
5 O Ss S13 P83 MC
? 0 ? —
10 §5,®s;, 0 §5Ds5
R T4 ® s N Ji2® iy
h®g Js®js  JoDjo 13D s
T Jo D@ Js U Jia ® Jis
3P 7®J; i ®in Jis®s

To find out the values of (R, T) and (S, U), we need to solve
the following two groups of equations.

R
7®
T
59 Js ]
e
7 ® i
T
9 ]

[01 02 03 o1]

)

[03 01 o1 02]
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S
Jo @ J
U
L1 ® iy |
C g7
Jo ® Jj
U
L1 ® i |

[01 02 03 01]

(10)

[03 01 01 02]

In the two equations in (9), there are two variables R and 7,
and therefore there exists one and only one pair of (R, T) to
make these two equations hold simultaneously. Similarly,
we can decide the values of S and U by solving the two
equations in (10).

Once we get the values of R, S, T and U, message block

M, _, can be constructed as follows:

TNnew  Tnew  Tnew  Tnew

1 Set the values of ji, &, 5%, jiv", as follows:
Jio" = do @R = jy®S,j;™ = j, ®T and

“new

JieY = jio ®U. Use jo toreplace j,, je" to replace

C

Js» 15 to replace j, and ji™ to replace j,.

2 Perform SR (inverse SR) and SB™' (inverse SB). As
SR and SB™' are permutation and substitution, they do
not change the properties we have found. Now we have
the outputs of ARK in Round y — 1.

3 Compute the value of M ;‘f‘f’ as follows:

1y = (G o )| (e k)
| @) (72 @40)

Use M) toreplace M .

At this stage, two messages (M

yo3M, 5, M, ) and

(M, 5,M, 5, M%) collide on 64 bits (Bytes su, 512, 6, 514,

y=3>""y=2>

S1, 89, 53 and s17) in Round y after MC.

6.1.3 Extending 64- to 96-bit collisions

We only need to focus on Rounds y and y+ 1 to extend
64- to 96-bit collisions. The idea is to choose message block

M , to cancel out the differences between Bytes (ss, s13, 57,
s15) and Bytes (§s,83,57,55) in Round y. The method of
choosing M , 1s exactly same as the method for
constructing M ,-1 in Section 6.1.2.

By taking the outputs of ARK in Round y, we perform
the SB and SR operations, and then XOR the results after
SB and SR:

Ny ng ng Ny Ny ng ng Ny
o ns Ny N3 ® n ns g My
ny nNg Ny Ny My ng My My
ny N7 My Igs nyong o myy mys

ny®i, 0 ng®iig 0 2 0
m®i 0 n®i 0 0 0
ny®i, 0 ny®i, 0| |2 0
0 n,®i, 0 0 0

|
o N o
o O O O

ny @1,

Here, we use « to replace n, ®7,, p to replace n; ®7ig, ¢to
replace n, ® 71, and w to replace n, @7, so that after MC
in Round y+1, Bytes w®w,

wy, @ wy,. are zero:

Wy @ Wy, wy W,  and

T 0 p 0 2.0 20

n®i 0 ng®i, 0 0000
MC

6 0 @ 0] |72 020

n,®i, 0 n,®f, 0 0000

Now the question is ‘how to decide z, p, ¢ and w’. The
answer is:

e  There exists one and only one pair of (z, ¢) such that
after MC, Bytes w,@w, and wy @, are both zero. The
values of (7, ¢) can be decided by solving (11).

e  There exists one and only one pair of (p, ®) such that
after MC, Bytes w, @ W, and w;; ® W, are both zero. By
solving (12), we get the values of (p, ).

-
n @ 7n
[or 02 03 o™ 110
n, © 7
- 3 (11)
T
n @ n
[o3 o1 o1 02" 1" =0
|3 @ 7y
N
o -
[o1 02 03 01] | © ™ l=0
[
Ly @y | (12)
Yol
o i
[03 o1 o1 02]|™ © ™ =0
w
Lmy @ iy
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Once we know the values of 7, ¢, p and w, message block
]\7[}, can be chosen as follows:

~NEW

1 Set the values of 7", 7z, /A, and 7y,
V' =pn, ¢ and

iy =ny@w.Use iy™ to replace 7,,7,°" to replace

as follows:

~NEW

~ 11
™ =ny®m,ig " =ng ® p,iiy

fig, iy to replace 71, and 75" to replace 7.

2 Perform SR and SB™". Since SR™' and SB™' are
permutation and substitution, they do not affect the
properties we have found. Now we have the outputs of
ARK in Round y.

3 Compute the value of M , as follows:

i, (7 @5,

(™ @5,)

(755 @5, )| (72 @5i0)

So far, two messages (M, ;,M,,,M, ;,M,) and

y=3>"y=2>"" y-1>

(M, 5,M, ,,M%Y,M ) collide on 96 bits (i.c. Bytes wi,

W3, Wy, Ws, We, W7, Wo, Wi, Wiz, Wi3, Wi4 and wys) in Round
vy + 1 after MC transformation.
6.1.4 Extending 96- to 128-bit collisions

This step is straightforward as we can select message M, . |

arbitrarily, and construct message M y41 to cancel the

differences between Bytes wy, ws, w, and wiyy. The
construction is provided as follows:

My+1 = ((WOEBVT/O)”(Wg @Wg)
"(WZ O, )"(Wlo @WIO))@MHI

6.1.5 The BNB search
The BNB search has the following form:

Known: 1 A selected key or a selected intermediate value.
2 One selected four-block message
MM, _5,M M, ,M,)

y=2> " y-1>

Find: Another four-block message
MM, M My I,My) such that these two

messages collide on 32 bits (Bytes sy, 12, S¢ and s;4)
after MC in Round y

Solve four groups of linear functions. These four

y=3>"y=2>

Method:

groups of functions are named as (13)—(16).

We propose a method to find 32-bit collisions on Bytes sy,
S12, 8¢ and s14 (see Figure 7) by solving four groups of linear

functions. This search assumes that for a selected key
(or a selected intermediate value) and a selected four-block

message (M, 5,M, ,,M, ,M ), we can generate another

four-block message (M, ;,M, ,,M,_ .M ») such that these

y=32"y=2>" y-1>
two messages collide on Bytes sy, 515, 56 and s14 after MC in
Round y. The method used by the BNB search is similar to
the idea employed by the BNF search, but works in only one

direction (i.e. only backwards).

6.1.6 Deciding four values (s, j,,j,; and j,s5)

In the beginning, we choose (M M, _ .M 3)
randomly. Assume that the input and the output of MC in

Round y are listed as follows:

y=3> y2’ =1

Jo Ja J8 2 Sy 8, S 8
a8 dy gy MC 5 S5 S S
hoJs o ha | |% S S0 Su
B s s e s

Now we do not use the values of o, jold jold op Fold,

Instead, we use js (to replace j&), 7, (to replace jo'*),
Ji5 (to replace j39), and j;5 (to replace ji¢) such that we
get values §,,5),,5, and §,, respectively (illustrated as

follows):
jo ]4 ]s ]12 S0 54 S3 0 s
o Js Jo i MC 5 S5 S 8y
B2 Js o Ja| |52 Se S0 Sia
J3 J1 Ju s 53 857 S 8

Now the question is ‘how can we make this happen’. Our
answer is to solve two groups of linear functions. For the
values of s4 and s, we have two linear equations in (13)
with only two unknown variables ( j; and j,). Therefore,

we can solve (13) to obtain the values of j; and j,

i
[02 03 o1 o1] |7 |=s,
Je
:{7: (13)
Ja
[o1 01 02 03] |7 |=s
Je
/7]
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Jio
Jis
Jra
_]15_
Jia
Jis
Jra
_]15_

[02 03 01 01] = 513

(14)

[o1 01 02 03] =514

Similarly, for the values of sy, and 514, we have two linear
functions in (14) with two unknown variable (j,; and ji5).
We can solve (14) to decide the values of j;; and js. After
getting four vehicles (Js, j;, ji; and j5) decided, we
perform the SR and SB™ transformations. As SR
transformation. As SR™' is permutation and SB™' is
substitution s, 7;, j;;and j;s are first relocated then
substituted by
respectively. As the message injection layout does not
change the values of i, i3, j; and i;, these four values are not

another four values iy, 4,4 and 7, ,

changed after we do ARK. So, we get four known values
(iy, i3, 4, and ;) after MC in Round y—1. Our next target is

to modify message block M y—» so that we get those four

values iy, i3, ; and ;, after MC in Round y — 1.

6.1.7 Modifying message block M, ,

Suppose by using the original message block M y2s WE
have the following states in Round y — 1.
~*old  ~ ~%old  ~ rold 7 rold 7
& & & &n hy 4 s hp
gi . gs gi ) 813 SBoSR ~1ld s ’jold ’j13
2 & &0 & W< hs hig hy
g & &1 & hy  hy by Ry
Py 7
? i ?
mc |2 2
? i 7 s
Now we replace values (A, A", A0, A%Y)  with

and then we get those four wvalues

(ko by B )

(iy, i3, f; and i) located as follows:

go §4 gs ng h0 h4 hS h12
& & & fu|ggqp|h B B M
& & &o 8u hy he hy hy
& & &n ng_ hy TR
? 0?7y
wcld B bk
A T

Based on the property of MC transformation, we can form
the following two groups of linear functions:

[01 02

01

[o1 02

[03 o1

03

01

03

01

01] | .

02] |

01]

02]

I
S

=1

(15)

(16)

We know the values of /y,/;,h and &y, from the original

message block M y-2- We can get the values of (hy.y) by

solving (15), and get the values of (/,/,) by solving (16).
After finding the values of (i, k,. k. k), we perform SR™
and SB™', and obtain the corresponding four values
(80-82-85-810)-  Once know the wvalues of

(808585 819). We replace M, , with M. M) is

we

new
y=2-

constructed as follows (note that g,,g,,8, and G, are

known from the message block M b3 in Round y — 3):

i = (@ ea)|a@ o) (@ o) )
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6.1.8 Combining the BNB search with the BNF
search

The second-preimage search algorithm combines the BNB
search with the BNF search. To search for a second
preimage of the ALPHA-MAC, we perform the following
steps:

the name of the BNF search comes from the fact that

searching for M, .M andM ., is performed by moving

backwards and then forwards (see Table 1). A personal
computer takes about 1 sec to find a second preimage of the
ALPHA-MAC. A found second preimage of a selected key
K (see Table?2) and a selected five-block message M

(see Table 3) is M (shown in Table 3). The 128-bit colliding
value is listed in Table 4 (note that these two messages are
listed after injection layout).

1 Select a key or an intermediate value.

2 Select a five-block message

MM, M, 5, M, ,M,M,.).

. Figure 8 The second-preimage search
3 Generate the second preimage

MM, 3,M, ,,M, | ,M,,M,,) randomly. We need

[Intermediate value]

to guarantee that M -3 isnotequal to M, _5

4  Perform the BNB search to generate 32-bit collisions. Round
The BNB search is done by modifying message block ——4—{ Injection Layout |<— My ( My_ 3)
M, ,.

y-2 Round
5  Use the BNF search to extend those 32- to 128-bit d Injection L t s M
B«— Injection Layou _ _

collisions. The BNF search is carried out by modifying I‘_ y=2 (My—2)
the values of M, |,M andM .. Message [ Round ]

M, )M, .M, .M, is a second preimage €D+ Injection Layout [\, 1 (M,-1)

M(My 3 y=2° y-1°
Round

of message M (M, 3,M, ,,M, |,M ,,M ) under the

selected key (or the selected intermediate value). CL_{ Injection Layout |« M, (M,)
The routine of finding second preimages is shown in ound
Table 1, and Figure 8 depicts this finding. The name of the _ —
BNB search comes from the fact that searching for M yo2 is ¥ Injection Layout |'_My+1 (My-H)

carried out by moving backwards and then backwards, and Collisions

b

Table 1 Second-preimage search = BNB search + BNF search
Search R Roundy -2 Di Roundy —1 Di Round y
BNB 1 <= S4 — 84,817 — S12,
Sg — 6,514 — S14
2 SR,
’Is?ld - ’;sjloold - };10
3 M, 5 — M)
Roundy —1 Di Round y Di Roundy + 1
BNF 4 Modify M, <= collisions on sy, 512, S¢and s14
5 = collisions on s4, S12, S6, S14, S1,
S9, 53 and sy
6 modify My = 96-bit collisions
7 modify My:; — 128-bit

collisions

Note: Di — Direction; R — Routine.



18 J. Huang, J. Seberry and W. Susilo

Table 2 The selected key K

83 55 2d 81
88 2c 05 67
cl 63 be c2
2a a2 52 a4
Table 3 Two five-block messages

M (the selected message)

M M M

y=3 y=2 -1 y y+l
¢4 0 80 e 0 2a 0 77 0 fd O ef 0 al 0 81 0 9f O
0O 000 O0OOOOOOOOOOOODOO0ODO
940 f30 950 04 0 4¢c 0 37 0 68 0 09 0250 2¢O
0 000 0O0OOOOOOOOOOOODODODO
M (the found second preimage)
My73 Myfz Myfl My My+l
1d 0 430 22 0 04 0 ¢4 0 83 0 2f 0 5 0 69 0 06 0
0 000 O0OOOOOOOOOOOOODDO0ODO0ODO
Ic 0 0d0 2f 0 30 0 2f 0 9b 0 d4 0 30 0 f4 0 3a O
0 000 O0O0OOOOOOOOOOOOODDO0ODO0ODO
Table 4 The 128-bit collisions
7d 69 88 d7
02 cb 1f af
b9 d8 7b Se
Oe 10 79 21

6.2 The collision search algorithm

[Known: A selected key or a selected intermediate value.

Find:  Two five-block messages M and M such that they
collide under the selected key or the intermediate

value.

Method: Employ the second-preimage search.

In the second-preimage search, we choose the first five-
block message arbitrarily, and once it is decided, we do not
modify it. All we need to do is modify the second five-block
message so that 128-bit collisions happen. Therefore, the
second-preimage search can also be used to find two
colliding five-block messages under a selected key
(or a selected intermediate value).

7 Conclusion

We described a five-round algebraic property of the AES
algorithm. In the presented property, we change 20 bytes
from 5 intermediate values at some fixed locations in
5 consecutive rounds by carrying out 20 extra XOR

operations, and we show that after 5 rounds of processing,
such modifications do not change the intermediate result
and finally, still produce the same ciphertext. We defined an
algorithm named J, and by employing the J algorithm, we
constructed a modified version of the AES, the JAES. For a
plaintext and a key, the AES and the 0AES produce the
same ciphertext.

We then showed that the five-round algebraic property
of the AES can be used to analyse the internal structure of
the ALPHA-MAC, a MAC function whose underlying
block cipher is AES. We provided a second-preimage
search algorithm and a collision search algorithm.
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Appendix
Examples of AES with 20 XOR operations

We provide seven examples of the outputs of the five algorithm and their corresponding plaintexts, secret keys and ciphertexts
in Figure Al(a)—(g).

Figure A1 The values of P, K, AES round keys and the 20 bytes

Plaintext P cipher Key K Key Expansion AES Round Keys
—
3b|dl|bd] 7c 03143 9c | c9 03]431]9c | c9
87 [ad |29 25 a6 | 4 [ 57 | of . a6 | £4 [ 57 [ of
Initial
ad [1d | e [41 26[c5]90[29 | Round Key | 26] 5 [90]29
d2[d7[o7]ae 113039 [ e2 11[30]39]e2 T toenty bytes
do[oafo6 ] cf ed[ 0 Jdc] o
03| 7 [a0 [ 3f olofo]o
Round Key 1 = = T2 ob[ o foa] 0
ce | fe [ e5 [ 27 olofo]o
ae [34[32] td sso]si|o
26 | d1 |71 [ 4e olofo]o
Round Key 2 =005 20 td| o [si|o
46 [ ba | 7t [ 58 olofo]o
85 [b1[83] 7e 2] 0 Jed| 0
o1 40|31 7t olofolo
Round Key 3 e T a3 sd[ o [26]0
12 [as a7 st oflofo]o
5t [ ee[6d] 13 cd[o3e] o
7 [ b7 |86 ] 9 olofo]o
Round Key 4 Fa = 50 5a 6lofor]o
el |49 [ 9e |11 olofo]o
de [ 3855 [ 46 6ol o19] o0
49 [ fe [ 78 [ 81 olofoTlo
Round Key 5 =152 1a | 40 at[ o Joal o
9¢ [d5 [ 4b [ 5a olofoTlo

fa | c2]97|d1
40 | be | c6 | 47
57| c4|de| 9e
c6[13]58]02

Round Key 6

la | d8 | 4f | 9e
4b | f5 | 33| 74
20l ed | 3a|a4d
f8 | eb | b3 | bl

08]|do| of |01
02| f7 [ c4|bO
e8| 0c|36]92
f3 |18 |ab | la

f4 124 |bb|ba
4d | ba | 7e | ce
4a |46 | 70 | e2
Ciphertext 8f | 97| 3c | 26

Round Key 7

Round Key 8

Round Key 9

da|6s]o3]a0 49 [6d [ d6 | 6c
c9 [ 7e [ cc |09 ds | 6f | 11 | af
4d [ b6 93] sa Round Key 10 R0 T 69
38 |ea| 6248 7b | ec [do | 6

(a)
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

Plaintext P cipher Key K Key Expansion AES Round Keys
—

b7|4d | 6b | 86 6d | de | e7 | cf 6b | de | e7 | cf
9b | 8a| 36|53 db|cl]c7|Oc Initial db|cl|c7| Oc
de | 18 [ca| 1c 2718633123 | Round Key | 27|86 ]33]23

5d [ 63 0s]2b ba |70 [ 4a | 5¢ ba [ 70 [ 4a | 5¢ The Fwenty bytes

92 [dc|3b] fa tb | o [bb] 0

fd | 3¢ | b | £7 olofofo

Round Key 1 P Tas [ or]o1ifo

3e | 4e |04 58 olofofo

18 [24] 16 [eb 74 0 [64] 0

2 [ce |35 [ c2 olofofo

Round Key 2 mo= o 67| o [at| o

81| cf[cb[o3 olofofo

dg[fafe2| ss[oJe3] o

78 [ b6 [ 83 [ cc olofofo

Round Key 3 m T 0aTar 390 w[o

68 [ a7 [ 6c [ 09 olofofo

52 [ af [4d [ 44 ob[ o [ec] 0

33|85 [06[47 olofofo

Round Key 4 =150 35 10fo[ob]o

69 [ ce [a2 [ 5d olofofo

e2|4d | 00| 44 cal 0]05] 0

a5 |20 [ 26| 61 olofofo

Round Key 5 mo = oo o7 90| o Jod] o

72 [ be [ 1e | 43 olofofo

2d | 60|60 | 24
Oc | 2c | Oa | 6b
9b | e0|62]d5
69]1d5]|cb |88

12721121 36
of [ 23]29]42
5f | bf | dd | 08
5f | 8a | 41| c9

Round Key 6

Round Key 7

be| cc | de| e8
3f|1c |35 77
8213d]e0|e8
5a|d0| 91|58

50| 9c |42 | aa
a4 | b8 |8b | fa
e8|d5]35|dd
Ciphertext cl|11]80|d8

Round Key 8

Round Key 9

g [05]b3] 09 ab [d7] o5 3¢
e6 | t8 [ 42|45 65 | dd | 50 | aa
36 [bs[4d|e3 Round Key 10 moa1= 160 [ ba
bb| 44| a0 | 21 6d| 7c| fc | 24

(b)
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

Plaintext P cipher Key K Key Expansion AES Round Keys
—
16] 2t 90]60 48| 1 [43]a0 48[ r1[43]a0
lc |5 [84] 18 5|59 [7b [ bd . ¢5 |59 [7b [bd
Initial
a8 [ c6[c1[ad 68 [d5[21[32 | Round Key 68 | d5 [ 21 [ 32
0f | 00| c2 | ae 88| ca |43 | fb 88 | ca |43 ] fb The twenty bytes
33 [c2]s81]21 bd| o ]26] 0
e6 | bf [ca |79 ofofJolo
Round Key 1 o T o3 (a1 3e| 0 [ec| 0
68 [a2 el [1a ofololo
8745 ca]es 68| o]ss] o
da|6b| af [de ofololo
Round Key 2 P o5 6o fa6]0
95 [37[d6 [ cc ofofJo]o
75 [30] 4 |11 fo]of4e] 0
ba | dl [ 7e [ a8 ofololo
Round Key 3 Fe55 14 [ 58 od|[ o el o
4c [ 7b [ad [ 61 ofo]o]o
bf | 8t | 7b [ 6a 22l o0]79] 0
dofor|7tdr ofofJolo
Round Key 4 P 0o T35 [ad a9l 0o [bc| o
ce | b5 18] 79 ofoJolo
al|2e |55 3f le] 0 |7c] O
11|10 6t [ b8 ofololo
Round Key 5 oo [17 120 [s2]o0
cc|79]61]18 ofo]o]o

ed|c3|96]a9
el | f1 | 9e | 26
Ta | 35| ff | e8
b9 cO|al]|b9

5a 99| of | ab
7a|8b | 15|33
2c |19 ] e6 | Oe
6a | aa | Ob | b2

Round Key 6

Round Key 7

4e | 80| 8f | 29
1b | 5a | 4f | 7c
dl |02 ]ed|ea
19 | ed | ef | bd

Round Key 8

12192 |1d| 34
56 | Oc | 43 | 3f
57| 55| bl|5b
Ciphertext eb | 0f [ €0 | bd

Round Key 9

69 [2d]52[ad 51 c3[deea
27| 7b [ 50 [ 8d 6f [63 20 1f
69 [ 2c [d3] sc Round Key 10 530120 [ 92
42|72 a6 [ ac 3 [ fc | 1c [al

(©)
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

Plaintext P cipher Key K Key Expansion AES Round Keys
—
871d8 b0 | el 2c | 03] f5 | b8 2¢ |03 | f5 | c7
04 |bd | 51| ef 17|35 f9 | e3 . 17135) f9 | 5d
Initial
a6 | 8d | 77 | b0 2a | a7 |82 ]5d Round Key 2a | a7 |82 c3
67| 3f | a2 | 8b 46 [ 64 | 91 | c7 46164 | 91 | 58 The twenty bytes
3c| 3f | cal92 26| 0 | 8e
5b | 6e | 97| 74 01]0101]0O
Round Key 1 7T (oo [ 94 bs| 0 [be] 0
2c |48 | d9 | le ojofjofo
ac 193159 | ec db] 0 |de| O
. 791178088 01]0JO0]O
Round Key 2 /55 [ 1c | 14 sa]| 0 [s2] 0
63|2b| f2 | cb ojojo]o
17184 )1dd| 16 3d] 0 |44] 0
bd | aa | 2a|de 0]J]0]JO0]O
Round Key 3 75085 [99 | 11 49 0 [ad] 0
7c |57 ab |49 ojofjofo
0286 |5b|4d 4c1 0 | 791 O
3f 195 | bf | 61 OojoJoOo]|oO
Round Key 4 7oy ee 77 [ 66 00 0 [def o0
3b|6¢c|c9 |80 oOjofjo}fo
fd | 7b | 20 | 6d 571 0 |e9| O
Oc |99 | 26 | 47 0]1]0}10]O0
Round Key 5 26175 31 [ 59 st{o]ib]o
d8 | b4 |7d | fd oJo]Jo|o
7d | 06| 26 | 4b
c7 | b5e | 78| 3f
Round Key 6 2 152 185 | de
ed | 50 |2d|dO
48 | 4e | 68 | 23
41| 1f [ 67| 58
Round Key 7 32133 |bd [ 61
57107 | 2a| fa
a2 | ec |81 |a7
ae [ bl |d6 | 8e
Round Key 8 197 22 |15
71176 | 5¢c | a6
a0 | 4c | c8 | 6f
1d|ac|7a| f4
Round Key 9 3b | 1c 136 | 7d
Ciphertext 2dlsb 07| a1
7919c | 7e | 58 29165 |ad | c2
bd|b7]2b] 11 e2|4de |34 cO
5b [ eb [ bo [ 48 Round Key 10 H 0T 593 [ ee
56 | b0 | 37| b7 85| de|d9| 78

(d)



24 J. Huang, J. Seberry and W. Susilo

Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

Plaintext P cipher Key K Key Expansion AES Round Keys
—
b9 [ 22 [bd [ ea 10 |db| 32| b9 10 [db [ 32| b9
cal|e9|4b | ac db|d6|e0 |43 .. db|d6|e0 |43
Initial
66 | b4 | 67|96 4e | e3 | 8¢ | 10 Round Key 4e | e3 | 8| 10
de [3b]64] tc 68|18 [63 00 68| s [63]00 Thie twenty bytes
ob|do|e2]sb ba| o |bb| 0
11 [c7 |27 64 olofo]o
Round Key 1= e T 45 52 colofrr]o
3e|c6|ab|ab 0 0 0 0
4a|9a]78]23 s1|o]2a]o
11|de|f1 |95 olofolo
Round Key 2 5 o o 6 ed|ofoc] o
07 [c1]64]ct olo]o]o
64| fe | 86 | a5 36| 0]eda] 0
7 [21[do| 45 olofolo
Round Key 3 75361717 o4 be| 0 [3d] 0
21 [e0 8445 olo]olo
02| fc | 7a | df oblo]1e] o
9e | bf | 6f | 2a olo]olo
Round Key 4 o e [ 7o ae| 0 [f8] 0
27| c7]43] 06 olo]olo
t7 |ob | 71| ae olo]73]o
6d [dz[vd] 97 olofJolo
Round Key 5 5000143 [ 34 451070
b9 | 7e | 3d [ 3b olo]olo

5f | 54 | 25 | 8b
4a |98 [ 25 | b2
b0 |69 |2a]| 17
5d |23 | 1e | 25

Round Key 6

28 | 7c | 59 | d2
ba |22 |07 | bb
8f [ e6 | cc |db
60143 |5d |78

7d | 01| 58 | 8a
03|21]26]93
33[d5[19]c2
d5[96 | cb | b3

Round Key 7

Round Key 8

ba | bb | e3 | 69
2610721 |b2
5e | 8b |92 |50
Ciphertext ab|3d | f6 | 45

Round Key 9

ad | 75| 0e [ 98 bb|00]|e3|sa
di|ve|os| 7 75 [ 72|53 [ el
of [92 [ 00 [d4 Round Key 10 50 159 [79
a2|cb| 6f | e2 52| 6f 199 | dc

(e)
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

Plaintext P cipher Key K Key Expansion AES Round Keys
—
eb|6b]cb]|£3 4 [b2] 7019 t4 [b2]70] 19
90| 15| 45| 68 9e | 76 | c7 | a4 .. 9e | 76 | c7 | a4
Initial
25 [db [ 57 [ 7¢ 731696 [ 2| Round Key | 73| 1E]96 [c2
55 | 37 [ 26 | 6¢ 8b | 8c |36 [ 39 8b | 8c |36 [ 39 The twenty bytes
bc | Oe | 7e | 67 421 0 |e9] O
bb | cd [ 0a [ ae olofoT]o
Round Key 1 mo =220 de|o[72]0
5¢ [d3 [ e5 [ de olofo]o
5a [ 54 [ 2a[4d 6c] o400
5¢ |93 [ 9937 olofoT]o
Round Key 2. oo 71 50 5o [t5]0
da|09[ec|30 olofoT]o
c4 190 | ba | f7 941 0 |25] 0
67 | f4 | 6d [ 5a olofoT]o
Round Key 3 IF o 00 50 o o] o
39 [30 [dc [ ec olofoT]o
72[e2]58] af 35[0 [4a] 0
34 [ co[ad | f7 olofoT]o
Round Key 4 550 [ 0c 670280
51|61 [bd]51 olofo]o
0aes|bo] 1f 3lol21]0
ca|0a|a7 |50 olofoT]o
Round Key 5 =0T 1o bi|o|fa]o
28 [49 [ fa [a5 olofoT]o

791911211 3e
ch| cf [68]38
fa | 51 | a6 | 5d
e8|al|b5| f0

3e | af | 8e | b0
89|46 | 2e | 16
76127 |81 |dc
5a | fb | ae | be

Round Key 6

Round Key 7

f9 | 56 [ d8 | 68
of 4916771
2e | 09| 88| 54
bd | 46 | e8 | b6

41|17 | cf | a7
2f |66 01|70
60|69 el |bb
Ciphertext f8 | be | 56 | €0

Round Key 8

Round Key 9

7945 [9a]b1 26 [ 31| fe [ 59
69]34]69|9d fa | 9¢c | 9d | ed
04 [ae [3b [ 5d Round Key 10 P21 50 e
78 [ 2a [47 ] 01 a4 | 1a | 4c | ac

®
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Figure A1 The values of P, K, AES round keys and the 20 bytes (continued)

Plaintext P cipher Key K Key Expansion AES Round Keys
—
99 [30]ds] 1t 11| b2]60] 3¢ 11| b2]60] 3¢
7e |99 [ 08 [ 84 2t [ 30 [ 2 [ 6b i 2t [ 30 [ 2 [ 6b
Initial
cd|24]91)|d1 3a|c5|8e|cd Round Key 3a|c5| 8| cd
bo |21 92 1e do [82] 1e [ 5b do [82] 1e [ 5b Phe twenty bytes
6f [dd [bd |81 td]ofo3]o
33[03]cl[aa olofo]o
Round Key 1 e o8 [ 5c de[o 7|0
3b [ b9 [a7 | fc olofo]o
cl|1lc|al]20 7c| 0| fal] O
57 [ 54| 95 | 3f olofo]o
Round Key 2 T 134 [ b1 9o 48]0
37 8e |29 [d5 olofo]o
bo [ ac [od [ 2d dalo]sef o
of [ cb [ 5e [ 61 olofo]o
Round Key 3 =0T e T a0 2d [ o |60 0
80 [oe[27] 12 olofo]o
57 tb [ 6 [db eafo ][]0
ad | 6t [ 3150 olofo]o
Round Key 4 0T 04 | 4d de| o o2] 0
58 [ 56 [ 71 [ 83 olofo]o
14 et [19]c2 st[oJaal o
47|28 [ 19 [ 49 olofo]o
Round Key 5 15024 [ 60 33[ofat|o
el [b7]c6]45 olofo]o

of | e0O | f9 | 3b
97 | bf | a6 | ef
bb |92 | bf | df
cd |73 | b5 | fO

90170 | 89 | b2
09|b6|10]| £
371ab5|1la|cd
26 | 55| e0 | 10

06|76 | ff | 4d
af | 19|09 | f6
fd | 58 | 42 | 87
11|44 | a4 | b4

Round Key 6

Round Key 7

Round Key 8

5129 [d6|9b
b8 | al | a8 | 5e
70 | 28 | 6a | ed
Ciphertext f2 | b6 | 12 | ab

Round Key 9

2 [caoa90 31[18]ce[s5
5b | 8f | Oa | 41 ed | 4c | ed | ba
05 [ ae [ 83 ] 56 Round Key 10 PO 16 Th,
26 [ af [ 06 [ od 6 |50 [ 42 [ ea

(@
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