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Abstract—The upper limit on the deepest step of the surface 
shape that can be accurately determined is an important 
performance measure associated with the fringe projection 
profilometry. This metric is evaluated as the variance of height 
between two adjacent pixels on a fringe patterns reflected from 
the object surface. This paper presents novel results on this 
metric based on the Nyquist sampling theorem originally 
developed in the area of communication theory. Compared to 
existing results, we indicate that the fringe width and digital 
image resolution also affect the height variance range 
significantly. This new result could be used to increase the 
measurement range for projection system. 

Keywords-Deepest surface step(DSS); the Nyquist sampling 
theorem; fringe projection profilometry; height variance range 

I.  INTRODUCTION 
Digital fringe projection profilometry (DFPP) is one of 

the most promising non-contact approaches to measure 3D 
surface shapes. With DFPP, a frame of image with a 
particular pattern is projected onto the surface to be 
measured. The height distribution of the surface deforms the 
projected fringe patterns, which are captured by a camera 
from a different angle. When the projected fringes have 
periodic or sinusoidal patterns, the deformation can be 
considered as phase modulation and thus retrieving the phase 
difference between the original and deformed fringe patterns 
yields the 3D information of the surface. In order to obtain 
phase maps from original and deformed fringe patterns, a 
number of fringe pattern analysis methods have been 
developed, including Fourier transform profilometry (FTP) 
[1,2,3,4,5,6], phase shifting profilometry (PSP) [7,8,9], 
spatial phase detection (SPD) [10], phase locked loop (PLL) 
[11] and other analysis methods [12,13]. Also, a generalized 
analysis model (GAM) [14,15] has been proposed to 
describe the relationship between reference pattern and the 
deformed one in profilometry systems. The measurement 
accuracy can be greatly improved by GAM when the 
projected sinusoidal fringe patterns are distorted by unknown 
factors. 

Measurement accuracy and speed are the two major 
performance metrics associated with 3D shape measurement 
technology and most research efforts done so far aims to 
yield improvements on these two metrics. However, another 
performance measure also important is the upper limit on the 
complexity of the surface shape that can be measured. As 
DFPP is based on projection of images using digital 

projector, the complexity of the surface shape can be 
evaluated by variance of the height that is, the difference of 
height between the adjacent pixels. For a particular DFPP 
system, the maximal height change between the adjacent 
pixels is usually determined by the spatial width of the 
fringes. In this paper, this metric is referred to as the deepest 
surface step (DSS), and evaluation of which will provide an 
effective way to choose fringe patterns, particularly the 
spatial width of the fringes. 

The very first result on DSS was presented in [2,3] for 

conventional FTP, in which the DSS was shown to be 0

03
l
d

, 

where 0d  is the distance between camera focal point and 
projector focal point, 0l  is the distance between camera focal 
point and object surface (Figure 1). In another work [16], a 

higher DSS, 0

0

l
d

, is achieved by means of adding an extra 

fringe pattern with a phase shift of π in contrast to the 
original pattern. These results on DSS are interesting as they 
depend on the projection geometry only. However, based on 
our experiment observations, we found that the DSS is also 
dependent on the width of fringes. 

In this paper, we present new results on the DSS that can 
be achieved by a DFPP system based on a single image with 
a periodic fringe pattern. As shown by the following sections, 
the DSS is determined not only by the projection geometry, 
but also by the fringe pattern and the digital image resolution. 

This paper is organized as follows. In Section 2, the 
existing results on the height variance range for DFPP are 
presented. In Section 3, the novel height variance range for 
DFPP is derived based on the Nyquist sampling theorem, 
and is compared to existing results. Section 4 concludes the 
paper. 

II. EXISTING WORK 
A schematic diagram of a typical fringe pattern 

profilometry (FPP) system is shown in Figure 1. For 
simplicity, we consider a cross section of object surface for a 
given y coordinate. 

In this case, the intensity of fringe pattern captured by the 
CCD camera and the height distribution function can be 
expressed as a function with single variable x . 
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Figure 1.  Schematic diagram of FPP. 

We use ( )s x and ( )d x to denote the intensity of the 
reference and deformed fringe pattern respectively and 
use ( )h x to represent the height distribution of the object 
surface. Assuming a periodic fringe pattern is used with 0T  
being the period, the fringe pattern can be expressed as: 

0
0

( ) cos(2 )k k
k

s x a kf xπ ω
+∞

=

= +∑                     (1) 

0
0

( ) cos(2 ( ) )k k k
k

d x a kf x xπ φ ω
+∞

=

= + +∑  

         0
0

cos(2 ( ) )k k
k

a kf x k xπ φ ω
+∞

=

= + +∑              (2) 

where 0f is the spatial fundamental frequency of fringe 

pattern (note that 0
0

1T
f

= ). ( )xφ is the phase shift caused by 

the object profile, which contains the object height 
information. ka is the amplitude of the k -th order harmonics 
of fringe patterns. 0k =  represents the direct current 
component in s(x) and d(x), 1k = represents the fundamental 
component in s(x) and d(x). The fundamental component in 
s(x) and d(x) are used to obtain the phase shift ( )xφ  [3,7]. 
When the phase shift is obtained, the height distribution can 
be determined by: 

0

0 0

( )
( )

( ) 2
l x

h x
x f d

φ
φ π

=
−

 .                         (3) 

From (1) and (2) we can see that the h(x) can be obtained as 
long as we are able to determine ( )xφ , the phase shift in the 
fundamental component.  

In order to work out the DSS, we analyze the frequency 
feature of deformed fringe pattern. As shown by (2), the 
fringe patterns are characterized by multiple harmonic 
structures in spatial frequency domain, and the spatial 
instantaneous frequency of each harmonic component can be 
acquired by differentiating the phase with respect to x. The 
instantaneous frequency of each harmonic component can be 
written as: 

0
0

(2 ( ) )1 ( )( )
2 2

k
k

d kf x k x k d xf x kf
dx dx

π φ ω φ
π π

+ +
= = +  

                                                      1, 2,3......k N=       (4) 

 
Figure 2.  Axis on schematic diagram of FPP. 

When 1k = , we have the instantaneous frequency of 
fundamental component as follows: 

1 0
1 ( )( )

2
d xf x f

dx
φ

π
= +                          (5) 

The above equations imply that in contrast to ( )s x , the 
deformed fringe pattern ( )d x is characterized by frequency 

modulation (FM) with a frequency deviation ( )
2
k d x

dx
φ

π
 

associated with the k-th order harmonic component.  
Consequently, ( )d x will exhibit a frequency spectrum as 
shown in Figure 3, consisting of a series of narrow-band 
components with their central frequencies being the 
harmonic frequencies, that is, multiple integers of 0f . 

The DSS derived in [3] is based on the analysis of the 
spectrum in Figure 3. The idea is that in order to achieve an 
accurate measurement, there must not be an overlap between 
the fundamental component (denoted as Q1 in Figure 3) and 
its adjacent ones including Q0 and Q2. Based on this 
constraint, the DSS can be obtained as follows [3]: 

0

max

2( )
3

fd x
dx

πφ <                         (6) 

Substituting (3) into (5), the height variance range is: 
0

max 0

( )
3
ldh x

dx d
<                            (7) 

This above result shows that the conventional FTP technique 
is able to measure the surfaces with their slopes not 

exceeding 0

03
l
d

. 

 
Figure 3.  Deformed spatial frequency spectrum for a given y coordinate. 
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As shown by Figure 1 and the result in (6), the value of 
DSS is limited by the spectral width of the DC component 
(corresponding to the background illumination) and the 2nd 
order harmonic component Q2. As an effort to increase the 
DSS, an improved FTP approach was proposed [16] where 
two-fringe patterns are combined to eliminate DC and 
harmonic components. In this case, Q1 is allowed to spread 
to zero in the left and to 02 f in the right, yielding the DSS as 
follows [16]: 

0

max 0

( ) ldh x
dx d

<                            (8) 

The result in (8) is obviously better than that in (7), but as 
mentioned above, the increase in DSS is at the cost of adding 
an extra image. 

III. NEW RESULTS ON DSS 
The DSS for FTP using pure sinusoidal fringe patterns is 

said to be 0

0

l
d

 in [16] as briefed above. However, when we 

revisit this conclusion, there is one point needing further 
investigation. That is, the allowable range for Q1 to spread is 
not symmetrical with respect to 0f . In other words, the 
spread is able to extent to zero, but also can extent to a value 
much higher than 02 f . This means that surface with a steeper 
slope can also be measured without ambiguity. 

In order to obtain the range of the DSS, we still utilize 
the frequency spectrum of the deformed fringe pattern 
image ( )d x . Assuming that the image has resolution of N 
pixels over a distance of L meters in x-direction, the 

resolution of the image in x-direction is N
L

 pixels per meter.  

Also if the image has M fringes in x-direction, we have N
ML

 

pixels within each fringe. By considering ( )d x  as a signal, 

we can say that signal has a sampling frequency  s
Nf
L

=  

and a fundamental fringe frequency 0
sfNf

ML M
= = . 

We employ the Nyquist sampling theorem to obtain DSS.  
According to the theorem, if a signal ( )d x  is sampled at the 
frequency sf  into a discrete sequence, the signal ( )d x  must 

have its frequency restricted within the range of [0,
2

sf ), 

otherwise the signal can not be reconstructed from the 
discrete form. Therefore we can say that Q1 must be within 

the range [0,
2

sf ), as seen by Figure 4. 

The highest instantaneous frequency of the fundamental 
frequency component 1maxf must be less than half of the 
sampling frequency sf , so we have: 

1maxf = 0
1 ( )

2 2
sfd xf

dx
φ

π
+ < .                     (9) 

Considering 0

0 0

( )
( )

( ) 2
l x

h x
x f d

φ
φ π

=
−

, and assuming that 0l  

is much bigger than ( )h x , we have 

 
Figure 4.  Spectrum of the sampled fundamental component. 

0 0 0

( ) ( )
2

h x x
l f d

φ
π

= − ,                          (10) 

Differentiating both sides of (10) gives: 
0 0

0

2( ) ( )f dd x dh x
dx l dx

πφ = − .                   (11) 

Then from (9) and (11), we have: 
0 0

0
0

( )
2

sf d fdh xf
l dx

− < .                        (12) 

This equation indicates that the highest instantaneous 

fundamental frequency can be extended to
2

sf , which is 

much higher than what proposed in [16] (that is, 02 f ). From 
(12) we have: 

0

0 0

( ) (1 )
2

sf ldh x
dx f d

> −                       (13) 

At the same time, from (5) and (11) we have: 
0 0 0

1 0 0
0 0

( ) ( )[1 ]
f d ddh x dh xf f f
l dx l dx

= − = − .          (14) 

As 1f must be bigger than zero, so the lowest instantaneous 
frequency of fundamental component 1minf can be 
determined by: 

0
1min 0

0

( )[1 ] 0
d dh xf f
l dx

= − >                (15) 

From (15) we have: 
0

0

( )l dh x
d dx

>                           (16) 

These equations show the upper and lower bound of the 
height variance DFPP can measure for the cases when the 
harmonic components and direct current component are 
entirely eliminated. By putting the upper and lower bound 
together we have the following: 

0 0

0 0 0

( ) (1 )
2

sl f ldh x
d dx f d

> > − .                 (17) 
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When sf is four times as 0f , the height variance range is the 
same as (8), in this regard, our research can explain the result 
in [16]. 

The upper bound we acquire is the same as [16], but the 

absolution of lower bound 0

0 0

(1 )
2

sf l
f d

− is much bigger than 

0

0

l
d

 given by [16], we can use a numerical example to 

demonstrate the difference between the upper and the lower 
bounds. Assuming that 0l = 3m, 0d = 1m, the camera 
resolution is 1392 1039× , and the field of vision of the 
camera is 260 mm× 194 mm, the equivalent spatial period of 
projected fringe pattern is 25.7mm. The spatial sampling 

frequency is sf = 1392
260

l/mm = 5.3538l/mm (l/mm means 

lines per millimeter), and the spatial fundamental frequency 

is 0f = 1
25.7

l/mm = 0.0387l/mm. Based on (8) given, the 

height slope range is: 

3> ( )dh x
dx

>-3, 

The slope range given by (17) is: 

3> ( )dh x
dx

>-204.5118. 

As shown by (17), ( )dh x
dx

 has different range when it 

takes different signs (i.e., positive or negative). Let us 
consider these two cases as follows. 

For the case where ( )dh x
dx

is positive, implying that the 

surface goes up alone x (the left rising side surface of the 

object in Figure 2). As 0

0

( ) 0
l dh x
d dx

> > , the DSS of rising 

surfaces of object is 0

0

l
d

. While for the case where ( )dh x
dx

 is 

negative, that is, the DSS of the object surface going down 
alone x (which is the right falling surface of the object in 

Figure 2), we have 0

0 0

( )0 (1 )
2

sf ldh x
dx f d

> > − , implying that 

the object with much steeper falling surfaces can still be 
measured. 

From (17) we can see that the height variance range not 
only depends on the projection geometry, but also on the 
fundamental fringe pattern and the digital image resolution. 
It also depends on the slope of the object surfaces. We can 
extend the measurement range of a projection system by 
increasing sampling frequency or by decreasing the 
fundamental frequency. 

Since CCD camera captures digital fringe pattern, phase 
derivation in fact means the phase difference between two 

adjacent pixels. We hence can use the difference to substitute 
the phase derivation, thus (5) can be written as: 

1 0
1 ( )( )

2
xf x f

x
φ

π
Δ= +

Δ
. 

Where ( )xφΔ  denotes the phase difference between any two 
adjacent pixels, Equation (17) can be rewritten in the 
following discrete form: 

0 0

0 0 0

( ) (1 )
2

sl f lh x
d x f d

Δ> > −
Δ

. 

As 1xΔ = , the equation can be further written as: 
0 0

0 0 0

( ) (1 )
2

sl f l
h x

d f d
> Δ > −                    (18) 

( )h xΔ is the height variance between any two adjacent pixels. 
Equation (18) gives the range of ( )h xΔ , in which the object 
height information can be acquired without ambiguity. 

Let us look at (14) again, which can also be written in the 
discrete form: 

0
1 0

0

[1 ( )]
d

f h x f
l

= − Δ                            (19) 

Equation (19) implies that if we know the approximate 
range of the object height slope, we can estimate the 
frequency range of deformed fringe pattern spectrum in 
spatial frequency domain. The results will be very helpful for 
the design of a digital band-pass filter in order to pick up the 
fundamental components and to eliminate the noises in the 
captured fringe pattern image. 

IV. CONCLUSIONS 
We presented new results on the DSS that can be 

achieved by a DFPP system based on a single image with a 
periodic fringe pattern. Compared to existing results, the 
DSS depends not only on the projection geometry, but also 
on the fringe pattern and the digital image resolution. The 
results tell us that the measurement range of projection 
system can be extended by increasing image resolution and 
adjusting projection geometry. We have also shown that for 
an object to be measured, its falling surface can be much 
steeper than its rising surface. In addition, we also found the       
relationship between height variance and the spread of 
fundamental frequency component, which is useful for 
digital filter design in order to eliminate the influence of 
various noises associated with the DFPP systems. 
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