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An Optimal Importance Sampling Method for
a Transient Markov System

Honghui Qi1, Michael (Y. C.) Wei2, Lei Wei1
1School of Electrical, Computer and Telecommunications Engineering,

University of Wollongong, NSW2522, Australia
2Taiwan Defense Ministrial Office, Taipei

Abstract—In this paper an optimal importance sampling (IS) method
is derived for a transient markov system. Several propositions are pre-
sented. It is showned that the optimal IS method is unique, and it must
converge to the standard Monte Carlo (MC) simulation method when the
sample path length approaches infinity. Therefore, it is not the size of the
state space of the Markov system, but the sample path length, that limits
the efficiency of the IS method. Numerical results are presented to sup-
port the argument.

I. INTRODUCTION

Analytical computation (AC) and Monte Carlo (MC) simu-
lation are two basic tools for determining the performance of
a system or network. For a simple task the analytical method
is favorable. However, for a sophisticated task a mathematical
approach is often intractable, or, at least, the analysis becomes
complex. In such cases, a simulation approach is often used.
MC simulations can produce very accurate estimates provided
that the number of simulation trials is sufficiently large. How-
ever, this condition can be severe. For example, for a

�����
confidence interval of [ �����
	��� ����� ���
	��� � ] [1], where ���
	�� de-
notes error probability, the standard MC approach requires no
less than ����� simulation trials for ���
	������������ [2] and [3].

A fast simulation technique, known as importance sampling
(IS), has been developed to reduce the number of simulation
trials and has perhaps the most potential for offering substan-
tial run-time savings in code construction.

In [4], Shanmugan and Balaban introduced the IS concept
to study the BER estimation for some simple communication
systems. The method proposed in [4] is to scale the original
noise density to increase the probability of simulation samples
taken from the importance regions. The results of [4] and [5]
showed that the efficiency of the scaled IS method is limited
by the state space size (which is often referred to as the mem-
ory size) of the system. In general, the larger the memory size,
the less efficient the scaled IS method is. Since then, many IS
methods have been proposed and studied in telecommunica-
tion fields. A summary of this work can be found in [1].

In [17], Wei proposed an optimal conditional importance
sampling (OCIS) method. OCIS has recently been identified
as a method often used in practice without knowledge of its
connection with IS techniques. The OCIS method is optimal
under the condition that only certain system parameters can be
biased. Several applications can be found in [18]-[20].

Unfortunately, the OCIS method is only applicable to sys-
tems without memory. It is a difficult problem to construct an
IS method for systems with a large scale state space (or large

memory). First used by Cottrell et al. [7], the theory of large
deviations techniques (LDT) was developed to design an effi-
cient IS simulation method in the communication field. This
work has been developed into a coherent simulation method-
ology through a series of papers by Sadowsky, Bucklew, and
many others, [5], [8]-[11]. In the 1990s, important contribu-
tions include error event simulation [9] and suboptimal biased
distributions [12] [13]. The rich history and development of
this concept can be found in survey papers [14] and [15].

In this paper, we will derive an optimal IS method for a tran-
sient Markov system. The efficiency of the method will also
be studied. This paper is organized as follows. In Section
II a transient Markov system is introduced and the MC and
IS methods are reviewed. In Section III, an optimal IS (OIS)
method for this transient Markov system is derived and several
propositions are presented. The efficiency of the OIS method
is then studied in Section IV. Section V concludes the paper.

II. A TRANSIENT MARKOV SYSTEM AND REVIEW OF MC
AND IS METHODS

Consider a transient Markov system with a total of � states
given in Figure 1. Suppose that we are interested in estimating

� �"! �# $ % &(' �*)
$ �+�-, )/.0���1�324.��5�1�76 (1)

where 24.8�*95�"�:24.8�*)/.;�:95� is the initial probability of the
state )/.<�=9 at step 0 and ' �*)

$ �>�-, )/.?�=95�/!>���*) $ �� � ) $ � &A@�B� � 6 6 6 � ) &A@�B�-, )/.C�D95� is the first passage time
probability, defined as the probability that the first entry to state
0 occurs at a time EF�?GHE/GJI given that )�.K�L9 . In other
words, ' �*)

$ ���-, )/.M��95� is the probability of hitting state 0
in I or fewer steps. �N� tends to 1 as IPORQ .

Clearly, when � is small, we can compute �S� directly using
(1). However, when � is large, say �+�J����T , it becomes very
difficult to compute �N� (at least it is computationally imprac-
tical). Thus, we might be obliged to use simulation instead.

Standard MC method: The complexity of the MC simu-
lation method is independent of the number of states ( � ). It
is a more flexible way to estimate �N� . The MC approach for
estimating � � involves the following two steps:
Step 1 Generate U independent sample vectors (paths)V & � 6 6 6 � VXW from Y�) $ � E[Z+��\ where

V�] �H^ _ ]�` . � 6 6 6 � _ ]�` �-a � _ ]�` b
is the state at time 9 of the path c

1152

0-7803-7206-9/01/$17.00 © 2001 IEEE



Step 2 Form the estimator�
� �"� �U

W#] % & � � � V�] � � (2)

where � � ��� � is the one-zero indicator function, that is� � � V�] � ��� if _ ]�` b � � for any 9��<Y1� � 6 6 6 � I[\ , and � � � V�] � �� otherwise.
Since ���N^ � � � V�] � a � � � , this estimator is unbiased. As-

suming that the simulation trials are independent of each other,

the variance of this estimator is 	�
 ��� � �� � ���W . Thus, when� � is the probability of a rare event, a large amount of simula-
tion trials are required to achieve a specified precision for

�
� � .

The task becomes very computationally demanding. Now let
us briefly review IS techniques.

Review of importance sampling: The objective of using
IS techniques is to obtain a significant reduction in the num-
ber of simulation trials required to obtain the same estimator
precision as the MC simulation. The application of IS tech-
niques can provide solutions to problems involving rare events
that would otherwise not be possible using either a pure ana-
lytical method or the MC simulation method. The key concept
of IS is to bias the original transition probability matrix � in
such a way that the rare events occur more frequently. Using
a likelihood ratio function and assuming that the chain starts
in a certain state with probability one, the IS method yields a
statistically unbiased estimator,�� �"� �U

W#] % & ��� � V�] ���J� V�] � (3)

where �J� V�] � � � �$ % & ���*) ]$ , ) ]$ � & �� �$ % &�� �*) ]$ , ) ]$ � & �
�

(4)V�]
is a sampled trajectory generated from a biased transition

probability matrix ��� rather than � , and �J� V ] � is a compen-
satory factor, called the likelihood ratio. For independent and
uncorrelated simulations, the variance of

�� � is	 
 ��� � ��� ^ � 
] a! � 
�U �
(5)

where � ] ��� � � V�] ���J� V�] � .
The optimal IS method requires

�"� ^ ��
] a (or equivalently
the variance) to be minimized. In the past, the IS method for
Markov systems was largely based on the large deviation tech-
nique (LDT). We need to compute the asymptotical optimal bi-
ased transition probability matrix and then simulate the perfor-
mance. However, when � is large, it becomes computationally
complex to compute the biased transition matrix alone. For
example, if the code constraint length is 11, then, in order to
compute the asymptotical optimal biased transition probability
matrix using LDT, we need to invert a 1024 by 1024 matrix for
each code we evaluate. This forces us to look for a better way
to perform the code search. In the next section, we will show
an optimal IS method and its properties.

III. OPTIMAL IMPORTANCE SAMPLING FOR THE

TRANSIENT MARKOV CHAIN

In this section, let us first go through an example. We then
present several important properties and an optimal IS method
for the transient Markov chain.

Example 1: Consider a special Markov chain given in Fig.1.
Suppose we need to estimate �N�"�$# �$ % & ' �*)

$ �+�-, )/.0���1� ,
with IC�&% , 24.��5�1����� .

Let ' $ �*9 , c8� s denote the element of 9
$ (

row and c
$ (

column
of � $ matrix.The task of obtaining OIS is reduced to finding
optimal ' $ �*9 , c8� s, denoted as '*),+�-$ �*9 , c8��. , which minimize��� ^ � 
] a � )0/� - �213�4 / ) 
65 & - 4 � ) . 5 
 - 7 )0/� - � )0/� - �813�) & � 4 / ) 
65 & -9- 4 � ) 
65 : - 42; ) . 5 
 -7 )0/� - �4 / ) 
65 & - ) & � 1 - �) & � 4 � ) & 5 
 -9- )0/� - �42; ) 
65 & - 13�4=< ) . 5 
 -7 )0/� - �) & � 4 / ) 
65 & -9- )0/� - �) & � 4 � ) 
65 : -9- )0/� - �42; ) 
65 : - 13�4=< ) . 5 
 - (6)

The values of ' $ s in (6) need to be determined to minimize��� ^ ��
] a . Eqn.(6) seems very complicated, but the minimiza-
tion procedure can start from '3>8�
�-, ��� . Since '�>��
�-, ��� only ap-
pears in the last two terms in (6) and �MG?'3>��
�-, ��� G � , we have'�),+�-> �
�-, ���0� � . Similarly we have '*),+�-: � �4, �1� �@'�),+�-: � �4, A�� � � .
Thus, (6) is simplified asB�C D Y ��� ^ ��
] a \0� B�C DFE ) /� - �213�4 / ) 
65 & - 4 � ) . 5 
 - 7 ) /� - � ) /� - �213�) & � 4 / ) 
65 & -9- 4 � ) 
65 : -7 )0/� - � ) & � 1 - � )G/� - �213�4 / ) 
65 & -2) & � 4 � ) . 5 
 -9- 7 )0/� - � )0/� - � )0/� - �213�) & � 4 / ) 
65 & -9-2) & � 4 � ) 
65 : -9-*H 6 (7)

Furthermore, we have'�),+�-
 �
�-, ���S� �AI KJ � '�),+�-
 � �4, A��S� �A 6 (8)

Finally, the minimization is reduced toB�C D Y ��� ^ � 
] a \ � B�C D�E && T J 
 �LAI KJ�� 
' & � �4, �1� 7 MT > J 
�N O' & � �4, �1� H 6
(9)

Consequently, we have '*),+�-& � �4, �1��� T �P
 1M �P
 1 andB�C D Y ��� ^ � 
] a \0� �Q % J 
 � �  �0J�� 
 6 (10)

This example clearly shows that we can obtain � ) RS- for the
transient Markov system. Now we aim to prove such a method
is true for transient Markov chains with any length and any
number of states. Due to the page limitation, the proofs of
these propositions will be omitted.

To conduct such a minimization procedure, we need the fol-
lowing lemma. The lemma describes the formula for solving
the minimization problem in (7) and (9).

Lemma 2: For given nonnegative real T & � T 
 , we haveU ),+�-V �XWZY\[^]S_ B�C D.3` ]S_ ` & E T &U V 7 T 
�N U V H � a T Va T & 7 a T 
 �(11)
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B�C D.3` ]S_ ` & E T &U V 7 T 
�N U V H ���� 
#] % & a T ]�� � 
 (12)

for �K�H� � � . Now let us summarize the algorithm to compute��� ^ ��
] a .
Algorithm 3: For a given ��� , 	H� � � 6 6 6 I ,

��� ^ ��
] a can
be computed by the following recursive procedure. (Suppose
state 1 and state 0 are the initial and target states respectively.)
Step 1 Set 	 � � , a vector 
�� � ^ 
 ) . -� � 6 6 6 � 
 )� � & -� a �^ � � � � � � 6 6 6 � ��a and SUM=0.
Step 2 Compute the transition matrix ��� with its c

$ (
row and9

$ (
column equal to

��� ) b 5 ] -4�� ) b 5 ] - .
Step 3 Compute 
�� ��
�� � & ��� � & .
Step 4 SUM=SUM+ 
�� (that is, the summation of SUM and
the first element of 
�� ).
Step 5 Set 
��P��
�� 7 ^  �
 ) . -� � � � ��6 6 6 ��a , (that is, setting the
first element of 
�� to zero).
Step 6 Repeat steps 2-5 until 	 � I and

�"� ^ ��
] a � SUM.
Algorithm 3 leads us to the following proposition.
Proposition 4: The optimal IS transition matrix � ),+�-� is only

dependent on � ),+�-��� , for 	���	��/GBI and not dependent on�K),+�-� � � , for ����	 � � ��	 .
This result leads to the following method to systematically

compute the optimal IS transition probability matrix � ),+�-� . For
simplicity, we present the rest of the results for the case of
two one-step transition branches ��� � and assume that the
targeted state is state 0 and the starting state is state 1. The
result can be easily generalized.

Recursively applying Algorithm 3 and Proposition 4, we can
show the following algorithm for computing the optimal tran-
sition probability matrix.

Algorithm 5: The optimal IS transition probability matrix�K),+�-� , which minimizes
�"� ^ ��
] a , can be computed by the fol-

lowing procedures:
Step 1 Set 	 � I and a � -element vector 
�� �^ 
 ) . -� � 6 6 6 
 )� � & -� a

$
� ^ � � � � 6 6 6 ��a

$
where superscript t denotes

matrix transpose. Set the element at the � $ ( row and 9
$ (

col-

umn of transition weight matrix  !� equal to
13� ) V 5 b -4�� ) V 5 b - .Step 2 Compute
�� � & �" ��#
�� 7 ^ � � � � 6 6 6 ��a
$
6 (13)

Each element of 
�� � & is in one of the following two
formats: $4�� ) V 5 b - or $4�� ) V 5 b - 7 %& � 4�� ) V 5 b - . If it is the first format,

then we have '*),+�-� �&� , 95� ��� . If it is the second format, then we

can compute '*),+�-� �&� , 95� according to Lemma 2.

Step 3 Substitute '�),+�-� �&� , 95� s into (13) and then update 
�� � & .
Step 4 Set 	 �'	  � and repeat steps 2 and 3 until 	 ��� and��� ^ � 
] a ��
 ) & -. .

Algorithm 5 leads us to the following result.
Proposition 6: For a given transient Markov system with

transition probability matrix � and a length of time I , the
value of �K),+�-� , 	 ��� � 6 6 6 � I is unique.

Proposition 6 shows that there is only one optimal IS solu-
tion for the transient Markov system. Several interesting ques-
tions are then: does � ),+�-. converge when L ORQ ? If so, where

does �K),+�-. converge to? The following proposition provides
the answers.

Proposition 7: The optimal solution of � ),+�-. converges to� for ICORQ , that is, ( C B�*),+ �K),+�-. �X� (14)( C B�*),+!- 9�. ��� ^ � 
] a � ( C B�*),+ � �"����6 (15)

Proposition 7 is very interesting. It shows that, as I O Q ,
the best importance sampling method reduces to the standard
Monte Carlo simulation. This has been confirmed by many
previous studies (see [26]), largely based on simulation trials.
We have now shown it analytically. This implies that, as the
length of sample path becomes large, we have to let � ),+�-$ . , forE�� � � � � � � 6 6 , initially converge to � .

IV. NUMERICAL RESULTS

In this section, we will study the efficiency of optimal IS
method. Consider the system given in Fig.1 with J � ��6 �������
and I:� �

. In Fig.2 we present the OIS results. At each
branch we label two probabilities: the top one corresponds
to the original probability and the bottom one corresponds to'�),+�-� �*9 , c8� . For example, at E � A , the original transition prob-
ability from state 2 to state 0 is 0.0001 and the optimal bi-
ased transition probability is 0.359586. Similarly the origi-
nal and biased probabilities from state 1 to state 2 are 0.5 and
0.5778 respectively and the probabilities from state 3 to 2 are
0.5 and 0.581 respectively. For this example we can compute
the speed-up factor. Denote the speed-up factor by

�0/ � � �  � 
���� ^ � 
] a  � 
� 6 (16)

For a normalized error of 1%, we can calculate the speed-up
gain for this simple case. The true value of �S� is ��6 1212143 ����� > .
In Table I, we see that the optimal IS method only needs one
simulation.

TABLE I
SPEED UP FACTOR

Method
��� ^ ��
] a � � No. of trials5!6 � 186 173 ������� ��6 1,3 ����� > 8� �

MC ��6 173 ����� > ��6 1,3 ����� > A�6 Q 3 ���29
In Fig.3 we show the speed-up gain and accuracy of the

OIS method for a transient Markov chain with 1024 states andIP�&A�� . As can see from Fig.3(a) when J decreases, the speed-
up factor increases dramatically. This indicates that the com-
plexity of the standard MC simulation method increases as J
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decreases, but the complexity of the sub-optimal method is al-
most unchanged. In Fig.3(b) we see that the difference be-
tween the estimated �N� values is less than ��� � of the value
computed by the analytic computation method.

We also applied the method to estimate �N� for a code with� & � states. Since we could not obtain an accurate estimate us-
ing the MC method, we cannot compute the speed-up factor for
this case. However, comparing the computer simulation time,
we see a huge difference. It took 41.22 sec CPU time on a PC
computer(300MHZ CPU) to obtain a �N� value with the nor-
malized standard deviation of A�� � , but, we could not obtain a
single hit after 4 days using the MC method.

V. DISCUSSION ANDCONCLUSIONS

In this paper we have demonstrated that for a simple tran-
sient Markov system we can derive an optimal IS method. We
further studied several propositions. We proved analytically
that the optimal IS method reduces to the Monte Carlo simula-
tion method if the length of sample path tends to infinity. The
numerical results have been presented to study the efficiency
of the IS methods. This OIS has wide application, for example
code search [23] and queuing networks [24] [25].
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