
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2010

A dimensional tolerancing knowledge management system using Nested A dimensional tolerancing knowledge management system using Nested

Ripple Down Rules (NRDR) Ripple Down Rules (NRDR)

Ramsey Hamade
The American University of Beirut

V. C. Moulianitis
University of Patras

D. D'Addonna
University of Naples Federico II

Ghassan Beydoun
University of Wollongong, beydoun@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Hamade, Ramsey; Moulianitis, V. C.; D'Addonna, D.; and Beydoun, Ghassan: A dimensional tolerancing
knowledge management system using Nested Ripple Down Rules (NRDR) 2010.
https://ro.uow.edu.au/infopapers/3397

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3397&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3397&utm_medium=PDF&utm_campaign=PDFCoverPages

A dimensional tolerancing knowledge management system using Nested Ripple A dimensional tolerancing knowledge management system using Nested Ripple
Down Rules (NRDR) Down Rules (NRDR)

Abstract Abstract
This paper proposes to use a knowledge acquisition (KA) approach based on Nested Ripple Down Rules
(NRDR) to assist in mechanical design focusing on dimensional tolerancing. A knowledge approach
to incrementally model expert design processes is implemented. The knowledge is acquired in the
context of its use, which substantially supports the KA process. The knowledge is captured
which human designers utilize in order to specify dimensional tolerances on shafts and mating
holes in order to meet desired classes of fit as set by relevant engineering standards in order
to demonstrate the presented approach. The developed dimensional tolerancing knowledge
management system would help mechanical designers become more effective in the
time-consuming tolerancing process of their
designs in the future.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Hamade, R., Moulianitis, V., D'Addonna, D. & Beydoun, G. (2010). A dimensional tolerancing knowledge
management system using Nested Ripple Down Rules (NRDR). Engineering Applications of Artificial
Intelligence, 23 (7), 1140-1148.

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/3397

https://ro.uow.edu.au/infopapers/3397

A dimensional tolerancing knowledge management system using Nested
Ripple Down Rules (NRDR)

R.F. Hamade a,n, V.C. Moulianitis b, D. D’Addonna c, G. Beydoun d

a Department of Mechanical Engineering, The American University of Beirut (AUB), P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
b Mechanical Engineering and Aeronautics Department, University of Patras, Patras 26500, Greece
c Department of Materials & Production Engineering, University of Naples Federico II Piazzale Tecchio 80, I-80125 Naples, Italy
d School of Information Systems and Technology (SISAT), Faculty of Informatics, University of Wollongong, Wollongong NSW 2522, Australia

a r t i c l e i n f o

Article history:

Received 6 May 2009

Received in revised form

30 September 2009

Accepted 30 October 2009
Available online 4 January 2010

Keywords:

Nested Ripple Down Rules, NRDR

Knowledge acquisition

Design

Fits and tolerances

Knowledge-based systems

a b s t r a c t

This paper proposes to use a knowledge acquisition (KA) approach based on Nested Ripple Down Rules

(NRDR) to assist in mechanical design focusing on dimensional tolerancing. A knowledge approach to

incrementally model expert design processes is implemented. The knowledge is acquired in the context

of its use, which substantially supports the KA process. The knowledge is captured which human

designers utilize in order to specify dimensional tolerances on shafts and mating holes in order to meet

desired classes of fit as set by relevant engineering standards in order to demonstrate the presented

approach. The developed dimensional tolerancing knowledge management system would help

mechanical designers become more effective in the time-consuming tolerancing process of their

designs in the future.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Proper dimensional tolerancing is critical to the success or
failure of the functioning of mechanical designs. Mechanical
systems are represented by parts using geometric primitives, all
of which describe ideal shapes. However, actual manufactured
parts are necessarily imperfect approximations to those ideal
shapes. Therefore, it is necessary to specify tolerancing informa-
tion during design so that it can be decided whether a
manufactured part is acceptably close to the designed ideal
during inspection.

While many of the actions during the detailed design process
are automated, dimensional tolerancing, involve intense decision-
making, and therefore, remains a time-consuming and human-
intensive activity in the design and manufacturing processes.
Typically, upon building the preliminary design, a designer
sequentially spends a significant amount of time re-dimensioning
features and ‘annotating’ certain tolerancing information. As
correctly pointed out in (Shen et al., 2005), ‘‘manual charting is
tedious and error prone, hence, attempts have been made for
automation’’. Radack and Sterling (1994) lamented that ‘‘the
designer is left with the responsibility of ensuring that the

tolerances are complete and consistent. The systems do not ensure
that tolerances are reasonable or meaningful’’. This is certainly true
in the case of traditional 2-D drawing-based manufacturing as well
as the up-and-coming route of releasing the mechanical database in
electronic form (Rezayat, 2000). For such a purpose, standards
developed under ISO (International Organization for Standardiza-
tion) such as ISO 10303 Product Data Representation and Exchange
(STEP) Part 42 ‘‘Geometric and Topological Representation’’ (ISO,
1999) and Part 47 ‘‘Shape variation tolerances’’ (ISO, 1997)
emphasize the proper definition and representation of shapes,
dimensions, and tolerances. Parameters necessary for the proper
implementation of automatic tolerancing schemes and geometric
data exchange are also controlled. Such definitions and practices
include: tolerances as constraints on the shape characteristics of a
product, representing geometric and plus–minus tolerances, repre-
sentation of tolerance values, synthesis and analysis of tolerances,
dimensioning and tolerancing practices, and presentation of toler-
ances on engineering drawings.

To mimic the designer-expert, some best-of-class mechanical
CAD/CAE/CAM platforms have received their fair share in making
them generally more intelligent through the use of artificial
intelligence (AI) techniques (Roy, 1994; Finger et al., 2000). Given
such applications, the use of AI as applied to design and
engineering disciplines has of late become indispensable. One
significant product of this synergy is what has become to be
generically known as knowledge-based systems (KBS). The

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2009.10.007

n Corresponding author. Tel.: +961 1 350 000x3481.

E-mail address: rhamade@aub.edu.lb (R.F. Hamade).

Engineering Applications of Artificial Intelligence 23 (2010) 1140–1148

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2009.10.007
mailto:rhamade@aub.edu.lb
dx.doi.org/10.1016/j.engappai.2009.10.007

terminology broadly refers to intelligent software programs that
apply expert knowledge to the solution of problems. The theoretical
and methodological foundation of AI as applies to aspects of
mechanical design in general is of great interest (Chapman, 1999).
Specific to tolerancing, the idea of utilizing computer-based
techniques (mainly computer-aided tolerancing, CAT) (Chiesi and
Governi, 2003; Shen, 2003) for the purpose of automating tolerance
generation and modelling to enhance the process of specifying
proper tolerances is an area of active research (Wang and Ozsoy,
1993; King and de Sam Lazaro, 1994; Desrochers, 2003; Wu and Rao,
2004; Hu and Peng, 2007). The idea being is to develop rule-based
expert systems to help the designer create complete and functional
designs with appropriate dimensions and tolerances in the design
stage. The completeness of the design database being a manufactur-
ing requirement, the 3-D database description of the part should
contain meaningful geometric attributes: dimensions, tolerances,
and factors of form (flatness, squareness, etc.) as alluded to in the
above-mentioned ISO standards.

Today, many methods of tolerancing are available for designers.
Prime of the tolerancing methods are the dimensional tolerancing
method and the geometric dimensioning and tolerancing (GD&T)
method. While the former is the classical method which works in a
fairly linear fashion, the more demanding GD&T methodology
requires that the complete description of the part should contain
meaningful geometric attributes: dimensions, tolerances, as well as
factors of form (flatness, squareness, etc.) (ANSI, 1994a; ANSI,
1994b; Meadows, 1995). For proper dimensional tolerancing, it is
this domain of tolerancing expertise that must be captured and
represented as a design knowledge base (DKB). Ripple Down Rules
(RDR) are used for such a foundational representation is this work.
While most design rationale frameworks such as IBIS, COQ or DRL
are focused on the initial development of the knowledge base of a
system (see, for example the review paper (Hu et al., 2000)), RDR
shifts the development emphasis to maintenance by blurring the
distinction between initial development and maintenance (Kang
et al., 1998). An essential requirement for the development of the
KBS is the ease of acquisition and maintenance of the knowledge.
RDR (Gaines, 1991) is a knowledge acquisition method which
proved very successful for developing large knowledge bases for
classification tasks (Beydoun et al., 2005). With RDR, knowledge
maintenance is a simple process which can be done by the user
without guidance of a knowledge engineer (Beydoun and Hoffmann,
2001). Furthermore, RDR is optimized for maintenance of proposi-
tional rule-bases and ensures very high behavior coverage as the
systems evolves (Menzies and Compton, 1995) so that there is no
need to import the rule-base in a truth maintenance system (TMS).

In this paper, an approach for acquiring knowledge using RDR
for dimensional tolerance is presented. A knowledge base
targeted towards capturing expert tolerancing knowledge is built.
The system is demonstrated by specifying dimensional tolerances
on shafts and mating holes in order to meet desired classes of fit
as set by relevant engineering standards. This paper begins with
the methodology used to construct the KBS presenting the
method of acquiring the design knowledge and the requirements
of the knowledge acquisition environments. The knowledge
acquisition tool and the software tool are followed. Then, the
problem and an illustrative example are presented. Finally the
paper closes with concluding remarks.

2. Methodology

2.1. Acquiring design knowledge

In order to construct the knowledge base the design knowl-
edge must be acquired. In this work a spiral process of knowledge

acquisition is envisaged, similar to (Linster, 1993) of coming
stepwise closer and closer to an operationalization of the knowl-
edge in question. The present approach follows the work on
knowledge acquisition which allows knowledge acquisition and
maintenance without a knowledge engineer (Compton et al.,
1994; Kang et al., 1998).

Experts are usually able to explain their reasoning process on a
particular problem instance in rather general terms that cover at
least the given concrete next step in their design process.
However, their explanation may be quite inaccurate in the sense
that for other design problems their explanation would not
deliver the design step they would actually take. Either their
explanation would not cover the step they would take or their
explanation would suggest design steps they would not actually
consider. Thus, an approach similar to (Hoffmann and Thakar,
1991) it is pursued, which allows to incrementally acquiring
complex concept definitions without demanding an operational
definition from the expert. Rather, the expert is merely required
to judge whether the concept applies to particular instances. This
is a much more natural task for an expert than to articulate
general rules on how to judge on any particular instance.

In (Beydoun and Hoffmann, 2000), Beydoun and Hoffmann
presented an approach to incrementally capture search knowl-
edge in general based on collecting expert’s justifications for their
decisions. In this paper, this approach is applied to the tolerancing
problem in mechanical design following the method outlined
below. Consider this simple expert design process in mechanical
engineering for illustration purposes. An expert designer, thinking
aloud, may report the following:

I have this new injection molding machine to be designed. In it,
there these four (4) shafts that guide the lateral motion of the
movable platen which in turn supports the mold’s core half. In
this platen, I have to locate each one of these 2-inch nominal
diameter shafts. Now, each one of these holes should be small
enough to allow the shafts to be properly located yet be large
enough so that each shaft moves freely without much friction.
I guess I better look up the class fit tables in the design
handbook so that I can (1) pick a suitable fit class that meets
these constraints and then to (2) calculate the upper and lower
limits on the nominal 2-inch dimension for the shaft and its
mating hole on the platen. From there, I will dimension the
shaft and hole on the drawing so that they can be fabricated to
the proper size y

But oh, on a second thought, if I can only use the same platen
from this older design. I would have to check the actual
measurements of the holes diameter on this old platen as well
as the actual shaft diameter that we have in stock. Then, for
these actual dimensions, I will look up the dimensional
tolerance values in the fit tables to determine the resulting
fit. If the fit class is good enough tolerance-wise, I think the
design will work and lots of money will be saved by not having
to fabricate a new platen y hmm, this just might work out y

Such an expert design process involves more complex reason-
ing than just the association of design sequences which were
useful in other design instances. For example it involves some
causal reasoning on a rather abstract level. However, it seems
difficult to devise a general inference mechanism, which could
accommodate such expert reasoning. This is particularly the case,
since much of such reasoning will not be at a conscious level to
the expert. More applicable to tolerancing, the example illustrates
that such a dimensional tolerancing knowledge management
system can be utilized either to (1) given a class fit, specify
tolerances for nominal dimensions or (2) given actual dimensions,
back out the corresponding fit. In Section 5 below, these two

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–1148 1141

schemes are referred to as the ‘forward scheme’ and the ‘back-
ward scheme’, respectively.

2.2. Requirements for a KA environment

A suitable learning environment for the design software system
has to support the following steps for the building of a KBS:

1. The criteria being used to select design steps worthwhile must
be very flexible, i.e. the following options should be available:
� The expert can freely characterise design problems as well as

design actions applied to these problems.
� The revision or modification or amendment of initial char-

acterization of problems and actions must be possible.
2. As indicated in the example of a mechanical engineer design

process, how design proceeds may depend on the findings of
intermediate design steps encountered earlier in the design
process. To accommodate this sort of reasoning, the system
should log the intermediate design steps. This reduces
computational requirements as many characteristics persist
over sequences of design steps. Furthermore, the expert
definable selection criteria for design steps must allow
conditions which involve such findings of earlier encountered
design steps.

3. A design task may have components and the expert’s
comments will often describe relations between these compo-
nents. Thus, a representation that is more powerful than
propositional logic to represent expert comments about
intermediate design steps is required. This representation
should be adaptable easily for various design tasks. To address
these issues the RDR (Beydoun and Hoffmann, 2000) is
extended with the ability to accommodate domain specific
primitives during the knowledge acquisition process.

4. The workbench must allow and accommodate the expert’s
suggestions. That is the expert will not only comment on the
solutions found by the system, she/he must suggest and justify
a solution to the system when it fails to find one. When a
suggestion is made, new design actions may get introduced to
the system. Hence accepting suggestions ensures that the
design actions used by the system are effective and speeds the
knowledge acquisition process.

The fulfilment of the above requirements within the present
framework is discussed in the following sections.

3. The knowledge acquisition tool

Ripple Down Rules (RDR) are used as foundational representa-
tion for the present workbench. An essential requirement of the
workbench is the ease of acquisition and maintenance of the
search knowledge. For this purpose, RDR is used as a starting
point for the implementation of the KBS and the learning module.

An RDR tree is a collection of simple rules organised in a tree
structure. Every rule can have two branches to two other rules (a
false and a true branch). Examples are shown in Fig. 1 (Beydoun
and Hoffmann, 1997) where every block represents a simple RDR.
When a rule applies a true branch is taken, otherwise a false
branch is taken. The root node of an RDR tree contains the default
rule whose condition is always satisfied. The root node is of the
form ‘‘If true then default conclusion’’. The default rule has only a
true-branch. In RDR, if a ‘true-branch’ leads to a terminal node t

and the condition of t is not fulfilled the conclusion of the rule in
the parent node of t is taken. If a ‘false-branch’ leads to a terminal
node t and the condition of t is not fulfilled, then the conclusion of
the last rule satisfied ‘rippling down’ to t is returned by the
knowledge base. The knowledge base is guaranteed to return a
conclusion as at least the default rule is satisfied ‘rippling down’
to t. Hence the inference is handled implicitly within the structure
of the knowledge. When the expert disagrees with the conclusion
returned by the knowledge base, the knowledge base is said to fail
and requires modification.

An important strength of RDRs is the fact that they can be
easily modified in order to become consistent with a new case
without becoming inconsistent with previously classified cases.
This is because every time a rule r is added to a parent rule p, r

classifies the case which triggered its addition (the so-called
cornerstone case) correctly, and excludes all cases which are
correctly classified by p. In their simple form, RDRs use simple
attribute-value combinations as conditions for the rules (Gaines,
1991; Beydoun and Hoffmann, 2001; Beydoun et al., 2005). When
the expert enters a new rule r, she/he chooses the conditions of r

from the so-called ‘difference list’ (Compton and Jansen, 1990).

p1, p3 +B2

B2

p1, p2 +A2

A2

A2, B2 +A1

A1

C1 B1

…….. ...A1, B1 +C1

Rule C1.2
A2 -C1…….

If_FALSEIf_TRUE

……. …….

If_TRUEIf_FALSE

Fig. 1. An example of nested rules. An update in concept A2 can cause changes in the meaning of rules C1.1, C1.2, and A1.1 of the knowledge base (Beydoun and Hoffmann,

1997).

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–11481142

This list contains attributes satisfied by the case which triggered
addition or r, and it excludes all attributes satisfied by any of the
cases covered by the parent of r.

4. System architecture of the DesignAssistant software

Fig. 2 illustrates a scheme of the complete KA DesignAssistant

system. A brief discussion follows which explains the function of
each subsystem.

1. User interface: This module reads the expert input and
displays the system’s answer to a search request. Further, it
provides graphical representation of the knowledge base and
graphical output of the automatic assistant to the expert.

2. Knowledge acquisition module: gets the expert input through
the user interface. It maintains the knowledge base as well as
the knowledge (case) database.

3. (Search control) knowledge database: It stores what the expert
expresses as search control knowledge. Using this knowledge,
given the possible next states from the previous module, this
module passes through only those states seen as worth
pursuing deeper during the search. This module contains the
larger part of the domain knowledge. This knowledge base is
built during the actual knowledge acquisition process.

4. Knowledge acquisition assistant: provides hints to the expert
to which parts of the knowledge base may need to be modified

while ensuring the consistency of the knowledge base with the
case database. It relies on past interactions with the expert
stored in the case database to give these hints.

5. Knowledge (case) database: contains all cases classified by the
expert. It allows retrieval of these cases according to their
classifications time stamped. Thus, this database contains a
complete history of the interactions with the expert. Although,
not all of the interactions affect the knowledge base develop-
ment, they are essential for the functionality of the knowledge
acquisition assistant.

6. Search engine: It controls the generation of the search tree
through interactions with the knowledge base. It saves local
decisions about search tree nodes in the working memory. It
also examines the pruned search tree and chooses an answer
according to one of several evaluation criteria set by the user.

7. Domain specific search operators module: contains a set of
search operators forming an instance generator. Given a
particular search state, this module can generate all immediate
next possible states. This module also allows the knowledge
base to interpret any domain specific primitives used by the
expert while describing his/her knowledge to the system. Also
is where mathematical functions are declared.

8. Working memory: stores the progress of the search, which is
often used by the expert to explain his/her decisions. In
electronic circuit design, for example, and solving a component
placement problem, a circuit designer chooses his/her next
step based on a rough plan; this plan prevails in the progress

Fig. 2. A schematic representation of the complete DesignAssistant system.

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–1148 1143

towards finding a problem solution. Consequently, this pro-
gress is also used by the knowledge base to make decisions.
The working memory also stores higher order features of steps
(i.e. search states) of the evolving search plan. This reduces
computational requirements as these features can get used
again at a later stage of the search.

9. Dimensional tolerancing module: this constitutes the ‘back
end’ of the DesignAssistant system and may be a standalone
module or a module that interfaces with an existing CAD tool.
It contains the part’s engineering description: shape, size
(nominal dimensions), dimensional tolerances, and factors of
fit, form, and function. It inputs nominal dimensions into the
intelligent modules of the KA system and retrieves the upper
and lower values on the nominal value, i.e. the desired
tolerances. Equally feasible is the inverse problem where the
input is a pair of existing dimensions one for the shaft and the
other for the hole with this module retrieving an applicable
class of fit (if present).

5. The classical fit problem

A classical example common to the discipline of mechanical
engineering by which the relative fit of a shaft to a hole is studied
(Shigley and Mischke, 1986). Depending on the desired mating
functionality between a shaft and a hole, Table 1 lists 31 different
classes of interference/clearance fits. These classes cover a wide
range of cases varying from loose clearance fit (sliding or running,
RC) to tight interference fit (force, FN). In between, there are
several variations of locational classes of fit namely: locational
clearance (LC), locational transitional (LT), and locational

interference (LN). Table 1 lists limit values—designated L for the
lower tolerance limit and U for the upper tolerance limit. In order
to calculate the upper and lower tolerance bounds on the
diametrical dimension, the limit values L and U are multiplied
by the nominal dimension (D, diameter of shaft and hole) raised
to a power of 0.333 as follows:

Lower bound tolerance¼ LD0:333

Upper bound tolerance¼UD0:333 ð1Þ

The resulting tolerance values have units of mils (1/1000 of an
inch). The toleranced dimension is, therefore, arrived at as a
bounded value between the lower and the upper tolerance
bounds:

Toleranced dimension¼Nominal dimensionþUpper bound tolerance
�Lower bound tolerance

ð2Þ

Given a desired class of fit (e.g. LC1, LC2), the scheme gives the
upper and lower tolerance bounds for the nominal diameter of the
shaft/hole. This is conventionally described as the forward
scheme. The backward scheme, on the other hand, is described
as follows: given actual diametrical dimensions for the shaft and
hole, it is desired to correctly identify the resulting class of fit. This
latter scheme is demonstrated in the section below where the
application in tolerancing is described.

6. Example: NRDR application to dimensional tolerancing

The above stated approach is applied to the tolerancing
problem in mechanical design. The classical example of the
shaft-in-a-hole mechanical fit problem as introduced above is

Table 1
Tolerancing knowledge: lower (L) and upper limit (U) values for both the hole and shaft.

Hole limit Shaft limits

Class of fit Explanation of fit Lower Upper Lower Upper

RC1 Close sliding 0 0.392 �0.588 �0.308

RC2 Sliding 0.392 0.571 �0.7 �0.308

RC3 Precision running 0.571 0.907 �1.542 �0.971

RC4 Close running 0.907 1.413 �1.879 �0.971

RC5 Medium running 0.907 1.413 �2.84 �1.932

RC6 Medium running 1.413 2.278 �3.345 �1.932

RC7 Free running 1.413 2.278 �4.631 �3.218

RC8 Loose running 2.278 3.57 �7.531 �5.253

LC1 Locational clearance 0 0.571 �0.392 0

LC2 Locational clearance 0.571 0.907 �0.571 0

LC3 Locational clearance 0.907 1.413 �0.907 0

LC4 Locational clearance 1.413 3.57 �2.278 0

LC5 Locational clearance 0 0.907 �0.879 �0.308

LC6 Locational clearance 0.907 2.278 �2.384 �0.971

LC7 Locational clearance 2.278 3.57 �4.211 �1.933

LC8 Locational clearance 2.278 3.57 �5.496 �3.218

LC9 Locational clearance 3.57 5.697 �8.823 �5.253

LT1 Locational transitional 0 0.907 �0.281 0.29

LT2 Locational transitional 0.907 1.413 �0.442 0.465

LT3 Locational transitional 0 0.907 0.083 0.654

LT4 Locational transitional 0.907 1.413 0.083 0.99

LT5 Locational transitional 0 0.907 0.656 1.227

LT6 Locational transitional 0 0.907 0.656 1.563

LN1 Locational interference 0 0.571 0.656 1.048

LN2 Locational interference 0.571 0.907 0.994 1.565

LN3 Locational interference 0.571 0.907 1.582 2.153

FN1 Light drive 0 0.571 1.66 2.052

FN2 Medium drive 0.571 0.907 2.717 3.288

FN3 Heavy drive 0.571 0.907 3.739 4.31

FN4 Force 0.571 0.907 5.44 6.011

FN5 Force 0.907 1.413 7.701 8.608

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–11481144

considered. In the following scheme, the user feeds in one desired
diametrical dimension for the shaft and another dimension for the
mating hole. To this, the software returns a match to one of 31
possible fit criteria. Two functions are needed for the proper
evaluation of this hole–shaft fit problem. One function is needed
for checking if the actual value of the hole or shaft lies within the
limits of a certain class of fit. This first function is based on Eq. (1)
such that

LD1=3oðR�DÞ1000oUD1=3 ð3Þ

where L, U, and D are as defined above and R stands for the actual
value of the case for the hole or the shaft. The formula returns true
if the inequality is true, otherwise false. The application of Eq. (3)
necessitated that RDR is extended to allow for the utilization of
mathematical functions and the corresponding ‘quantitative’
values. This is a major extension over the existing applications
where the focus of NRDR development has been on ‘qualitative’
rules (e.g. chess playing (Beydoun and Hoffmann, 1997)). The
second function needed to check whether or not the case may be
classified as locational is an equality check.

A¼ B ð4Þ

This function returns true if string A is equal to string B where
A or B may have any value of one of the attributes. Defining a
function includes both naming the function and its attributes, as
well as specifying the type of each attribute.

6.1. The fits case generator

Specific to this application, the Fits case generator module
generates cases of hole, shaft, and diameter to be fed to the NRDR
program. These cases are such that each one corresponds to a
class of fit. With the exception of case LN1 (which was found to
fall completely within the limits of the class designated LT5), the
tree was built to contain all cases. The tree has a separate rule for
each class. (For the excepted case with common limits, the
conclusion of either of the two classes LN1 or LT5 was given).

Fits case generator reads from two Text (MS-DOS) files, which
are created with the desired values in the described format in
order to generate the cases. The first input file /Limits.txtS is a
file created by Microsoft Excel. It contains the limits of the classes
for which cases are to be generated. It also contains the nominal
diameter of the case. Fig. 3 is an example of cases generated
where the nominal diameter=1 in (1st column). The 2nd and 3rd
columns are the lower and upper limits on the hole, respectively,
while the 4th and 5th columns contain those of the shaft. For each
class, a case is generated with random hole and shaft values that
fit within the given limits. /Locational.txtS is the second file
which is also created by Microsoft Excel. It contains only one
column. The first row is the name of the cases attribute
‘‘Locational’’, the second row is empty, the rest of the rows, in

the order of the limits in the /Limits.txtS file, are the values of
the ‘‘Locational’’ attribute, either ‘Yes’ or ‘No’.

Fits case generator outputs the file /fits_cases.txtS the format
of which is similar to that of the cases prepared by Microsoft Excel
to be loaded by NRDR. The file contains a random case for each
class of fit introduced by the file of the limits. Fig. 4 is an example
of such a file where the first row contains the case attribute
names and the rest of the rows contain the cases.

6.2. Fits domain construction

Having generated fit cases, a domain (here called Fits Domain)
will have to be constructed. Defining the domain includes case
preparation, and function compilation including specifying the
names and types of the relevant attributes. For example, the
attribute name Nominal Diameter, which represents the nominal
diameter of the hole–shaft system the type of which is defined as
‘NUMBER’. Other attributes are Hole (actual hole diameter) and
Shaft (actual shaft diameter), which are both of the ‘NUMBER’
type. Cases generated from the Fits generator module are then
loaded. Defining functions such as (3) involves naming the
function and its attributes, as well as specifying the type of each
attribute. Function attributes include: Lower Limit of a class of fit
for the hole or the shaft, Upper Limit of a class of fit for the hole or
the shaft, Real Value of the hole or the shaft, all of which being of
the ‘‘Number’’ type. For the function in (4), both attributes A and B

are defined to be of the ‘String’ type. Utilizing Workspace in
Microsoft visual C++, declaring these functions involves an
algorithm, which results in passing all the attributes to the
function. While declaring the function in (3) and in order to
declare the condition for the function, two comparisons (joined
with the logical AND operator) are made as shown in Fig. 5. Note
that in the figure ‘Defined’ represents a function that returns true
if all the attributes passed to it are pre-defined. Also note that ‘OK’
means the function should return true. If the condition is not
satisfied, false is returned. Next in the algorithm, function in (4) is
declared in a similar fashion, thus, completing the task of function
declaration.

Fig. 3. Example of the input file /Limits.txtS showing only the first 8 fit cases

RC1-RC8. Hole’s (columns B and C) and shaft’s (columns D and E) upper and lower

limits for a one inch (100) nominal dimension (column A).

Fig. 4. Example of the /fits_cases.txtS file (showing only the first 17 fit cases for

illustration purposes).

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–1148 1145

6.3. The case validation module

Next, the Case validation module performs case validation
sequentially starting from the first case of fit designated RC1. The
expert is asked whether he accepts the conclusion of the tree. A
‘DEFAULT’ conclusion corresponds to the first rule of the tree that is
always true. This default conclusion only appears if NRDR concludes
that no other plausible conclusion exists. Selecting ‘Yes’ will keep the
conclusion resulting in no changes to the tree. Selecting ‘No’ requires
justification of the refusal of the conclusion.

6.4. Adding rules

A function would have to be selected in order to add a new
rule. Fig. 6 shows the functions as they appear in the GUI. The first
function is needed to add a condition for the size of the hole. The
value of an attribute of a function can be a value entered as text or
number. The value will be stored in the rule, and used whenever
the rule is used. The value of an attribute of a function can also be
an attribute of a case. The value of the cases will not be stored in
the rule, but the name of the attribute will be stored. The function
will use the value of the specified attribute of the case being
evaluated. Nominal diameter is an attribute of the function. The
value of this attribute should be the value of the diameter of the
case. The list of the combo box contains the attributes of the case.
Select ‘_ Diameter _’ from the list as shown in Fig. 7.

The next attribute of the function is ‘Lower Limit’. The lower
and upper limit values of the hole for the class RC1 are set to 0 and
0.392, respectively. The value of the next attribute, the real value

of the hole of the case ‘Real Value’, should be retrieved from the
case by selecting the second entry ‘_ Hole _’ from the list in Fig. 7.
The first condition for the hole has been added to the rule.

The condition for the shaft needs to be added for the rule to be
complete (Fig. 8). The lower limit of the shaft for RC1 is �0.588. The
upper limit is �0.308. Adding the ‘Non-locational’ condition for the
function ‘A=B’ requires that the attribute ‘Locational’ is assigned the
value ‘No’. To finish creating the rule, the condition: ‘‘Fit designation:

RC1’’ is designated. The first rule has just been created. Having
validated this case, any situation that belongs to the RC1 class of fit
will return the conclusion ‘‘Fit designation: RC1’’ as shown in Fig. 9.
The rest of the rules are added in the same fashion.

6.5. Using the NRDR tree

When the expert has defined all the rules, the fully populated
tree is, therefore, saved and will become available for later loading

Fig. 5. The steps required in compiling the function in (3) as seen in a Microsoft Visual C++ window.

Fig. 6. Functions as they appear in DesignAssistant user interface.

Fig. 7. Case attributes as they appear in DesignAssistant user interface.

Fig. 8. Adding conditions to functions in DesignAssistant user interface.

Fig. 9. Conclusion for RC1 as shown in DesignAssistant user interface.

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–11481146

and viewing. Upon viewing, the tree will appear as shown in
Fig. 10 complete with the condition(s) of each rule, the
cornerstone case, and the scope of the rule.

7. Discussion and summary

Given the proliferation in digital transfer of files representing
mechanical databases (geometries and drawings), the require-
ment that dimensions must be properly toleranced to reflect the
design intent has been captured in such standards as ISO 10303
Product Data Representation and Exchange (STEP) Part 47 ‘‘Shape
variation tolerances’’ (ISO, 1997). The implications of such
requirements should be reflected via an increase in the AI content
of mechanical computer-aided design and drafting (MCADD) to
where tolerancing of dimensions may have to become fully
automated in schemes executed during the actual design process
and not at a later stage.

In this work, we demonstrated that one can efficiently build an
effective intelligent system to incrementally capture expert
designer’s prescription in dimensional tolerancing. This was
accomplished by utilizing a knowledge base system built on the
Nested Ripple Down Rules (NRDR) method. This intelligent
system was successfully demonstrated in this paper by automat-
ing the process of tolerancing nominal dimensions based on the
classical mechanical fit problem between a shaft and a hole. The
system is able to perform both forward and backward fit schemes
for cases like the one presented above. A forward scheme means
that given a class of fit, i.e. LC1, LC2, etc., the software will return
the upper and lower tolerance bounds for the nominal shaft/hole
diameter of interest. A backward scheme means that given actual
hole/shaft diameters the software would correctly identify the
relevant class of fit. Such a dimensional tolerancing knowledge
management system may be integrated into smart CAD platform
(see Fig. 2) to help mechanical designers become more effective
by automating the task of dimensional tolerancing of their
designs in the future. Such a system would help mechanical
designers become more effective in the time-consuming dimen-
sioning and tolerancing process of their designs given the relative
complexity of some tolerancing schemes. Implicit benefits of
utilizing such a smart system include:

1) Shortened product development process cycle when compared
with a traditional dimension-and-tolerance-by-hand approach;

2) identify and avoid potential design conflicts and interferences
early in the development process, reducing downstream
errors, and engineering change orders (ECO’s);

3) product lead times will be significantly reduced while
improving quality and increasing the product’s performance-
to-cost ratio.

Acknowledgements

This work was financially supported by the University
Research Board (URB) of the American University of Beirut
(AUB). This support is gratefully acknowledged.

References

American National Standards Institute ANSI-Y14.5.1M, 1994M. In: Mathematical
Definition of Dimensioning & Tolerancing. The American Society of Mechanical
Engineers, ASME Press.

American National Standards Institute ANSI Y14.5M, 1994M. Dimensioning &
tolerancing, The American Society of Mechanical Engineers. ASME Press.

Beydoun, G., Hoffmann, A., 1997. NRDR for the acquisition of search knowledge.
Lecture Notes in Computer Science, Advanced Topics in Artificial Intelligence,
1342. Springer, Berlin/Heidelberg 177–186.

Beydoun, G., Hoffmann, A., 2000. Incremental acquisition of search knowledge.
International Journal of Human Computer Interactions 52 (3), 493–530.

Beydoun, G., Hoffmann, A., 2001. Theoretical framework of incremental hierarch-
ical knowledge acquisition. International Journal of Human Computer Studies,
Academic Press 54 (3), 407–452.

Beydoun, G., Hoffmann, A., Fernández Breis, J.T., Martinez Béjar, R., Valencia-
Garcia, R., Aurum, A., 2005. Cooperative modeling evaluated. International
Journal of Cooperative Information Systems, World Scientific 14 (1), 45–71.

Chapman, M.P., 1999. Design engineering—a need to rethink the solution using
knowledge based engineering. Knowledge-Based Systems 12, 257–267.

Chiesi, F., Governi, L., 2003. Tolerance analysis with eM-TolMate. Journal of
Computing and Information Science in Engineering 3 (1), 100–105.

Compton, P., Jansen., R., 1990. A philosophical basis for knowledge acquisition.
Knowledge Acquisition 2, 241–257.

Compton, P., Preston, P., Yip, T., 1994. Local patching produces compact knowledge
bases. In: The European Knowledge Acquisition Workshop (EKAW94).

Desrochers, A., 2003. A CAD/CAM representation model applied to tolerance
transfer methods. Journal of Mechanical Design, Transactions of the ASME 125
(1), 14–22.

Finger, S., Tomiyama, T., Mantyla, M. (Eds.), 2000. IFIP TC5 WG5.2 Third Workshop
on Knowledge Intensive CAD. Kluwer Academic Publishers.

Gaines, B.R., 1991. Induction and visualisation of rules with exceptions. In: Sixth
Banff Knowledge Acquisition for Knowledge Base System Workshop (KAW91).

Hoffmann, A., Thakar, S., 1991. Acquiring knowledge by efficient query learning.
In: 12th International Conference on Artificial Intelligence (IJCAI91).

Hu, X., Pang, J., Pang, Y., Atwood, M., Sun, W., Regli W.C., 2000. A survey on design
rationale: representation, capture and retrieval. In: Proceedings of DETC’00,

Fig. 10. A populated tree as seen on the User interface for the cornerstone case RC1with the condition(s) of each rule, as well as the scope of the rule.

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–1148 1147

2000 ASME Design Engineering Technical Conferences September 10–13,
2000, Baltimore, Maryland.

Hu, J., Peng, Y., 2007. Tolerance modelling and robust design for concurrent
engineering, Proceedings of the I MECH E Part C. Journal of Mechanical
Engineering Science 221 (4), 455–465.

ISO 10303-42, 1999. Integrated generic resource: geometric and topological
representation. International Organization for Standardization (ISO), second
ed., 1999-06-30, Case postale 56, CH-1211 Geneva 20, Switzerland.

ISO 10303-47, 1997. Integrated generic resource: shape variation tolerances.
1997-07-29, ISO, Case postale 56, CH-1211 Geneva 20, Switzerland.

King, D.A., de Sam Lazaro, A., 1994. Process and tolerance considerations in the
automated design of fixtures. Journal of Mechanical Design, Transactions Of
the ASME 116 (2), 480–486.

Kang, B., Compton, P., Preston, P., 1998. Multiple classification ripple down rules:
evaluation and possibilities. In: Ninth AAAI-sponsored Banff Knowledge
Acquisition for Knowledge Based Systems Workshop.

Linster, M., 1993. Explicit and operational models as a basis for second generation
knowledge-acquisition tools. In: David, J.-M., Krivine, J.-P., Simmons, R. (Eds.),
Second Generation Expert Systems. Springer-Verlag, pp. 477–506.

Meadows, J.D., 1995. Geometric dimensioning and tolerancing-applications and
techniques for use in design, Manufacturing, and Inspection. Marcel Dekker,
Inc..

Menzies, T., Compton, P., 1995. The (Extensive) implications of evaluation on
the development of knowledge-based systems. In: Proceedings of the Ninth

Banff Knowledge Acquisition for Knowledge Based Systems Workshop.
pp 18.1–18.20.

Roy, U., 1994. Intelligent CAD system in concurrent engineering environment:
a knowledge-based approach. Cybernetics and Systems 25 (4),
611–628.

Rezayat, M., 2000. The enterprise-web portal for life-cycle support. Computer-
Aided Design 32 (2), 94–106.

Radack, G.M., Sterling, L.S., 1994. Reasoning about symbolic descriptions of
mechanical parts. In: Dagli, C.H., Kusiak, A. (Eds.), ASME Series on International
Advances in Design Productivity—Intelligent Systems in Design and Manu-
facturing. ASME Press, New York.

Shen, Z., 2003. Tolerance analysis with EDS/VisVSA. Journal of Computing and
Information Science in Engineering 3 (1), 95–99.

Shen, Z., Ameta, G., Shah, J.J., Davidson, J.K., 2005. A comparative study of tolerance
analysis methods. Journal of Computing and Information Science in Engineer-
ing 5 (3), 247–256.

Shigley, J.E., Mischke, C.R. (Eds.), 1986. Standard Handbook of Machine Design.
McGraw-Hill Book Company.

Wang, N., Ozsoy, T.M., 1993. Automatic generation of tolerance chains from
mating relations represented in assembly models. Journal of Mechanical
Design, Transactions of the ASME 115 (4), 757–761.

Wu, W., Rao, S.S., 2004. Interval approach for the modeling of tolerances and
clearances in mechanism analysis. Journal of Mechanical Design, Transactions
of the ASME 126 (4), 581–592.

R.F. Hamade et al. / Engineering Applications of Artificial Intelligence 23 (2010) 1140–11481148

	A dimensional tolerancing knowledge management system using Nested Ripple Down Rules (NRDR)
	Recommended Citation

	A dimensional tolerancing knowledge management system using Nested Ripple Down Rules (NRDR)
	Abstract
	Disciplines
	Publication Details

	A dimensional tolerancing knowledge management system using Nested Ripple Down Rules (NRDR)
	Introduction
	Methodology
	Acquiring design knowledge
	Requirements for a KA environment

	The knowledge acquisition tool
	System architecture of the DesignAssistant software
	The classical fit problem
	Example: NRDR application to dimensional tolerancing
	The fits case generator
	Fits domain construction
	The case validation module
	Adding rules
	Using the NRDR tree

	Discussion and summary
	Acknowledgements
	References

