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Abstract: We propose a new space efficient operator to multiply elements lying in a binary field F2k . Our
approach is based on a novel system of representation called Double Polynomial System which set
elements as a bivariate polynomials over F2. Thanks to this system of representation, we are able
to use a Lagrange representation of the polynomials and then get a logarithmic time multiplier
with a space complexity of O(k1.31) improving previous best known method.

1 INTRODUCTION

Efficient hardware implementation of finite field
arithmetic, and specifically of binary field F2k ,
is often required in cryptography and in coding
theory (Berlekamp, 1982). For example in elliptic
curve cryptosystem (Koblitz, 1987; Miller, 1986),
the main operation is the scalar multiplication on
the curve, which necessitates thousands of mul-
tiplications and additions over a finite field. Si-
milarly, hundreds of multiplications over a binary
field are required for the Diffie-Hellman Key ex-
change protocol (Diffie and Hellman, 1976).

Previously to this work, several architectures
have already been proposed to efficiently imple-
ment the arithmetic in F2k . These architectures
are mostly dedicated to the multiplication since
this operation is extensively used and is often the
most expensive. Each of them takes advantage of
a special representation of the field. In particu-
lar, one of them uses polynomial basis or shifted
polynomial basis (Mastrovito, 1991; Fan and Dai,
2005) while another uses normal basis (Gao, 1993;
Hasan et al., 1993). The latter providing a really
efficient squaring in the field since in this basis the
squaring is just a cyclic shift of the coefficients.

In these representations the main approach to
perform the multiplication consists to express the

operation as a matrix-vector product with binary
entries. Parallel architectures are thus capable to
perform this product within logarithmic time. Ho-
wever, these architectures still achieve a space
complexity of k2. According to the recent impro-
vements proposed in (Fan and Hasan, 2007), one
can still perform the matrix-vector product in lo-
garithmic time but with a space complexity of
k1.56 or k1.63. This has been made possible thanks
to structured matrices such as Toeplitz ones and
a divide-and-conquer approach for the products.

In this paper we propose a new approach
which reduces the exponent in the space com-
plexity to 1.31 while keeping a logarithmic time
complexity. First, we introduce a novel system of
representation, the Double Polynomial System. In
this representation, elements of F2k are polyno-
mials in two variables A(t,Y ) = ∑

n−1
i=0 ai(t)Y i where

ai(t) have degree strictly less than r.
Therefore, as in classical polynomial represen-

tation, the multiplication can be performed in two
steps : a polynomial multiplication, and then a re-
duction phase to reduce the degrees in Y and in
t.

The reduction in Y is simple due to the de-
finition of DPS. The same is not true for the
reduction in t. Here, we use a Montgomery-like
reduction approach in order to perform this re-



duction with few polynomial multiplications, this
enabling us to easily use the Fast Fourier Trans-
form. Therefore, our multiplier fully benefits from
the FFT process which is highly parallelizable and
provides a subquadratic space complexity.

Hence, we propose a binary field multiplier
which has a delay of (16log3(k)+20)TX +8TA and
a space complexity of O(k1.31), where TX and TA
correspond respectively to the delay of one XOR
gate and one AND gate.

Let us briefly give the outline of the paper.
We first introduce the DPS representation for bi-
nary fields F2k (Section 2). We present the DPS
multiplication in Section 3 and discuss the pro-
blem of finding a suitable polynomial to achieve
our Montgomery-like coefficient reduction in Sec-
tion 4. Then, we present in Section 5 a modi-
fied version of our multiplication introducing La-
grange basis. We recall in Section 6 some ba-
sic facts on the architecture design of a ternary
FFT. We finally conclude this paper by a detai-
led explanation of the complete architecture for
our DPS-Lagrange multiplier and its complexity
analysis and comparison (Section 7).

2 DPS REPRESENTATION

A binary field F2k is generally constructed as
the set of polynomials modulo an irreducible po-
lynomial P ∈ F2[t] of degree k

F2k = F2[t]/(P(t))
= {A(t) ∈ F2[t] s.t. degA(t) < k}

We introduce a novel binary field representa-
tion, the Double Polynomial System (DPS), ins-
pired from AMNS number system of Bajard et
al. (J.-C. Bajard, 2005).
Definition 1 (DPS representation). A Double
Polynomial System (DPS) is a quintuplet B =
(P,γ,n,r,λ) such that

– P(t) ∈ F2[t] is an irreducible polynomial of
degree k,

– γ(t),λ(t) ∈ F2[t]/(P(t)) satisfy

γ(t)n ≡ λ(t) mod P,

and λ(t) has a low degree in t.
A DPS representation of an element A(t) ∈
F2[t]/(P) is a polynomial AB(t,Y ) ∈ F2[t,Y ] such
that

AB(t,Y ) =
n−1

∑
i=0

ai(t)Y i with degt ai(t) < r

and AB(t,γ(t))≡ A(t) mod P

In the sequel we will often omit the subscript
B to denote the DPS form of an element A. In
some cases, when it is clear from the context, we
may discard the variables t,Y to define the DPS
representation of an element. We will also denote
by E the polynomial E = Y n−λ.
Example 1. Let us consider the field F24 , then
the quintuplet B = (P = t4 + t3 + t2 + t +1,γ = t3 +
t2 + t,n = 3,r = 2,λ = t) is a DPS for this field. We
can check this with Table 1 which gives the DPS
expression of each element in F24 .

Tab. 1: Elements of F24 in B.

A(t) 0 t2 t3 + t2 + t + 1 t3 + t
AB 0 (t + 1)Y 2 Y + 1 Y 2 + t + 1

A(t) 1 t2 + 1 t3 + t2 + t t3 + t + 1
AB 1 (t + 1)Y 2 + 1 Y Y 2 + t

A(t) t t2 + t t3 + t2 t3 + 1
AB t Y 2 +Y + 1 Y + t Y 2

A(t) t + 1 t2 + t + 1 t3 + t2 + 1 t3

AB t + 1 Y 2 +Y Y + t + 1 Y 2 + 1

In particular, we can verify that if we evaluate
(t +1)Y 2 +1 in γ, we get (t +1)γ2 +1 = (t +1)(t3 +
t2 + t)2 + 1 = t2 + 1 mod P, as expected. One can
also see that degY ((t + 1)Y 2 + 1) = 2 < 3 = n and
degt((t + 1)Y 2 + 1) = 1 < 2 = r. ♦

Remark 1. The DPS can be seen as a ge-
neralization of the polynomial representation
of double extensions F2rn . Such extensions are
usually constructed first as F2r = F2[t]/(P(t))
and then as F2rn = F2r [Y ]/(Y n− λ) with λ ∈ F2r ,
see (Guajardjo and Paar, 1997). However, this
construction is not possible when the degree k of
the field F2k is prime. DPS provides an alternative
for double extension in this situation.
Remark 2. As in classical polynomial represen-
tation, the addition in DPS is just a parallel bit-
wise XOR on the coefficients.

We proceed now by considering the problem of
the multiplication of two elements expressed in a
DPS. This can be done in two steps as described
in Algorithm 1.

The first step of the algorithm consists of a
classical polynomial multiplication modulo the
binomial E(Y ) = (Y n − λ). The resulting poly-
nomial C(t,Y ) satisfies C(t,γ) = A(t,γ)B(t,γ) mod
P(t) since E(γ) ≡ 0 mod P(t) by definition of the
DPS.

The second step computes an element R(t,Y )
such that it becomes a valid DPS representation



Algorithm 1: DPS multiplication scheme.
Input : A,B ∈ B = (P,γ,n,r,λ)
Output : C = A×B ∈ B

1. Polynomial multiplication in Y :
C = AB mod (Y n−λ).

2. Coefficients reduction :
R = RedCoe f f (C).

of A×B :

R(t,γ) = A(t,γ)B(t,γ) mod P(t) and degt(R) < r.

It is clear from the DPS system and from the
multiplication modulo a binomial Y n− λ that C
has coefficients ci(t) with degree in t bounded by
2(r−2)+degt λ. Therefore, these coefficients must
be reduced to get the result of the multiplication
expressed in the DPS representation.

3 MULTIPLICATION IN DPS

A straightforward method for the reduction
phase in t of Algorithm 1 is to perform an Eu-
clidean division C = Q×M + R where degt R < r.
This reduction is only valid if M(t,Y ) is monic in
t and satisfies

M(t,γ)≡ 0 mod P(t) with degt(M) = r. (1)

Generally, one can easily compute a polynomial
M satisfying equation (1), e.g. Section 4, but en-
suring monicity is difficult.

Algorithm 2: DPS Multiplication.
Input : A,B ∈ B = (P,γ,n,r,λ)

with E = Y n−λ

Data : M such that M(γ)≡ 0 mod P,
a polynomial m ∈ F2[t] and
M′ =−M−1 mod (E,m)

Output: R such that
R(t,γ) = A(t,γ)B(t,γ)m−1 mod P

begin
C← A×B mod E;
Q←C×M′ mod (E,m);
R← (C + Q×M mod E)/m;

end

In order to avoid monicity attached to a
division strategy, we adapt the Montgomery
trick (Montgomery, 1985) to our DPS system.
The idea is to replace the Euclidean division by
few multiplications and one exact division. This

corresponds to annihilating the lower part of the
ci(t) instead of the higher ones. This method is gi-
ven in Algorithm 2 assuming a polynomial M(t,Y )
satisfying M(t,γ)≡ 0 mod P(t) is given.
Example 2. We consider the field F24 , with the
DPS B = (P = t4 + t3 + t2 + t +1,γ = t3 + t2 + t,n =
3,r = 2,λ = t). In Table 2, we give an example of
trace of DPS multiplication.

Tab. 2: DPS multiplication trace.

Operations Results
A tY 2 + tY
B (t + 1)Y + t
M tY 2 +Y + t + 1
M′ (1 + t)Y 2 +(1 + t)Y + 1
m t2

C tY 2 + t2Y + t3 + t
Q tY 2

Q×M (t2 + t)Y 2 + t3Y + t2

C + Q×M t2Y 2 +(t3 + t2)Y + t3

R Y 2 +(t + 1)Y + t

We can check that R(t,γ) ≡ t2 + t mod P is
equal to A(t,γ)B(t,γ)t−2 mod P. ♦

Lemma 1. Algorithm 2 is correct.

Proof. We need to demonstrate that the output
R of the algorithm satisfies the following equation

R(t,γ) = A(t,γ)B(t,γ)m−1 mod P. (2)
From the definition 1 of DPS representation,

we know that E(γ)≡ 0 mod P. Thus, we have
C(t,γ)≡ A(t,γ)B(t,γ) mod P.

By definition of M, we have M(t,γ)≡ 0 mod P and
consequently

C(t,γ)+ Q(t,γ)M(t,γ) ≡ C(t,γ)
≡ A(t,γ)B(t,γ) mod P

We now need to prove that the division by
m is exact. This is equivalent to prove the fol-
lowing equivalence C + Q×M mod E ≡ 0 mod m.
By definition, we have Q = C ×M′ mod E and
M′ = −M−1 mod (E,m). We consider R′ = C +
Q×M mod (E,m), then the following equivalences
hold

R′ ≡ C +C× (−M−1×M) mod (E,m)
≡ (C−C) mod (E,m)
≡ 0 mod (E,m).

Thus, division by m is exact. Hence, the algorithm
is correct since an exact division (the division by
m) is equal to the multiplication by an inverse
modulo P.



At this level, we know that the resulting po-
lynomial R of the previous algorithm satisfies the
equation R(t,γ) = A(t,γ)B(t,γ)m−1 mod P but we
do not know whether it is expressed in the DPS,
i.e., if the coefficients of R have degree in t smaller
than r. This is the goal of the following theorem.
Theorem 1. Let B = (P,γ,n,r,λ) a Double Poly-
nomial System, M be a polynomial of B such that
M(γ)≡ 0 mod P and σ = degt(M). Let A,B be two
elements expressed in the DPS B. If r and the
polynomial m satisfy

r > σ + degt(λ) and degt(m) > degt(λ)+ r
(3)

then the polynomial R output by the Algorithm 2
is expressed in the DPS B.

Proof. From the Definition 1, the polynomial R
belongs to the DPS B = (P,γ,n,r,λ) if degY R < n
and if degt(R) < r. The fact that degY R < n is
easy to see since all the computation in the Algo-
rithm 2 are done modulo E = Y n−λ.

Hence, we have only to prove that degt R < r.
Since by definition degt A,degt B < r we have the
following inequalities

degt R = degt((A×B + Q×M) mod E)/m
≤ max(degt A + degt B,degt Q + degt M)

+degt λ−degt m
≤ max(2r,σ + degt m)+ degt λ−degt m.

According to our hypothesis in the equation
(3), we have both 2r + degt λ− degt m < r and
σ + degt m + degt λ − degt m < r. Hence, we get
degt(R) < r as required.

4 CONSTRUCTION OF THE
POLYNOMIAL M

The result of this section uses mathematical
structures involving module over the polynomial
ring F2[t] in order to prove existence of a sui-
table polynomial M. The remaining of the paper
is independent from this section and readers who
are not familiar with such mathematical structure
can skip this section without misunderstanding.

Our goal is to construct a polynomial M such
that M(t,γ) ≡ 0 mod P and degt M is small. This
polynomial belongs to the set

M = {A(t,Y ) ∈ F2[t,Y ] with degY A < n}.
The set M has a natural structure of F2[t] mo-

dule. Recall that an F2[t]-module M is an (addi-
tive) abelian group, with a scalar multiplication
over F2[t] :

F2[t]×M →M .

In order to calculate the element M with low
degree in t, we will use a sub-module M ′ of M
spanned by the following linearly independent
vectors.

Ω =


P 0 0 . . . 0
−γ 1 0 . . . 0
−γ2 0 1 . . . 0

...
. . .

...
−γn−1 0 0 . . . 1


← P
← Y − γ

← Y 2− γ2

...
← Y n−1− γn−1

Each of the polynomials V (t,Y ) defined by the
rows of Ω satisfy V (t,γ) ≡ 0, and any F2[t]-linear
combination of these polynomials satisfies also
this property. Therefore, one way to construct M
consists to compute a minimal basis of M ′ and
define M as the basis element with the smaller
degree in t. The notion of minimality is related to
the degree in t of the basis elements.

According to polynomial matrix properties,
one can find a minimal basis of Ω by compu-
ting its matrix reduced form called the Popov
form (Mulders and Storjohann, 2003). In parti-
cular, the properties of the Popov form (Villard,
1996, §1.2) tell us that there exists a minimal ba-
sis ( f1, f2, . . . , fn) of M ′ which satisfies the follo-
wing degree properties :

n

∑
i=1

degt fi = degt(det(Ω)) (4)

degt f1 ≤ degt f2 ≤ . . .≤ degt fn (5)

If we set M = f1 then the degree in t of M is
minimal and satisfies the degree bound

degt M ≤ (degt P)/n (6)

Indeed, according to equations (4) and (5), we
have n× degt M < ∑

n
i=1 degt fi and since det(Ω) =

P(t) we get the announced bound.
Beside the fact that the calculation of M is

only needed once at the construction of the DPS
representation, one would need to efficiently com-
pute such polynomial. This can be achieve wi-
thin a complexity of O(n3k2) binary operations
with Algorithm WeakPopovForm of (Mulders and
Storjohann, 2003) or with an asymptotic com-
plexity of O(n3k logk) binary operations with Al-
gorithm ColumnReduction of (Giorgi et al., 2003).

5 DPS-LAGRANGE
MULTIPLICATION

In this section, we present a version of Algo-
rithm 2 using a Lagrange representation of the
DPS elements.



5.1 Lagrange Representation

Let R a ring, and R [Y ] the polynomial ring
over R . The Lagrange representation of a poly-
nomial of degree n−1 in R [Y ] is given by its values
at n distinct points. For us, these n points will be
the roots of a polynomial E = ∏

n
i=1(Y−αi)∈R [Y ].

From an arithmetic point of view, this is related
to the Chinese Remainder Theorem which asserts
that the following application is an isomorphism

R [Y ]/(E(Y )) −̃→
n

∏
i=1

R [Y ]/(Y −αi) (7)

A 7−→ (A mod (Y −αi))i∈{1,...,n} .

The computation of A mod (Y −αi) is simply
the computation of A(αi). In other words, the
image of A(Y ) by the isomorphism (7) is nothing
else than the multi-points evaluation of A at the
roots of E. This fact motivates the following La-
grange representation of the polynomials.

Definition 2 (Lagrange representation). Let A∈
R [Y ] with degA < n, and α1, . . . ,αn be the n dis-
tinct roots of a polynomial E(Y ).

E(Y ) =
r

∏
i=1

(Y −αi) mod m

If ai = A(αi) for 1 ≤ i ≤ n, the Lagrange repre-
sentation (LR) of A(Y ) is defined by LR(A(Y )) =
(a1, . . . ,an).

Lagrange representation is advantageous to
perform operations modulo E : this is a conse-
quence of the Chinese Remainder Theorem. Spe-
cifically the arithmetic modulo E in classical po-
lynomial representation can be costly if E has a
high degree. In LR representation this arithme-
tic is decomposed into n independent arithmetic
units, each does arithmetic modulo a very simple
polynomial (X−αi). Furthermore, arithmetic mo-
dulo (X−αi) is the arithmetic in R since the pro-
duct of two zero degree polynomials is just the
product of the two constant coefficients.

5.2 Multiplication Algorithm

Let us go back to the Algorithm 2 and see how
to use Lagrange representation to perform poly-
nomial arithmetic in each step. The first two steps
can be done in Lagrange representation modulo
m1(t) such that E split modulo m1(t) :

E =
n

∏
i=1

(Y −αi) mod m1(t),

The third step must be done modulo a second
polynomial m2(t), which also splits E = ∏

n
i=1(Y −

α′i) mod m2(t), since the division by m1 cannot be
performed modulo the polynomial m1(t).

We then need to represent the polynomials A
and B in Algorithm 2 with both their Lagrange
representations modulo m1(t) and m2(t).
Notation 1. We will use in the sequel the follo-
wing notation. For a polynomial A of degree n−1
in Y we will denote

– A the Lagrange representation in αi modulo
m1(t)

– A the Lagrange representation in α′i modulo
m2(t).

Hence, we can do the following modifications
to the Algorithm 2 :

Algorithm 3: DPS-LR Multiplication.

Input : A,A,B,B
Data : M such that M(t,γ)≡ 0 mod P, M′

such that M′ =−M−1

(mod E,m1).
Output: R,R such that R ∈ B and R(t,γ) =

A(t,γ)B(t,γ)m−1
1 mod P(t)

begin
Q← A×B×M′;
Q←Convertm1→m2(Q);
R← (A×B)+ Q×M)×m−1

1 ;
R←Convertm2→m1(R);

end

The operations to compute Q and R are per-
formed in Lagrange representation and then can
be easily parallelized. It consists of n independent
multiplications in F2[t]/(m1(t)) and F2[t]/(m2(t)).

The major drawback of this algorithm is
the conversions between Lagrange representations
modulo m1 and m2. It is necessary to perform
these operations efficiently in order to get a mul-
tiplier yielding our announced space complexity.

5.3 Conversion

In order to provide an efficient implementation
of conversions between Lagrange representations
modulo m1 and m2, we rely on the binomial form
of E = Y n− λ. Indeed, if µ1 = α1 is a root of E
modulo m1 then all others roots can be written

α j = µ1ωi
1 mod m1

where ω1 is a n-th primitive root of unity in
F2[t]/(m1). This property comes from the fact



that (α j/µ1)n = 1 mod m1 and thus there exists
an integer i such that α j/µ1 = ωi

1 mod m1. This is
still true modulo m2. Thus, the multi-point eva-
luation of the polynomial A(Y ) in αi modulo m1
can be done as follow :

1. set Ã(Y ) = A(µ−1
1 Y ) =

n−1

∑
i=0

aiµ−i
1 Y i

2. compute A = DFTm1(Ã,n,ω1),

where DFTm1(Ã,n,ω1) is the evaluations of the po-
lynomial Ã in the n-th roots of unity ωi

1.
Similarly the Lagrange interpolation which

compute A(Y ) from A can be done by reversing
the previous process.

By gluing together this two processes we get
the following algorithm to perform conversion
between Lagrange representations.

Algorithm 4: Convertm1→m2 .

Input : A
Output: A
Ã(Y )← DFT−1

m1
(A,n,ω1) ;

A(Y )← Ã(µ−1
1 Y ) mod m1 ;

Ã(Y )← A(µ2Y ) mod m2 ;
A← DFTm2(Ã(Y ),n,ω2);

As a consequence, the conversion has a cost
of two Discrete Fourier Transforms. This can be
done efficiently by using FFT algorithm (Gathen
and Gerhard, 1999, §8.2).

6 ARCHITECTURE FOR FFT
COMPUTATION

We present an architecture to perform the
FFT calculation of a polynomial A(Y ) ∈ R [Y ] of
degree n− 1, keeping in mind our targeted La-
grange conversion algorithm. We consider the ring
R = F2[t]/(m(t)) where m(t) = t2n/3 + tn/3 + 1 and
n = 3s. Note that the FFT process needs to be
performed using the ternary method since the
binary one is not feasible over characteristic 2
rings (Schonhage, 1977).

Let us denote ω a primitive n-th root of unity
modulo m(t) and θ = ωn/3 a 3rd root of unity.
The ternary FFT process is based on the following
three-way splitting of A

A1 = ∑
n/3−1
j=0 a3 jY 3 j,

A2 = ∑
n/3−1
j=0 a3 j+1Y 3 j,

A3 = ∑
n/3−1
i=0 a3 j+2Y 3 j,

2(i + n/3)
i + n/3

2i + n/3
i + 2n/3

i
2i

Â[i + n
3]

Â[i + 2n
3 ]

Â[i]
Â1[i]

Â2[i]

Â3[i]

Fig. 1: Ternary butterfly operator.

such that A = A1 +YA2 +Y 2A3 .
Let Â[i] = A(ωi) be the i-th coefficient of

DFTm(A,n,ω). Let us also denote by Â1[i], Â2[i]
and Â3[i] the coefficients of the DFT of order n/3
of respectively A1,A2 and A3.

The following relations can be obtained by
evaluating A = A1 +YA2 +Y 2A3 in ωi,ωi+n/3 and
ωi+2n/3 :

Â[i] = Â1[i]+ ω
iÂ2[i]+ ω

2iÂ3[i],

Â[i + n/3] = Â1[i]+ θω
iÂ2[i]+ θ

2
ω

2iÂ3[i], (8)

Â[i + 2n/3] = Â1[i]+ θ
2
ω

iÂ2[i]+ θω
2iÂ3[i].

This operation is frequently called the butter-
fly operation. It can be performed efficiently if we
compute modulo m(t)(tn/3 + 1) = tn + 1 instead of
m(t). Indeed, in this case ω = t and a multiplica-
tion a(t)×ωi modulo tn +1 is a simple cyclic shift.
The butterfly circuit (Figure 1) is a consequence
of this remark and the relations given in (8).

In Figure 1, the� blocks refer to a simple shift
operations by the given value and the

L
blocks

refer to XOR operator. When no value is given,
then shift operation is not performed.

Within the FFT, the computations of Â1, Â2
and Â3 are done in the same way. These polyno-
mials are split in three parts and butterfly opera-
tions are applied again. This process is done re-
cursively until constant polynomial are reached.

If we entirely develop this recursive process we
obtain the schematized architecture in Figure 2.

Let us now evaluate the complexity of this ar-
chitecture. It is composed of log3(n) stages where
each stage consists of n/3 butterfly operations.
Each of these butterfly operations requires 6n
XOR gates, and has a delay of 2TX , where TX is
the delay of one XOR gate. Consequently, this
architecture has a space complexity of

S(FFTm(t)) = (2n log3(n)+ n) XOR (9)

and a delay of

D(FFTm(t)) = (2log3(n)+ 1)TX . (10)
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Fig. 2: Ternary FFT circuit.

7 ARCHITECTURE AND
COMPLEXITY

We now present a hardware architecture asso-
ciated to Algorithm 3 in the special case where
m1 = t2n + tn + 1 and m2 = t2n/3 + tn/3 + 1. This
choice enables us to use the FFT circuit presen-
ted in the previous section. The architecture of
our binary field multiplier is given in Figure 3.
It is constituted of FFT blocks and multipliers
modulo m1(t) and m2(t).

Tab. 3: Complexity of multipliers modulo m1 and m2.

Mulm1
Space Time

#AND 3nlog3(6) 1
#XOR 72

5 nlog3(6)−9n−7/5 3log3(n)+ 3

Mulm2
Space Time

#AND 1
2 nlog3(6) 1

#XOR 36
15 nlog3(6)−n/5 + n−1 3log3(n)

These multipliers are referenced by blocks
Mulm1 and Mulm2 in our architecture. Because of
the special form of m1(t) and m2(t) we can use
the multiplier of Fan and Hasan (Fan and Hasan,
2007) to perform this operation. Therefore, the
complexity (cf. Table 3) of these blocks are easily
deduced from (Fan and Hasan, 2007, Table 1).

The FFT blocks are designed using the ter-
nary method presented in previous section. The-
refore, their complexity are those given in (9)
and (10). The complexity of our multiplier can
be evaluated with respect to the numbers of
each blocks and their corresponding space com-
plexity denoted S , and time complexity de-
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Fig. 3: DPS-Lagrange Multiplier.

noted D. For the space complexity this gives
4nS(Mulm1 ) + 5nS(Mulm2 ) + 2S(FFTm1 ) + 2S(FFTm2 ) +
2n2/3 XOR. Similarly, the critical path of this ar-

chitecture gives the delay 4D(Mulm1 ) + 4D(Mulm2 ) +
2D(FFTm1 )+ 2D(FFTm2 )+ TX .

Using these expressions, (9),(10) and Table 3,
we can compute the complexity with respect to
the number of XOR and AND gates and their
corresponding delay TX and TA.

Let r be the degree in t of the coefficients in
the DPS representation then degt(m2) must sa-
tisfy degt(m2) ≥ r. Therefore, this implies that
k ≤ r× n = 2n2/3 and thus leads to use n ≈

√
k,

where k is the degree of the field F2k .
Finally, we obtain the complexity of the DPS-

Lagrange multiplier stated in Table 4. We also
give in this table the complexity of the best known
method, regarding space and time complexity, to
perform binary field multiplication. One can re-
mark that our approach decrease the space com-



Tab. 4: Complexity comparison.

Space Complexity Time Complexity
Method # AND # XOR TA TX

This paper 14.5k1.31 69.6k1.31−31k + k0.5(8log3(k)+ 39) 8 16log3(k)+ 20
FH∗ binary k1.58 5.5k1.58−5k−0.5 1 2log2(k)+ 1
FH∗ ternary k1.63 4.8k1.63−4k−0.8 1 3log3(k)+ 1

FH∗ = (Fan and Hasan, 2007) ;

plexity from k1.58 to k1.31, while it is slower by a
factor roughly equals to 5.3.

8 CONCLUSION
In this paper we have presented a novel algo-

rithm to perform multiplication in binary field,
using a Double Polynomial System of representa-
tion. This system enables the use of Fast Fou-
rier Transform in the multiplication according
to Lagrange representation. The resulting multi-
plier still achieves a logarithmic time complexity,
but asymptotically improves the space complexity
from O(k1.58) to O(k1.31),

Our method is a first approach to reduce the
space complexity of binary field multiplier. In par-
ticular, some optimizations can be done to re-
duce the constant factors in the complexity. For
example, a lot of multiplications by a constant
are counted as full multiplication in the current
complexity evaluation.

Furthermore, one can also reduce the ex-
ponent in the space complexity by replacing Fan
and Hasan multipliers with a quasi-linear ap-
proach (e.g. Schönhage’s technique (Schonhage,
1977)).
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