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Learning nonsparse kernels by self-organizing maps for structured data

Abstract

The development of neural network (NN) models able to encode structured input, and the more recent
definition of kernels for structures, makes it possible to directly apply machine learning approaches to
generic structured data. However, the effectiveness of a kernel can depend on its sparsity with respect to
a specific data set. In fact, the accuracy of a kernel method typically reduces as the kernel sparsity
increases. The sparsity problem is particularly common in structured domains involving discrete variables
which may take on many different values. In this paper, we explore this issue on two well-known kernels
for trees, and propose to face it by recurring to self-organizing maps (SOMs) for structures. Specifically,
we show that a suitable combination of the two approaches, obtained by defining a new class of kernels
based on the activation map of a SOM for structures, can be effective in avoiding the sparsity problem
and results in a system that can be significantly more accurate for categorization tasks on structured
data. The effectiveness of the proposed approach is demonstrated experimentally on two relatively large
corpora of XML formatted data and a data set of user sessions extracted from Website logs.
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Learning Nonsparse Kernels by Self-Organizing
Maps for Structured Data

Fabio Aiolli, Giovanni Da San Martino, Markus Hagenbuchner, Member, IEEE, and
Alessandro Sperduti, Senior Member, IEEE

Abstract—The development of neural network (NN) models able
to encode structured input, and the more recent definition of ker-
nels for structures, makes it possible to directly apply machine
learning approaches to generic structured data. However, the ef-
fectiveness of a kernel can depend on its sparsity with respect to
a specific data set. In fact, the accuracy of a kernel method typi-
cally reduces as the kernel sparsity increases. The sparsity problem
is particularly common in structured domains involving discrete
variables which may take on many different values. In this paper,
we explore this issue on two well-known kernels for trees, and pro-
pose to face it by recurring to self-organizing maps (SOMs) for
structures. Specifically, we show that a suitable combination of the
two approaches, obtained by defining a new class of kernels based
on the activation map of a SOM for structures, can be effective in
avoiding the sparsity problem and results in a system that can be
significantly more accurate for categorization tasks on structured
data. The effectiveness of the proposed approach is demonstrated
experimentally on two relatively large corpora of XML formatted
data and a data set of user sessions extracted from website logs.

Index Terms—Kernel methods, self-organizing maps (SOMs),
structured data, tree kernels.

1. INTRODUCTION

HE self-organizing map (SOM) is a well-known unsu-
T pervised machine learning approach which has been suc-
cessfully applied to data mining tasks where the clustering of
high-dimensional data is required [1]. Recently, its scope has
been extended to the treatment of structured data [2]—[6]. In fact,
it is recognized that data from some learning domains are more
appropriately represented by structures rather than by vectors.
For example, in chemistry, a molecule is appropriately repre-
sented by an undirected graph where the vertices and the arcs
represent the atoms and the bonds, respectively. Numerical la-
bels can be assigned to vertices or arcs, providing descriptions
of properties of the associated element. For example, a data label
attached to a vertex could contain information about the atomic
weight, degree of ionization, and the type of atom, whereas a
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label attached to an arc could indicate the valence of the bond.
Another example of a domain where a structured representation
of the data is a natural choice is the world wide web, which
can be represented, for instance, by a single graph. In this case,
vertices represent web documents which are interconnected by
directed arcs representing the hyperlinks pointing from one web
document to another. As an additional example, each web doc-
ument can itself be represented as a tree through a structural
decomposition of the document (e.g., by following its HTML
structure).

Generally speaking, structured representations provide very
versatile means to represent information. In fact, there are sev-
eral applications where a structured data representation is essen-
tial for a given task. For example, search engines for the world
wide web require knowledge on the structure of the web in order
to function effectively [7], or in molecular chemistry, the repre-
sentation of molecules should reflect the structural composition
of atomic elements, as it is related to molecule’s properties.

Traditional methods in machine learning deal with vectorial
representations. Thus, some processing/encoding is required to
map the structured information into a vector. The processing is
clearly task specific and needs to be suitably designed for any
new task. Moreover, in order to keep all meaningful structural
information, an exponential number of structural features is typ-
ically needed, thus leading to serious computational issues. On
the other hand, dropping many of these structural features may
lead to a loss of potentially significant information for a given
task.

Recent developments in machine learning have produced
methods capable of processing structured information directly,
such as kernel methods [8] and artificial neural networks
(NNs) [2], [9]. Kernel methods work by implicitly mapping the
structures into a (possibly infinite-dimensional) vector space
through a positive—semidefinite similarity function, i.e., the
kernel function. By defining a suitable kernel function for a
given domain, any kernel method can be applied to any type
of data. For example, the definition of kernels for structured
domains (see [10] for an overview, and [11] for applications
to computational biology) allows a better, and computation-
ally feasible, exploitation of structural information. However,
one problem with standard kernels for structures, such as the
well-known subtree (ST) kernel [12] and subset tree (SST)
kernel [13], already recognized in natural language processing
applications, is that, in the case of large structures and many
symbols, the feature space implicitly defined by these kernels
is very sparse [14]. It is clear that any kernel machine cannot
work effectively when used with these kernels.

1045-9227/$26.00 © 2009 IEEE
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On the other hand, the SOM-SD [2], an unsupervised NN for
structures, is able to compress information by performing a pro-
jection of labeled trees and their STs onto a g—dimensional dis-
crete lattice, preserving as much as possible the “topology” of
the data in the original space. In other words, SOM-SDs map
tree structured information in such a way that similar trees are
mapped onto nearby areas in the lattice to form clusters [2].
This allows other procedures to use the projection instead of
the associated tree as a basis for computation. For example,
inexact graph matching is known to be computational expen-
sive when executed in the domain of graphs. The same task is,
instead, much simplified when applied to mapped structures.
While SOM-SD can be used for classification tasks by recurring
to a 1-NN rule [2], the resulting classifier can have less gener-
alization capabilities than that of a kernel method.

In this paper, we propose a family of kernels defined on the
top of a SOM-SD. This allows us to exploit the SOM-SD com-
pression and “topology” preserving capabilities to define novel
kernels with reduced sparsity. Specifically, since the similari-
ties in the input space are preserved in the mapping space, it can
be stated that the activation of the SOM-SD for a given tree is
a representation of the tree in a (possibly compressed) fixed-di-
mensional space. The proposed family of kernels is then defined
on the projection rather than on the original structures. On data
where standard tree kernels are sparse, the possibility to per-
form an inexact tree matching through SOM-SD helps to de-
fine less sparse tree kernels. The experimental results obtained
on a classification task involving a relatively large corpus of
XML formatted data provide evidence that, when sparsity on
the data is present, the use of the proposed kernels is able to
improve the overall categorization performance over each indi-
vidual method, i.e., either support vector machine (SVM) [8]
using tree kernels or SOM-SDs equipped with a 1-NN clas-
sification rule. This demonstrates that neither tree kernels nor
SOM-SDs are always able to retain all the relevant informa-
tion for classification. The approach proposed in this paper can
thus be considered as a first step in the direction of defining ap-
proaches able to fully exploit the structural information needed
to solve learning tasks defined on structured domains. Further
experiments on the same data set are devoted to demonstrate that
the proposed method is quite robust with respect to the choice of
SOM-SD (hyper)parameters. Moreover, empirical results, ob-
tained by experiments involving data sets with different degrees
of sparsity for one of the most popular tree kernels, seem to sup-
port the claim that the proposed method allows to construct non-
sparse kernels and that, in general, sparser kernels tend to have
worse performances. Finally, experimental results obtained on
a data set involving a different domain, i.e., trees representing
user sessions extracted from website logs, confirm the useful-
ness of the proposed approach.

This paper is organized as follows. Kernels for struc-
tured domains, a technique for assessing the quality of a
kernel (kernel alignment), and the SOM-SD are introduced
inSections II-A-II-C, respectively. A kernel based on SOM-SD
is proposed in Section III and experimental findings are pre-
sented and discussed in Section IV. A general discussion on the
proposed kernel can be found in Section V and conclusions are
drawn in Section VI.
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This paper is a significantly extended version of a previously
published conference paper [15].

II. BACKGROUND

This section introduces the main concepts which are used
throughout the paper. Specifically, two kernels for trees (ST and
SST) are described. Then, we describe the basic concepts under-
pinning one of the methods we used to evaluate the goodness
of a general kernel in supervised settings, namely, kernel align-
ment. Finally, the SOM for structured data is described.

A. Kernel for Trees

Kernel algorithms, such as SVM [8], require, in order to be
applied to structured information, the definition of a kernel func-
tion, i.e., a similarity function, between any two structures. In
the following, two of the most popular tree kernels, which will
be used as (strong) baseline kernels in this paper, are described.
In particular, a kernel for trees can be defined by considering
SSTs as proposed in [13] or by considering matching STs as pro-
posed in [12]. The structures considered in this paper are rooted
positional trees with a known maximum outdegree. The SST
kernel is based on counting matching STs between two input
trees. Given an input tree 7', let hs(7") be the number of times a
ST s occurs in T' (here s ranges over all possible STs of a data
set).

The SST kernel can be efficiently calculated by a recursive
procedure defined as

S0 D halt)ha(te)

t1 ENT, t2€NT, s=1

> Cltte)

t1€Np, t2€NT,

KT\, T,) =

where N is the set of proper STs! of the tree T', C(t1,t2) =
> hs(t1)hs(t2) encompasses all possible SST matchings,
and can be recursively computed according to the following
rules.

1) If the productions? at t; and ¢, are different, then
C(t1,t2) = 0.

2) If the productions at ¢; and t» are identical, and #; and to
have leaf children only (i.e., they are preterminal symbols),
then C(tl./tg) =\

3) If the productions at ¢; and ¢ are identical, and ¢; and
to are not preterminals, then C(tq,t2) = A H;L;(ltl)(l +
C(chj[t1], ch;[t2])), where nc(t) is the number of children
of a node ¢ and ch[t] is the jth child of a node ¢. Finally,
A € (0,1) is a weighting parameter whose purpose is to
reduce the influence of larger STs [13].

On the other side, the ST kernel counts the number of shared
proper STs. This value can be obtained by a simple modifi-
cation of rule 3) of the SST. Specifically, the definition of C
becomes C(t1,t2) = A H?ifl) C(chj[t1], chj[ts]). Of course,
the ST kernel is less expressive than SST since its feature space
is smaller. On the other hand, the smaller feature space reduces

IA proper ST rooted at a node n is defined as the ST composed by n and all
of its descendants.

2A production is defined as the label of a node plus the labels associated to
its children.
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Fig. 1. (a) The 2-D map of size 2 X 5, and (b) a tree. Each hexagon refers to a neuron. ID, codebook vector m, and coordinate value 1 for each neuron are shown.
For each vertex of the tree, the vertex number w and coordinate of best matching codebook y are shown.

its computational complexity. In fact, the computational com-
plexity in time of an ST kernel evaluation, exploiting a suitable
indexing data structure (see, e.g., [12]), is O(Nt log Nr), while
SST has a worst case computational complexity of O(N2),
where Ny = max{nr,,nr,} and ng, and nr, are the number
of nodes of trees T and T, respectively.

B. Kernel Alignment

A way to assess the quality of a kernel function in a super-
vised setting is by using the kernel alignment [16]. Let S =
{z1,29,...,2,} be the set of instances comprising a training
set and k; and k> two kernel functions defined on S. The Gram
matrix K related to a kernel k& with respect to a set S is defined
as K(i,j) = k(z;,z;). The empirical alignment between k;
and ko is defined as the Frobenius inner product between the
corresponding normalized Gram matrices

<K1>K2>F
\/<K17K1>F <K27K2>F

where (K1, Ka)p = 320 ) K1(i,§) Ka(i, ).

Values of A() range from —1 to 1. The higher the value of
A(k1, ko, S), the higher the similarity between k1 and ko with
respect to S.

The value A can be used to measure how appropriate a kernel
k is for a given two-class classification task by aligning k& with
a matrix Y defined as Y (4, j) = v;y;, where y; = {—1,+1} is
the class associated to an instance ;. In the case of a multiclass
classification task, Y can be defined as Y (4, j) = 1if y; = y;
and Y (4,7) = 0if y; # y;. It is easy to see that the matrix ¥’
defined according to the two definitions given above is always
a positive definite one.

A(ky, ko, S) =

C. The SOM for Data Structures

The SOM-SD extends the SOM approach [1] by allowing
to process structured input in the form of trees, where each
vertex of a tree can have a label (e.g., a real valued vector). The
SOM-SD can be understood as the recursive application of a
standard SOM to individual nodes in a tree where the input is
properly coded to take into consideration the structural infor-
mation. As for the standard SOM, the SOM-SD consists of a
number of neurons which are organized in a g-dimensional grid

(usually ¢ = 2). A codebook vector m is associated with each
neuron. The network input for SOM-SD is a vector x,, repre-
senting the information of a vertex v of the input tree and it is
built through the concatenation of the data label v attached to v
and the coordinates obtained by the mapping of its child vertices
Ycn[s] On the same map, so that X, = [V, ycx[y]. The vectors
are made constant in size by assuming a maximum outdegree,
say o, of any vertex in the data set. For vertices with less than o
children, padding with a default coordinate, typically the “im-
possible” coordinate (—1, —1), is applied. As a result, the input
dimension is n = p + 20, where p is the dimension of the data
label and the constant 2 refers to the number of dimensions of
the map which is the most commonly used. The codebook vec-
tors m = [m'#P®!, m°"] are of the same dimension.

Fig. 1 gives an exemplification of a SOM-SD computation.
The figure shows a 2-D map of neurons organized in a 2 x 5 grid.
The neurons honor a hexagonal neighborhood relationship with
each other. Each neuron is uniquely identified by its coordinate
vector 1, and has associated a k-dimensional codebook vector
m. Also shown in Fig. 1 is a tree with five vertices. The ver-
tices are uniquely determined by an identifier w. For simplicity,
no data label is assigned to vertices or arcs. The figure gives
a snapshot of the situation during the training of a SOM-SD
where some of the vertices have already been mapped. For ex-
ample, the vertex w = 1 is assumed to have been mapped to
the neuron at coordinate (2, 1) whereas the mapping of vertex
w = 3 may have yet to be determined. When processing vertex
w = 3 the input vector x3 is formed through the concatena-
tion of the mappings of the offspring of vertex w = 3. Hence,
x3 = [3,4,2,1,1,3]. The best matching codebook vector is
then determined by using some similarity measure such as the
Euclidean distance. The mapping y3 of vertex w = 3 is deter-
mined by taking the coordinate vector of the winning neuron.
This example is indicative of the underlying training procedure
which is similar to the standard SOM training algorithm, and
can be described in detail as follows.

Consider a g-dimensional lattice of neurons representing
the display space. Every neuron of the map is associated with
an n-dimensional codebook vector m; = (mi1,...,min)7,
where T’ transposes the vector. The neurons have a neighbor-
hood relationship (where the hexagonal relationship is the most
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common). The SOM-SD is trained by updating the elements of
m; through a three-step training procedure where vertices in
the trees are processed in inverse topological order, from the
leaf nodes to the root node as follows.

Step 1) One vertex from any tree in the training set is chosen
ensuring that all of its offspring have already been
processed. The input vector x is formed and its sim-
ilarity to the codebook vectors is computed. When
using the Euclidean distance measure, the winning
neuron is obtained through

r = argmin || (x — m;)"A|
K2

where A is an (n X n)-dimensional diagonal ma-
trix; its diagonal elements A1; - - - A, are setto p €
[0...1] and all remaining diagonal elements are set
to 1 — p. The constant ;. allows to balance the con-
tribution of the data label component and the coor-
dinate vector component to the Euclidean distance
measure.

Step 2) m, itself, as well as its topological neighbors, is
moved closer to the input vector in the input space.
The magnitude of the attraction is governed by the
learning rate o and by a neighborhood function
f(A;r), where A, is the topological distance be-
tween m, and m;. The updating algorithm is given
by

Am; = a(t) f(Air)(m; — x)

where « decreases to 0 with time ¢, and f(.) is a
neighborhood function. The most commonly used
neighborhood function is the Gaussian function
f(Air) = exp (=[]l = 1.[[*/20(t)?) , where the
spread o is called the neighborhood radius which
decreases with time ¢, and 1, and 1, are the coordi-
nates of the winning neuron and the :th neuron in
the lattice, respectively.

Step 3) The coordinates of the winning neuron are passed on
to the parent vertex which in turn updates its vector
y accordingly.

Steps 1)-3) together constitute a single training step and they
are repeated for every vertex in the input data set, and for a
given number of times. The number of training steps must be
fixed prior to the start of the training process because the rate of
convergence in the neighborhood function and the learning rate
are calculated accordingly.

The SOM-SD requires the processing of data in a strict causal
manner (i.e., from the leaf nodes toward the root). It is not pos-
sible to process nodes in any other order since otherwise in
Step 1) it is possible that not all the states of all neighbors are
available. An extension circumventing this problem has been
proposed in [3] and [4], by introducing a contextual SOM-SD
(CSOM-SD). The CSOM-SD builds on the SOM-SD by adding
a new step to the training procedure which takes both ancestors
and descendants of a node into account. This is similar in na-
ture to SOM-SD, and hence, the SOM-SD can be reduced to the
CSOM-SD accordingly.
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A number of parameters need to be set before starting the
training of a SOM-SD. These parameters (network dimension,
learning rate, number of training iterations) are problem depen-
dent and are also required for the standard SOM. The weight
value p introduced with the SOM-SD is an additional parameter
which can be computed while executing the training through a
statistical analysis of the size and magnitude of the data labels
which typically remain constant during training, and the coordi-
nate vectors which can change during training. In other words,
1 can be used to weight the input vector components so as to
balance their influence on the distance measure in Step 1). In
practice, however, it is often found that a smaller value for p
can help to improve the quality of the mappings. This is due
to the recursive nature of the training algorithm and to the fact
that a stronger focus on structural information helps to ensure
that structural information is passed on more accurately to all
causally related vertices when processing a tree.

III. ACTIVATION MASK KERNEL

In this section, we show how novel tree kernels can be defined
on the basis of a SOM-SD. The basic idea is to represent each
vertex of a tree by its activation map with respect to a SOM-SD
and then define a kernel which computes the dot product in this
space. Specifically, with no loss in generality, we assume the
neurons to be enumerated according to their position on the map,
e.g., the one obtained by a bottom-up left-to-right visit of the
map. According to this enumeration, each neuron is associated
with a unique index m € {1,...,c}, where ¢ = ab, and a
and b are the horizontal and vertical dimensions of the map,
respectively.

Let ne.[m] denote the set of indices of neurons (from the
SOM-SD) in the e-neighborhood of the neuron with index m,
ie., {m/|Apmm < €}, where A is the topological distance de-
fined on the 2-D map. An interesting measure of similarity be-
tween two STs which takes into account the topology induced
by the SOM-SD can be defined as the cardinality of the inter-
section of the e-neighbors of the neurons mostly activated by
these STs. Let m*(¢1) and m™(¢2) be the indices of the winning
neurons for the root vertices of STs ¢; and ¢, respectively, and

I.(t1, 2) = neJm* (t1)] N ne.fm* (t2)] )

be the set of indices of neurons shared by the two e-neighbors,
then a similarity measure between trees 77 and T5 can be defined
by the function

ED(M,Ty) = Y Y Lty t2)]. ©)

t1 €T t2 €T

Alternative functions which emphasize the alignment between
the activation profiles of two STs can be considered instead of
the strict intersection. For example, it is possible to weight dif-
ferently matching regions depending on their distance from the
activated neurons

KT Ty = 3 Qulm,m (5)Qu(m,m* (1))
t €Ty,
ta€To,
mel(ty,t2)
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where Q. (m,m’) is a decreasing function of the distance A,/
between map neurons with indices m and m’, and Q. (m, m') =
0 when the neurons are not in the e-neighborhood of each other,
i.e., Ay > €. As an example, Q.(m,m’) can be defined as

N _ € — nAm,m'a if A'mm,’ S €
Qe(m,m’) = {0, otherwise

3)

where 0 < n < 1 is a parameter determining how much the
distance influences the neighborhood activation. The similarity
function K (711, T») is a kernel for any choice of Q.(m,m'). A
way to demonstrate it is to show that there exists a function ¢
such that for every 17, T, we have ¢(11) - p(1s) = K (T1,T3),
i.e., K. can be expressed as a dot product in the feature space
induced by ¢.

Specifically, let us define a feature space of the same dimen-
sion as the map produced by the SOM-SD, i.e., ¢, thus obtaining
¢(T) € Re. Given a tree T, we can define the mask M € R°
where every element of M is associated to a neuron of the map.
Let M be initially set to the null vector. The feature vector is
then constructed by computing the best-matching neuron m*(¢)
foreach STt € T when presented to the SOM-SD. Then, the en-
tries of M associated to neighbors within radius € of m*(¢) are
updated according to M,,, = My, + Q.(m, m*(t)); finally, the
feature vector ¢(T') will be defined as ¢(T) = [My,..., M.].
At this point, it is easy to check that for a given tree T,
M, (T) = > ,cr Qe(m, m*(t)) where ¢ runs over all possible
STs of T', and we can check that the kernel is obtained by
performing the dot product in feature space, i.e.,

M(Tv) - M(13)

= > Mn(T1) M (To)
=D > Qelmm*(t) - Y Qe(m.m*(t2))

S Y (Qumam® (1)) - Qulm,m*(12))

t1€T,t2€T> m

>, >

ti,to mel (ty,t2)

:KE(T17T2)

(Qe(m,m(t1)) - Qe(m, m*(t2)))

where the third derivation is justified by the fact that
Q:(m,m*(t)) = 0 whenever m is not in the e-neighbor-
hood of m*(t).

Since this kernel is built on activation masks of a SOM-SD,
we will refer to this approach as the activation mask kernel (AM-
kernel).

Fig. 2 gives an example of construction of the feature space
representation of three trees according to the AM-kernel.
Fig. 2(a) reproduces three simple trees selected from the INEX
2005 data set (see Section IV) and Fig. 2(b) presents their
activation masks referring to a 5 x 4 map. The height of each
element of the map corresponds to the value of the activation.
Note that the activations of a map depend on the parameter ¢
and that similar trees tend to have similar activation maps.

It should be noted that, unlike ST and SST kernels, the AM
kernels do not require the introduction of the A parameter since
the number of involved features only scales linearly with the
depth of the trees.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 12, DECEMBER 2009
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Fig. 2. Example of representation in feature space of three trees according to
the AM-kernel for e = 1. (a) Three simple trees and (b) their activation masks
referring to a 5 X 4 map. The height of each element of the map corresponds to
the value of the activation.

Note that the proposed approach requires the initial training
of a SOM-SD, which however is performed only once, thus not
affecting the overall computational complexity of kernel evalu-
ations.

IV. EXPERIMENTS AND RESULTS

Experiments have been performed to evaluate the perfor-
mances of the different methods, namely, SOM-SD, ST and
SST kernels for trees, and the new AM kernel. In particular,
we used a relatively large set of XML formatted documents
which have been used for the 2005 INEX Competition3 [17].
Specifically we have used the corpus (m-db-s-0), which consists
of 9640 documents containing XML tags only, i.e., no further
textual information available. All documents have one out of 11
target values. For the kernel methods, we used 3377 documents
as training examples, while 1447 documents constitute the
validation set. All remaining documents form the test set. Note
that SOM-SD models are trained in an unsupervised fashion
which does not benefit from having a validation data set.#
Hence, the SOM-SD has been trained on the 3377 + 1447

3Data can be downloaded from http://xmlmining.lip6.fr

4It is a known problem with SOMs that the training parameters need to be set
in a trial-and-error approach due to the unsupervised nature of the SOM training
algorithm. Several SOMs are typically trained on the same data set using varying
training parameters. The best performing SOM (i.e., best with respect to the
clustering performance) is then normally chosen.
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documents while using target labels solely for evaluating the
performance of a trained network.

A tree structure is extracted for each of the documents in the
data set by following the general XML structure within the doc-
uments. This was a simple process since there were no further at-
tributes associated with the XML tags. This resulted in a data set
consisting of 684 191 vertices (STs) with maximum outdegree
6418. Some preprocessing step was performed on the data set in
order to reduce its dimensionality. Note that the applied prepro-
cessing step is not strictly necessary, and has simply been done
to help reduce the turn around time for the experiments. The pre-
processing step removes redundancies in the data set without
destroying relevant structural information, and hence, does by
no means aim at transforming a graph structure into a simpler
(i.e., vectorial) form. Moreover, this preprocessing replicates the
procedures taken in [18] to produce the state-of-the-art perfor-
mance on this data set.

A first step collapses redundant (repeated) sequences of tags
within the same level of a structure. For example, the structure:

<BB>
<a></a>
<b></b> <BB>
:zz:;zz is consolidated to ::::;Zz
<a></a> </B>.
<b></b>

</BB>

A further dimensional reduction has been achieved by col-
lapsing simple substructures which have the property of a
data sequence into a single vertex. For example, the sequen-
tial structure <A><b><c></c></b></A> can be collapsed to
<A><b & c></b & c></A> and even further to <A &b &c>. Note
that this later step does not remove any information from the
data set. It merely reduces the number of trivial nodes in a data
set. The preprocessing step reduced the maximum outdegree
to 32, and the total number of vertices to 124 359. This greatly
reduces the size of the data set and, in practice, helped to reduce
the execution times to hours.5

The SOM-SD was shown to produce the best known clus-
tering performance on these data by participating and winning
the international competition on the clustering of XML struc-
tured documents [18].

SVM-based multiclass classification of the data set was
obtained by using the one-against-all methodology. First 11
binary classifiers, each devoted to recognize a single class,
were trained. Then, the prediction for the 11-class classification
task is given by the class whose associated classifier gets the
highest confidence. Best hyperparameters for the different
methods were selected comparing classification accuracies on
the validation set. The obtained hyperparameters setting was
then used to train a multiclass classifier on the union of the

STraining a SOM-SD of size 125 required 48 h on a 2-GHz single core central
processing unit (CPU). Without the removal of redundancies in the data set, it
would have required weeks to train a SOM of the same size. After training, the
application to the test set only required 7 min. Training an SVM with the SST
kernel directly on the original data was estimated not feasible.
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TABLE 1
RESULTS AND STATISTICS OF THE TREE KERNELS
classification error | Sparsity Index | Alignment
ST Kernel 11.27% 0.5471 0.567966
SST Kernel 11.21% 0.5471 0.462764

training and validation sets. The resulting classifier was then
evaluated on the test set.

As a baseline, the SVM with ST and SST kernels [19] was
applied to the same data set. Training times were very dependent
on the used values for the hyperparameters, and ranged from few
minutes to days of computation.® The obtained results, together
with the values of the sparsity index and alignment for each
kernel, all computed on the test set, are shown in Table 1. In
this table, the sparsity index is computed as the proportion of
example pairs in the instance set .S whose kernel value is 0

[{i,j € SIK(i,5) = 0}
|S1? '

“

The alignment is computed as described in Section II-B. The
best accuracy on test set has been obtained by the SST kernel
with an error rate of 11.21%. This result was obtained by setting
A (see Section II-A) to 1.1 and setting the C' hyperparameter of
SVM to 10. Table I shows that both ST and SST kernels are very
sparse.

The maps we used for this study were created by the SOM-SD
software.”

Training a SOM-SD involves the setting of many parameters.
Due to SOM-SD training times (e.g., about 12 h for a single large
map (110 x 80) on an AMD Athlon(tm) 64 X2 Dual Core Pro-
cessor 3800+), and the number of parameters involved, acompre-
hensive sampling of the parameter space was not feasible. Thus,
we decided to run preliminary experiments involving the valida-
tion set to sort out the mostrelevant parameters with respect to the
definition of the proposed kernels. The selected parameters were
the map size, the number of training iterations, and the value of
. For these parameters, the following values were used:

* map size: 110 x 80, 77 x 56, 55 x 40;

* number of training iterations: 32, 64, 128;

* u:0.05,0.25,0.45,0.65, 0.85.

For what concerns the other SOM-SD (hyper)parameters, the
following values were chosen: « = 1, neighborhood radius
= 18, type of a decrease = sigmoidal, map topology = hexag-
onal. By combining the above parameters, 45 different maps
were built with the aim of spanning as much as possible the
space of SOM-SD parameters and therefore getting insights
on the dependency of the final results on the maps. After the
training phase, each map was evaluated on the test set using a
k-NN procedure with & = 1. Table II reports the classification
performance of each map. Note that the resulting classification
error ranges from significantly above the baseline (35.169%) to
a very much lower values of the classification error (8.647%).
This means that the results are indeed very sensitive to the
parameters’ choice.

6Similar computation times were observed when using the AM kernels.

Thttp://www.artificial-neural.net/software.html
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TABLE II
CLASSIFICATION ERROR OF THE SOM-SD MAPS. LOWEST ERROR IS IN BOLD

map | map size | training iterations “w test error (%)
1 110 x 80 128 0.05 12.264
2 110 x 80 128 0.25 14.259
3 110 x 80 128 045 11.370
4 110 x 80 128 0.65 10.455
5 110 x 80 128 0.85 8.647
6 110 x 80 32 0.05 12.617
7 110 x 80 32 0.25 16.587
8 110 x 80 32 045 10.912
9 110 x 80 32 0.65 15.423
10 | 110 x 80 32 0.85 11.661
11 110 x 80 64 0.05 13.282
12 | 110 x 80 64 0.25 11.723
13 | 110 x 80 64 045 14.238
14 | 110 x 80 64 0.65 11.245
15 | 110 x 80 64 0.85 8.855
16 55 x 40 128 0.05 21.638
17 55 x 40 128 0.25 29.079
18 55 x 40 128 045 28.081
19 55 x 40 128 0.65 21.326
20 55 x 40 128 0.85 22.511
21 55 x 40 32 0.05 35.169
22 55 x 40 32 025 32.488
23 55 x 40 32 045 27.770
24 55 x 40 32 0.65 22.137
25 55 x 40 32 0.85 25.629
26 55 x 40 64 0.05 31.844
27 55 x 40 64 025 27.541
28 55 x 40 64 045 27.749
29 55 x 40 64 0.65 20.121
30 55 x 40 64 0.85 19.144
31 77 x 56 128 0.05 21.451
32 77 x 56 128 0.25 24.215
33 77 x 56 128 045 23.488
34 77 x 56 128 0.65 16.296
35 77 x 56 128 0.85 9.956
36 77 x 56 32 0.05 16.234
37 77 x 56 32 025 22.282
38 77 x 56 32 045 19.310
39 77 x 56 32 0.65 18.624
40 77 x 56 32 0.85 17.585
41 77 x 56 64 0.05 17.169
42 77 x 56 64 025 22.864
43 77 x 56 64 045 21.721
44 77 x 56 64 0.65 9.457
45 77 x 56 64 0.85 15.735

Experiments proceeded by testing the AM-kernels defined
in Section III. For each map and for different values of ¢ [see
(1)] a kernel was defined. For each kernel, the C' parameter of
the SVM was selected on the validation set from the following
values: 0.001,0.01,0.1,1,10, 100, 1000. Finally, with the se-
lected value, an SVM was trained on the union of the training
and validation sets and then evaluated on the test set.

The classification error of each AM-kernel is reported in
Table III. In the last two columns of the table, we have re-
ported the error improvement (in percent) obtained by the
best performing kernel on the validation set (in bold) when
varying the e value with respect to SOM-SD and SST per-
formance, respectively. Specifically, let €4, €st, €4m be the
SOM-SD, SST, and AM errors, respectively, then the im-
provement with respect to (w.r.t.) SOM-SD is computed as
100 X (€sq — €am)/€sa- Similarly, the improvement w.r.t. SST
is computed as 100 X (€s¢t — €qm )/ €st-

In these experiments, the use of the AM-kernel always im-
proved the classification performance. In some cases, the error
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TABLE III
CLASSIFICATION ERROR OF THE AM KERNEL. THE ¢ THAT WOULD BE
SELECTED IN VALIDATION FOR EACH MAP IS IN BOLD. THE MAP THAT
WOULD BE SELECTED IN VALIDATION IS UNDERLINED. THE
IMPROVEMENT WITH RESPECT TO SST FOR EXAMPLE

Is COMPUTED AS 100 X (€5; — €am )/ €st
Map Classification error with Activation Mask kernel Improvement ratio (%) w.r.t
e=0]e=1|e=2|€e=3|e=4]|e=5| SST SOM-SD

1 7.046 | 6.215 | 6.153 | 6.340 | 6.672 | 6.693 | 44.6 49.3
2 7.358 | 6444 | 6.381 | 6.589 | 6.485 | 6.755 | 43.1 55.2
3 6.610 | 5.383 | 5.238 | 5.654 | 6.132 | 6.194 | 533 53.9
4 6.319 | 5.841 | 5716 | 6.256 | 6.568 | 6.568 | 44.2 40.2
5 6464 | 5965 | 6.277 | 6.693 | 7.254 | 6.340 | 40.3 22.6
6 6.028 | 5280 | 5.196 | 5.695 | 6.236 | 6.630 | 53.6 58.8
7 6.610 | 5.945 | 5259 | 5425 | 5487 | 5508 | 50.9 66.8
8 6.506 | 5.737 | 5737 | 5903 | 5.737 | 5.986 | 48.8 47.4
9 5.965 | 5737 | 5924 | 6.153 | 6.194 | 6.049 | 472 61.6
10 6.028 | 5.695 | 5945 | 6.173 | 6.194 | 6.402 | 47.0 49.0
11 6.485 | 6.090 | 6.028 | 6.402 | 6.485 | 6.340 | 46.2 54.6
12 6.818 | 5.633 | 5342 | 5674 | 5425 | 5882 | 523 54.4
13 6.444 | 5321 | 5.404 | 5300 | 5.550 | 5591 | 51.8 62.0
14 6.111 | 5217 | 5280 | 5425 | 5758 | 5.924 | 48.6 48.8
15 6.672 | 5.529 | 5.882 | 6.049 | 6.153 | 6.589 | 47.5 33.6
16 7462 | 6984 | 7.524 | 7.691 | 7.545 | 7.566 | 37.7 67.7
17 7.732 | 7.358 | 6.838 | 7.088 | 7.005 | 7.233 | 39.0 76.5
18 7.878 | 7.982 | 8273 | 8.252 | 7.753 | 8.252 | 26.2 70.5
19 7.026 | 7.192 | 6,901 | 7.524 | 7.275 | 7.005 | 329 64.7
20 7.358 | 7.067 | 7.566 | 7.649 | 7.462 | 7.732 | 31.8 66.0
21 8.501 | 8.127 | 8.293 | 8.293 | 8.584 | 9.146 | 26.0 76.4
22 8.834 | 9.083 | 8.626 | 8.938 | 9.104 | 8.938 | 19.0 72.0
23 8397 | 8.397 | 8.127 | 8293 | 8.065 | 8.190 | 26.9 70.5
24 8.605 | 8.792 | 8.418 | 8.709 | 8.584 | 8.481 | 232 61.1
25 8.273 | 8.481 | 8.481 | 8917 | 8.709 | 8.481 | 243 66.9
26 8.896 | 8.543 | 8.626 | 8.377 | 8.356 | 8.501 | 20.6 72.1
27 7.628 | 7.296 | 6.859 | 7.233 | 7.379 | 7.400 | 349 73.5
28 6.880 | 7.129 | 6.963 | 7.337 | 7.483 | 7.441 | 33.6 73.2
29 7.649 | 7.129 | 7919 | 7.732 | 7.608 | 7.940 | 364 64.6
30 8.460 | 7.899 | 8.148 | 8.148 | 7.857 | 8.190 | 24.5 55.8
31 7753 | 7.483 | 7.774 | 8.044 | 8.896 | 7.899 | 332 65.1
32 7.171 | 7213 | 7.483 | 8.106 | 8.086 | 7.566 | 33.2 69.1
33 7.067 | 6.693 | 6.547 | 6.610 | 6.527 | 6.859 | 41.6 72.1
34 6.381 | 6.444 | 6.028 | 6.527 | 6.901 | 6.942 | 41.8 59.9
35 6.444 | 5571 | 5716 | 6.194 | 6.360 | 7.067 | 49.0 42.6
36 6.319 | 5.716 | 5737 | 6901 | 6.028 | 6.069 | 49.0 64.8
37 7.587 | 7213 | 6.818 | 6.901 | 7.192 | 6.818 | 39.2 69.4
38 6.256 | 6.256 | 6.007 | 6.236 | 6.527 | 6.880 | 44.2 67.6
39 7.400 | 6.631 | 6776 | 7.254 | 7.795 | 7.524 | 40.8 64.4
40 6.735 | 6.360 | 6.090 | 6.776 | 6.693 | 6.797 | 43.3 63.8
41 6.340 | 6.132 | 6.527 | 6.568 | 7.504 | 7.192 | 434 63.1
42 7.026 | 6402 | 6714 | 7.441 | 6.776 | 6.880 | 33.6 67.5
43 7.026 | 6.901 | 7.026 | 7.171 | 7.192 | 7.628 | 36.0 67.0
44 7.129 | 6319 | 6.194 | 6.402 | 6.818 | 6.672 | 44.7 345
45 6.277 | 6.111 | 6.485 | 6.506 | 6.444 | 7.171 | 455 61.2
Mean | 7.110 | 6.687 | 6.694 | 6.968 | 7.041 | 7.109 | 39.5 60.5

Std | 0.814 | 1.030 | 1.044 | 0.996 | 0.956 | 0.893 | 9.423 11.980

is reduced up to 76.5% with respect to SOM-SD and 53.6% with
respect to the SVM with SST kernel. The cumulative low stan-
dard deviation (see bottom of table) obtained for the AM ker-
nels suggests that the improvement is quite independent with
respect to the chosen map. In order to further discuss the de-
pendence of the AM-kernel accuracy from the related map, a
graphical comparison among the classification error on the test
set of the methodologies involved in the experiment has been
made in Fig. 3. The error values of the AM-kernel are related
to the e value selected on validation. The plot suggests that the
map accuracy influences the error of the AM-kernel. Neverthe-
less, starting from any map, the error obtained by the AM-kernel
is significantly lower than the SST and SOM-SD ones.
According to these experiments, the method used for se-
lecting the parameters is reliable. In fact, if for each map we
select the best performance obtained on the test set and we
subtract this value from the performance obtained by the value
of ¢ selected on the validation set (in bold), the mean value
obtained over the set of maps is 0.25 (with standard deviation
0.256). Moreover, selecting both the map and the € in validation
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Fig. 3. Comparison between classification error of the different techniques on the INEX 2005 test data set. Maps on the x-axis are sorted by SOM-SD classification
error. The error values of the AM-kernel are related to the € value selected on validation (which is reported in correspondence of the map error value).

Sparsity Index

o7 AM Kernel
0.6 L SST Kernel ———
05+
0.4t \\\
03 \
02t N
0.1+ —
0 . . .
0 1 2 3 4 5

neighbourhood size
Fig. 4. Statistics on sparsity of AM and SST kernels. Plot refers to map 6.

would have led us to obtain the best result of Table III (the
underlined value).

In order to explain the obtained results, we collected statistics
about sparsity and alignment on the test with respect to AM
neighborhood size. For what concern sparsity, since the plots for
each map show similar behavior, we have plotted the statistics
collected for a representative map, i.e., map 6, in Fig. 4.

On the contrary, there are basically two different types of
plots for alignment. The first one, exemplified in Fig. 5, is most
common for 110 x 80 and 77 X 56 maps, while the second one,
typical of 55 x 40 maps, is exemplified in Fig. 6.

The plots clearly show that the AM kernel is far less sparse
than the SST one. However, as statistics for the highest values
of € point out, low sparsity does not guarantee high accuracy.
High e values may overrepresent a structure on the map and thus
making it similar to structures which should be considered dif-
ferent for the current task. The different behavior of small maps
alignment plots can be explained by the fact that, if the map
is not large enough, different structures can be represented by
neighboring prototypes. In such cases, any ¢ value larger than 0

33 36 39

Alignment
0.6 . . .
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Fig. 5. Alignment of AM and SST kernels. The illustration corresponds to map

Alignment
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AM-Kernel
SST Kernel

0.46

L L L

0

1 2 3
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4 5

Fig. 6. Alignment of AM and SST kernels. Plot refers to map 19.

may again represent similarly structures that should be different.
In other words, the value of € should not be too high with respect
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Fig. 7. Comparison between classification error of the different techniques on the INEX 2006 test data set. Maps on the x-axis are sorted by SOM-SD classification
error. The error values of the AM-kernel are related to the € value selected on validation (which is reported in correspondence of the map error value).
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Fig. 8. Classification error of the SST and AM-kernel on various data sets with
a different level of sparsity.

to the size of the map. In order to further sustain our claim that
the AM kernel is especially useful for tasks in which traditional
kernels are sparse, we ran the same set of experiments on a sim-
ilar, but nonsparse data set involving XML documents which has
been used for the 2006 INEX Competition [17]. In this case, the
training, validation, and test sets consisted of 4237, 1816, and
6054 documents, respectively. Each document belongs to 1 out
of 18 classes. By applying the same methodology as in the pre-
vious experiment, the following results were obtained. The spar-
sity of the SST kernel is 0.0025, its alignment is 0.316, and its
classification error is 59.31%. In this case, the mean sparsity of
the AM kernels, computed over 45 different maps, ranges from
0.0026 (with standard deviation 0.0000051 ) to 0.0003 (with
standard deviation 0.0003034 ) when considering the same set

of values for the ¢ parameter. The SOM-SD classification error
ranges from 67.66% to 60.77% with a mean value of 63.98%.
The test error of the AM kernel varies from 64.24% to 58.24%
with a mean value of 61.579%.

In Fig. 7, we also report a comparison between classification
error of the different techniques on the INEX 2006 test data,
using the same visualization method explained for Fig. 3. It can
be observed that, while in almost all cases the AM kernel im-
proves on the corresponding SOM-SD map, the SST kernel re-
turns a better performance, thus suggesting that when the SST
kernel is not sparse, it can be quite effective.

In order to make an empirical analysis of the relationship
between sparsity and classification error, we ran a number of
experiments on a set of artificial data sets with different values
of sparsity. We considered the two-class problem of discrimi-
nating the examples of the INEX 2006 data set belonging to
class 8 from the examples belonging to any other class. From
this data set, we created seven data sets with the following
values of the sparsity index with respect to SST kernel: 0.0025,
0.07, 0.15, 0.21, 0.40, 0.57, 0.75. The data sets were obtained
by concatenating to each label a uniformly generated random
number. In this way, identical labels have a chance to be
transformed into different labels, thus adding sparsity. The
number of digits composing the random numbers is constant
and thus no different labels can become equal. By varying the
range of the random numbers the desired level of sparsity can
be obtained. The test has been performed on the following
map: size = 110 X 80, training iterations = 64, u; = 0.45.
Fig. 8 compares the classification error on the test set of the
SST and AM-kernel on each data set. The best parameter of
the SST, i.e., A, is selected on validation among the following
values {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1}. The
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Fig. 9. Comparison between classification error (using threefold cross validation) of the different techniques on the LOGML test data set. Maps on the x-axis are
sorted by SOM-SD classification error. The error values of the AM-kernel are related to the € value selected on validation (which is reported in correspondence of

the map error value).

best € value of the AM-kernel is selected in validation among
the usual values (from O to 5). The experiments suggest that the
AM-kernel is quite robust to the increase of sparsity.

It has not been formally demonstrated that the low-dimen-
sional representation obtained by a SOM-SD is always the one
best representing the topology of the input space. While the
demonstration is beyond the scope of this paper, we empirically
investigated the usefulness of the SOM-SD learning algorithm
by running the same set of experiments on the INEX 2005 data
set starting from random, i.e., nontrained, maps as in [18]. Since
the number of training iterations was fixed to 0, 15 maps were
created. Classification error on the test set of the AM-kernel (re-
sults on the validation set are very similar) ranges from 90.36%
to 28.21% with a mean value of 51.55% and standard deviation
17.68. Results are most evidently correlated with the parameter
w1 higher values of p; give lowest classification error. This is
not surprising since being the map random the structural infor-
mation contained in the neurons is useless or misleading. Thus
the best results are obtained by giving more importance to label
information. The results of the last experiment clearly show the
usefulness of the SOM-SD learning algorithm.

In order to assess whether the obtained results were depen-
dent on the specific data sets involving XML documents, we
decided to perform additional experiments involving a different
type of data. We selected the LOGML data set, which is typi-
cally used for data mining research. It consists of user sessions
of the website of the Computer Science Department, Rensse-
laer Polytechnic Institute, Troy, NY,8 collected over a period
of three weeks. Each user session consists of a graph and con-
tains the websites a user visited on the computer science do-

Shttp://www.cs.rpi.edu

main. These graphs were transformed to trees by only enabling
forward edges starting from the root node. The goal of the clas-
sification task is to discriminate between users who come from
the “edu” domain and users from another domain, based upon
the users browsing behavior. Three data sets are available. They
comprise 8074, 7409, and 7628 examples, respectively. The
maximum outdegree of the trees is 137. The data sets are un-
balanced: for each of them about 76% examples belong to the
positive class. The data sets are very sparse with respect to the
SST tree kernel: the mean of the three sparsity index values is
0.9595.

Because of the availability of the three data sets, it was
natural to compute the classification error of the SST and the
AM-Kernel by performing a threefold cross validation consid-
ering, in each round, one of the data sets as the test set. Ten
maps were trained combining the following parameter values:

* map size: 110 x 80;

* number of training iterations: 32, 64;

* 1 :0.05,0.25,0.45,0.65,0.85.

In Fig. 9, a comparison between classification error of the dif-
ferent techniques on the LOGML test set is plotted, again fol-
lowing the same style of presentation as in Fig. 3. It can be noted
that the results obtained for this data set show less variance since
they are obtained by a threefold cross-validation approach. Also
for this data set, the AM kernel was able to get a significant im-
provement over SOM-SD, and over SST, although the improve-
ment in this case is smaller.

V. DISCUSSION

Our approach is based on the assumption that the projection
of the data on a lower dimensional space should respect the
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topology of the data in the input space. Under this assumption,
the proposed AM-kernel is less sparse than standard tree kernels.
The use of the SOM-SD as a dimensionality reduction technique
proved to be effective in practice. However, the SOM-SD has a
heuristic nature, thus the proposed approach may benefit from
the use of more principled dimensionality reduction techniques.
In some situations, the characteristics of the SOM-SD may
pose challenges to its applicability. As stated in Section II-C,
codebook vectors are a representation of the labels in vectorial
form. When node labels belong to a symbolic domain, in order
to avoid to impose a metric on them, any pair of different
labels should be represented by orthogonal vectors. If the
label domain is large, the size of the neurons, and thus the
time required for training the SOM-SD, greatly increases.
Note that kernels for trees can treat efficiently any symbolic
domain. On the other hand, note that SOM-SD handles naturally
the case in which the labels are represented by numerical
vectors. Standard kernels for trees, on the contrary, cannot
deal effectively with data from continuous domains. While
the formulation of the tree kernels could be easily modified
to handle soft matching, the resultant complexity would be
quadratic. The AM-kernel requires O(n - c-nr) to map the
nodes in the reduced space and O(c¢) to compute the kernel.
There are also computational issues related to the size of the
representation of the children nodes, i.e., 20. The parameter
o should be fixed a priori in accordance to the maximum
outdegree of a tree in the data set. However, when there are
only a few trees in the data set with very high outdegree,
they can be trimmed in order to speed up the learning phase.
The computational challenges of the SOM-SD due to the
size of the representation of the neurons could be handled
by recurring to the kernel SOM approach [20], which uses
only an implicit representation of the neurons.

VI. CONCLUSION

In practical applications involving structured data, the use of
a kernel method may not give an optimal performance because
of the sparsity of the adopted kernel. This is particularly true
for structured data involving discrete variables. In this paper,
we have shown an example of this issue related to the SST
and ST kernels applied to XML documents represented as
trees. We have suggested that such sparsity can be reduced
by first learning a similarity function on the trees and then by
exploiting it for defining nonsparse kernels. Specifically, we
have suggested to learn such similarity function by means of a
SOM-SD, which is an unsupervised, dimensionality reduction,
and “topology” preserving algorithm for structured data. Then,
a family of kernels for trees is defined on the top of the SOM-SD
map. The aim of this approach is to learn, in an unsupervised
fashion, a kernel which is neither sparse nor uninformative.
Experimental results on a relatively large corpus of XML
documents, for which both SST and ST kernels exhibit the
sparsity problem, have shown that the new kernels are able to
improve on the performance of both SOM-SD and the standard
tree kernels. This improvement is quite independent from the
map used to define the kernel, thus showing that the proposed
approach is quite robust. Experimental results obtained on a
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similar data set, for which, however, SST and ST kernels do not
exhibit the sparsity problem, show that there is not a significant
improvement in performances. Thus, it seems reasonable to
state that the proposed approach is particularly suited when
standard tree kernels are sparse. This statement has been ex-
perimentally verified by artificially modifying the previous
data set in order to progressively increase its sparsity. Finally,
experimental results obtained on an additional structured data
set involving a different domain confirmed the performance
improvements when using AM kernels.
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