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Reconstruction From Limited-Angle Projections
Based on � � Spectrum Analysis

Jianhua Luo, Wanqing Li, Member, IEEE, and Yuemin Zhu

Abstract—This paper proposes a sparse representation of an
image using discrete functions. A function is de-
fined as the product of a Kronecker delta function and a step
function. Based on the sparse representation, we have developed
a novel and effective method for reconstructing an image from
limited-angle projections. The method first estimates the param-
eters of the sparse representation from the incomplete projection
data, and then directly calculates the image to be reconstructed.
Experiments have shown that the proposed method can effectively
recover the missing data and reconstruct images more accurately
than the total-variation (TV) regularized reconstruction method.

Index Terms—Limited angle, sparse representation, tomog-
raphy, function, spectrum analysis.

I. INTRODUCTION

T HE aim of computerized tomography (CT) is to recon-
struct the image of an unknown physical object from a

collection of projections. The quality of the reconstructed image
depends on many factors including the range of the projection
angles and the noise level of the projection data. According to
CT theory [1], an image can be reconstructed exactly from com-
plete projections covering a full angular range of 180 . How-
ever, such a complete projection data may be hard to obtain
in some cases due to the practical constraints imposed on the
object or imaging environment. In such cases, projections can
only be acquired from a limited range of angles. For instance,
an object to be inspected may be too big to fit into an X-ray CT
scanner. As a result, the feasible projection angle is limited
to a small range , where , as
shown in Fig. 1(d). Although the angular sampling within the
limited range and the sampling of each projection can be suf-
ficiently dense, the projection data is incomplete [1]–[4]. This
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paper addresses the problem of reconstructing images from lim-
ited-angle projections.

In the past decades, the problem of image reconstruction from
projection data, especially from limited-angle projections, has
been actively studied. Loosely speaking, image reconstruction
methods can be divided into three categories [1], [5], [6]: ana-
lytical, iterative, and statistical. Analytical methods derive the
exact image reconstruction formula from the imaging physics
and geometry. A typical example is the widely used filtered
backprojection (FBP) method [1] which is based on the Radon
transform and Fourier slice theorem. Reconstruction based on
other transforms, such as the finite Hilbert transform [7], has
also been explored. Analytical methods often offer efficient and
effective reconstruction when the projection data is complete.
In the case of limited-angle projections, existing analytical
methods usually produce severe artifacts in the reconstructed
image because of their inability to deal with incomplete data.
Recently, Kesidis and Papamarkos [6] proposed a method for
exact image reconstruction from a limited number of projec-
tions. The method is useful in image analysis as demonstrated
in [6], but would be infeasible for limited-angle CT due to
the requirements on the projection directions. Tomitani and
Hirasawa [8], [9] proposed an analytical method for image
reconstruction of cone-beam projections from limited-angle
Compton camera data. The method is based on an inversion of
the summed projections and sacrifices the spatial resolution for
noise suppression.

Iterative methods consider the reconstruction problem as
a discrete linear system where projection data is a weighted
sum over the image pixels (or voxels) and solve the linear
system by optimizing a linear or nonlinear objective function
[1], [10]. A typical solution is the algebraic reconstruction
technique (ART) [1], [5], [11], [12] in which the reconstruction
is accomplished by iteratively updating the estimation of the
reconstructed image so that the error between the measured
and calculated projection data is minimized. The basic ART
updates the reconstructed image in a “ray-by-ray” manner and
converges to a least squared error solution that can be very noisy
for limited-angle reconstruction [11]. Various improvements
have been introduced to the ART depending on the amount
of projection data and the way used to update the current
estimation [1], [5]. In the case of limited-angle projections,
the reconstruction problem becomes ill-posed and to solve the
linear system, additional constraints such as non-negativity
of pixel values, piecewise smoothness and prior information
about the reconstructed image are required. These constraints
are usually introduced to the objective function as a term of
regularization [5], [10], [13]–[16]. For instance, Sidky and Pan
[13], [14] proposed an iterative method for circular cone-beam
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Fig. 1. (a) Reference image. (b) and (c) are respectively� ���� �� and � ���� ��. (d) Spectrum ������� �� � � ���. (e) and (f) represent the images of singular
points derived respectively from (b) and (c). (g) ����� �� reconstructed from the zero-padded limited-angle spectral data (11). (h) and (i) represent � ����� �� and
� ����� �� of ����� ��, respectively.

CT by minimizing the total variation of the image subject to
the constraints that the estimated projection data is within a
specific tolerance of the available data, and that the image is
non-negative. In [5], constraints are derived from the desired
properties of the reconstructed binary image by ensuring that
the changes in the contour are restricted to the solutions of
the level set function modeling the distribution of the binary
contours.

In statistical methods [17]–[19], pixel (or voxel in 3-D cases)
values of the reconstructed image are considered as random
variables following some probability distribution. For instance,
the distribution is represented as a wavelet expansion and a
Besov space prior distribution is assumed in [18]. In [19], the
distribution is obtained from previous sample data of the same
patient. Statistical methods explicitly take into account the mea-
surement statistics and noise model. They reconstruct the image
by searching for pixel values such that the measured data has the
largest probability of occurrence, that is, maximum likelihood
(ML) solution. Due to the fact that there is no analytical way to
find an ML solution, algorithms such as the expectation-maxi-
mization (EM), convex algorithms and gradient algorithms are
often used to find the solution in an iterative manner.

The major advantage of the iterative and statistical methods
is that they do not assume the completeness of the projection
data. However, they all suffer from a number of problems that
are inherent in any iterative approach. First, they are highly sen-
sitive to the initial values of the estimated image and iterative
parameters such as the step size and relaxation parameter in
ART. Different initial values could lead to the reconstructed im-
ages having substantially different image quality. Second, ap-
propriate stopping criterion of the iterative process has to be

chosen and the choice of the criterion affects the quality of the
reconstructed image. Third, they hardly converge to a global
optimal solution. Finally, they are often very time-consuming
compared with analytical methods. Some details on different
methods of reconstruction from limited-angle projections can
be found in recent review articles [20], [21].

This paper proposes a novel and effective method for recon-
structing images from limited-angle projections. Like classical
analytical methods, the method reconstructs images using an an-
alytical expression. However, unlike the classical ones that re-
construct images directly from projection data using the analyt-
ical inversion formula, the method does not reconstruct images
directly from projection data, but from a sparse representation of
an image using discrete functions, each being defined as the
product of a Kronecker delta function and a step function. The
parameters of the sparse representation are estimated from the
limited projection data. The major advantages of the proposed
method are that it can effectively recover missing data without
any prior knowledge and it does not suffer from the problems
that iterative and statistical methods have.

The rest of the paper is organized as follows. Section II de-
fines the discrete functions and proposes the sparse rep-
resentation of images using the functions. The spectral analysis
of the functions is described. In Section III, the image
reconstruction method for limited-angle projections is derived
from the representation. A layered algorithm is proposed
for estimating the parameters of the sparse representation from
the limited projection data. Experimental results and analysis
are given in Section IV and Section V concludes the paper with
remarks.
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Fig. 2. Illustration of ��� functions. � ������ ���� � �������������
(upper row) and � ��� ��� � � �� � ���� ������ � �� (lower row).

II. IMAGE REPRESENTATION USING FUNCTIONS

This section introduces discrete functions and the sparse
representation of an image using these functions. The spectral
analysis of the functions is also presented.

A. Definition of Discrete Functions

Let be a point in a 2-D Cartesian lattice . A discrete
function on , denoted as , is defined

as the product of a Kronecker delta function (simply referred to
as a delta function hereafter) in one dimension and a unit step
function in another dimension, where are the param-
eters of the function. Depending on the selection of the
dimension for the delta function and the step function respec-
tively, can be written either as

(1)

where and

or as

(2)

where and .

Fig. 2 illustrates two examples of the function (on a 128
128 Cartesian lattice):
and .

B. Sparse Representation of an Image Using Functions

A discrete image can be considered as a discrete func-
tion defined on a 2-D finite Cartesian lattice . Without loss of

generality, we assume that the image has pixels,
that is, and . can then
be expressed as

(3)

where represents the pixel value at and
is a 2-D delta function.

Using the functions, we can rewrite (3) as

(4)

where the parameters of the
functions are referred to as singular points of image ,
is the number of singular points, and the weighting coeffi-

cients are called as the singular degrees corre-
sponding to the singular points.

Equation (4) is a rather universal representation of discrete
images, which allows us to represent not only piecewise con-
stant images, but also any other types of images, the only differ-
ence being in the number of used functions. For instance,
in the case that the image is purely composed of noise, each
pixel of the image is a singular point, and the number of singular
points is equal to the number of image pixels, that is, .
In most cases, an image always presents some spatial correla-
tion. As a result, we have in general , and the number
of independent variables would be significantly reduced when
reconstructing or representing the image. Therefore, (4) actu-
ally becomes a sparse representation of the image . If the
image is spatially piecewise constant, that is, the image
is composed of spatially correlated segments and pixels in each
segment share the same value, the sparsity becomes particularly
high. This is often the case for medical X-ray CT images and in-
dustrial and security X-ray scanning since the X-ray attenuation
coefficient often varies little within the same tissues and mate-
rials. In fact, the piecewise constant assumption is also the key
assumption employed in all TV-based reconstruction methods
[13], [14].

Substituting (1) or (2) in (4) yields

(5)

(6)

For a given image, (5) and (6) can be obtained respectively
by scanning the image in a column-by-column or row-by-row
manner. For example, assume that the values of the first 9 pixels
in the ’th row of an image is 1,1,1,2,2,2,0,0,0. These pixel
values can be represented using the functions as

, where selects
the th row and represents
the pixel values.
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Let us consider the difference between two neighboring
pixels in the same column (along the vertical y-direction).
From (5) and (1), we have

(7)

Equation (7) reveals that singular points are located at the
pixels whose difference value along the y-direction is not zero.
Similarly, singular points are located at the pixels whose differ-
ence along x-direction is not zero if the image is represented as
(6).

C. Spectral Analysis of Images

Let be the Fourier spectrum of
and be the

Fourier spectrum of the function. Taking discrete Fourier
transform of both sides of (5) leads to

(8)

Equation (8) indicates that the Fourier spectrum of the image
is a weighed sum of the spectra of the functions. We refer
to (8) as the spectral analysis of image . Similar
spectrum analysis formula can be derived from (6).

Equations (5) and (8) define a general model of anal-
ysis of images, with which, for a given set of functions
(or spectrum functions), any image and its spectrum can
be completely determined solely by its singular points and the
corresponding singular degrees or weighting coefficients. In ad-
dition, an image can be expressed in terms of two different sets
of singular points corresponding to the choice of (5) or (6). The
number and locations of the singular points in the two sets are
often different depending on the structure of the image. For the
given image shown in Fig. 1(a), there are 730 singular points [as
shown in Fig. 1(e)] and, therefore, 730 functions are re-
quired to represent the image using whereas
only 525 functions are required when
is adopted. In the case that the singular points of image
are known, only small proportion of the spectral data of
is required to determine the weighting coefficients. Therefore,
the sparse representation of an image provides an effective
way to recover missing data. In the following section, we will
describe our method to reconstruct an image from limited-angle
projections through spectrum analysis.

III. LIMITED-ANGLE IMAGE RECONSTRUCTION USING

SPECTRUM ANALYSIS

According to the Radon transform and Fourier slice theorem
[1], [5], [6], the 1-D Fourier transform of the data projected
from one direction is a slice of the 2-D Fourier transform of
the image. The slice goes through the origin of the 2-D spec-
tral space and is perpendicular to the direction of the projec-
tion. In the case of complete projections that continuously scan
over 180 , the slices from all projection directions constitute a
complete Fourier spectrum of the image to be reconstructed. In

Fig. 3. Degraded delta function ���� ��.

limited-angle projections, the projections are limited to certain
range of angles and the spectral slices acquired from the projec-
tions only form a partial or incomplete spectrum of the image
to be reconstructed [as shown in Fig. 1(d)]. The partial spec-
tral data is known as limited-angle spectral data and the scanned
spectral space having spectral data is referred to as limited-angle
space. The missing spectral data needs to be recovered so as to
reconstruct the image.

Let be a binary mask matrix defined in the spectral
space of the image to be reconstructed and elements are ones
if they are within the limited-angle space and zeroes otherwise.
That is

otherwise.
(9)

For complete projections, all elements of will be
ones. We then have , where de-
notes the number of nonzero elements in , and the in-
verse Fourier transform of will be a delta function. In
the case of limited-angle projections, let

(10)

where IDFT designates inverse discrete Fourier transform, be
the degraded delta function (Fig. 3), due to the missing spectral
data outside the limited-angle space. Since is always
symmetric to the origin, is a real function.

being the Fourier spectrum of the image ,
is the spectrum obtained from the lim-

ited-angle projections with zeros padding to the elements out-
side the range of the projection angles. If the image

contains sufficient information
on the singular points of , we can estimate the singular
points and their singular degrees respectively from and

and then reconstruct the original image
using its representation [equation (5) or (6)].
is a degraded version of given by

(11)

where denotes convolution.
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A. Extraction of Singular Points

Notice from (11) that the degradation of the reconstructed
image resulted from the limited-angle projections is equivalent
to the convolution of the original image with the degraded delta
function , as shown in Fig. 1(g). Similarly, the difference
image along the y-direction has also been corrupted by the de-
graded function

(12)

Substituting (7) into (12), we have

(13)

where is the function being shifted to
the singular point .

Comparing (13) to (7), it can be seen that the difference in
the limited-angle projections case has become the weighted sum
of the functions instead of delta functions

, but the weighting coefficients remain un-
changed. Notice that is zero everywhere except
at the location of whereas has nonzero values at
almost all locations. This means that it is impossible to detect
the singular points from the difference image simply
using nonzero difference values. Fig. 1(b) and (h) clearly shows
respectively the and of the Shepp–Logan
phantom, and Fig. 1(c) and (i) demonstrate the and

. Both and have nonzero values
at almost all pixels. The number of singular points that could
have been detected from or is much larger
than the number of true ones detected from (525
points) or (730 points) respectively.

According to (13), the difference image is the
superposition of oscillating functions
centered at , and , respectively.
All oscillating functions will interfere
with each other. Singular points having higher singular degrees
will have larger oscillations and stronger interference with
the singular points having smaller singular degrees. When the
largest oscillating component is removed from , the
second largest oscillating component, which may be buried
by the largest oscillating component, will become the largest.
This leads us to extract the singular points from
in a layered manner. Assuming that the singular points are
rearranged according to the absolute value of their singular
degrees, that is, ,
we have (i.e.,

reaches the maximum value at the first sin-
gular point). Therefore, the point having the maximum

value is taken as the first singular point .
Once the first singular point is detected, the component

corresponding to the first singular point,

where , is subtracted from
, yielding the residue .

The point at which the absolute value of this residual image
reaches maximum is then taken as the second singular point.
Repeating this two-stage process until the maximum absolute
value of the residue is smaller than a predefined threshold ,
the singular points can be detected one by one.

Selection of the threshold is subject to the noise level in the
image. If it is too large, there is a risk of having false negative
detection of the singular points. If it is too small, false positives
are likely to occur due to the noise. Therefore, there exists an
optimal value for the threshold . Empirically, the optimal
value is around the value of four times the standard deviation of
the noise; experimental results on the influence of the threshold

on the reconstruction are given in Section IV. The algorithm
is described as follows.

Input: (or ),
Step 1) Find the location at which is

maximum, i.e., .

Step 2) Construct the function
with Update

by subtracting
from it

(14)

Step 3) If , where is a

predefined threshold, and go to step 1 to
extract the next singular point.

Step 4) Output the set of singular point candidates
. After the

singular points are obtained from , their
singular degrees will be computed in the spectral
domain as described in the following section.

B. Estimation of Singular Degrees

The singular degrees corresponding to the
detected singular points can be estimated by solving a set of
linear equations formed by the obtained limited-angle spectral
data and the spectra , according
to (8). The algorithm for determining singular points as well as
singular degrees is given below.

Step 1) Calculate the Fourier spectrum of the limited-angle
projections and construct the degraded function

.
Step 2) Compute

and .
Step 3) Extract the singular point set

using the
algorithm of layered singular points extraction.

Step 4) For each singular point , construct a
function (or )
and calculate its spectrum
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Step 5) From the limited-angle spectral data, construct a set
of linear equations

(15)

with .
Step 6) Estimate the singular degrees by

solving the linear system (15). If , then the
’th singular point is considered to be a false one

and discarded therefore.

Note that solving the system of equations in spectral space
aims at obtaining the singular degrees. When the true singular
points are included in the set of singular point candidates de-
tected using the layered extraction method, the nonzero solu-
tions correspond to the true singular points, and the solutions
that are equal to zero correspond to false singular points that
will be discarded. If there are too many false singular points, the
efficiency of solving the system of equations will be reduced,
and moreover it would require more spectral data. On the other
hand, if the set of detected singular point candidates contains
only a subset of true singular points, the number of equations of
the system is reduced, and the time of computation is reduced
as well, but the solutions obtained in this case undergo errors.

In practical cases, images being always noisy, the singular
points buried in the noise (i.e., singular points whose singular
degrees are smaller than the noise level) are difficult to detect,
and the determination of other singular points and their singular
degrees are also subject to the influence of noise. Nevertheless,
the missing singular points should yield relatively small recon-
struction errors because they have small singular degrees due
to the mechanism of the layered extraction. For these reasons
the proposed method is resilient to noise as demonstrated in
Section IV.

C. Reconstruction of

Given the estimated singular points and degrees, the image
can be directly calculated from the set of func-

tions based on (4). Alternatively, the full spectrum of
the image is first estimated using (8) and is calculated
through inverse Fourier transform. Both methods are equivalent.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The popular Shepp–Logan phantom and real X-CT lung im-
ages were used to verify the theory of the spectrum analysis
and effectiveness of the proposed method for image reconstruc-
tion from limited-angle projections, both of them have 256
256 pixels and 256 grey levels. Parallel projection in each direc-
tion consists of 363 data points, and angular sampling is uniform
with the interval of 0.5 . Limited-angle projections were simu-
lated by taking the projection data within the specified range
of projection angles. Images were reconstructed using both the

method and the TV method proposed in [14] and were
compared with reference images. The TV method consists of
the following steps: a) initialize the image to be reconstructed
to zero; b) iteratively reconstruct the image such that its projec-
tions are consistent with the measured projections; c) impose

Fig. 4. STD values of the TV method and the proposed method with different
ranges of the projection angles.

the positivity constraint on the reconstructed image; d) update
the reconstructed image iteratively using the gradient descent
method to minimize its TV; e) repeat steps b), c) and d) until
there is no appreciable change in the intermediate images. For
the proposed method, the threshold in all experiments
was empirically set to where is the standard deviation of
the noise in the image.

Both visual and objective comparisons were conducted. Vi-
sual comparison was made in both spatial and spectral (dis-
played as domains. To measure the ac-
curacy of the reconstruction, we compute the standard deviation
(STD) of the errors between the reconstructed image and
reference image

(16)

where and
, and the peak signal-to-noise ratio

(PSNR) of the reconstructed image

(17)

B. Experimental Results

We first conducted a series of experiments to evaluate the
reconstruction accuracy of the proposed method for different
ranges of projection angles. Gaussian noise was added to the
projection data such that the SNR of the projection data is about
29.8 dB. Images were reconstructed using the TV method and
the proposed method by varying the projection angle range
from 90 to 179 . The STD values for both methods are shown
in Fig. 4.

The STD values have indicated that the proposed method sig-
nificantly reduced the reconstruction errors and constantly out-
performed the TV method for different ranges of projection an-
gles. When the projection angle range is 144 , the PSNR of the
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Fig. 5. Reference image (first row) and examples of the reconstructed images.
Columns 1 and 2 show the images reconstructed using respectively the TV and
� � � methods. The ranges of projection angles are 166 , 142 , and 118 re-
spectively from the second row to the last row.

image obtained with the proposed method is about 34.1 dB com-
pared with 27.9 dB for the image obtained with the TV method.
In addition, the reconstruction error of the proposed method de-
creases more quickly than that of the TV method as projection
angle range increases. This means that the method can
more effectively utilize the available projection data and, thus,
reconstruct the image more accurately.

On the other hand, the proposed method is more sensitive to
the projection angle range than the TV method. When the range
of the projection angle is less than 90 , the trend of the error

Fig. 6. Corresponding Fourier spectra of the images shown in Fig. 5.

curves indicates that the TV method may produce better images
than the method. This is probably because not all of the
singular points can be extracted when the range of the projection
angles is too small.

Fig. 5 shows the reference image (first row) and the
reconstructed images for three projection angle ranges. The pro-
jection angle ranges were 166 , 142 and 118 respectively
from the second row to the last row. Images in the first and
second columns are the images reconstructed respectively using
the TV and methods. The corresponding Fourier spectra
of the images in Fig. 5 are shown in Fig. 6. It is clear that the
TV method created severe artifacts in the reconstructed images
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TABLE I
PSNRs (dB) OF THE IMAGES RECONSTRUCTED BY THE TV AND � � � METHODS AT DIFFERENT NOISE LEVELS

Fig. 7. STD values of the TV and ��� methods at different noise levels when
the range of the projection angles is 144 .

in each situation and the images produced by the method
have sharp edges. From the spectra shown in Fig. 6, it can be
easily seen that the TV method has little ability to reconstruct
missing spectral data. In contrast, the method effectively
recovered the missing spectral data. The overall texture pattern
of the missing spectral data was surprisingly recovered by the

method whereas the TV method was not able to recover
the pattern.

We also conducted the experiments to test the noise sen-
sitivity of the proposed method. In the experiments,
zero-mean Gaussian noise was added to the projection data of
Shepp–Logan head phantom. The STD values corresponding
to different noise levels and the SNRs of the projection data
are given in Table I. Fig. 7 shows the STD values for both
the TV and the proposed methods when the projection angle
range was set to 144 (scanning from 18 to 162 ) and the
corresponding PSNRs of the reconstructed images are given in
Table I. Overall, the proposed method reconstructed the
images more accurately with far lower STD and higher PSNR
values than the TV method for all specified noise levels. It is
interesting to notice that in the noise-free case, the PSNR of
the image obtained with the proposed method reaches 41.7 dB
whereas the PSNR of the image obtained with the TV method
is only 29.0 dB. Obviously, the TV method failed to give
desirable improvement in reconstruction accuracy in this case.
Notice that the STD value for the method increases as
the noise level of the projection data increases. This is mainly
because noise may cause false detection of singular points. In

Fig. 8. Images reconstructed by the TV method (left column) and the proposed
� � � method (right column) at noise levels 1 (upper row) and 9 (lower row).

Fig. 9. Variation of the STDs of reconstruction errors as a function of threshold
� used in the proposed � � � method.

a case when the noise level is extremely high the TV method
may produce better image than the method since the
noise could severely corrupt the singular points. Fig. 8 shows
the images reconstructed by the TV method (left column) and
the proposed method (right column) at noise levels 1
(upper row) and 9 (lower row). In both cases, the method
produced sharper and more accurate images.

In the above experiments, the threshold in the method
was fixed to where is the standard deviation of the noise in
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Fig. 10. Reconstructed lung CT images. Upper row: The true lung CT image (left) and the images reconstructed by the TV method (middle) and the proposed ���

method (right). Lower row: Image profiles along the central horizontal lines obtained with the TV method (left) and the � � � method (right). The corresponding
true profiles are plotted as solid lines.

the image. Fig. 9 shows the sensitivity of the proposed method
to the threshold at different noise levels. As expected, the
higher the noise level in the image, the larger the STD values
or the reconstruction errors regardless of the value. In our
experiments, the reconstruction errors reached minimum when

was around for all noise levels except the noise levels 1
and 2 in which the reconstruction errors remained same for the

values ranging from to . This is probably because at
noise level 1 or 2 the singular points were reliably detected with
any of these values. For the other noise levels, a value of
achieved a good compromise between false positives and false
negatives in detecting the singular points. When the value
was significantly less or greater than , more false positives or
false negatives occurred, respectively, hence, resulting in higher
reconstruction errors.

To test the proposed method in the case of real images, we
simulated the projection data from a lung CT image which con-
tains both homogeneous and texture regions. Images were re-
constructed from the projections scanning from 18 to 162 .
In Fig. 10, the upper row shows the true lung CT image and
the images reconstructed by the TV method and the proposed

method, respectively. The lower row of Fig. 10 illustrates
the image profiles along the central horizontal lines obtained
with the TV method (left) and the method (right). The

corresponding true profile is plotted as a solid line and over-
lapped onto the reconstructed profiles. As seen from the images,
the reconstructed images appear visually comparable inside the
cavity. However, in the homogeneous areas, the image obtained
with the method is much closer to the true image than
the image obtained with the TV method. In addition, the
method reconstructed the texture area more accurately than the
TV method. This can be clearly seen from the profiles.

It has to point out that the TV method has much higher com-
putational cost than the proposed method. We implement
both methods in Matlab. The number of iterations for the TV
method was 100, and it took about 639 s to reconstruct one 256

256 image while the method only took about 9.5 s.

V. CONCLUSION

This paper presents an effective method for image reconstruc-
tion from limited-angle projections based on the sparse repre-
sentation of a discrete image using functions. The parame-
ters of the sparse representation are estimated from the lim-
ited-angle projection data. The sparse representation of the
image substantially reduces the number of variables and, conse-
quently, turns the ill-posed problem of limited-angle image re-
construction into a well-posed one. In most cases, the singular
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points can be effectively detected from the limited-angle projec-
tion data by the proposed layered extraction algorithm and the
singular degrees can be obtained by solving a set of linear equa-
tions in Fourier domain. However, high-level noise may cor-
rupt weak singular points and cause false detection of singular
points. It can also introduce errors in the estimation of the sin-
gular degrees even though the singular points are extracted cor-
rectly. The experimental results have shown that the proposed

spectrum analysis method can recover missing spectral
data more effectively than the TV method and reconstruct the
image more accurately.
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