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Abstract 
A new paradigm for programming a robotics 
manipulator is developed. It is intended that the teaching 
of the machine will begin with the necessary skills being 
demonstrated by the human operator in a virtual 
environment with tactile sensing (haptics). Position and 
contact force and torque data generated in the virtual 
environment combined with a priori knowledge about 
the task is used to identify and learn the skills in the 
newly demonstrated tasks and then to reproduce them in 
the robotics system. The peg-in-hole insertion problem is 
used as a case study. The overall concept is described. 
The methodologies developed to build the virtual 
environment and to learn the hasic skills are explained. 
The results obtained so far are presented. 
Keywords: Haptics, skill learning, virtual reality, peg- 
in-hole insertion 

1. Introduction 
Robotics manipulators have been primarily employed to 
perform a particular task through programming. The 
programming methods developed so far can be grouped 
into four categories of text programming, off-line 
simulation-based programming, inductive leaming and 
teaching by guiding. 
Text programming can be applied to complex 
applications, but the development time is long and 
special skills and much effort are required to produce a 
complete program. This has resulted in the development 
of task level robot languages [1][2]. But generic task 
level languages have proved to he quite intensive in code 
and computing time. 
Off-line simulation-based methods usually integrate text- 
programming and model-based motion planners in one 
common platform [3][4]. The approach is powerful but 
requires special hardware and a complete description of 
the real world, both of which are costly. 
In inductive learning, a robot arm masters appropriate 
motion and sensing strategies through trial and error [5]. 
This is an effective method when it is used to refine 
other programming methods. 
In “teaching by guiding” a human operator drives the 
robotics arm in the real world to perform the task while 
the characteristics of the motion are recorded. In spite of 
its simplicity, the method is not generic, flexible or 
robust, and is not applicable to complex tasks. It cannot 
accommodate extensive sensory interaction and can be 
dangerous for the operator. 

There have been a number of attempts to overcome some 
of the shortcomings of “teaching by guiding” approach. 
Summers and Grossman [6] embedded the collection of 
the sensory information and interaction with the operator 
in the task instruction procedure. Asada and Assari [7] 
extracted the control rules to perform a particular 
assembly motion from the position and force data 
generated during operation of a human operator. Sator 
and Hirai [8] integrated direct teaching with task level 
languages through master-slave manipulators. 
The concept of “teaching by showing” has been another 
extension of “teaching by guiding”, in which a robotics 
system learns a particular task by watching a human 
operator performing it. The learning methodologies were 
initially developed for computer scene understanding 
[9], and automatic perception of actions [lO][l I]. 
Some recent developments have significantly advanced 
the “teaching by showing” approach in programming a 
robotics manipulator. Ikeuchi and Sehiro developed a 
system that could extract fine motion sequence from 
transitions of face contact states obtained by a range 
sensor [12]. Haas integrated a symbolic recogniser and 
play hack module using a visual servo for hvo- 
dimensional pick and place operations [13]. Yamada and 
Uchiyama conducted a study to determine essential 
features of human physical skills based on multi-sensory 
data and the possibility of transferring them to robots by 
focusing on two tasks of crank rotation and side 
matching [14]. 
Kuniyoshi et al developed a robotics system that could 
learn reusable task plans in real time by watching a 
human performing assembly tasks [ 151. The method was 
based on visual recognition and analysis of human action 
sequences. The effectiveness of the method was 
demonstrated for a block assembly task. 
Direct transfer of skills from a human operator to a 
machine in an interactive environment has been the next 
stage in the programming and training of a robotics 
system. In the field of mobile robots, Pomerleau used a 3 
layer perceptron network to control the CMU ALVI“ 
autonomous vehicle [16]. Grudic and Lawrence used an 
approximation method as a means for creating the 
robot’s mapping from sensor inputs to actuator outputs 
in transfer of skills to a mobile robot [17]. 
In acquisition of manipulation skills, particularly in 
constrained motion, the work carried out by Kaiser and 
Dillman [IS] is of significance. The work proposes a 
general approach to the acquisition of sensor-based robot 
skills from human demonstration. An adaptation method 
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is also proposed to optimise the operation with respect to 
the manipulator. The method is validated for two 
manipulation tasks of the peg-in-hole insertion and 
opening a door. 
Handleman and Lane [19] have carried out some 
preliminary work on a knowledge-based “tell” approach 
to describe the task to be carried out by the robot and the 
corrective control measures to be taken up. The task is 
defined by a rule-based goal directed strategy. The 
proposed method has been verified through computer 
simulation only for a typical peg-in-hole insertion 
problem. The development of the rule-hased system has 
been intuitive and rather complicated. The developed 
rules are very much context based and have to he built 
from scratch for any new application. 
A new paradigm for programming of rohotics 
manipulator to perform complex constrained m,otion 
tasks is being studied. The teaching of the manipulation 
skills to the machine starts by demonstrating those skills 
in a haptic-rendered virtual environment. Position and 
contact force and torque data generated in the virtual 
environment combined with a priori knowledge about 

the task is used to identify and leam the skills in the 
newly demonstrated tasks and then to reproduce them in 
the rohotics system. The use of the virtual environment 
will simplify the process, as the training data will be 
directly extracted from the haptic system [20]. This is 
also a novel approach to machine training enabling this 
research to take advantage of recent developments in 
virtual reality and computer simulation. 
The developed approach is studied in the context of the 
peg-in-hole insertion that represents a large number of 
assembly tasks. However, the algorithms developed for 
the system are as generic as possible. They identify the 
basic manipulation skills performed in an automatic 
assembly and translate them to trajectories and task 
schedules for a particular application and robotics 
manipulator. 
The overall approach pursued in this work is presented 
in Fig. 1. As illustrated in this diagram, the robotics 
manipulator mimics the behaviour of the human operator 
by acquiring the skills and producing the machine 
control action U ” ( / )  from y h ( / )  as illustrated in Fig. 1. 

Human 
Operator Envrronment 

Forcelposition 
Feedback Module 

Manipulator 
Task Planner 

Module 

Pnor Knowledge 
about the task 

Learning 
Module 

Lower Level Force Manipulation 
Controller Manipulator Sensor 

4 Position I 

Fig. I Overall model of the system 

2. Virtual Manipulation Environment 
The data used by the machine to acquire basic 
manipulation skills is generated through a haptic- 
rendered virtual environment. This approach offers a 
number of advantages compared to other methods of 
obtaining training data including: 

The- training data (e.g velocities, angles, 
positions, forces and torque) can be extracted and 
recorded directly. This simplifies the data 
collection process [20]. 
The environment can be easily modified and 
changed as the manipulation process and its 
requirements are changed. 
The risk of breakdown and breakage of the 
system is very low. 
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4. Dangerous and costly environments can he easily 
constructed and simulated. 

5 .  A user-friendly environment for the human 
operator can be developed. 

The concepts and methodologies developed in this 
work are demonstrated for the peg-in-hole insertion 
which represents a typical manipulation task in 
assembly. 
The haptic rendering is provided through a 3 degree of 
freedom generic device called Phantom manufactured 
by Sensahle. It allows users to directly interact with 
digital objects as they do in the real world. GHOST@ 
SDK, the software operating with Phantom, can 
handle complex computations and allow developers to 
deal with simple, high-level objects and physical 
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properties like location, mass, friction and stiffness 

The developed virtual environment is shown in Fig. 2. 
The peg is coupled with the phantom (i.e. the 
manipulation point) through a spring-damper system. 
The peg is a dynamic rigid object in the virtual 
environment. The force and torque reacted to the peg 
are transferred to PHANTOM through the spring- 
damper system. The hole is static in the environment 
while the peg can be translated and rotated. 
The haptic rendered model of the peg-in-hole insertion 
generating force data is constructed using the 
PointShell method. The PointShell of an object is the 
collection of all the points forming the surface of the 
object. A surface normal vector pointing inwards is 
assigned to every point on the PointShell to provide 
the Coulomb force direction [22, 231. Fig. 3(a) 
illustrates the normal vectors of a PointShell. In the 
PointShell developed for the peg-in-hole insertion, the 
directions of the vectors assigned to singular points are 
not pre-determined as they depend on the normal of 
the contact surface (Fig. 3(b)). The directions are 

P11. 

:igned when the peg and hole are in contact. 

Fig.2 Peg-in-hole Insertion Virtual Environmen 

(a) (b) 

Fig.3 PointShell and Singular Points 

The force generated at each point is the sum of the 
Coulomb force and the friction force exerted at that 
point, as shown in Fig. 4. 

V 
Coulomb force friction force -ih 

I 
Fig.4 Coulomb force and friction force 

The direction of the Coulomb force is perpendicular to 
the contact surface and points to the moving object. 
The magnitude of the Coulomb force generated at 
each point is calculated by 

S,=k*d+c*ad + b * v  (1) 

where 
d is the depth of the point in the contacting 
static object 
ad is the accumulated depth during a 
continuous contact between the point and the 
static object 
v is the velocity of the object and is 
calculated by the current Depth minus the last 
Depth divided by the sampling time 
k is the stiffness coefficient 
b is the damping coefficient 
c is the coefficient for the accumulated depth 

The direction of the friction force is along the contact 
surface and opposite to the moving direction. The 
magnitude of the friction force generated at each point 
is calculated by 

f= a t z  (2) 

where 
z is the strain describing micromovements 
between the two objects, which is not allowed to 
exceed a small value called the breakaway 
distance zma. 
U is the stiffness relating force to strain 

Assume xi is a point fixed on the moving object, and yi 
is an adhesion point on the static object as shown in 
Fig. 5.  The following relationship is used to calculate 
zi by 

zi = xi - y; 

= xi T z max, if I x; - yi - I I> z max (3) 
= yi - I, otherwise 

6 

xo =yo 0 
Yo ?2= x2 - &", 

?I  =Yo 

Fig. 5 The definition of the strain z 

3. Skill Acquisition 
A manipulation task consists of a sequence of basic 
skills. Identification of these basic skills and mapping 
them on to equivalent series of robot manipulation 
primitives, form the core of an algorithm for skill 
acquisition and transfer of those skills from human to 
a robotic manipulator. Such skill-based manipulation 
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is an effective way for a robotic manipulator to 
execute a complex task. 
The hasic skills are defined according to the contact 
state transition of a task, independent from the 
configuration of a manipulator [24]. In a virtual 
manipulation environment, the hasic skills can he al:jo 
identified by the contact states and state changes 125, 
261. Using this approach, the basic skills can be 
automatically extracted from the manipulation camed 
out in the virtual environment. 
Skills can be classified at different levels according to 
difference between state changes. For example, the 
whole insertion progress can be divided into search 
and insertion phases. The search and insertion skills 
are two high level skills which result in critical state 
changes by driving the peg from the initial state to 
touch the hole and inserting peg after touching Che 
hole respectively. Each high level skill can he divided 
into low level skills which result in minor stale 
changes. 
Two type of skills based on state changes can be used 
for assembly or manufacturing. 
I .  Skills based on both the current state and the next 

state 
2. Skills based on the current state only 
The first type of skills is learned during task sequence 
planning or trajectory optimization which finds the 
best state change sequence. In order to apply this skill, 
the next desired state or the method of choosing the 
next state should he known. State changes with the 
same current state hut different next states might result 
in quite different output actions. 
The second type of skills is acquired during 
performing a task with no obvious or fixed state 
change sequence. It is only based on the current state 
to simplify the skill learning process. It doesn't need to 
find an optimum state change sequence or follow a 
pre-defined state change sequence. 
Some skill acquisition method can find the best 
sequence [27, 281 in the augmented state space formed 
by the current state and the next state. A point in the 
augmented state space represents a feasible state 
transition. However, this method requires a great dt:al 
of training data to explore the augmented state space 
and hence it is quite computing intensive for high 
dimension systems. For such reasons, this approach is 
not appropriate for on-line learning. 
In this work, a simple method is employed to identify 
the optimal state change sequence for insertion pha,je. 
Initially different states are classified using a fuzzy 
neural network. This is achieved according to the 
forcesltorque and translation along the Z-axis. The 
classification is then used to recognize the state 
change sequence for each training data file, in which 
the outputs are actions such as rotating the hole. The 
inconsistent or unintended actions such as movements 
of the peg during jamming should be identified and 
removed from the training data. The learning 
algorithm primarily learns the actions that result in a 
change of state. 
The optimum sequence to perform the task is either 
identified from the training data or generated by 

combining different sequences to a criterion such as 
the shortest time. If Sequence A takes shorter time 
from the initial state to a mid-state B but longer from 
state B to the final state than Sequence B, then the first 
part of Sequence A is combined with the second part 
of Sequence B to generate a sequence with shorter 
implementation time than both Sequences A and B. 
The actions or outputs recorded for each state change 
in the optimum sequence with different initial state are 
defined as the hasic skills. For the round peg-in-hole 
insertion, the data can he mapped symmetrically to 
reduce the amount of training data needed. 
In a practical insertion process, if a state is among or 
near any state in the optimal space, the recorded 
actions for these optimum sequences are employed to 
perform the task. On the other hand, if a state is not 
among or near any state in the optimum sequences 
stored in the skill library, a second type of skill 
generated through a fuzzy neural network is applied 
until a state among or near a state in the optimum 
space is produced (as shown in Fig. 6). 

I Robotics Manipulator I * Planning Level 

r--l Skill Database 

Type 2 Skills Type 1 Skills 

Skills acquisition 

classification 

~~ I Training data preprocessing 1 
Virtual Environment U 

Fig.6 Skill Learning Structure 

The experimental rig consists of a hole with two 
degrees of freedom (the pitch and yaw angles) 
controlled by two stepper motors, and a peg with one 
degree of freedom (the translation along the axis of the 
peg) controlled by a DC speed motor (see Fig. 7). 
These 3 DOF (Degrees of Freedom) are sufficient to 
study the insertion phase. The radius of the peg is 
lOmm and that of the hole is IO.O5mm, so the 
clearance is 0.05mm. 
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Speed 

Fig.7 Real rig (Stepper motors are mounted on the 
axes marked by arrows) 

Some of the experimental results are illustrated in Fig. 
8. The variation of 9 normalized series of fx, fy, fz, 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

Mx, My, z, Delta-z Step-x and S t e p j  are illustrated 
in this diagram, where 

fx, fy, fz are forces, 
Mx, My are torques, 
z is the translation along Z-axis, 
Delta-z is the change of the translation along 
Z-axis, and 

e Step-x and S t e p j  are generated according to 
the acquired skills which indicate the steps 
taken by the step motor for turning the hole 
around x-axis and y-axis, respectively. 

When the peg is jammed or some force threshold is 
reached, the actions are taken immediately, i.e., the 
peg stops moving down or even moves up a little bit 
and the step motors turn the hole accordingly. When 
the peg is not jammed, it is just moved down 
continuously. There are only 6 series actions taken in 
the insertion phase as shown in Fig. 8. which show the 
effectiveness of the method. 

I-fx -fy -fz -Mx -My -2 -Delta-z +Step-x -+-Step-yl 

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 

Fig.8 Results 

4. Conclusion 
The work conducted to study the transfer of 
manipulation skills from human to machine through a 
virtual environment with haptics feedback is reported. 
Broadly, the project has a generic scope that is novel 
and innovative. It explores how human motor 
manipulation skills can be replicated by a machine. 
The model identified for human psychomotor learning 
is emulated in the machine to achieve different stages 
of motor learning. The work also aims at providing a 
new insight into the nature of transfer of manipulation 
skills from human to machine. 
The overall concept has been presented. The work at 
this stage has its focus on the peg-in-hole insertion 

process. The concepts and methodologies developed 
for this application will be expanded in the next stage 
of the project towards more generic algorithms and 
models. 
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