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USING SPATIAL CUES FOR MEETING SPEECH SEGMENTATION

E. Cheng, J. Lukasiak, I. S. Burnett, D. Stirling

School of Electrical, Computer and Telecommunications Engineering
University of Wollongong, Australia

[ecc04, jasonl, ianb, stirling]@uow.edu.au

ABSTRACT

This work investigates the validity and accuracy of using spatial
cues with Time-Delay Estimation (TDE) as a method of segment-
ing multichannel recorded speech by speaker location. In envi-
ronments such as meetings where speakers do not significantly
alter position, segmentation by speaker location essentially leads
to segmentation by speaker ‘turn’. The proposed system calcu-
lates location information using TDEs and spatial cues extracted
from multichannel meeting audio recordings. This location infor-
mation is then input into a simple segmentation algorithm. Exper-
iments have been performed on both theoretical and real meeting
recordings with non-overlapping speakers, and theoretical record-
ings with overlapping speakers. Segmentation results reveal the
most robust cue to be a combination of spatial information and
TDEs. This cue combination leads to greater segmentation accu-
racy for classifying individual speakers and detecting overlapping
sections than using spatial cues or time-delay information alone.

1. INTRODUCTION

Current methods of browsing meeting audio recordings are ineffi-
cient and cumbersome; they largely rely on users identifying im-
portant sections based on the structure of the recorded signals.
Fundamental to making such audio recordings easy to browse,
are techniques that automatically segment, annotate, and index
recorded speech in a semantically meaningful manner.

This paper focuses on the segmentation of meeting speech
based on speaker location. In meeting environments, speakers are
generally spatially stationary, and hence location information can
be used to segment meeting speech by each speaker’s period of
participation or ‘turn’. This basic information may then be used as
a basis for speech annotations such as speaker location, change in
speaker or number of speakers (using overlap detection).

Previous work in the specific area of meeting speech segmen-
tation by speaker location was reported by Lathoud et. al. [1, 2]
and Ajmera et. al. [3]. These techniques estimate speaker loca-
tion using Time-Delay Estimates (TDEs) based upon Generalized
Cross-Correlation (GCC) between the microphone signals [1, 2],
and beamforming methods such as SRP-PHAT [2, 3]. These lo-
cation estimates are then used as input features to intelligent seg-
mentation models such as Hidden Markov Models [1] and smart
clustering [3].

In this paper, we propose an augmented technique that builds
upon work in [1, 2]. In particular, additional location informa-
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tion is fed to subsequent segmentation models by complementing
the TDE location estimates with more sophisticated spatial audio
cues. To evaluate the validity of the spatial/TDE cue combination,
a simple, well understood data mining algorithm is used for seg-
mentation.

The advantages of the system proposed in this paper are that
both time delay and amplitude levels are used as cues. This ap-
proach follows that of [3] which extracts the Mel Frequency Cep-
stral Coefficients from lapel microphones. In contrast, the level
information in this paper is directly extracted from the same mi-
crophone array signals used for the TDEs. Psychoacoustic effects
are also incorporated into the spatial cue extraction allowing per-
ceptual localization to be exploited in subsequent cue processing.

The body of this paper has a description of the proposed ap-
proach in Section 2, followed by implementation details in Sec-
tion 3. Section 4 details the experiments performed, summarizing
the results obtained in Section 5. The paper is then concluded in
Section 6.

2. APPROACH

2.1. Localization Cue Extraction

2.1.1. Spatial Cue Estimation

In sound source localization, the key cues used by humans are the
inter-aural level and time differences [4]. This concept has been
previously used in a low-rate spatial audio coding scheme known
as Binaural Cue Coding (BCC) [5, 6]. In BCC, the perceptual,
spatial image of multichannel audio is captured by extracting Inter-
Channel Level and Time Difference cues (ICLD and ICTD) during
analysis [5, 6].

The system proposed in this paper extracts inter-channel spatial
cues based on the BCC analysis process [5, 6]. For a C channel
input, each input channel c is split into M frames using 50% over-
lapped Hanning windows. The spectra Xc,m[k] for each frame
m is then calculated using an FFT operation. BCC then decom-
poses Xc[k] (where m is omitted for simplicity) into B frequency
subbands with bandwidths matching the critical bands of human
hearing [5]. The DFT coefficients in each subband b are denoted
by k ∈ {Ab−1, Ab−1+1, · · · , Ab−1}, where Ab are the subband
boundaries with A0 = 0.

For each channel pair, p, the cues are then calculated for each
subband, b. Mathematically, the ICLD cues are extracted accord-
ing to [5]:

ICLDp[b]=10 log10

(
P1[b]

P2[b]

)
where Pc[b]=

Ab−1∑
k=Ab−1

|Xc[k]|2 (1)
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Since the localization mechanism in the human hearing system
is dependent on frequency [4], the ICTD calculation estimates the
average phase delay per subband between channels for frequencies
below 1.5kHz, and the group delay between channels at higher
frequencies [5]. These ICTD cues were initially extracted but did
not contribute positively to the overall set of cues as discussed in
Section 5. Thus, a second approach which weights the FFT bins
according to magnitude was investigated. This Inter-channel Phase
Difference (IPD) cue is obtained in subbands up to 2kHz according
to [7]:

IPDp[b] = 6

 Ab−1∑
k=Ab−1

X1[k]X∗
2 [k]

 (2)

2.1.2. Time Delay Estimation

To extract the time delay estimations, the same approach as [1, 2]
is used. That is, the Generalized Cross-Correlation with PHAse
Transform (GCC-PHAT) is calculated between each channel pair,
p. The PHAT weighted GCC is given by [2, 8]:

ĜX1X2,p[k] =
X1[k] ·X∗

2 [k]

|X1[k] ·X∗
2 [k]| (3)

Using an Inverse Fast Fourier Transform (IFFT), the phase cor-
relation function is derived by:

R̂12,p[τ ] = IFFT (ĜX1X2,p) (4)
The TDE τ̂12,p is then extracted by locating the maximum of

R̂12,p, such that: τ̂12,p = arg max
τ

R̂12,p[τ ] (5)

To minimize erroneous TDE values, the search range of delays
is constrained to an interval such that [8]: −D ≤ τ̂12,p ≤ D (6)

2.2. Segmentation Algorithm

To separate the performance of the proposed cue extraction process
from the performance of a complex segmentation model, a simple,
single frame-based segmentation algorithm was employed. This
ensured that the validity of the cues themselves would be accu-
rately determined.

A decision-tree based approach was adopted for segmentation,
the advantage of this approach was that it removed the need for
memory within the algorithm, as would be required in Hidden
Markov Model approaches (used in [1]). Allowing for a frame-
by-frame classification of the cues, the decision tree was a learnt
model induced from supervised training data where the total num-
ber of speakers (classes) was known. The learning algorithm em-
ployed a divide-and-conquer strategy [9] that selected classes to-
gether with an appropriate test to best partition the initial mix-
ture of classes into a number of purer subsets. This was achieved
through a number of metrics using various forms of relative en-
tropy such as split information and gain ratio [9].

3. MEETING RECORDINGS

To test the cues in an ‘ideal’ meeting environment, a set of ‘the-
oretical’ meeting recordings were generated and processed by the
proposed system. For non-overlapping speakers, a second set of
simulations using real meeting data were performed to evaluate
the robustness of the cues. To enable valid comparisons with pre-
vious work, simulations used the same meeting recordings as in
Lathoud et. al. [1, 2]. A 6 minute subset of the available corpora

Speaker 4 Speaker 2

Speaker 3 Speaker 1

Mic 2

Mic 4Mic 6

Mic 8

14 cm

68 cm

62°

Speaker 
ideal 

location

2a2b

Fig. 1. Meeting Room Configuration, based on [1]

was selected, consisting of 30 speaker turns varying in duration
from 5 to 20 seconds with each speaker equally represented.

Both the theoretical and real meeting recordings were sampled
at 16kHz. To extract the spatial cues and TDEs, overlapped, win-
dowed frames of length 32ms were processed every 16ms. With
the microphone array configuration illustrated in Fig. 1, the maxi-
mum delay was less than 1ms. Hence, D in Equation 6 was set to
1.875ms.

3.1. Ideal Meeting Recordings

To generate the ‘theoretical’ or ‘ideal’ recordings, the same meet-
ing room configuration used in the real meeting recordings of [1, 2]
was adopted (see Fig. 1). Four ‘clean’ speakers were emulated
by taking files from the Australian National Database of Spoken
Languages. Each speaker turn was made to be approximately
one minute, resulting in a total of about 3.5 minutes of ‘meeting’.
These four speech files were then ‘spatialized’ by simulating the
meeting room configuration illustrated in Fig. 1. The microphone
array signals were synthesized by attenuating the signal ampli-
tudes proportionally to the inverse squared distance between the
speaker and microphones, and introducing theoretical time delays
relative to that distance. The result is a ‘ideal’ meeting recording
with no reverberation or other ‘room’ effects.

To generate theoretical meeting recordings with overlapped
speakers, dual-speaker overlap was simulated by superposing two
speakers using the synthesized array signals. With four speakers
in the room, all six dual-speaker combinations were equally rep-
resented with single speaker segments of 6 seconds interspersed
with overlapped sections of 3 seconds, forming a total ‘meeting’
of about 3 minutes.

4. EXPERIMENTS

To evaluate the accuracy and robustness of the location cues, a set
of simulations were performed. For non-overlapping speakers, the
following simulations were conducted:

1. Ideal meeting recordings, speakers at ideal locations (as il-
lustrated in Fig. 1);

2. Real meeting recordings, speakers at ideal locations;

3. Ideal meeting recordings, speakers at non-ideal locations.
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Fig. 2. Theoretical recordings - Non-overlapped speakers
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Simulation 3 investigated the effect of spatial variations through
using non-ideal speaker locations in an ideal environment. Train-
ing data consisted of each speaker located in their quadrant (see
Fig. 1), at 10 positions equally spaced π/20 radians apart on a
circle of radius 68cm around the microphone array. Training the
decision tree with these 40 locations, test data was then generated
with each speaker placed at a fixed location.

To evaluate the system with overlapping speakers, Simulation
4 tested the robustness of all the cues against theoretical meeting
recordings with overlapped dual-speaker segments.

The evaluation criteria was the error rate, defined as the percent-
age of incorrectly segmented frames over total number of frames.
In simulations where the training and test data were cues calcu-
lated from the same audio files, the data was split using a 10-fold
cross validation process; a standard approach taken in data mining
[9]. The data was divided into 90% training and 10% testing, with
each speaker or overlap scenario sampled in proportion to its oc-
currence. This data division was repeated 10 times (folds), each
time on a different training/test set. An average error rate was re-
turned and a 95% confidence interval calculated. For simulations
where the training and test data contained cues from different au-
dio files, the error rate returned from the decision tree was used.

5. RESULTS AND DISCUSSION

5.1. Speakers at Ideal Positions

Results from Simulation 1 are shown in Fig. 2, suggesting that all
the location cues except the ICTD are valid for speech segmenta-
tion by location. In ideal conditions, the poor performance of the
ICTD compared to all the other cues indicates that the ICTD may
not be suitable for speech segmentation. In the ICTD estimation,
performed as defined in BCC [5, 6], the phase differences between
channels are averaged in each subband. However, the addition of
phase is invalid as it combines terms from different frequencies.
Furthermore, the BCC technique employed applies no weighting
to the FFT bins. Hence, bins with very low magnitudes (and with
phase uniformly distributed between ±π [10]) corrupt the ICTD
estimation. As seen in Fig. 2, the weighting used in IPD calcula-
tions reduces this problem, making the IPD a more reliable spatial
cue for segmentation.

The set of results from Simulation 2 are shown in Fig. 3, using
real meeting recordings with and without silence segments. Re-
moving silence reduces the location ambiguity in the signals since

no speakers are active during these periods. The poor performance
of the ICTD compared to all the other cues is again evident in
this simulation. However, by combining various time delay cues
(GCC, GCC-PHAT, ICTD) and IPD with ICLD, segmentation re-
sults improve dramatically over using the cues alone. ICLD com-
bined with IPD is slightly poorer than ICLD with GCC and GCC-
PHAT, showing that subband phase estimates are not as accurate as
TDE. These results indicate that ICLDs used in conjunction with
TDEs form good cues for location segmentation, and appear robust
against the effects of a real meeting environment.

In Fig. 3, the GCC-PHAT does not perform as well as GCC
for the tested data set. This contradicts past work which states
that GCC-PHAT performs better in environments with reverber-
ation [8]. Analysis of the GCC and GCC-PHAT illustrated that
the GCC-PHAT does give a more impulsive time-domain wave-
form as expected. However, GCC-PHAT is generally performed
using longer signal frames than we use here, as short-time frames
degrade performance as the signal statistics fluctuate [8].

5.2. Speakers at Non-Ideal Positions

The set of results from Simulation 3 is shown in Table 1, where
three test speaker positions were used:

3.1 Speaker at ideal location;

3.2 Speaker at own quadrant’s edge (e.g. position 2a for Speaker
2 in Fig. 1) - worst case scenario for location ambiguity be-
tween two quadrants;

3.3 Speaker at neighbour’s quadrant edge (e.g. position 2b for
Speaker 2 in Fig. 1).

Clearly, results in the ‘Ideal’ column of Table 1 show that all
cues perform well for ideal speaker locations. In particular, the
ICLD and ICTD improve over the corresponding results in Fig.
2, while GCC, GCC-PHAT and IPD are unaffected. This suggests
that providing the valid set of cue values for each speaker enhances
the segmentation algorithm accuracy.

Results for the worst-case speaker location are shown in the
‘Edge’ column of Table 1. Again, GCC, GCC-PHAT and IPD are
unaffected by this worst-case scenario which may give ambigu-
ous location cues. Only the ICLD and ICTD slightly deteriorate,
indicating that all cue combinations are robust against non-ideal
speaker locations.

Results in the ‘Next Quadrant’ column of Table 1 indicate that
all cues correctly classify the speaker location, even though the



Table 1: Theoretical recordings - Non-ideal speaker location

% Error Ideal Edge Next Quadrant
GCC 0.1 0.1 99.9
GCC-PHAT 0 0 100
ICLD 0.2 1.8 99
ICTD 1.2 2.6 97.9
IPD 0 0 100
ICLD + GCC 0.1 0.1 99.9
ICLD + GCC-PHAT 0 0 100
ICLD + ICTD 0.2 1.8 99
ICLD + IPD 0 0 100
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Fig. 4. Theoretical recordings - Overlapped speakers

speaker does not belong to that quadrant. This suggests that lo-
cation information, rather than speaker dependent characteristics,
dominates the segmentation process. Again, the ICTD and ICLD
perform only slightly worse than all the other cues, while the IPD,
GCC and GCC-PHAT continue trends as the most robust cues in
this simulation.

5.3. Overlapped Speakers

Fig. 4 shows the results for Simulation 4. One experiment used 5
decision tree classes; one class for each speaker, and one for the
overlapped segments. The second experiment used 10 decision
tree classes; one for each speaker, and one for each dual-speaker
combination. Using 10 classes produced poorer segmentation re-
sults than using 5 classes, potentially due to less training data
available as the same overlapped data is now split into 6 separate
classes. The GCC and GCC-PHAT perform very poorly compared
to the spatial cues, because the cross-correlation method chooses
the strongest speaker at each time-frame. Attempting to map a
dual-speaker segment onto a single peak-based correlation mea-
sure, as in GCC and GCC-PHAT, will result in high error rates.
The spatial cues (ICLD, ICTD, IPD) perform significantly bet-
ter than the TDEs as they exploit subband cue analysis and hence
spectral diversity, to provide enhanced detection of multiple speak-
ers. Consistent with single-speaker simulations, the combination
of ICLD with TDEs or IPD provides the lowest segmentation error.

6. CONCLUSION

This paper proposed a new approach to applying location infor-
mation from multichannel meeting speech recordings for segmen-
tation purposes. In addition to extracting time delay estimations
using traditional cross-correlation techniques, this paper comple-
mented these with spatial cue estimations. Simulations on an
ideal meeting environment showed that TDEs are well matched
to location-based segmentation. However, in real meeting envi-
ronments, combining the TDEs with spatial level differences sig-
nificantly improved the segmentation results. This cue combina-
tion proved robust against non-ideal speaker locations, speaker-
dependent characteristics and performed significantly better than
TDE techniques alone in detecting overlapped speakers. In par-
ticular, combining the spatial level differences with the GCC TDE
proved most robust across these practical meeting conditions. Fur-
thermore, results illustrated that subband phase techniques without

frequency bin weighting are not suitable for the purposes of seg-
mentation by location.

This paper has shown that combining spatial level differences
with GCC gives the best location information for segmentation.
For future work, improved accuracy can be obtained by employ-
ing more sophisticated segmentation algorithms including using
memory to remove rapid speaker transitions.
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