
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

2008 

Model Eco-Systems: Preliminary Work Model Eco-Systems: Preliminary Work 

Aditya K. Ghose 
University of Wollongong, aditya@uow.edu.au 

George Koliadis 
University of Wollongong, gk56@uowmail.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Ghose, Aditya K. and Koliadis, George: Model Eco-Systems: Preliminary Work 2008. 
https://ro.uow.edu.au/infopapers/3209 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3209&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3209&utm_medium=PDF&utm_campaign=PDFCoverPages


Model Eco-Systems: Preliminary Work Model Eco-Systems: Preliminary Work 

Abstract Abstract 
Modeling is core software engineering practice. Conceptual models are constructed to establish an 
abstract understanding of the domain among stakeholders. These are then refined into computational 
models that aim to realize a conceptual specification. The refinement process yields sets of models that 
are initially incomplete and inconsistent by nature. The aim of the engineering process is to negotiate 
consistency and completeness toward a stable state sufficient for deployment / implementation. This 
paper presents the notion of a model ecosystem, which permits the capability to guide analyst edits 
toward stability by computing consistency and completeness equilibria for conceptual models during 
periods of model change. 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
Ghose, A. K. & Koliadis, G. (2008). Model Eco-Systems: Preliminary Work. In A. Hinze & M. Kirchberg 
(Eds.), Asia-Pacific Conference on Conceptual Modelling (pp. 19-28). Sydney: Australian Computer 
Society Inc.. 

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/3209 

https://ro.uow.edu.au/infopapers/3209


Model Eco-Systems: Preliminary Work

Aditya Ghose George Koliadis

School of CS and Software Engineering
University of Wollongong,
Wollongong, Australia,

Email: {aditya,gk56}@uow.edu.au

Abstract

Modeling is core software engineering practice. Con-
ceptual models are constructed to establish an ab-
stract understanding of the domain among stakehold-
ers. These are then refined into computational mod-
els that aim to realize a conceptual specification. The
refinement process yields sets of models that are ini-
tially incomplete and inconsistent by nature. The aim
of the engineering process is to negotiate consistency
and completeness toward a stable state sufficient for
deployment / implementation. This paper presents
the notion of a model ecosystem, which permits the
capability to guide analyst edits toward stability by
computing consistency and completeness equilibria for
conceptual models during periods of model change.

Keywords: Conceptual Modeling, Model Manage-
ment

1 Introduction

In most modelling exercises, multiple models need to
be developed and maintained. Multiple models are
necessary to represent different facets of a problem
(UML is, for these reasons, a combination of mul-
tiple notations). Most modelling exercises also in-
volve multiple stakeholders whose distinct perspec-
tives need to be represented and maintained. Multiple
languages and methodologies provide differential ac-
cess (Hoffman et al. 1995) (Young & Gammack 1987)
to this detailed, complex, and sometimes implicit do-
main knowledge. However, managing multiple models
requires us to deal with the problems of consistency
and completeness.

Informally, the notion of consistency involves en-
suring that distinct models of the same reality do
not make divergent or contradictory statements. The
problem of inconsistency in software artefacts is ubiq-
uitous. Inconsistencies within a model can be the
result of poor or incorrect representation. Incon-
sistencies across models typically reflect divergent
stakeholder perceptions of the same reality. The
inconsistency-handling problem has received consid-
erable attention within the literature (see for instance
(IEEE Volume 24, Number 11, 1998)), yet significant
open questions remain. Our understanding of how to
detect inconsistencies and how to resolve these, for
instance, remains limited.

The notion of completeness involves ensuring that
a collection of models adequately specifies the prob-

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fifth Asia-Pacific Conference on Concep-
tual Modelling (APCCM 2008), Wollongong, NSW, Australia,
January 2008. Conferences in Research and Practice in Infor-
mation Technology, Vol. 79. Annika Hinze and Markus Kirch-
berg, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

lem at hand (i.e., provides sufficient information to
enable the task in question to be completed).

It is useful to view large and complex collec-
tions of models representing multiple stakeholders
and multiple perspectives, in multiple notations as
an eco-system of models. Like biological eco-systems,
the models in a model eco-system undergo con-
stant change. For instance, requirements models
change frequently because of changing stakeholder
perceptions, evolving needs and changing usage con-
texts. Design models, process models, goal models
and others are highly dynamic for similar reasons.
Like biological eco-systems, perturbations in a model
eco-system propagate across models, driven by the
need to maintain consistency and completeness con-
straints. As in biological systems, model eco-systems
are characterized by competing forces (such as a pair
of inconsistent models seeking to drive a specification
in competing directions, or the competing pulls of al-
ternative ways to completing a specification). Finally,
like biological eco-systems, model eco-systems settle
into equilibria after being perturbed.

An equilibrium in an eco-system is a “steady
state”, where the competing forces balance each other
out. Changes to an eco-system perturb these equilib-
ria, but the system eventually settles into a new equi-
librium that may accommodate these changes. We
will deem a model eco-system to be in an equilibrium
if the set of models in the eco-system is complete and
mutually consistent, and there is no alternative equi-
librium that further minimizes change to the prior
state of the model eco-system.

Equilibria are important in a model eco-system,
since the key tasks supported by model eco-systems,
such as requirements analysis, goal analysis, design,
risk analysis etc., are only possible with a model eco-
system in equilibrium. For instance, the design of a
software system is based on managing consistent and
complete collections of models representing multiple
perspectives and multiple stakeholder viewpoints, in
multiple notations. When one or more of these mod-
els are changed, a new equilibrium must be identified
that maintains the mutual consistency and complete-
ness of the set of models, while minimally changing
these models. The notion of minimal change in our in-
formal definition of equilibrium in a model eco-system
is important, since we wish to ensure that information
is discarded (by modifying models, or dropping mod-
els altogether, to maintain consistency) only if there
is a strong justification for doing so. In a similar vein,
the system may seek out additional information from
stakeholders (for instance, to obtain completeness),
but only when there is adequate justification for do-
ing so.

The example we will use throughout this paper is a
simple sales order process. In this example, customer
requests are submitted to a portal. Other tasks in-
clude evaluating customer credit details, calculating



total price, invoicing and handling shipment.

1.1 Paper Contribution

This research into model eco-systems proposes a the-
oretical and practical basis for a novel class of mod-
elling and model management systems (with associ-
ated methodological principles). Such systems will
permit the specification of multiple models, by mul-
tiple stakeholders, representing multiple viewpoints
and perspectives, in multiple notations (ideally with
complementary representational capabilities). Such
systems analyze (using automated or at least, par-
tially automated techniques) sets of models for in-
consistency and incompleteness. When these are de-
tected, such systems will guide users to the sources
of inconsistency and incompleteness or suggest (in
an automated fashion) alternative means for resolv-
ing these problems. Such systems will ease the pro-
cess of model change management by providing ad-
vanced support for impact analysis (the process un-
derstanding the impact of a proposed change, with a
view to deciding whether a change request is worth
implementing) as well as trade-off analysis (the pro-
cess of evaluating alternative means of implementing
a change). They will propagate changes through the
entire eco-system, identifying models that are con-
nected to the models initially impacted by the change
(for instance, via consistency and completeness con-
straints), and providing decision-support functional-
ity to help identify how the necessary changes might
be implemented in a minimal fashion.

1.2 Paper Organization

The main concern of this paper is to provide a for-
mal description of model ecosystems, with both il-
lustrative examples and discussion. In the following
sections we firstly discuss model consistency / com-
pleteness, consistency / completeness equilibria, and
resolution strategies.

2 Model Consistency

Approaches to dealing with inconsistency in require-
ments have a relatively long history. Balzer (Balzer
1991) introduced the notion of pollution markers as
an approach to tolerating and managing inconsis-
tency in specifications. Tsai proposed the use of non-
monotonic logics in resolving inconsistencies in spec-
ifications (Tsai et al. 1992) while similar ideas were
also explored by Ryan (Ryan 1993). The Viewpoints
framework (Finkelstein et al. 1992), (Bashar Nu-
seibeh & Finkelstein 1994), (A. Finkelstein & Nu-
seibeh 1994), (S. M. Easterbrook & Nuseibeh 1994)
supports multi-perspective development (with multi-
ple sets of stakeholders) by allowing explicit “view-
points” which hold partial specifications, described
and developed using different representation schemes
and development strategies. Individual viewpoints
are required to be internally consistent while incon-
sistencies arising between pairs of distinct viewpoints
(the authors suggest translation into a uniform logical
language for detecting inconsistencies) are removed
by invoking meta-level inconsistency handling rules.
Lamsweerde et al (van Lamsweerde et al. 1998) have
explored a wide range of categories of inconsistency
in the context of the KAOS framework. Wiels and
Easterbrook (Wiels & Easterbrook 1998) have de-
fined evolution and inconsistency handling techniques
based on category theory, while Nuseibeh and Russo
(Nuseibeh & Russo 1999) have used abductive logic
programming. Heitmeyer et al (Constance L. Heit-
meyer & Labaw 1996) have defined inconsistency-

handling techniques in the context of tabular nota-
tions. Hunter and Nuseibeh (Hunter & Nuseibeh
1997) have defined a framework for representing spec-
ifications using a logic with a paraconsistent flavour.
A key problem with most of these proposals is that
they rely on formal representations of models, while
most industry-standard modelling notations are semi-
formal/informal and diagrammatic in nature. The
Viewpoints framework conceives of such informal, di-
agrammatic models, related to each other via inter-
viewpoint consistency rules, but concerns remain on
the difficulty of eliciting and representing such rules.

Informally, a pair of models are viewed as being
consistent if they can be simultaneously realized. In
the context of formal languages, two distinct theo-
ries in the language are deemed to be consistent if
and only if a model (in the sense of model-theoretic
semantics) exists that satisfies both theories. In the
instance of formal methods, the consistency of a spec-
ification is defined by the existence of a specificand,
in the semantic domain of the specification language,
that satisfies the specification (Wing 1990). In our
context, we note that many useful (and popular) mod-
eling notations do not come with semantic definitions
on which there is widespread agreement. Multiple
proposals have been put forward for defining the se-
mantics of UML notations and for the process mod-
eling language BPMN, but no consensus exists. In
the instance of such modeling languages, consistency
(within a model or across a set of models) can be de-
fined via the satisfaction of a set of syntactic consis-
tency rules - a model (or a set of models) is deemed to
be consistent if all of these consistency rules are sat-
isfied (see (Liu et al. 2002) for an example of such an
approach). Sometimes, consistency rules can be de-
fined with reference to uniform structural encodings
of models in a given notation. We provide an exam-
ple of such an approach below, by defining consistency
between BPMN models via a graph-based encoding.
Given these, we are able to assume the existence of
machinery of some form for evaluating consistency
between a pair of models in a given notation.

In some cases, correspondences need to be estab-
lished before consistency checking is performed. For
instance, consistency checking needs to be performed
on a pair of BPMN models only if they refer to the
same process. Such correspondences can be manu-
ally established by analysts or determined in an au-
tomated fashion. In other cases, consistency checking
must always be performed (e.g. between a pair of
class diagrams).

Enterprise ontologies play a critical role in consis-
tency checking. Consider two distinct BPMN models
of the same process. Prior to checking consistency, we
must resolve the following two categories of conflicts.

• Naming conflicts, arise when different names (or
identifiers) are used for the same concept (e.g.,
“shipment” and “consignment”).

• Abstraction conflicts arise when the same
process is described at varying lev-
els of abstraction. Within an enter-
prise ontology, background rules such as
Performs1(ProcessingSystem, Read, Order)∧
Performs2(ProcessingSystem, AppendID,
Order) ⇒ Performs3(ProcessingSystem,
Recieve,Order) permit us to relate finer-grained
descriptions of a process (containing, say,
Performs1(ProcessingSystem, Read, Order)
and Performs2(ProcessingSystem, AppendID,
Order)) with more abstract descrip-
tions of the same process (containing
Performs3(ProcessingSystem, Recieve, Order)
). The rule described above corresponds to the



natural language statement “The order is re-
cieved by a processing system, which reads the
data and appends an ID number to the order.”.

2.1 Intra-Notation Consistency

We highlight intra-notation consistency with the def-
inition of a consistency theory for the graphical Busi-
ness Process Modelling Notation (BPMN). The Busi-
ness Process Modeling Notation (BPMN) (see (White
2006) for the complete specification) is a graphical
language for describing the processes (automated and
manual) within an organization. Process models in
BPMN may be viewed as (syntactic) theories, or de-
scriptions of processes, while individual process in-
stances may be viewed as playing the role of se-
mantic models (snapshots of the world being syn-
tactically described). A pair of process models may
therefore be deemed to be consistent if a process in-
stance exists that satisfies both models. The intra-
language consistency check that we have devised per-
forms lightweight, structural analysis of the digraphs
obtained from BPMN models in the manner described
below. Such a consistency theory provides valuable
functionality in situations where common knowledge
is incrementally acquired among distributed models,
analysts and domain experts.

Figure 1: Partial Sales Order BPMN Process Model
(mU )

2.1.1 Intra-BPMN Consistency Example

We define a graph-theoretic notion of consistency for
BPMN models. That is given two BPMN models, we
firstly translate them into digraph structures before
applying consistency rules that are based on graph
morphisms (for which efficient algorithms exist). In
the resulting digraph (V,E), each node is of the form
〈ID, nodetype, owner〉 and each edge is of the form
〈〈u, v〉, edgetype, condition〉. Each event, activity or
gateway in a BPMN model maps to a node, with the
nodetype indicating whether the node was obtained
from an event, activity or gateway respectively in the
BPMN model. The ID of nodes of type event, deci-
sion or activity refers to the ID of the corresponding
event, decision or activity in the BPMN model. The

Figure 2: Fragments of a Sales Order BPMN Process
Model (mT )

owner attribute of a node refers to the role associ-
ated with the pool from which the node was obtained.
The edgetype of an edge can be either control or
message depending on whether the edge represents a
control flow or message flow in the BPMN model. The
condition associated to an edge describes the guard
condition, set to true by default, controlling the flow
of the process.

Table 1: Figures 1 and 2 Correspondence

Figure 1 Figure 2
Roles Portal the system

Customer Service the customer service rep.

Customer a customer

Nodes Request process(Order) submit an order for goods

order.CreditCheck=Appr. the credit check passes

Let m1 and m2 be two graphical BPMN pro-
cess models that share an identity relationship. This
means that there exist some elements in m1 that are
identical to m2 and share identity (ID) labels. These
may have been determined by resolving naming and
abstraction conflicts syntactically, via an enterprise
ontology or manually with analyst involvement. In
BPMN, we will permit pair of nodes to be deemed
to be identical even if the owner role for one of them
is undefined. We say that m1 is consistent with m2
(with d1 and d2 representing the corresponding di-
graphs, respectively) iff the following properties hold:

1. The sub-graphs within d1 and d2 defined by the
nodes common to d1 and d2 are isomorphic.

2. For each incoming edge connecting a common
node to a node that does not belong to the inter-
section in one digraph, there does not exist a cor-
responding incoming edge connecting the same
common node in the other. Similarly, for each
outgoinging edge connecting a common node to
a node that does not belong to the intersection in
one digraph, there does not exist a correspond-
ing outgoing edge connecting the same common
node in the other.

Figure 2 (mT ) summarizes some fragments of a
Sales Order process model that has been automati-



cally extracted from a sample text using text extrac-
tion techniques. The (ontological) correspondences
established in Table 1 between mU (Figure 1) and
mT (Figure 2) provide an initial basis with which to
determine consistency.

Application of the consistency check reveals the
following:

• In mT , the node and edge pair “[the credit check
passes] →” , and the mU “CreditCheck = Ap-
proved → node and edge pair violate consistency
rule (2).

• In mT the node and edge pair “[submits an or-
der for goods] →” , and the mU “[Request pro-
cess(Order)] → (Portal)” also violate consistency
rule (2).

2.2 Inter-notation Consistency

Our discussion thus far has focussed on resolving
inconsistencies between (and within) models in the
same notation. Inconsistencies could also exist be-
tween models in distinct notations. These could be
detected via the definition of inter-notation consis-
tency rules. This approach is taken by the Viewpoints
framework ((Finkelstein et al. 1992), (Bashar Nu-
seibeh & Finkelstein 1994), (A. Finkelstein & Nu-
seibeh 1994), (S. M. Easterbrook & Nuseibeh 1994)).
An alternative approach is to define syntactic map-
pings between notations. In this approach, hand-
crafted mapping functions are used to map mod-
els in one notation into models in another. Let Ni
and Nj be two distinct modeling notations. Let
fsyn

Ni,Nj
: MNi

→ MNj
where MNi

and MNj
are the

sets of all possible models expressible in Ni and Nj
respectively, be a function that maps a model in Ni
to a model in Nj . That is, the function generates an
Nj model that expresses as much of the input model
(in Ni) as can be expressed in Nj . We shall refer
to such functions as syntactitc transformation func-
tions and note that such functions can be realized
using QVT languages in the model-driven architec-
tures framework (although our current implementa-
tion does not use a QVT language). We provide a
complete example of a syntactic transformation func-
tion below, and outline another instance.

2.2.1 Inter-UML-BPMN Consistency Exam-
ple

Figure 3: Process Sales Order Interaction Diagram

The following describes a syntactic transforma-
tion function that maps UML Interaction Diagrams
to BPMN models:

1. Represent each object in the UML interaction
diagram as a pool within the BPMN model.

2. Traverse the lifeline of each object in the UML
interaction diagram from beginning to end, cre-
ating activities within the corresponding BPMN
pool using the following rules. The sequence of
these activities in the BPMN model reflect the se-
quence of the corresponding interactions on the
lifeline.

(a) For each internal message along the life-
line, include an activity within the ob-
jects associated pool labeled with the <
MessageLabel > as the activity label.

(b) For each outgoing call interaction along
the lifeline, include an activity within the
pool associated with the corresponding ob-
ject of the following form: Request <
MessageLabel >.

(c) For each incoming call interaction along
the lifeline, include an activity within the
pool within the pool associated with the
corresponding object of the following form:
Receive < MessageLabel > Request.

(d) For each outgoing call interaction return
along the lifeline, include an activity within
the pool within the pool associated with the
corresponding object of the following form:
Return < MessageLabel >.

(e) For each incoming call interaction return
along the lifeline, include an activity within
the pool within the pool associated with the
corresponding object of the following form:
Receive < Message
Label >.

(f) For each outgoing interaction along the life-
line guarded by a state invariant, include an
exclusive-OR decision gateway in the send-
ing objects’ pool in the BPMN model in the
contiguous sequence prior to the Request /
Return message of that outgoing interac-
tion, and after the prior activity in the ob-
ject’s lifeline. Label the flow on the BPMN
model between the exclusive gateway and
the aforementioned Request / Return mes-
sage with the conditional expression. The
decision gateway thus obtained may violate
BPMN syntax - for instance, in Figure 1,
the decision gateway labelled with the guard
condition order.
CreditCheck=’Approved’ does not actually
achieve an X-OR split. Such models are
nonetheless of interest because they are
proto-models and it is assumed that they
would be edited/refined by analysts.

3. For each interaction between two objects in the
interaction diagram, introduce a message flow
link between the corresponding activities in the
BPMN model and label the message flow with
the argument[s] of the interaction.

Figure 1 is an example of a BPMN model thus
extracted from a UML Interaction Diagram (depicted
in Figure 3). At this point, we may now apply the
aforementioned intra-notation consistency theory to
check for consistency among corresponding models in
the same target language.

2.3 Consistency-Equilibria

In the section, we introduce the notion of consis-
tency equilibrium for a model ecosystem, and provide
a declarative characterization of the process of restor-
ing equilibrium given changes or perturbations to the
ecosystem.



Definition. A model ecosystem M = {m1, . . . ,mn}
is in consistency-equilibrium iff every pair of models
mi,mj ∈ M is consistent.

We shall refer to a model ecosystem that violates
the consistency equilibrium condition a consistency-
perturbed ecosystem. Consistency perturbation is
usually the result of change to one or more models
in an ecosystem. Restoring consistency-equilibrium
when such perturbation occurs involves removing ele-
ments of models (which might have in some way con-
tributed to the inconsistency). Note that consistency
cannot be restored by extending existing models, be-
cause the sources of inconsistency would remain.

We use a model inclusion relationship (denoted in
the following byv - < denotes the strict version). The
underlying intuition can be explained thus: a model
m1 is included in a model m2 if m1 can be consistently
extended to obtain m2. In settings where graph en-
codings are defined, such as with BPMN above, model
inclusion can be defined via sub-graph inclusion.

Definition. Given a consistency-perturbed model
ecosystem M = {m1, . . . ,mn}, a restored
consistency-equilibrium is any model ecosystem
M ′ = {m′

1, . . . ,m
′
n} such that the following proper-

ties hold:

• M ′ is in consistency equilibrium.

• Any model ecosystem M ′′ = {m′′
1 , . . . ,m′′

n} for
which there exists a k ∈ {1, . . . , n} such that
m′

k < m′′
k and for all other i ∈ {1, . . . , n},

m′
i v m′′

i is consistency-perturbed (i.e., it vio-
lates the consistency-equilibrium condition).

In general, several distinct restored consistency-
equilibria might be identified for a given consistency-
perturbed model ecosystem.

2.4 Resolving Inconsistency

The definition above provides both a declarative char-
acterization of the process of restoring consistency-
equilibria and an outline of one possible way in which
such a process might be implemented. The proce-
dure involves generating every restored consistency-
equilibrium, and then selecting one. The selection
process might be analyst-mediated or might involve
separately encoded criteria, such as priorities on mod-
els. In effect, this approach relies on some underly-
ing machinery to resolve the inconsistencies, and then
uses the analyst, or some separately encoded prefer-
ences to select among the possibly many options. An
alternative approach is to rely on analyst edits, by
focussing analyst attention on the minimal sources of
inconsistency.

Definition. Given a consistency-perturbed model
ecosystem M = {m1, . . . ,mn}, a minimal source of
inconsistency is any set of models M ′ = {m′

1, . . . ,m
′
l}

such that the following properties hold:

• M ′ represents a consistency-perturbed model
ecosystem (i.e., it violates consistency con-
straints).

• Any set of models M ′′ = {m′′
1 , . . . ,m′′

r} for which
at least one of the following is true:

– M ′′ ⊂ M ′(any strict subset)
– There exists a k ∈ {1, . . . , r} such that

m′′
k < m′

k and for all other i ∈ {1, . . . , r},
m′′

i v m′
i

is in consistency-equilibrium.

In general, multiple minimal sources of inconsis-
tency might exist for a given consistency-perturbed
model ecosystem. All of these need to be appropri-
ately modified to restore consistency.

Given we have identified a minimal set of incon-
sistent models, we must make alterations to these
in order to restore consistency. When an inconsis-
tency arises in practice, an analyst may either make
a change to the model they know to be inconsistent,
indicate that the models are in fact consistent by re-
vising the consistency theory, or conclude that the
models do not actually share some correspondences
that have lead to the inconsistency (i.e. separating
conflicting model[s]/element[s]).

Figure 4: Analyst Guided Inconsistency Resolution

In the previous examples (Section 2.1.1), the res-
olution of the first inconsistency (Figure 4) was
achieved by removing the identity relationship be-
tween the two nodes “order.CreditCheck=Approved”
and “the credit check passes”. The previously identi-
fied node was differentiated and placed under control
of “the system” with the subsequent activity. Finally,
the second inconsistency is resolved by updating the a
domain ontology by signifying an association between
“CDExpress”, “portal”, and “the system”.

3 Model Completeness

The problem of deciding whether a given set of mod-
els is complete relative to the needs of the task at
hand is difficult and has received relatively little at-
tention in the literature. Attempts have been made
to define a notion of completeness for requirements
models using goals (Yue 1987) and a combination of
goals and scenarios (Colette Rolland & Achour 1998).
Completeness questions for state-based requirements
and design models have been explored in (Heimdahl
& Leveson 1996).

3.1 Intra-Notation Completeness

Intra-notation completeness ensures that enough in-
formation is available to permit a determinate inter-
pretation of a model constructed in a given model-
ing language. Whereby a consistency theory aims
to ensure a correct interpretation can exist, a com-
pleteness theory for a modeling language helps en-
sure that a concise set of interpretations (ultimately
a single one) exist so that deviation in understanding
between modelers (that could lead to inconsistencies)
is minimized.



3.1.1 Intra-BPMN Completeness Example

We define a completeness theory for BPMN, by build-
ing on our previous graph-theoretic characterization
(see Section 2.1.1). Let m = (V,E) be a graphical
BPMN process model. We deem m complete if the
following conditions hold:

• A single start event marker 〈start −
event, event, owner〉 ∈ V exists for each
distinct owner, and every other node in V for
the same owner is reachable via control edges
from the start − event. Otherwise, the process
is ad-hoc and therefore E = ∅.

• A final or termination event marker 〈end −
eventi, event, owner〉 ∈ V is reachable via
control edges from all event, decision and activ-
ity nodes in V for the same owner. Otherwise,
the process is ad-hoc and therefore E = ∅.

• The set of conditions exiting a common decision
gateway are complete for each associated process
variable. That is, for some decision gateway d,
the set of conditions {c|〈〈d, v〉, edgetype, c〉 ∈ E}
are complete, (and should also be mutually ex-
clusive).

• The owner attribute for all nodes in V is set.

Again, consider Figure 1 and Figure 2. We can
identify that Figure 1 is close to complete as the
first, second and last completeness conditions are met,
however the third is not met. That is, we do not know
how this process will react to non-approved credit-
checks. In addition, Figure 2 does not meet any of
our four completeness conditions.

3.2 Inter-Notation Completeness

Inter-notation completeness checking relies on cor-
respondences between what can be said within two
languages or notations; and correspondences between
what is actually said among instances of models de-
fined within corresponding languages. To determine
whether completeness constraints exist between a
pair models, and to determine what these constraints
might be, the following steps are required:

• We establish language correspondences by re-
ferring to identity between the meta-models of
two corresponding languages. These correspon-
dences act as either hard or soft completeness
constraints, which state that if something is said
in a model of a source language, there must exist
a model in the target language that either must
or should satisfy the definition of the constraint.

• Next, we establish model correspondence by de-
termining identity between model elements (or
sentences) whose language constructs correspond
(and are constrained in some way).

• Given two corresponding models m1 and m2 in
separate languages, m2 is complete with respect
to m1 iff every statement in m1 that must be
said in m2 (given pre-established language and
model correspondences) is actually said in m2.
We can then apply an inverse check to determine
whether both m1 and m2 are parwise complete.

3.2.1 Inter-UML-BPMN Completeness Ex-
ample

We define a set of completeness constraints for UML
Interaction Diagrams (OMG 2007) and BPMN Mod-
els (White 2006) via graph-based transformations of

the models (based on the graphical characterization
in Section 2.1.1).

Let (V,E) define the digraph of a UML Interaction
diagram where (as in the BPMN digraph before) each
node takes the form 〈ID, nodetype, owner〉 and each
edge is of the form 〈〈u, v〉, edgetype〉. Each request
and receipt of a message maps to a node, with the
nodetype indicating whether the node is a request,
decision, or reciept in the UML Interaction Diagram.
Note, decisions are implicitly defined within the con-
trol flow prior to state invariants on the diagram (and
post alternative invariant blocks). The ID of the
node refers to the message label at the point in the
timeline where the request or receipt occurs (the state
invariant expression is used in the case of a decision).
The owner attribute of a node refers to the object
that has triggered the request, decision or receipt.
Edges represent either a message or flow of control
between message requests, decisions and receipts on
an objects lifeline. Finally, the edgetype of an edge
can be either control, internalcall, externalcall or
return depending on whether the edge represents an
internal/external request to invoke a task, or return
of some result in the diagram.

Let m1 be a UML Interaction Diagram (Figure 3)
and m2 be a corresponding BPMN Model (Figure 1).
We will again permit a pair of nodes to be deemed
to be identical even if the owner role for one of them
is undefined. We say that d1 (i.e. the digraph corre-
sponding to m1) is complete w.r.t. d2 (i.e. the digraph
corresponding to m2) iff the following properties hold:

1. For each node in d1, there must be a correspond-
ing node in d2 and vice-versa.

2. For each decision node in d1, there must a cor-
responding decision node in d2 along the path
between corresponding adjacent nodes in d1.

3. For each message edge in d1, there must be a
corresponding edge in d2 and vice-versa.

4. For each owner assigned to a node in d1, the same
owner should be assigned the corresponding node
in d2 and vice-versa.

Take for instance the Sales Order UML Interac-
tion Diagram (m1) in Figure 3, and associated BPMN
Model (m2) in Figure 1. The messaging correspon-
dence between m1 and m2 is defined in Table 2.

Table 2: Figures 1 and 3 Correspondence

Figure 1 (BPMN) Figure 3 (UML)

Customer (Order) → Portal process(Order)

Portal (Order) → Customer Service checkCredit(Order)

Customer Service (Order) → Portal Order

Portal (Order) → Shipping ship(Order)

Portal (Confirmation) → Customer Confirmation

Application of the completeness check between m1
and m2 reveals that the models are in fact complete.
This may have not been the case if a corresponding
edge or node did not exist on either model.

3.3 Completeness-Equilibria

We now introduce the notion of completeness equilib-
rium for a model ecosystem.

Definition. A model ecosystem M = {m1, . . . ,mn}
is in completeness-equilibrium iff every model mi ∈
M and pair of models mi,mj ∈ M satisfy complete-
ness conditions.



A model ecosystem that violates completeness-
equilibrium is deemed completeness-perturbed. This
perturbation results from change to a model (or mod-
els) in an ecosystem. Restoring completeness equilib-
rium in this setting involves adding or removing (i.e.
propagating) elements to models in the ecosystem.
For example, a removal may be required in a require-
ments model if a newly added requirement has too
adverse an impact on an ecosystem for it to be suc-
cessfully included.

Definition. Given a completeness-perturbed
model ecosystem M = {m1, . . . ,mn}, a restored
completeness-equilibrium is any model ecosystem
M ′ = {m′

1, . . . ,m
′
l} such that the following properties

hold:

• M ′ is in completeness equilibrium.

• Any set of models M ′′ = {m′′
1 , . . . ,m′′

l } for which
either of the following is true:

– M ′ ⊂ M ′′;
– M ′′ ⊂ M ′;
– There exists k ∈ {1, . . . , l} m′

k < m′′
k and

for all other i ∈ {1, . . . , l}, m′
i v m′′

i ;
– There exists ∃k ∈ {1, . . . , l} m′′

k < m′
k and

for all other i ∈ {1, . . . , l}, m′′
i v m′

i;

is completeness-perturbed.

3.4 Resolving Incompleteness

We can resolve incompleteness issues where a sin-
gle model exists in one language, but does not ex-
ist in another corresponding language (with language
level correspondences) by projecting the model into
the target notation with a mapping function (as in
Section 2.2). Resolving incompleteness between two
models firstly requires that the models are consistent.
If so, we resolve incompleteness in this setting by ex-
tending the model[s].

4 Conclusion

Models change frequently within software engineer-
ing projects. Such change can result in related mod-
els rapidly becoming redundant, causing additional
effort for analysts. In order to help deal with this
problem, we present a framework for managing model
change by considering each change as a perturbation
that leads to inconsistencies and incompleteness to
be resolved. Each resolution guides users toward a
stable model state for which we’ve provided declar-
ative characterizations. We’ve illustrated our frame-
work with consistency and completeness theories for
the graphical BPMN, as well as mapping and com-
pleteness constraints for BPMN and UML Sequence
diagrams. This work aims to lead to a general theory
of a model ecosystem to help resolve issues surround-
ing model change.

References

A. Finkelstein, D. Gabbay, A. H. J. K. & Nu-
seibeh, B. (1994), ‘Inconsistency handling in multi-
perspective specifications’, IEEE Transactions on
Software Engineering 20, 569–578.

Balzer, R. (1991), Tolerating inconsistency, in ‘Pro-
ceedings of the 13th International Conference on
Software Engineering’, pp. 158–165.

Bashar Nuseibeh, J. K. & Finkelstein, A. (1994), ‘A
framework for expressing the relationships between
multiple views in requirements specification’, IEEE
Transactions on Software Engineering 20(10), 760–
773.

Colette Rolland, C. S. & Achour, C. B. (1998), ‘Guid-
ing goal modeling using scenarios’, IEEE Transac-
tions on Software Engineering 24(12), 1055–1071.

Constance L. Heitmeyer, R. D. J. & Labaw, B. G.
(1996), ‘Automated consistency checking of re-
quirements specifications’, ACM Transactions on
Software Engineering Methodology 5, 231–261.

Finkelstein, A., Easterbrook, S., Kramer, J. &
Nuseibeh, B. (1992), Requirements engineering
through viewpoints, Technical report, Imperial
College, Department of Computing, 180 Queen’s
Gate, London SW7 2BZ.

Heimdahl, M. P. E. & Leveson, N. G. (1996), ‘Com-
pleteness and consistency in hierarchical state-
based requirements’, IEEE Transactions on Soft-
ware Engineering 22(6), 363–377.

Hoffman, R. R., Shadbolt, N. R., Burton, M. & Klein,
G. (1995), ‘Eliciting knowledge from experts: A
methodological analysis’, Organizational Behaviour
and Human Decision Processes 62, 129–158.

Hunter, A. & Nuseibeh, B. (1997), Analysing in-
consistent specifications, in ‘Proceedings of the
Third IEEE International Symposium on Require-
ments Engineering’, IEEE Computer Society Press,
pp. 78–86.

IEEE (Volume 24, Number 11, 1998), IEEE Trans-
actions on Software Engineering, Special Issue on
Managing Inconsistency in Software Development,
IEEE Computer Society.

Liu, W., Easterbrook, S. & Mylopoulos, J. (2002),
Rule-based detection of inconsistency in uml mod-
els, in ‘Workshop on Consistency Problems in
UML-Based Software Development’.

Nuseibeh, B. & Russo, A. (1999), Using abduction
to evolve inconsistent requirements specifications,
in ‘Proc. of ICSE99 workshop on Software Change
and Evolution’.

OMG (2007), ‘Unified modeling language’,
http://www.uml.org/ .

Ryan, M. (1993), Defaults in specifications, in ‘IEEE
International Symposium on Requirements Engi-
neering’, IEEE Computer Society Press, San Diego,
CA, pp. 142–149.
URL: citeseer.ist.psu.edu/ryan93defaults.html

S. M. Easterbrook, A. C. W. Finkelstein, J. K. &
Nuseibeh, B. A. (1994), ‘Coordinating distributed
viewpoints: The anatomy of a consistency check.’,
Journal of Concurrent Engineering: Research and
Applications (Special Issue on Conflict Manage-
ment) 2(3).

Tsai, J. J. P., Weigert, T. J. & Jang, H.-C. (1992),
A hybrid knowledge representation as a basis of re-
quirement specification and specification analysis,
in ‘IEEE Transactions on Software Engineering’,
Vol. 18, pp. 1076–1100.

van Lamsweerde, A., Letier, E. & Darimont, R.
(1998), ‘Managing conflicts in goal-driven require-
ments engineering’, IEEE Transactions on Soft-
ware Engineering 24, 908–926.



White, S. (2006), Business process modeling notation
(bpmn),, Technical report, OMG Final Adopted
Specification 1.0 (http://www.bpmn.org).

Wiels, V. & Easterbrook, S. M. (1998), Management
of evolving specifications using category theory, in
‘Proceedings of the International Conference on
Automated Software Engineering (ASE)’.

Wing, J. M. (1990), ‘A specifier’s introduction to for-
mal methods’, IEEE Computer 23(9), 8–24.

Young, R. M. & Gammack, J. (1987), The role of psy-
chological techniques and intermediate representa-
tions in knowledge elicitation., in ‘Proceedings of
the First European Workshop on Knowledge Ac-
quisition and Knowledge-based Systems’.

Yue, K. (1987), What does it mean to say that a speci-
fication is complete?, in ‘Proceedings of the Fourth
International Workshop on Software Specification
and Design (IWSSD87), Monterey’.


	Model Eco-Systems: Preliminary Work
	Recommended Citation

	Model Eco-Systems: Preliminary Work
	Abstract
	Disciplines
	Publication Details

	tmp.1369625328.pdf.wxzjY

