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Actor Eco-Systems: Modeling and Configuring Virtual Enterprises

Aditya Ghose and George Koliadis
Decision Systems Laboratory

School of Computer Science and Software Engineering
University of Wollongong, NSW 2522 Australia

{aditya, gk56}@uow.edu.au

Abstract

Complex business networks such as supply chains, with
cross-organizational workflows of even greater complexity,
are becoming increasingly common. The problem of en-
gineering cross-organizational processes in a manner that
accounts for inter-organizational constraints, and dynam-
ics, has received little attention in the literature. This paper
describes an effective framework for addressing the prob-
lem. The actor eco-systems approach leverages the eco-
systems metaphor to model cross-enterprise constraints,
change propogation and equilibria. It describes how cross-
enterprise processes can be derived from such models and
maintained in the face of dynamic business contexts.

1 Introduction

The history of the development of computing has been
characterized by the introduction of programming lan-
guages that offer progressively higher levels of abstraction.
Thus, agent-oriented programming can be viewed as offer-
ing higher-level abstractions than object-oriented program-
ming. More recently, proposals such as team-oriented pro-
gramming [11] have offered the prospect of programming
at the level of groups of agents, even agent societies. We
shall use the term societal programming to refer to such ap-
proaches, i.e., programming using societal constructs. Such
a progression is natural, with compelling motivations, but
fraught with technical challenges. The challenges lie in be-
ing able to devise “compilers” that accept as inputs societal
programs and produce as outputs executable collections of
agent code. The recent literature on agent organizations [4]
and agent societies [3] addresses the related problems of
norms, institutions, trust etc., but do not explicitly address
societal programming.

In this paper, we approach the problem of societal pro-
gramming from the perspective of actor eco-systems. An
actor eco-system is a loosely-coupled collection of actors in

an open system. The notion of an actor is similar to that of
an agent, but emphasizes the notion of an agent as a mod-
eling or design-time construct (in the spirit of approaches
such as [14]).

The biological metaphor of an eco-system is a power-
ful one, and applies at multiple levels. Like a biological
eco-system, actors are created (or discovered, as in service
discovery, or vendor search in e-markets), modified during
their lifetimes, and may eventually depart the eco-system.
Actors are goal-driven entities, like their biological coun-
terparts. Actors participate in a complex web of loosely-
coupled associations with other actors in an eco-systems.
These associations are highly dynamic, and may be long-
lasting or transient. As in biological eco-systems, the ac-
tors themselves are highly dynamic, and undergo frequent
(internal) change. Like their biological counterparts, actor
eco-systems are characterized by competing forces, which
define alternative equilibria for the eco-system. Informally,
an equilibrium is a state of the eco-system where the com-
peting forces “cancel”’ each other out, leading to a stable
state.

Our motivations for introducing actor eco-systems are
twofold. First, there is a clear need for a framework that ad-
dresses the design-time requirements of multi-actor (multi-
agent) systems such as supply chains, business networks,
virtual organizations and such. Each of these instances
exhibit all of the attributes of actor eco-systems described
above. Second, we aim to make progress towards the goal
of societal programming. In other words, we aim to be
able to describe actor eco-systems using high-level abstrac-
tions, requirements and design artefacts, and obtain from
such representations executable artefacts (such as agent pro-
grams, or business processes). Ideally, the mapping from
the design-time artefacts to the executable artefacts should
be automatic. At the very least, the translation should re-
quire minimal programmer/analyst/designer intervention.

We outline one approach to achieving this second ob-
jective in this paper. We begin by representing actor eco-
systems in the i* language for agent-oriented conceptual
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modeling [14], and devise an approach based on seman-
tic annotations to obtain business process models that re-
alize the actors described in the model of the eco-system.
The i* notation represents a good, but by no means per-
fect, choice for modeling actor eco-systems, and suffices
for our present purpose. Business processes are represented
in BPMN [13]. We describe an effect propagation tech-
nique for obtaining semantic descriptions of processes (the
BPMN notation makes no provision for these) which takes
as a starting point analyst-mediated semantic annotations of
individual activities within a process. Our technique prop-
agates these immediate effect descriptions to obtain cumu-
lative effect descriptions at every step of the process. i*
models are sequence-agnostic, yet the notion of sequence
is fundamental to any executable artefact. We use seman-
tic annotations of i* models to obtain a high-level descrip-
tion of the sequencing required in the underlying processes.
The high-level abstract process models are then refined to
obtain executable business processes by using AI planning
[8] or process mining [12] techniques to compose process
fragments from a library of such fragments to achieve the
semantic descriptions of the desired effects. The approach
described can be largely (but not entirely) automated.

2 Background

Some of the antecedents to our framework include i*
[14], the Tropos methodology [6], and BPMN [13].

2.1 Organizational Modeling with the i*
Framework

Our theory of an actor ecosystem is largely influenced by
the i* [14] notation (see Figure 1 for an example). i* is mod-
eling framework that represents organizations form a social,
intentional, and strategic viewpoint. From this perspec-
tive, actor motivations, capabilities, inter-depenence, level
of commitment and vulnerabilities are represented to sup-
port improved analysis over traditional co-ordination lan-
guages such as BPMN [13].

2.2 Formal Analysis and Design of Orga-
nizations with Tropos

The Tropos project [7] aims to provide methodological
support for advancing the i* framework further towards ar-
chitectural and detailed design where dynamic / behavioral
aspects are of importance. Specifically, Formal Tropos (FT)
see [6], is a part of the Tropos project that provides a spec-
ification language for modeling dynamic aspects of an i*
model via formal annotation of Creation, Fulfillment and
Invariant conditions. These conditions are specified using

first-order typed linear temporal logic and prescribe the con-
straints on an elements lifecycle. In this work, we take a
similar approach to annotation (with the use of fulfillment
conditions annotated to i* models).

2.3 Behavioral Modeling with BPMN

The Business Process Modeling Notation (BPMN) [13]
(see Figure 2) has received strong interest and support as an
open standard for modeling business processes. BPMN has
been found to be of high maturity, however some limitations
still exist including the representation of process state [1].
Processes are graphically presented in BPMN using flow
objects: events, activities, and decisions; connecting ob-
jects: control flow links, and message flow links; and swim-
lanes: pools, and lanes within pools. BPMN allows inter-
operation to be modeled at private (no interoperation), ab-
stract (shared interfaces) and collaborative (shared internal
behavioral descriptions) levels.

3 Actor Ecosystem Modeling

The expressiveness of i* in combination with BPMN
provides a basis for our notion of an actor ecosystem.

3.1 Ecosystem Structure

An actor ecosystem provides the superstructure for de-
scribing the internal and external environment of virtual en-
terprises as a set of interrelated actors.

3.1.1 Actor

An Actor is referred to by a unique name, and is defined by
a set of Capabilities. Within an i* model, a capability is rep-
resented as a AND-subset of an actor’s internal goal graph.
As in Figure 1, “Assembly Plant”, “Inventory Manager”,
and “Vehicle Dealership” are actors. In addition, “Assem-
ble[Systems]” is a capability of the “Assembly Plant” ac-
tor, as well as “Manage[Assembly Line]”. However, the
“Assembly Plant” has four ways to “Manage[Assembly
Line]”, based on a combined selection from either “Re-
cieve[Systems]” or “Assemble[Systems]” and “Assemble to
Stock[Vehicles]” or “Assemble to Order[Vehicles]”.

We refer to the non-terminal nodes of a capability as
Goals, and some of the terminal nodes as Tasks. A termi-
nal task is an action that the actor is capable of performing.
A terminal goal is an outcome that an actor would like to
achieve, either by further refinement into a set of tasks, or
by delegating that outcome to another actor (i.e. a depen-
dency in i*). The non-terminal nodes of a capability are
goals and provide a rationale for the organization of the un-
derlying tasks and goal dependencies.

126



Figure 1. Part of a Virtual Auto Manufacturer Enterprise

3.1.2 Actor Ecosystem

An Actor Ecosystem is a set of actors and a set of Relation-
ships between actors. An actor may Service, be a Part-Of,
be a Member-Of, or be a Type-Of another actor. Service
relationships indicate that an actor services a dependency
of another actor. For example, the “Assembly Plant” ser-
vices the “Customize[Vehicles]” dependency of the “Vehi-
cle Dealership” in Figure 1. An actor is a part-of another ac-
tor if their capabilities are included in the set of capabilities
of another actor and the other actor would not exist with-
out those capabilities. For example, a “Assembly Plant” is
a part of an “Auto Manufacturer”. The member-of relation-
ship differs to the part-of relationship in that the super ac-
tor can still exist without the capabilities of the subordinate
actor. For example, a “Vehicle Dealership” could be con-
sidered a member of an “Auto Manufacturer”. Finally, if an
actor is a type of another actor they inherit the super actors
capabilities. For example, a “Vehicle Dealership” is a type
of “Retailer”.

3.1.3 Virtual Enterprise

A Virtual Enterprise is a set actor/goal pairs that are part of
an actor ecosystem. Whereas a virtual enterprise describes
a set of co-operating entities, the greater actor ecosys-

tem describes the entities in their environment. For ex-
ample, Figure 1 provides a partial illustration of a Vehi-
cle Manufacturing enterprise. The actors and goals of this
enterprise include “Vehicle Dealer”/“Sell[Vehicles]”, “As-
sembly Plant”/“Manage[Assembly Line]”, and “Inventory
Manager”/“Manage[Inventory]”. It is important to realize
that each goal may be associated to many alternative capa-
bilities.

We can view virtual enterprises as also being composed
of sub-enterprises where the set of objectives of the sub-
enterprise is a subset of the greater enterprise. This provides
a natural means for describing virtual organizations that is
consistent with the definitions provided in existing industry
standards such as the Business Motivation Model (BMM)
[9].

3.1.4 (Virtual Enterprise) Strategy

A Strategy describes the means for achieving some goal.
Therefore, given a goal such as “Develop[Systems]” in
Figure 1, one way of achieving this goal is to “Assem-
ble[Systems]”. Whereas this goal has two ways of achieve-
ment, some goals such as “Manage[Vehicle Stock]” may
have only one.

A Virtual Enterprise Strategy is a specific means for
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achieving the goals of a virtual enterprise. A virtual en-
terprise strategy specifies a configuration of actors and ca-
pabilities required to meet some goals (i.e. who will be
involved and which tasks they will perform). Selecting
a virtual enterprise strategy also requires the selection of
any actors and capabilities who contribute to the realiza-
tion of a goal through a services relationship. For exam-
ple, if we choose to satisfy the goal of “Sell[Vehicles]”
by “Place[Custom Order]” we require that the capability to
“Assemble to Order[Vehicles]” assigned to the “Assembly
Plant” be also included in the formulation of that strategy.
This notion of a strategy (for single objectives), and virtual
enterprise strategy (for multiple objectives) provides a basis
for our analysis and configuration of virtual enterprises in
the actor ecosystem.

3.2 Ecosystem Function

The performance of each task associated to the capabil-
ity of an actor realizes an immediate effect within an actor
ecosystem. This immediate effect can be described infor-
mally using natural language, or formally using a language
such as propositional or predicate logic. For example, the
performance of the “Place[Custom Order]” task leads to the
effect “The Vehicle Dealership and Assembly Plant know
the details of the order and that the order has a custom sta-
tus.”. Tasks may also result in alternative and/or conditional
effects. For example, the “Place[Bulk Order]” task may re-
sult in the effect “The bulk order has been declined.” if
“The number of vehicles in the bulk order are greater than
the dealership capacity.”.

We define goals in a manner similar to tasks. Here, goals
receive a description of fulfillment conditions (as in Formal
Tropos [6]) or normative effects. These describe the effects
that are required to hold once a series of tasks have been
performed to achieve the goal. These may also be disjunc-
tive, in order to cater for alternative effects. For example,
the “Place[Vehicle Orders]” goal may be defined as “The
Vehicle Dealership and Assembly Plant know the details of
an order, or an order has been denied.” (as in the prior de-
scription of the alternative effect of “Place[Bulk Order]”).

3.2.1 Contiguous Effect Accumulation

Both effects and fulfillment conditions are annotated to
nodes on an organizational model such as Figure 1. Alter-
native effect annotations describe the alternative effects of a
task whereas multiple fulfillment conditions describe the set
of conditions that must be fulfilled once a set of tasks have
been performed. In order to evaluate fulfillment conditions,
we must describe the cumulative effect of a series of tasks
executed in sequence.

Let 〈ti, tj〉 be the ordered pair of tasks, and let ei and ej

be the corresponding pair of (immediate) effect annotations.

Let ei = {ci1, ci2, . . . , cim} and ej = {cj1, cj2, . . . , cjn}
(we can view CNF sentences as sets of clauses, without
loss of generality). If ei ∪ ej is consistent, then the re-
sulting cumulative effect is ei ∪ ej . Else, we define e′i =
{ck|ck ∈ ei and {ck} ∪ ej is consistent} and the resulting
cumulative effect to be e′i ∪ ej . In other words, the cumula-
tive effect of the two tasks consists of the effects of the sec-
ond task plus as many of the effects of the first task as can be
consistently included. We remove those clauses in the effect
annotation of the first task that contradict the effects of the
second task. The remaining clauses are undone, i.e., these
effects are overridden by the second task. In the following,
we shall use acc(e1, e2) to denote the result of pair-wise ef-
fect accumulation of two contiguous tasks t1 and t2 with
(immediate) effects e1 and e2.

3.2.2 Coordinated Effect Accumulation

In addition to describing functional aspects of an ecosystem
in an actor ecosystem model, we also establish an associ-
ation between tasks assigned to actors and BPMN process
models that describe their internal behavior. Again, we need
to provide a description of the cumulative effect of the pro-
cess. We accumulate the effects of tasks within a participant
lane. For contiguous tasks, we use the accumulation proce-
dure (acc(e1, e2)) discussed before. As process models in-
troduce additional co-ordination constructs, we accumulate
across these in the manner described below.

Let t1 and t2 be the two tasks immediately pre-
ceding an AND-join. Let their cumulative effect
annotations be E1 = {es11, es12, . . . , es1m} and
E2 = {es21, es22, . . . , es2n} respectively (where ests de-
notes an effect scenario, subscript s within the cumulative
effect of some task, subscript t). Let e be the immediate ef-
fect annotation, and E the cumulative effect annotation of a
task t immediately following the AND-join. We define E =
{acc(es1i, e) ∪ acc(es2j , e)|es1i ∈ E1 and es2j ∈ E2}.
Note that we do not consider the possibility of a pair of
effect scenarios es1i and es2j being inconsistent, since
this would only happen in the case of intrinsically and
obviously erroneously constructed process models. The
result of effect accumulation in the setting described here is
denoted by ANDacc(E1, E2, e).

Let t1 and t2 be the two tasks immediately preceding an
XOR-join. Let their cumulative effect annotations be E1 =
{es11, es12, . . . , es1m} and E2 = {es21, es22, . . . , es2n}
respectively. Let e be the immediate effect annotation,
and E the cumulative effect annotation of a task t im-
mediately following the XOR-join. We define E =
{acc(esi, e)|esi ∈ E1 or esi ∈ E2}. The result of effect
accumulation in the setting described here is denoted by
XORacc(E1, E2, e). For example, take Figure 2 as an im-
plementation of the “Plan[Assembly and Delivery Sched-
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ule]” in Figure 1. In this model, we would accumulate ef-
fects in contiguous sequence prior to, and across, the first
XOR-split. We then have two tasks prior to the join. That
is, “Prioritize Stock Report” and “Amend Delivery Sched-
ule”. The accumulation across the XOR-join would then
include both these cumulative effects as alternative cumula-
tive effect scenarios for the planning process.

Figure 2. A Simplified Assembly and Delivery
Schedule Planning Process

Let t1 and t2 be the two tasks immediately preceding an
OR-join. Let their cumulative effect annotations be E1 =
{es11, es12, . . . , es1m} and E2 = {es21, es22, . . . , es2n}
respectively. Let e be the immediate effect annota-
tion, and E the cumulative effect annotation of a task
t immediately following the OR-join. The result of ef-
fect accumulation in the setting described here is de-
noted by ORacc(E1, E2, e) = ANDacc(E1, E2, e) ∪
XORacc(E1, E2, e).

We note that the procedures described above do not sat-
isfactorily deal with loops, but we can perform approxi-
mate checking by partial loop unraveling. We also note
that some of the effect scenarios generated might be infea-
sible. Our objective is to devise decision-support function-
ality, with human analysts vetting key changes before they
are deployed.

3.2.3 Propagating Cumulative Effects

In order to provide a more complete description of how
goals may be fulfilled within and across actor capabilities,
we propagate cumulative effects onto the root node of each
capability fulfilled by an interleaving of tasks and BPMN
process models for each given strategy. For example, later
when describing Strategy Realization in Section 4.2, we de-
scribe how the result of the contiguous accumulation of two
tasks leads to the realization of goal fulfillment conditions.
Alternative immediate effects and multiple strategies lead
to alternative cumulative effect annotations for goal nodes.
These cumulative effect annotations should be firstly con-
sistent with fulfillment conditions on goal nodes. The next

step of analysis during propagation is to check whether
these cumulative effect annotations entail, or realize, ful-
fillment conditions. Note that consistency and entailment
checking is also performed across service relationships be-
tween actors that participate in a strategy. Later in Section
5.2, we will use these local cumulative effect descriptions to
help in proposing minimal reconfigurations of actor ecosys-
tems that reach equilibria.

3.3 Structural and Functional Preference

Previously we have discussed how to deal with the func-
tional properties of actors participating within virtual en-
terprises and ecosystems. The effects and fulfillment con-
ditions we’ve described evaluate to boolean truth values.
Within an ecosystem and enterprise, actors prefer certain
conditions and configurations of the ecosystem across a
range of (non-boolean) values. These preferences define a
multi-valued ordering over ecosystem conditions that may
include for example, the performance of specific activi-
ties by specific actors. Therefore, in addition to defining
boolean fulfillment conditions for goals, we map certain
(soft) fulfillment conditions to 4-tuples (〈A,S, Slow, Supp〉)
that define the attribute (A), preference scale (S), lower
bound (Slow) and upper bound (Supp) for conditions that
may or may not be fulfilled in the cumulative effect of a
series of actions. Extensive frameworks for modeling pref-
erence structures (S) can be found in [2] (for negative pref-
erences) and [10] (for negative and positive preferences).
These frameworks define a partial order over preference val-
ues (≤s) and a means for combining preference values (⊗).

4 Equilibria within Actor Ecosystems

Within an ecosystem, virtual enterprises seek to realize
their goals by selecting specific sets of strategies that con-
form with market and supplier demands. Below we provide
a detailed description of the virtual Auto Manufacturing en-
terprise in Figure 1 by focusing on specific order fulfillment
strategies that cross enterprise boundaries.

4.1 Vehicle Manufacturing Supply Chain

The simplified virtual Auto Manufacturing enterprise
in Figure 1 is defined by the following set of goals as-
signed to three ecosystem actors: “Vehicle Dealer” →
“Sell[Vehicles]”; “Assembly Plant” → “Manage[Assembly
Line]”; “Inventory Manager” → “Manage[Inventory]”. In
order to achieve these goals, certain capabilities of a first
tier “Systems and Component Integrator” supplier, such as
“Deliver[Specialist Component]”, are required.

Additional actors within the ecosystem could conceiv-
ably include “Component Manufacturers”, “Transportation
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Organizations” and “Automotive Customers”. Construct-
ing an actor ecosystem model is contingent on the amount
of information available. Additional information describ-
ing actors and capabilities within the ecosystem, as with any
supply chain, is dependent on the amount of information ac-
tors are willing to disclose. For example, the “Systems and
Component Integrator” may not be willing to disclose the
name and capabilities of its component suppliers or other
customers.

4.1.1 Intra- and Inter- Enterprise Strategies

The evaluation of a virtual enterprise strategy can be local
to the capability of a specific actor within an ecosystem, or
non-local whereby the required capabilities of external ac-
tors are also considered. A local evaluation of a strategy is
“idealized”. That is, we only consider the outcome of any
required service relationships with external actors within
the ecosystem. On the other hand, a non-local evaluation
aims to analyze the interplay between local and non-local
capabilities across actors and enterprises. This additional
information can help to detect inconsistencies among the
actual and expected outcomes of a strategy.

Take for example, the “Manage[Assembly Line]” goal
of the “Assembly Plant” actor. From a local intra-enterprise
perspective, there are four local capabilities and strate-
gies for achieving this goal. These include a selection
from either “Recieve[Systems]” or “Assemble[Systems]”
and “Assemble to Stock[Vehicles]” or “Assemble to Or-
der[Vehicles]”. However, the “Assembly Plant” is serviced
by the “Inventory Manager” to “Stock[Systems and Com-
ponents]” and “Communicate[Vehicle Stock]”. The anal-
ysis of non-local inter-enterprise capabilities reveals that
there are in fact two additional intra-enterprise capabili-
ties, and therefore strategies, to “Manage[Materials]” that
include “Source[Engineered Systems]” or “Source to Engi-
neer[Systems]”. Therefore, there are eight cross-enterprise
strategies for “Manage[Assembly Line]” that will yield
variations in their cumulative results during analysis.

4.2 Criteria for Ecosystem Equilibria

We provide an abstract characterization of equilibria for
strategies and virtual enterprises.

4.2.1 Strategy Realization

Definition 1. (Deployed Strategy) A strategy is deployed
if the terminal nodes of the strategy are tasks implemented
as BPMN processes, serviced goals, or effect annotated
goals. Otherwise the strategy is undeployed.

Effect annotated goals take cases where information rev-
elation is an issue into account. Next, we define a realized

strategy.

Definition 2. (Realized Strategy) A strategy is realized by
an interleaving I = 〈t1, . . . , tn〉 of the terminal tasks or ef-
fect annotated goals of the strategy iff the cumulative effect
of each proper prefix Î of I entails the fulfillment conditions
of the root nodes of the capabilities containing the tasks in
the prefix. Otherwise the strategy is unrealized by the inter-
leaving.

Take as a simple example, the “Manage[Vehicle Stock]”
capability of the “Inventory Manager” annotated with the
fulfillment condition: “The Inventory Manager knows that
a vehicle request is fulfilled and the Assembly Plant knows
the inventory status.”; and includes two leaf tasks anno-
tated with the following immediate effects: Recieve[Vehicle
Stock Request] (t1): “The Inventory Manger knows that a
vehicle request is unfulfilled.”; and, Fulfill[Vehicle Stock
Request] (t2): “The Inventory Manager knows that a vehi-
cle request is fulfilled, the Assembly Plant knows the in-
ventory status, and the Inventory Manager knows that the
ordered vehicle is located at the Vehicle Dealership.”.

In this example, the inconsistency resulting in either a
request being “fulfilled” or “unfulfilled” indicates that the
〈t1, t2〉 interleaving of these tasks is the only interleav-
ing that entails the fulfillment conditions annotated to the
“Manage[Vehicle Stock]” capability.

4.2.2 Virtual Enterprise Equilibria

Definition 3. (Virtual Enterprise Equilibria) A virtual
enterprise is in equilibria iff: there exists a deployed strat-
egy (S) for the virtual enterprise that is realized by at least
one trajectory; and, there does not exist an undeployed
strategy (S′) for the virtual enterprise that is realized by
at least one trajectory, and is strictly more preferred by at
least one actor (S <s S′) and not less preferred by each
actor (S ≤s S′).

Take for example a deployed inter-enterprise strategy to
“Sell[Vehicles]” that selects the “Place[BulkOrder]” task
(s1), and an undeployed strategy that selects “Place[Custom
Order]” (s2). From the perspective of the “Vehicle
Dealership”, the set of realizing interleavings for s1

are evaluated with a 〈‘Profit′, P, ‘Med′, ‘Med′〉 profit
indicator, whereas the interleavings of s2 evaluate to
〈‘Profit′, P, ‘High′, ‘V eryHigh′〉. It would initialy
seem that s2 would improve the satisfaction the goal
to “Sell[Vehicles]”. When we consider the “Assem-
bly Plant”, we find that an evaluation of s1 yields
〈‘Cost′, P, ‘Med′, ‘Med′〉 and an evaluation of s2 yields
〈‘Cost′, P, ‘Low′, ‘Low′〉. Therefore, without any further
information, the virtual enterprise in this example can be
considered in equilibria. That is, the virtual enterprise has
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deployed a “pareto optimal” strategy for realizing its objec-
tives (there are no further “pareto improvements” available).

4.2.3 Actor Ecosystem Equilibria

Definition 3. (Virtual Enterprise Equilibria) An actor
ecosystem is in equilibria iff each virtual enterprise within
the ecosystem is in equilibria.

5 Realizing Actor Ecosystem Equilibria

As in real-life ecosystems, actor ecosystems are in a con-
stant state of change. Changes occurring to the operational
context, as well as internal environment of virtual enter-
prises, force changes to the ecosystem equilibria. This re-
quires effective mechanisms for checking, generating and
deploying strategies to re-stabilize virtual enterprises.

5.1 Equilibria Perturbing Change

Change within actor ecosystems can originate from a
number of sources. These perturbations can effect ecosys-
tem equilibria in distinct ways (e.g. strategy deploy-
ment/realization, or equilibria). Actors constantly deliber-
ate to identify and deploy strategies that aim to optimize
their objectives. Deliberation may cause an actor to: request
or service new dependencies; stop servicing or requiring ex-
isting dependencies; introduce new or discontinue to sup-
port certain capabilities; or, remove or redeploy processing
resources between capabilities. In reality, each actor oper-
ates with a bounded number of resources. This changes over
time and may effect the capabilities of particular actors. Re-
sourcing issues may cause an actor to remove or redeploy
processing resources between capabilities. Actors may be-
come redundant or simply choose to leave an ecosystem.
In addition, new actors may choose to join an ecosystem.
Participation issues may cause actors to: request or service
new dependencies; or, stop servicing or requiring existing
dependencies.

5.2 Re-Configuring Actor Ecosystems

Modifying an actor ecosystem to restore equilibria is
not a trivial task. One of most important considerations
(stemming from behavioral theory) is the minimization of
change. This leads us to a characterization of proximity be-
tween two actor ecosystems. This proximity relation helps
to: (1) evaluate the closeness of an equilibria ecosystem to a
non-equilibria ecosystem; (2) guide the construction of new
equilibria ecosystems.

Definition 4. (Actor Ecosystem Proximity Relation)
Associated with each effect accumulated actor ecosystem

(ae) is a proximity relation ≤ae such that aei ≤ae aej

denotes that aei is closer to ae than aej . ≤ae in turn, is
defined by a triple 〈≤A

ae,≤S
ae,≤V

ae〉 where: ≤A
ae is an actor

proximity relation; ≤S
ae is an service relation proximity

relation; and, ≤V
ae is a virtual enterprise proximity relation.

We write aei ≤ae aej iff each of aei ≤A
ae aej , aei ≤S

ae aej

and aei ≤V
ae aej holds. We write aei <ae aej iff

aei ≤ae aej and at least one of aei <A
ae aej , aei <S

ae aej ,
or aei <V

ae aej holds.

In this setting, aei ≤A
ae aej could be defined by either:

set inclusion (aδi ⊆ aδj); or set cardinality (|aδi| ≤ |aδj |);
where aδi is a set containing the symmetric capability dif-
ferences between equivalent actors (or ∅) within aei and ae,
and similarly for aδj . Similar structural definitions also ex-
ist for the ≤S

ae and ≤V
ae relations.

To leverage our semantic definition of goals when es-
tablishing ≤V

ae, we could consider their cumulative effect
annotations. Let Gae = {e1, . . . , en} define the union of
cumulative effects for each virtual enterprise within an ac-
tor ecosystem (ae). Let Gae∆V Gaei

= {δ1, . . . , δn} where
δi is the smallest cardinality element of the set of symmet-
ric differences between ei ∈ Gaei and each e ∈ Gae. We
then say that aei ≤V

ae aej iff for each e ∈ Gae∆Gaei
, there

exists an e′ ∈ Gae∆Gaej
such that e ⊆ e′. Set cardinality

definitions of semantic proximity also exist.

Definition 5. (Equilibria-Minimal Actor Ecosystem) An
actor ecosystem a′ is equilibria minimal with respect to
another actor ecosystem a iff: a is non-equilibria; a′ is in
equilibria; and, there does not exist an actor ecosystem a′′

such that a′′ <a a′ and a′′ is in equilibria.

5.3 Deploying Enterprise Strategies

A virtual enterprise strategy within an actor ecosystem
can be progressively extended towards the realization of
an executable description by applying well known planning
techniques (as in [5]) in the following way.

As we discussed earlier, each actor is defined by a set
of AND-refined capabilities whose leaf nodes are tasks as-
sociated to executable processes. These capability defini-
tions are sometimes referred to as process repositories (or
plan libraries). In our setting, these repositories consist
of annotated and accumulated BPMN process fragments
BPa = {pf1, . . . , pfm} (i.e. assigned to an agent a).

Next we consider how valid task interleavings for a strat-
egy may be deployed by composing available process frag-
ments in the process repositories for a set of actors. We
achieve this in the following way:

1. Select an valid task interleaving I = 〈t1, . . . , tn〉,
where each ti∈{1..n} = {esi1, . . . , esij} is defined as
a set of cumulative effect scenarios on tasks assigned
to actors.
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2. For each two contiguous tasks tk−1, tk ∈ I , at-
tempt to compose a set of process models (PMk =
{p1, . . . , pl}) represented in BPMN such that for all
esk ∈ tk, there exists some p ∈ PMk where: the start
event of p signifies the achievement of an effect sce-
nario esk−1 ∈ tk−1 and is accordingly accumulated as
a task within p; and, esi |= esk, for some cumulative
effect esi of p.

3. Verify that the final cumulative effect scenarios of each
process in each PMk that aims to realize a contiguous
sequence 〈. . . , tk−1, tk, . . .〉 in I realize the strategy.

Finally, we establish a level of realization for each valid
task interleaving. This determines the degree of viability
for an interleaving to aid in further developing the process
repository of an agent.

Let I be some task interleaving as before, let tk−1, tk
be any two contiguous tasks in I , and let PMk be a set of
process models constructed to progress from tk−1 to tk by
taking process fragments from the process repository BPa.
We say that I is strongly realized if for each PMk of all
contiguous tasks in I , each effect scenario in tk can be re-
alized by a set of processes in PMk initiating from every
effect scenario in tk−1. I is weakly realized if for some
PMk of some contiguous task[s] in T , each effect scenario
in tk can be realized by a set of processes in PMk initiating
from only some effects scenarios in tk−1. Finally, I is un-
realized if for some PMk of some contiguous task[s] in T ,
some effect scenario in tk cannot be realized by a process
in PMk initiating from any effects scenarios in tk−1.

An alternative to planning technologies in this setting
may be process mining [12] techniques that synthesize co-
ordinations models (such as BPMN) from interleaved se-
quences of activities (which we are able to generate).

6 Conclusion

In this paper we have discussed our notion of an ac-
tor eco-system; a framework that addresses the design-time
requirements of building multi-actor (multi-agent) systems
such as supply chains, business networks, virtual organiza-
tions etc. We’ve describe how semantic annotation of ab-
stract models of actor eco-systems can be used to derive ex-
ecutable process models that realize such systems. This out-
lines a potentially powerful toolkit for model to code trans-
formations in complex agent-oriented settings.

To further enhance this framework, we aim to consider
extensions to model conflict within and among virtual en-
terprises. These inconsistencies may be based on conflict-
ing effects, fulfillment conditions or preferences. We would
also like to propose additional mechanisms for optimizing
virtual enterprise configurations that deal with changing op-
erational contexts. Another interesting avenue, is to apply

coalition formation algorithms to identify emerging virtual
enterprises. This will hopefully lead to developing deci-
sion support toolkits for aiding in the acquisition of the do-
main knowledge and checking/generating/deploying strate-
gies and enterprises.
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