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Abstract—This paper presents a new approach to trajectory-
based Abnormal Behavior Detection (ABD). While existing
techniques include position in the feature vector, we propose
to estimate the probability distribution locally at each posi-
tion, hence reducing the dimensionality of the feature vector.
Local information derived from accumulated knowledge for a
particular position is integrated in the distribution enabling
context-based decision for ABD. A stochastic competitive learning
algorithm is employed to estimate the local distributions of the
feature vector and the location of the distribution modes. The
proposed algorithm is tested on the detection of driving under
the influence of alcohol. The performance of the new algorithm
is evaluated on synthetic data. First the local stochastic learning
algorithm is compared to its global variant. Then it is compared
to the Kohonen self organizing feature maps. In both cases, the
proposed algorithm achieves higher detection rates (at the same
false alarm rate) with fewer clusters.

I. INTRODUCTION

The last decade witnessed a rise in the development of
abnormal behavior detection (ABD) systems due to the in-
creasing demand in visual surveillance and security. The
development of ABD systems has been possible due to the
recent ability of computers to process information from videos
in real-time. Even though ABD remains an open problem, the
inherent outcomes are already tremendous. Robust ABD will
enable the automatic detection of abnormal events and the
instantaneous notification of the relevant authority. It would
result in a dramatic reduction in the need for human effort to
analyze video-surveillance sequences, for instance. However,
robust ABD still encounters a number of challenging problems
because it is a high-level process requiring the integration of
various techniques such as feature selection, trajectory mod-
eling, dimensionality reduction and density estimation. Most
of these fields are still active areas of research; global optimal
solutions are yet to be found for many of the aforementioned
problems.

Abnormal behavior detection can be classified in two differ-
ent categories. The first one is concerned with the characteri-
zation of the body posture. The second category is based upon
the analysis of the object elementary features such as position,
color, displacement, object size, and so on. The algorithm
proposed here falls in the latter category. Abnormal behavior
detection through feature-based analysis aims at estimating the
probability distribution of the feature vector representing the
object. In a global approach, the probability distribution of the

feature vector is estimated over the entire feature space. The
feature-based analysis traditionally detects abnormal behavior
based on the distribution of the feature vector after a learning
phase. Different ABD algorithms differ in the way they
learn the probability distribution. Hidden Markov models are
typically used to track and detect abnormal behavior [2],
[6], [12]. Neural networks have also been used for ABD with
some success [3]. In particular, self organizing maps (SOMs)
have attracted attention due to their ability to preserve the
topology of the input data [5], [13]. Johnson and Hogg have
also proposed to model the probability distribution of a feature
vector composed of the position and the vector flow of the
object using a competitive neural network [8] and a global
Gaussian mixture model [9].

Unlike the aforementioned approaches, the algorithm devel-
oped here proposes to further hone the characteristics of the
feature vector and, in particular, to differentiate between local

and behavioral features. Local features provide information
that is characteristic of the object in a local environment. For
instance, the position of the object is a local feature. With a
global model, the estimation of the local feature distribution
does not provide optimal results because the information
depends on the local context. Nevertheless, local features are
of crucial importance to explain the local behavior of an object.
Therefore, they are used to index the distribution. A map of
local probability distributions for the behavioral features is
thus generated. The map is accessed through the local features
(as indexes). The benefits are twofold: first, the dimensionality
of the feature vector is reduced; second, the error in the
distribution estimate is reduced because the local features are
not estimated by the global model.

The paper is organized as follows. Section II introduces
the position-based modeling of the feature vector. Section III
describes the integration of the neighborhood information in
the model. Section IV presents the stochastic update of the
local distribution. Finally, Section V presents the experimental
setting and results before concluding in Section VI.

II. MIXTURE MODEL OF THE FEATURE VECTOR DENSITY

Trajectory-based ABD aims to estimate the distribution of
the feature vector X over time. Markov chains provide a
convenient framework to estimate such a distribution when
knowledge about the state for the previous time step is known.

978-1-4244-2957-8/08/$25.00 © 2008 IEEE ISSNIP 2008121



The problem, modeled in mathematical terms, is equivalent to
determining the conditional probability P (Xt|Xt−1) where
Xt and Xt−1 are the feature vectors at times t and t − 1,
respectively [10], [7]. The contribution of this paper is to esti-
mate the feature vector probability distribution characterizing
an object at time t given its feature vector at time t− 1 for a
particular local feature. To this end, we split the feature vector
X into two components: a local component S representing
the coordinates and a behavioral component ϕ representing
the behavior of the object. Thus, the feature vector can be
rewritten as X = {S, ϕ}.

A. Dimensionality Reduction via Spatial Feature Indexation

Let us introduce the general framework of abnormal behav-
ior detection before discussing the motivations for dimension-
ality reduction. We suppose that the problem of ABD can be
described as a Markov chain; one can recursively determine
the distribution of the feature vector with conditional prob-
abilities. It can thus be assumed that the distribution of the
feature vector at time t is described by the probability density
p(Xt|Xt−1). The spatial marginal distribution p(S|Xt−1) and
the behavioral marginal distribution p(ϕ|Xt−1) are defined as:

p(S|Xt−1) =
∫

Dϕ

p(Xt|Xt−1) dϕ ; and (1)

p(ϕ|Xt−1) =
∫

DS

p(Xt|Xt−1) dS . (2)

where DS and Dϕ are the respective definition domains of
the components S and ϕ. The marginal distributions provide
a representation of the spatial and behavioral component spans
over their respective subspaces, namely DS and Dϕ.

The motivation underlying the distinction between behav-
ioral features and spatial features is the sparsity of the spa-
tial component of the dataset. Indeed, the amount of data
available is not homogeneously distributed over the feature
space. Typically, traffic sequences present high density of
objects in certain areas of the scene while others are deserted.
Consequently, the spatial marginal distribution p(S|Xt−1) is
difficult to approximate and the error in the estimation is large.
In contrast, the behavioral marginal distribution p(ϕ|Xt−1)
is usually dense and can be estimated accurately. Figure 1
shows an example of such marginal distributions. The set of
object position is sparse and clearly follows specific patterns
(called routes) while its behavior, represented by the vector
flow, is dense. As a result, the spatial component of the feature
vector is accountable for most of the estimation error on
the distribution. Nevertheless, the position of the object plays
an important role in the analysis of the behavior because it
provides information on the local environment and, thus, has to
be considered for abnormal behavior detection; the behavioral
distribution is not sufficient to discriminate abnormal behavior.
Therefore, we propose to reduce the estimation of the feature
vector distribution p(Xt|Xt−1) to the behavioral component
p(ϕ|Xt−1) and use the spatial component S to index the

local behavioral distributions. This results in a local charac-
terization of the behavior. The advantage is twofold. First,
the dimensionality of the feature space is reduced, avoiding
the so-called curse of dimensionality. Second, the behavior is
locally analyzed, enabling abnormal behavior detection based
on contextual information.

B. Local Probability Density Estimation

Because the probability density estimate p(Xt|Xt−1) is
derived from local features, the coordinates of the object are
not included in the feature vector X but are rather used to
index the probability density. Let us denote by S the coordinate
component and ϕ the behavioral component (e.g. size, color,
shape, etc.) of the feature vector X. The state of the object at
time t can be expressed as follows:

Xt = Xt−1 + fS(ϕ) , (3)

where fS(ϕ) is a local function of the behavioral component.
Such a function is difficult to estimate directly because there is
no knowledge of behaviors in the scene. Instead, we propose
to approximate fS(ϕ) by sampling from a local conditional
probability density function (pdf):

p(Xt|Xt−1) ∝ pS(ϕ|Xt−1) . (4)

The probability density function pS(ϕ|Xt−1) is recursively
derived from the knowledge accumulated over time. We pro-
pose to model the probability density of the feature vector with
a fixed number of clusters K representing the modes of the
density. Thus, the pdf of the feature vector can be expressed
as

pS(ϕ|Xt−1) = γ
K∑

k=1

fk(ϕ;µk) . (5)

where γ is a normalizing constant. Here, the function
fk(ϕ; µk) is defined as follows:

fk(ϕ; µk) =
wk

1 + exp(||ϕ − µk||) , (6)

where ||ϕ − µk|| denotes the Euclidian distance between the
vectors ϕ and µk, and wk are the weights. The parameters µk

approximate the position of the modes in the density.

III. INTEGRATION OF LOCAL INFORMATION

The model defined in (5) is a temporal estimate of the
probability density function. It represents the probability dis-
tribution of the behavioral component for a particular local
component. Because objects in the same neighborhood tend
to have the same behavior, the feature vectors at neighboring
locations are highly correlated. Based on this hypothesis,
we propose an algorithm that integrates information from a
local neighborhood in order to estimate the modes of the
distribution. The model and more specifically the modes µk of
the local density are thus temporally and spatially updated as
new information arrives. Let us assume that the probability
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Fig. 1. Example of marginal distributions for a feature vector of dimension 4. (a) Marginal distribution of the spatial component S, i.e. position of objects
in the scene; (b) Marginal distribution of the behavioral component ϕ, representing the distribution of the displacement of objects in the scene (vector flow).

density pS(ϕ|Xt−1) is conditioned on two, and only two,
independent events at time t − 1, e.g. two objects in motion.
The first event is represented by the feature vector X1

t−1 with
local feature S, and the second event by X2

t−1 with local
feature S+ δS, in the neighborhood of X1

t−1. The probability
density pS(ϕ|Xt−1) is then given by Eq. (7).

pS(ϕ|Xt−1) = pS(ϕ|X1
t−1 ∪ X2

t−1)

=
pS(ϕ)

pS(Xt−1)
[
pS(X1

t−1|ϕ) + pS(X2
t−1|ϕ)

]
(7)

=
pS(X1

t−1)pS(ϕ|X1
t−1) + pS(X2

t−1)pS(ϕ|X2
t−1)

pS(Xt−1)

The pdf pS(ϕ|X2
t−1) is not known for the local feature S as

the event X2
t−1 occurs at location S+ δS, only the probability

density pS+δS(ϕ|X2
t−1) is. Nevertheless, the two probabilities

are related by

pS(ϕ|X2
t−1) = ξ(δS)p(S+δS)(ϕ|X2

t−1) , (8)

where ξ(δS) is an unknown function. We assume ξ follows the
definition of a kernel, as stated in [4], and, in particular, its
value decreases with the distance from the origin. We choose
the isotropic Gaussian to model the function ξ(δS):

ξ(δS) =
1√
2πσ

e−||δS||2/2σ2
, (9)

where ||.|| denotes the Euclidean norm. Because the weights
wk are normalized, the probability mass function pS(Xt−1) is
equal to 1. It follows from Eqs. (5), (7) and (8) that

pS(ϕ|Xt−1) = γ
K∑

k=1

[
ξ(0)fk(ϕ; µ1

k)+ξ(δS)fk(ϕ; µ2
k)

]
. (10)

Equation (10) can be generalized to N (N ∈ IN) inde-
pendent events. Let us denote l(N) the set of local features
{S0, ...,SN} for the N events. The pdf pS(ϕ|Xt−1) is then
given by

pS(ϕ|Xt−1) = γ

N∑
i=1

K∑
k=1

ξ(δSi
)fk(ϕ;µi

k) , (11)

where the variable µi
k denotes the kth cluster center for the

ith local feature Si.

IV. UPDATING THE CLUSTERS WITH STOCHASTIC
COMPETITIVE LEARNING

The probability distribution of an event is estimated through
the spatio-temporal mixture as defined in Eq. (11), making
it dependent on its neighborhood. In turn, the event is also
used to update the parameters of all the distributions in a
small neighborhood. In particular, the density pS(ϕ|Xt−1)
is temporally adjusted via the update of the modes µk. The
clusters for each spatial component Si are updated following
the algorithm developed by Bouzerdoum [1]. A stochastic
procedure is adopted to allocate the clusters in the feature
space. The competitive learning process is thus defined as
follows. Consider the cluster center affinity yi

k (for k = 1..K)
to the input feature vector:

yi
k = fk(ϕ;µi

k) + ri
k, (12)

123



where ri
k is a centered normal random variable with standard

deviation σi
k. The winning cluster li is determined by com-

petitive learning as:

li = arg max
k

(yi
k) . (13)

The parameter µi
l of the winning cluster for each spatial

component Si is updated by a low-pass first-order filter with
learning rate α where 0 < α < 1 :

µi
l ←

[
1 − α ξ(δSi

)
]
µi

l + α ξ(δSi
)ϕ , (14)

As the cluster learns, the standard deviation of the random
variable ri

k in (12) is reduced to allow convergence. A counter
ni

l is incremented with the magnitude of the kernel for the
spatial component Si by

ni
l ← ni

l + ξ(δSi
) , (15)

and the standard deviation is updated as follows:

σi
l = σ0/ni

l . (16)

The weight wl of the winning cluster is incremented by ξ(δSi
)

and all weights are normalized. The “shaking” process intro-
duced in the clustering algorithm improves the convergence
of the cluster center to the mode of the distribution. Indeed,
because of the on-line nature of the learning algorithm, the
initialization of the center value is critical. For example, if the
center is initialized on an outlier, a standard learning algorithm
may not converge to a relevant mode of the distribution. It
should also be noted that if the number of outliers increases,
the stochastic algorithm performs better in its ability to find
the cluster center [1]. In such a case, the variance (σi

l ) rate of
decrease can be lowered to allow more shaking in the learning
phase. This provides a better convergence of the parameters
µi

l to the modes; on the other hand, the convergence will be
slower. With the randomness introduced by the stochastic clus-
tering algorithm, the cluster center is shifted around until the
number of samples is large enough for an accurate estimation
of the mode position.

V. ABNORMAL BEHAVIOR DETECTION

The estimation of the probability density pS(ϕ|Xt−1) is
used to determine whether or not a behavior represented by the
feature vector ϕ is abnormal. The higher the probability is, the
higher are the chances for an object to have a normal behavior.
Indeed, the probability is high when the feature vector fits well
the model, i.e. when the object behavior is predictable. On the
contrary, low probability means the behavior is unpredictable,
hence considered as abnormal. In the proposed model, this is
equivalent to measuring the Euclidian distance between the
winning cluster as defined in (13) and the feature vector. The
behavior is considered as abnormal if the distance is greater
than a threshold T and normal otherwise:

{ ||ϕ − µl|| ≤ T → “normal” ;
||ϕ − µl|| > T → “abnormal” .

(17)

Each feature vector is thus classified as representing a
normal or an abnormal behavior.

A. Experimental Setup

The system is tested on synthetic data modeling the behavior
of drivers under the influence of alcohol as abnormal behavior.
It has been shown that consumption of alcohol to a rate
of 0.05% of Breath Alcohol Content (BAC) increases the
variance in trajectory by 3.2 on average [11], [3].1 For the
experiments, different scenarios of car flows are generated
representing typical car trajectories; e.g. roundabouts, traffic
lights, etc. An example of sequence used for the simulation is
displayed in Fig. 2. The set of data is divided into 3 subsets of
11,900 samples (feature vectors), each representing 50 tracks
of NS = 238 steps. Two sets of trajectories with variance
equal to 2 are used to train and test the system on normal
behavior. The third set with variance equal to 6.4 is used to
test abnormal behavior.

The algorithm described in this paper is tested on the
aforementioned datasets. A truncated version ξ̂ of the Gaussian
ξ is implemented in the algorithm to reduce the computational
load. The Gaussian truncated kernel ξ̂(δS) is defined as

ξ̂(δS) =
{

ξ(δS) if ξ(δS) > λ ,
0 otherwise .

(18)

The threshold T that defines the boundary between normal
and abnormal behavior sets the sensitivity of the system.
However, if the distribution of ϕ is assumed multi-Gaussian
and if the centers µl have converged to the true means,
the value of T can be determined during the learning stage
as T = η max (vark(ϕ)). The value of η depends on the
prior probability (ρ) of abnormal behavior and is defined as
η =

√
2 erf−1(ρ), where erf(.) is the well-known Gaussian

error function. This value determines the upper bound of T .
The parameter λ is set to 0.001 and the standard deviation σ
to 1.8. In the experiments, the counter nl is initialized to 1
and the variance of the normal distribution r is set to 0.8. The
cluster centers are initialized with random values to span the
feature space.

B. Local vs. Global Distribution Learning

In this section, the performance of the local stochastic
learning is compared to that of its global counterpart. Here,
the global stochastic learning consists of a set of 714 clusters
distributed over the entire feature space. The feature vector X,
for the global approach, is thus composed of both local and
behavioral components:

X =
(

S
ϕ

)
=

⎛
⎜⎜⎝

x
y

xt − xt−1

yt − yt−1

⎞
⎟⎟⎠ (19)

The local approach is implemented with the proposed algo-
rithm, i.e. the spatial component S is used to index the local

1A BAC of 0.05% is the standard limit in Australia and most European
countries.
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Fig. 2. Example of sequence representing the tracks used in the experiments. The synthetic sequences are generated on road maps in order to provide realistic
scenarios; e.g. intersections, roundabouts, turns, etc. . The dots represent cars on the road. From left to right: frames 10, 14, 18, 22 and 28.

probability density of the behavioral component ϕ. Figure 3 is
the ROC curve for both implementations. It is clear that the
local approach performs better for the entire range of false
detection. For instance, a false detection rate of 10% leads
to a correct detection rate of 39% for the global approach
whereas a 89% rate is achieved with the local approach.
The latter performs better because the dimensionality of the
feature vector is reduced and because there is no error on the
position of the object since it is not estimated. For the global
approach, error is introduced by the marginal local distribution
estimation. Indeed, for a given number of clusters, the global
approach shows a larger average distance between the clusters
center and the feature vectors than the local approach. The
global approach fails to reach a correct detection rate of 90%
for a false detection rate of 40%. The inadequate estimation
of local features distribution is mostly accountable for such a
low performance.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Detection Rate

C
or

re
ct

 D
et

ec
tio

n 
R

at
e

Proposed method 714 Clusters
Global Clustering 714 Clusters

Fig. 3. ROC curves of stochastic learning algorithm for abnormal behavior
detection. Comparison between the local implementation and the global
implementation.

C. Local Distribution Learning vs. Self Organizing Maps

The proposed algorithm is compared with the Self Orga-
nizing Map (SOM) developed by Dahmane and Meunier [5].
For comparison purposes with [5], the behavioral component
of the feature vector is again limited to the vector flow:

ϕ =
(

xt − xt−1

yt − yt−1

)
, (20)

where x and y are the cartesian coordinates of the object
position. Note that this component can be extended to other
features such as object acceleration, shape, size, etc. (e.g. [13]).
The feature vector for the SOM is given by Eq. (19). SOMs
have proven to give good results on abnormal behavior detec-
tion because of their property of topology conservation [5],
[13]. This characteristic is particularly desirable when the
feature vector is based on position since the neighborhood
of the winning neuron is updated with the feature vector. The
inclusion of the neighborhood confers the proposed approach
with the topology advantage of SOM approach, whilst decreas-
ing the feature vector size by the dimensionality of the spatial
coordinates.

The performance of the proposed algorithm is compared
to that of a SOM which models the global probability distri-
bution. The proposed approach models the local probability
distribution with a fixed number of clusters K; thus, the total
number of clusters required is K × NS . For the SOM, the
number of neurons is h × w where h and w are the width
and the height of the map. We compare the SOM used by
Dahmane and Meunier [5] to model the punctual context and
the proposed algorithm. For comparison purposes, the map of
the SOM is composed of 729 neurons (size [27 × 27]) and
the proposed algorithm is trained with 714 clusters, K = 3
for each object position. Figure 4 displays the ROC curves of
both algorithms. It can be inferred that the proposed algorithm
gives better performance (higher detection rate for a fixed false
alarm rate) for correct detection rates above 60%. Note that a
high rate of correct detection takes precedence over low false
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TABLE I
CORRECT DETECTION RATE VERSUS NUMBER OF CLUSTERS.

False Detection 7.5% 10% 12.5% 15% 17.5% 20%
238 clusters 76.8% 83.5% 86.0% 88.0% 89.2% 90.4%
476 clusters 77.7% 85.6% 89.7% 92.0% 93.6% 94.9%
714 clusters 81.0% 89.1% 92.9% 94.7% 95.6% 96.5%
952 clusters 81.7% 89.9% 94.0% 96.2% 97.1% 97.5%
1190 clusters 82.7% 90.2% 95.5% 98.0% 99.0% 99.3%

TABLE II
CORRECT DETECTION RATE VERSUS SIZE OF SOM.

False Detection 7.5% 10% 12.5% 15% 17.5% 20%
Size [15 16] (240 Clusters) 50.5% 55.6% 61.1% 64.7% 68.2% 70.6%
Size [22 22] (484 Clusters) 63.3% 67.7% 71.6% 74.4% 77.1% 79.4%
Size [27 27] (729 Clusters) 64.6% 69.9% 73.9% 76.7% 79.6% 82.0%
Size [31 31] (961 Clusters) 81.5% 85.0% 87.6% 89.3% 90.7% 91.8%
Size [34 35] (1190 Clusters) 85.8% 89.6% 91.7% 93.2% 94.3% 95.0%

detection in most applications. The SOM and the proposed
method have also been compared for different number of clus-
ters/neurons. The results are presented in Tables I and II. The
detection rate increases with the number of clusters/neurons
for a given false detection rate in both cases. However, the
local approach systematically outperforms the SOM, except
for a false detection rate of 7.5% with 1190 clusters.
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Fig. 4. ROC curves for the proposed technique and the SOM developed by
Dahmane and Meunier [5].

VI. CONCLUSION

This paper presented a new technique for Abnormal Behav-
ior Detection, based on local distribution of the feature vector.
The motivation underlying such a local representation is the
sparsity of the spatial component in the feature space. The
integration of the neighborhood information into the estima-
tion of the probability distribution reduces the dimensionality
of the feature vector since the position information is not
included explicitly in the feature vector. A stochastic clustering
algorithm is used to learn the local probability distributions.
The distribution is updated with incoming events, following

a stochastic procedure, ensuring the clusters are optimally
spread. Experimental results show that higher detection rates
are achieved with fewer clusters compared to a global cluster-
ing approach.
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