
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2007

How to Find the Sufficient Collision Conditions for Haval-128 Pass 3 by How to Find the Sufficient Collision Conditions for Haval-128 Pass 3 by

Backward Analysis Backward Analysis

Pairat Thorncharoensri
University of Wollongong

Tianbing Xia
University of Wollongong, txia@uow.edu.au

Yi Mu
University of Wollongong, ymu@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Thorncharoensri, Pairat; Xia, Tianbing; and Mu, Yi: How to Find the Sufficient Collision Conditions for
Haval-128 Pass 3 by Backward Analysis 2007.
https://ro.uow.edu.au/infopapers/3076

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages

How to Find the Sufficient Collision Conditions for Haval-128 Pass 3 by Backward How to Find the Sufficient Collision Conditions for Haval-128 Pass 3 by Backward
Analysis Analysis

Abstract Abstract
Wang et al. recently found several collisions in some hash functions, such as MD4, MD5, Haval-128 and
RIPEMD. These findings have significantly changed our views about the security of existing hash
functions. Unfortunately, al- though it is easy for us to verify the correctness of the collisions published by
Wang et al., the sufficient condi- tions for collisions are not clear. In this paper, we present our
methodology for constructing the sufficient conditions of collision tables by using Haval-128 Pass 3 as an
ex- ample. We propose a backward analysis method of com- pression functions for constructing the
sufficient condition table and the differential characteristic table. We also ex- pose the weaknesses of
Haval-128 which may be applied to other hash functions.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Thorncharoensri, P., Xia, T. & Mu, Y. (2007). How to Find the Sufficient Collision Conditions for Haval-128
Pass 3 by Backward Analysis. International Journal of Network Security, 4 (2), 138-148.

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/3076

https://ro.uow.edu.au/infopapers/3076

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 138

How to Find the Sufficient Collision Conditions

for Haval-128 Pass 3 by Backward Analysis

Pairat Thorncharoensri, Tianbing Xia and Yi Mu

(Corresponding author: Pairat Thorncharoensri)

School of IT and Computer Science University of Wollongong

Wollongong, NSW 2522, Australia. (Email: {pt78, txia, ymu}@uow.edu.au)

(Received Oct. 11, 2005; revised and accepted Dec. 6, 2005)

Abstract

Wang et al. recently found several collisions in some hash
functions, such as MD4, MD5, Haval-128 and RIPEMD.
These findings have significantly changed our views about
the security of existing hash functions. Unfortunately, al-
though it is easy for us to verify the correctness of the
collisions published by Wang et al., the sufficient condi-
tions for collisions are not clear. In this paper, we present
our methodology for constructing the sufficient conditions
of collision tables by using Haval-128 Pass 3 as an ex-
ample. We propose a backward analysis method of com-
pression functions for constructing the sufficient condition
table and the differential characteristic table. We also ex-
pose the weaknesses of Haval-128 which may be applied
to other hash functions.

Keywords: Collision in hash functions, cryptography, and
hash function

1 Introduction

Hash functions, such as MD5 and SHA1, are widely used
in computer and network security. The security of those
hash functions was not a major concern until the colli-
sions in MD4, MD5, Haval-128 and RIPEMD were re-
cently reported in the rump session of CRYPTO’04 by
Wang et al.[4]. Soon after, in [1], the methodology of
Wang et al. [4] was explained by analyzing the outputs of
[4], where they found a set of conditions and differential
behaviors for successfully searching the collision in each
step of Haval-128 from the first round to the last round.

Recently, Wang et al. revealed more about their find-
ings of the collisions in MD4, MD5 and RIPEMD and re-
ported more results of the collisions in SHA-0 and SHA-
1 [5, 6, 7, 8]. They provided a set of sufficient condi-
tions of collisions and differential characteristics for MD4,
MD5 and RIPEMD and applied them to single and multi-
message modifications. However, they did not reveal the
main methodology of constructing the sufficient condi-

tions for searching collisions.

It is also noticed that the recent results of a MD5 col-
lision analysis in [2, 3] show a greater performance in
searching the collisions than the original one by Wang
et al.. The results show that a collision for MD5 can
be found on a notebook computer in a few hours. They
provided their results with some new conditions and uti-
lized a multi-message modification method to fulfill the
condition in the first message and the second message to
obtain higher probability in successfully finding a colli-
sion. Nevertheless, they provided only the results and
the conditions of finding collisions but did not show how
to choose the suitable bits and how to construct the suf-
ficient condition for searching the collision table.

In this paper, we for the first time reveal the secret
methodology of Wang et al.’s findings and show how to
find a set of sufficient conditions and differential charac-
teristics for collisions. We propose a backward analysis
method of compression functions to construct the suffi-
cient condition table and differential characteristic table.
We utilize a raw result from [4] to produce the sufficient
condition for the searching collision table of Haval-128
pass 3. As we believe that Haval-128 is easier to break,
we choose it as the entry point for finding weak points of
hash functions and revealing Wang et al.’s methodology
of constructing the sufficient condition and the collision
table. These weak points lead some information for us to
break other hash functions.

This paper is organized as follows. In Section 2, we de-
scribe the notations used in this paper. In Section 3, we
explain the compression of Haval related to our scheme.
In Section 4, we present the methodology used for our
analysis and construct a set of sufficient collision con-
ditions and differential characteristics. In Section 5, we
provide some examples and explain how to construct the
condition table. In the last section, we conclude our paper
and describe the future work.

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 139

2 Notations

The notations used in this paper are defined in the fol-
lowing.

• M1 and M2 are two 1024-bit messages that are ex-
pected to produce the same hash value.

• E(M,i) is an expansion function w.r.t the input mes-
sage M and step i.

• Wi, W1(i), W2(i), or W(i,j) is the input of a 32-bit
word of the compression function. It is the output
of message expansion E(M,i), where i denotes a step
position, for i = 0, 1, · · · , 95 and j denotes a bit po-
sition for j = 0, 1 · · · , 31.

• Yi, Y 1(i), or Y 2(i) is the output of a 32-bit word
of the compression function, where i denotes a step
position, for i = 0, 1, · · · , 95 and j denotes a bit po-
sition for j = 0, 1, · · · , 31. Note that W and Y are
referred to as general terms in the compression func-
tion structure and W1, W2, Y 1, and Y 2 are referred
to as the terms in the result.

• Y−1,· · · , Y−7 is the initial value (IV) or the output of
the compression function of the previous message.

• Z or Z(i,j) denotes a carry bit in each step, where i

denotes the step position and j denotes the bit posi-
tion for j = 0, 1, · · · , 31.

• P , Pp(i), P(i,j), or Pm(i,j) denotes a non-linear term,
where p denotes a pass number, m denotes the mes-
sage index, i denotes the step position and j denotes
the bit position.

• K or K(p,i) denotes a constant bit, where p denotes
a pass number and i denotes the step position.

• BDI or the bit-difference of inputs is the position of
the difference of two input messages at the specific
word and bit. The value of BDI represents the differ-
ent between W1 and W2 which are either 1 or -1. For
example, the inputs at step I are E(M1, i) = W1(i) =
0x1001 and E(M2, i) =W2(i)= 0x1000. The BDI(i)
bit is bit 0 and value is 1.

• BDO or the bit-difference of outputs is the position
of the different output bits in the specific step of two
input messages and bits. The value of BDO repre-
sents the difference between Y 1 and Y 2 which are
either 1 or -1. For example, the outputs at step i are
Y 1i = Hi(W1i) = 0x1000 and Y 2i = Hi(W2i) =
0x1001. The BDO(i) bit is bit 0 and the value is -1.

• MSD or the modulo-subtraction difference of out-
puts is the output of the deference between Y 1(i)

and Y 2(i), computed with modulus 232. For exam-
ple, Y 1(0) − Y 2(0) = 210 or MSD(0) is at bit 10. It
can be negative when Y 2(i) > Y 1(i) and it can also
be more than one bit such as MSD(i) = 222 + 221 =
bit 22 and bit 21.

• � denotes an addition on two 32-bit words under
modulus 232.

• ⊕ denotes an exclusive or.

• ∧ denotes a logical and.

• ROT(X, j) denotes a rotation by j bits of a 32-bit
word X .

3 Compression Function of Haval

The full description of Haval is given in [9]. In this section,
we only describe the compression function which is the
core of the algorithm.

Each pass of Haval contains 4 rounds and each round
of Haval contains 8 steps. Therefore, there are totally 96
for Haval-128 (Pass 3). Three Boolean functions for the
nonlinear terms of Pass 1 to 3 are:

F1(x6, x5, x4, x3, x2, x1, x0)

= x1 ∧ x4 ⊕ x2 ∧ x5 ⊕ x3 ∧ x6 ⊕ x0 ∧ x1 ⊕ x0

F2(x6, x5, x4, x3, x2, x1, x0)

= x1 ∧ x2 ∧ x3 ⊕ x2 ∧ x4 ∧ x5 ⊕ x1 ∧ x2 ⊕ x1

∧x4 ⊕ x2 ∧ x6 ⊕ x3 ∧ x5 ⊕ x4 ∧ x5 ⊕ x0

∧x2 ⊕ x0

F3(x6, x5, x4, x3, x2, x1, x0)

= x1 ∧ x2 ∧ x3 ⊕ x1 ∧ x4 ⊕ x2 ∧ x5 ⊕ x3 ∧ x6

⊕x0 ∧ x3 ⊕ x0

The non-linear terms for pass 1 to 3 are:

P1(i) = F1(Yi−7, Yi−6, Yi−5, Yi−4, Yi−3, Yi−2, Yi−1);

for i = 0, · · · , 31,

P2(i) = F2(Yi−7, Yi−6, Yi−5, Yi−4, Yi−3, Yi−2, Yi−1);

for i = 32, · · · , 63,

P3(i) = F3(Yi−7, Yi−6, Yi−5, Yi−4, Yi−3, Yi−2, Yi−1);

for i = 64, · · · , 95.

The output in each step is:

Yi = ROT (P, 7) � ROT (Y(i−8), 11) � Wi � K.

4 4B Methodology

There are four main methods used in the analysis and the
construction of the sufficient condition for searching the
collision table. In this section, we will describe all the
methods and examples. Although some contents in the
first three methods are similar to those used in [2, 3, 5, 6],
the most of our results are obtained from our observation
in the experiment.

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 140

Table 1: Example of Single-bit modification to produce multi-BDO bits(1)

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Terms 6,3 6,3 6,4 6,4 6,5 6,5 6,6 6,6 6,7 6,7
carry bits 1 1 1 1 2
Y(i−8) 0 0 0 0 0 0 1 1 1 1

P (non-linear term) 0 1 1 1 1 1 1 1 1 1
W(input) 1 1 0 0 0 0 1 1 1 1

K 0 0 0 0 0 0 0 0 0 0
output(Y(i)) 1 0 1 0 1 0 1 0 0 1

4.1 Bit-differential Control

Bit-differential control is a method for the generation of
the BDO at the necessary position. The differential char-
acteristic in each round can be performed by this method.
There are two sub-methods that are used to create a sin-
gle BDO bit and multiple BDO bits. The purpose of this
method is to use the existing BDO or BDI bit to generate
the BDO bit and to balance with BDO or BDI in other
rounds. This method is utilized to control the differential
characteristic in the right position and define the differ-
ential characteristic in each round by applying other 3B
methods.

4.1.1 Single-bit Modification for Generating One

BDO Bit

This method uses a previous BDI bit or BDO bit from
a previous step to pass the BDO value and bit to the
current step. For some step, it requires one BDO bit for
the differential characteristic at that step where it can
be used to pass a value to other steps or balance a BDI
bit or a BDO bit in other steps. The BDO bit can be a
consequent output of a BDI bit or a BDO bit from a liner
term or a non-linear term. For example, at round 20 and
bit 21,

Y(20,21) = W(20,21) −→ a message input term.

�Y(12,0) −→ ROT(Y(i−8), 11) term.

� [Y(15,28) ∧ Y(17,28) ⊕ Y(14,28) ∧ Y(18,28)

⊕ Y(13,28) ∧ Y(19,28) ⊕ Y(16,28) ∧ Y(17,28)

⊕ Y(15,28)]−→ the set of XOR terms

is a nonlinear term (P)

�K −→these terms are constant (K)

If Y(20,31) dominates the BDO bit, then either Y(12,0) or
one of Y terms in P is BDO. If Y(20,31) dominates BDI bit,
then W(20,31) is a BDI bit. The equation above is split
into two groups: the nonlinear term and the group of
additional modulus 232 terms. The nonlinear term is also
one of the additional modulus 232 terms but we review
it separately because it reveals the secret for balancing
or controlling the differential characteristic or the BDO
bit in every step. In addition, the equation above shows

that the distance between the previous BDO bit and the
current BDO bit are 8 steps. This discloses one point of
the constructing differential characteristics and it is used
to pass the value of BDO or BDI from one round to next
round (8 steps). It can be found from the differential
characteristics in Table 8 in Appendix A.

4.1.2 Single-bit Modification to Produce Multi-

BDO Bits

This method is used to produce several continuing bits or
non-continuing bits of BDO while MSD appears only one
bit or two bit positions. It considers only the terms used
in modulation. For example, Table 1 and Table 2 show the
terms and values of each bit from Y(6,3) to Y(6,31). Assume
that we want Y(6,3) to Y(6,7) to dominate BDO and we
have only one BDO bit from the non-linear term at Y(6,3).
Therefore, we adjust other terms to change the carry bit
value to only 1, move the BDO bit spreading from Y(6,3)

through Y(6,7), and control the carry bit at Y(6,7) for M1

equal to 1 and M2 equal to 2. The above condition will
make the BDO stop moving forward through other bits
and we need to keep the difference of carry bits of M2

and M1 to 2 from Y(6,8) to Y(6,31). The carry bit will be
dropped at Y(6,31). This technique has been used on [6].

The purpose of the above two methods is to generate
the useful BDO bit for the next few steps or next rounds.
Besides, the result of each bit will spread out though other
bits in other rounds. However, they can be easily balanced
with the different bit that spreads out in the next two
methods.

4.2 Balance a Consequence of BDO Bit

or BDI Bit in a Nonlinear Term

There are two methods to balance a consequence of BDO
bit or BDI bit in a non-liner term. They are used in the
different situation. The first method is used when BDO
bit(s) is (are) a partial multiple term (“and” term) and
no single BDO bit term in the nonlinear term. The other
method is used when there are more than one BDO bit
in the nonlinear term.

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 141

Table 2: Example of Single-bit modification to produce multi-BDO bits(2)

M1 M2 M1 M2 M1 M2

Terms 6,8 6,8 6,9 6,9 to 6,31 6,31
carry bits 2 2 2
Y(i−8) 1 1 1 1 1 1

P (non-linear term) 1 1 1 1 1 1
W(input) 0 0 1 1 0 0

K 0 0 0 0 0 0
output(Y(i)) 0 0 1 1 0 0

4.2.1 Balance BDO Bit by Balancing One or the

Entire Terms that Multiple with BDO Bit

This method is used at the output bit (Y) which is not
necessary to be a BDO bit. The output bit does not
contain a BDO bit or a BDI bit of a single linear term.

Example 1. The nonlinear terms may contain

Y(0,10) ∧ Y(0,17) ⊕ Y(1,10) ∧ Y(2,10).

The output bit is not required to be a BDO bit for the
output of the next 8 steps. To correct the output for the
above term, we must set Y(0,17) = 0 when Y(0,10) is a BDO
bit.

Example 2. The nonlinear terms may contain

Y(0,10) ∧ Y(1,17) ⊕ Y(0,10) ∧ Y(0,17) ⊕ Y(1,10) ∧ Y(2,10).

The condition to correct the output of the above terms is
Y(0,17) and Y(1,17) must be the same to balance Y(0,10) ∧
Y(1,17) ⊕ Y(0,10) ∧ Y(0,17). The output of these two terms
is 0 in the XOR process.

4.2.2 Balance BDO Bit by Other BDO Bits

This method is used when there are two terms or more
of BDO bits at the same output word. We can simply
adjust some bits form 0 to 1 to make those different bits
balanced.

For example, Y(0,10) is a BDO bit and the non-linear
term is Y(0,10) ⊕ Y(1,10) ∧ Y(6,3) ⊕ Y(1,10). To correct the
output of the above term, we set Y(1,10) = 1 to balance
Y(0,10) and Y(6,3). If there are more than 2 BDO bits in
non-linear term, such as Y(0,10) ⊕ Y(1,10) ∧ Y(6,3) ⊕ Y(0,10)

∧ Y(0,17), then we set Y(1,10) = 1 or Y(0,17) = 1 to balance
Y(0,10) and Y(6,3).

4.3 Balance a Consequent BDO Bit or

BDI Bit in a Linear Term of Addi-

tional Modulo 232 Process

There are three methods to correct the output from BDO
bit or BDI bit in the linear term of the additional mod-
ulus 232 process. They are used in different situations.

The first method is used in the situation that a sequence
of BDO bits appear in the output such as Y(6,3) to Y(6,7).
The second method is used when the position of the bit
occurs at the BDO bit is near bit 31 that is easy to elim-
inate the carry bit. Finally, it is used when there are
two or more BDO bits or BDI bits in the same output
bit. This method is frequently used in Pass 2 and Pass 3
which avoid to occur at the BDO bit in the most steps in
Pass 2 and Pass 3.

4.3.1 Move a BDO Bit Forward to Balance with

Other BDO Bits

Assume there are two BDO bits at the same step and
the BDO value of those bits are opposite each other. For
example in Step i, Y 1i is 0x1A1 and Y 2i is 0xA9. The
BDO of Y 1i and Y 2i appear at bit 4 and bit 9 whose
values are 1 and -1, respectively. In order to balance Y 1i

such that it equals Y 2i. We need to perform the BDO at
bit 4 to move the carry bit to bit 9. This method can be
used when there are two or more terms of BDO or BDI
in the additional modulo 232 process in which one may be
from the non-linear term and the other is from the linear
term. For example, assume that Y(0,10) is a BDO bit in
the non-linear term and W(8,31) is a BDI bit in the linear
term (the message input term). At bit 4, the non-linear
term may contain Y(0,10)⊕Y(1,10)∧Y(0,10)⊕Y(1,10)∧Y(2,10).
The requirement for this term is that the output of this
term must be equal to the BDO value 1. Therefore, this
P(i,4) (non-linear term) contains two of Y(0,10) and only
Y(1,10) = 0 will make that the BDO value of this term
becomes 1. Therefore, P(i,4) of this term and W(8,31) will
produce a carry bit in output at bit 5. If we want to force
the different bit in output to move forward to bit 9, we
need at least 2 carry bits in Y(i,4)to Y(i,8) to move BDO
bit to balance other BDO bits at bit 9 (it may be from
P(I,9)). In Table 3, an example has been shown in detail.

4.3.2 Balance One BDO Bit by Moving the BDO

Bit Forward to The Last Carry Bit

This method can be used when there are two terms that
contain two or more terms of BDO or BDI in the addi-
tional modulus 232 process. It is the same as the previous

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 142

Table 3: Example of moving a BDO bit forward to balance with other BDO bits

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Terms i,4 i,4 i,5 i,5 i,6 i,6 i,7 i,7 i,8 i,8 i,9 i,9
carry bits 2 2 2 2 1
Y(i−8) 1 1 1 1 0 0 1 1 0 0 1 1

P (non-linear term) 0 1 1 1 0 0 1 1 0 0 1 0
W(input) 0 1 1 1 1 1 1 1 0 0 1 1

K 1 1 0 0 1 1 0 0 0 0 0 0
output(Y(i)) 0 0 1 1 0 0 1 1 0 0 1 1

Table 4: Example of balancing one BDO bit by moving the BDO bit forward to the last carry bit

M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Terms i,27 i,27 i,28 i,28 i,29 i,29 i,30 i,30 i,31 i,31
carry bits 2 2 2 2
Y(i−8) 0 1 1 1 0 0 1 1 1 1

P (non-linear term) 0 1 1 1 0 0 1 1 1 1
W(input) 1 1 1 1 1 1 1 1 0 0

K 1 1 0 0 1 1 0 0 0 0
output(Y(i)) 0 0 1 1 0 0 1 1 0 0

method but there is only one BDO bit in output Yi. It is
better that their positions are near bit 31 so that drop-
ping the BDO bit with a carry bit is easy. The example
on Table 4 assumes that Y(I,27) has two terms of BDO
bits.

4.3.3 Balance Two Terms of BDO or BDI in The

Additional Modulus 232 Process

This method has a similar requirement to that in the
above method but only the non-linear term can simply
balance the BDO bits without producing a carry bit.
Moreover, this method can be applied to more than one
BDO bits at the same Yi but all BDO bits must meet the
requirement. This method uses a simple way to change
the condition in the non-linear term to balance with other
BDO bits in other terms, but it requests at least 1 BDO
term and one non-BDO bit term in the non-linear term
to adjust the BDO value opposite to other BDO bits or
BDI bits. For example, assume that the BDI value is 1 at
bit 27 and P(I,27) is Y(0,10)⊕Y(1,10)∧Y(0,10)⊕Y(0,10)∧Y(2,10)

⊕Y(3,10). The BDO value at P(I,27) will be −1 and the
even value of Y(0,10) is 1 when both of Y(0,10) and Y(2,10)

are either 1 or 0. The result of P1(I,27) will be 0 and
P2(I,27) will be 1. Moreover, If two of BDO bits or BDI
bits in the additional modulus 232 process are not a non-
linear term but opposite to the BDO or BDI value, it can
also be used to balance this output. The result is given
in Table 5 where Y(I,27) balances the output bit with the
non-linear term and Y(I,28) balances the output bit with
the BDO bit and the BDI bit of the linear term.

Table 5: Example of balancing two terms of BDO or BDI
in the additional modulus 232 process

M1 M2 M1 M2

Terms i,27 i,27 i,28 i,28
carry bits 1 1
Y(i−8) 1 1 1 0

P (non-linear term) 0 1 1 1
W(input) 1 0 0 1

K 1 1 0 0
output(Y(i)) 0 0 1 1

4.4 Backward Analysis

The previous methods described in this paper will be ap-
plied to this analysis for constructing the sufficient con-
dition of searching a collision table. The analysis used
to find the collision of the hash function in this paper is
called the modulation differential backward analysis. This
method is an analysis from the last round by preventing
the BDI bits from influencing other bits in other rounds
and moving the analysis from last round back to the first
round. It is also used to define which bit should be BDO
bits in next 8 steps starting from the last round and also
which bit should be BDI bits from the relationship among
BDI bits. The main concept of backward analysis in this
paper is to assign BDO bits and BDI bits on the appropri-
ate step and construct the condition to hold the highest
probability of a local collision. This can be explained in
the following along with an example in Table 6.

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 143

Table 6: Example of backward analysis

Step Pass Input (W) BDI /BDO Comment
0 1 W(0) BDI(0,10)

1 1
2 1
... 1
31 1
32 2 BDO(32,21)

... 2
40 2 W(0) BDI(0,10) BDI bit of step is balance with BDO(32,21) from step 32
32
... 2
63 2
64 3
... 3
85 3 W(0) BDI(0,10) the BDO(85,10) is a consequent output for next 8 steps.

This step is the first step to analyze.
86 3 W(18) BDI(18,3) BDI(18,3) use to balance with BDO(85,10)

which result is from BDI(0,10)

... 3
96 3

4.4.1 Choosing the First BDI Bit

One BDI bit has to be decided for initial backward anal-
ysis. Choosing the BDI bit is a challenge for this method.
From the experiment of Haval, we found that many of BDI
bits can be chosen; however, the probability of a success-
ful collision of each chosen BDI bit varies. Therefore, this
paper uses the BDI bit designed in [4] as the priority BDI
bit. The example of the first BDI bit showed in Table 6
is from the input word W(0).

4.4.2 Controlling the Influence of BDI in For-

ward and Backward 8 Steps

In the step that the output possesses a BDI bit or a BDO
bit, the 3B methods are used to control the difference of
output and to construct the sufficient conditions for next 8
steps. Therefore, the outputs in next 8 steps will remain
the same when two input messages are different. This
requirement applies to every pass, every round and every
step by starting from the first BDI bit at the last Pass.
Therefore, step 85 in Table 6 is the first step starting the
backward analysis. Furthermore, the first BDI bit is used
to allocate a BDO bit in previous 8 steps, for example, in
Table 6, the BDO bit from step 32 is required to balance
with BDI(0,10) in step 40. The first BDI bit, nevertheless,
is also used to assign other BDI bits when it needs to. For
example, in step 86, in Table 6, a BDI bit is designed to
balance BDO(85,10) (output from BDI(0,10)) from step
85.

4.4.3 Backward Analysis

The analysis step is moving backwards starting from the
last round to the first round. The backward analysis is
used to force the output at the last round (the last 8
steps) has a collision without concerning the difference of
the output in the previous rounds. Besides, in pass three,
we use BDI bits to balance themselves, as in Table 6 where
BDI(18,3) in Step 86 balances with the output related to
BDI(0,10) in step 85. It is also in pass two which it is
used BD0(32,21) to balance with BDI(0,10) in step 40. All
steps in pass two and pass three, hence, result in some
local collisions.

In Addition, the analysis result has shown that there
are two weaknesses in the most hash functions. Firstly,
the change of the message is not spread out through ev-
ery round as it can be seen in the experiment section.
Secondly, the balance between the non-linear terms and
linear terms is important to distribute the changed bit
of the input to the entire process. The analysis result of
Haval algorithm shows that only the bit containing one
linear term of the changed bit of the input affects other
bits.

5 Experiment

5.1 Experiment Process

The experiment process starts with the structure of the
compression function for every step from step 0 to step 95
of Haval-128 (Pass 3). We then apply the backward anal-

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 144

Table 7: Example of experiment process

Round (Y) Bit M1 M2 BDO value MSD relationship with BDO in
40 10 1 0 1 W(0,10)(BDI)
36 31 0 1 -1 W(11,31)(BDI)
35 3 0 1 -1 W(18,3) (BDI)
32 21 1 0 1 221 Y(40,10)

28 10 0 1 -1 -210 Y(35,3),Y(36,31)

24 3 1 0 1
24 2 0 1 -1
24 1 0 1 -1
24 0 0 1 -1 20 Y(32,21)

20 21 0 1 -1 -221 Y(28,10)

16 11 1 0 1 211 Y(24,0)

12 0 0 1 -1 -20 Y(20,21)

8 21 1 0 1
8 22 1 0 1 221+222 Y(16,11)

6 3 1 0 1
6 4 1 0 1
6 5 1 0 1
6 6 1 0 1
6 7 0 1 -1 -23 Y(12,0)

ysis along with other methods mentioned in the preceding
section. The experiment utilizes the result of Wang et al.
[4] to construct the sufficient condition for searching a
collision table. Four bits dominate as BDI bits: W(0,10),
W(0,11), W(11,31), and W(18,3), for example, in the experi-
ment, starting from bit 10 in step 85 (the message input
is W(0,10)), which is the chosen bit to dominate as BDI
bit. There are two ways to make a collision in the last
round. The first one is to balance this bit output and the
second is to leave this bit to dominate the BDO bit and
balance the other bit. We first follow the result from [6]
so that we leave this to dominate BDO bit and balance
all the consequent results from this bit. The interesting
results for the next 8 steps are in steps 86, 87 and 93.
The following shows the part of the compression function
terms at bit 3 in step 86, bit 3 in step 87 and bit 31 in
step 93, and reasons why and how to balance these three
bits.

Y(85,10) dominates BDO bit.

Y(86,3) contains W(18,3).

P(86,3) contains Y(82,10) ∧ Y(85,10) ⊕ Y(85,10).

P(87,3) contains Y(82,10)∧Y(85,10).

The two non-linear terms in steps 86 and 87 are related.
To balance Y(86,3), Y(82,10) must be 1 but P(87,3) will need
other BDO bits to balance. On the other hand, to balance
Y(87,3), Y(82,10) must be 0. Therefore, this result shows the
reason why Wang et al. chose W(18,3) to dominate as the
BDI bit.

Y(93,31) contains W(11,31) � Y R(85,10).

To balance Y(93,31), W(11,31) should be a BDI bit with
value 1, where it is used to balance W(0,10). This result
clearly shows the reason of dominated W(11,31) to BDI.

The experiment is carried out in backwards to con-
struct the entire sufficient condition for searching the col-
lision table. Table 7 shows a part of the relationship be-
tween each BDO and BDI in the related steps.

5.2 Additional Explanation of 4B

Method in The Experiment

Table 7 explains how to apply the other 3B methods
(except the backward analysis) to obtaining the suffi-
cient condition for searching the collision table. The bit-
differential control method is used to propagate a BDO
bit to the bit that should be a BDO bit. For example,
from Y(6,3) to Y(6,7) , the BDO bit from Y(0,10) actually
only appears in Y(6,3). However, it is required that Y(6,7)

must be a BDO bit to make Y(12,0) dominate BDO bit too.
Therefore, we use this method to make BDO bit appear
from Y(6,3) to Y(6,7). This is a trick to reuse its own BDI
bit (Y(0,10)) to balance itself or other BDI bits in other
steps which can be seen clearly from the full relationship
table in Appendix A. The method of balancing different
bit in non-liner term and the method of balancing a dif-
ferent bit in linear term are used to eliminate the BDO
bit from the other bit that does not have to be a BDO
bit. For example, the result of Y(6,3) to Y(6,7) should be
spread to Y(12,0) to Y(12,4), but the BDO bit only appears
in Y(12,0) because Y(12,1) to Y(12,4) was eliminated with
these two methods. Moreover, these two methods are the

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 145

Table 8: The differential characteristics for Haval–128 when i=11

Step Pass bit diffs message change (BDI) MDO BDO bit
0 1 400 bit change at 210+211 : -210 [-10]
6 1 8 : -23 [3,4,5,6,-7]
7 1 10000000 :-228 [28,29,30,-31]
8 1 600000 : 222 +221 [22,21]
10 1 4000 : 214 [14]
11 1 0 bit change at 231

12 1 1 : -20 [-0]
15 1 20000 :-217 [-17]
16 1 800 : 211 [11]
18 1 0 bit change at 23

20 1 200000 : -221 [-21]
23 1 40 : -26 [-6]
24 1 1 : 20 [-0,-1,-2,3]
28 1 400 : -210 [-10]
32 2 200000 : 221 [21]
35 2 0 bit change at 23

36 2 0 bit change at 231

40 2 0 bit change at 210+211

85 3 400 bit change at 210+211 :-210 [-10]
86 3 0 bit change at 23

93 3 0 bit change at 231

Table 9: The differential characteristics for Haval–128 when i=10

Step Pass bit diffs message change (BDI) MDO BDO bit
0 1 200 bit change at 29+210 : -29 [-9,]
6 1 4 :-22 [2,3,4,5,-6]
7 1 8000000 :-227 [27,28,29,-30]
8 1 300000 : 220 +221 [20,21]
10 1 2000 : 213 [13]
11 1 0 bit change at 230

12 1 80000000 : -231 [-31]
15 1 10000 :-216 [-16]
16 1 C00 : 210+211 [10,11]
18 1 0 bit change at 22

20 1 100000 : -220 [-20]
23 1 20 : -25 [-5]
24 1 80000001 : 231+20 [-0,-1,2,31]
28 1 200 : -29 [-9]
32 2 100000 : 220 [20]
35 2 0 bit change at 22

36 2 0 bit change at 230

40 2 0 bit change at 29+210

85 3 400 bit change at 29+210 :-210 [-9]
86 3 0 bit change at 22

93 3 0 bit change at 230

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 146

Table 10: A set of sufficient conditions for differential characteristics of Haval–128 when i=11

Y0 Y(0,3) = 1 , Y(0,4) = 0 , Y(0,5) = 0 , Y(0,6) = 0 , Y(0,7) = 0
Y1 Y(1,10) = 0 , Y(1,28) = 1 , Y(1,29) = 1 , Y(1,30) = 0 , Y(1,31) = 0
Y2 Y(2,10) = 1 , Y(2,21) = 0 , Y(2,22) = 0 , Y(2,3) = 0 , Y(2,4) = 0 , Y(2,5) = 0 , Y(2,6) = 1

, Y(2,7) = 0
Y3 Y(3,28) = 0 , Y(3,29) = 0 , Y(3,30) = 0 , Y(3,31) = 0
Y4 Y(4,10) = 1 , Y(4,21) = 1 , Y(4,22) = 0 , Y(4,3) = Y(5,3) , Y(4,4) = Y(5,4) , Y(4,5) = Y(5,5)

, Y(4,6) = Y(5,6) , Y(4,7) = Y(5,7)

Y5 Y(5,28) = Y(6,28) , Y(5,29) = Y(6,29) , Y(5,3) = Y(4,3) , Y(5,30) = Y(6,30) , Y(5,31) = Y(6,30)

, Y(5,4) = Y(4,4) , Y(5,5) = Y(4,5) , Y(5,6) = Y(4,6) , Y(5,7) = Y(4,7)

Y6 Y(6,0) = 0 , Y(6,10) = 0 , Y(6,21) = Y(7,21) , Y(6,22) = Y(7,22) , Y(6,28) = Y(5,28) ,
Y(6,29) = Y(5,29) , Y(6,30) = Y(5,30) , Y(6,31) = Y(5,30)

Y7 Y(7,21) = Y(6,21) , Y(7,22) = Y(6,22) , Y(7,3) = 0 , Y(7,4) = 0 , Y(7,5) = 0 , Y(7,6) = 0 ,
Y(7,7) = 0

Y8 Y(8,0) = 0 , Y(8,28) = 0 , Y(8,29) = 0 , Y(8,3) = 1 , Y(8,30) = 0 , Y(8,31) = 0 , Y(8,4) = 1
, Y(8,5) = 1 , Y(8,6) = 0 , Y(8,7) = 1

Y9 Y(9,17) = 1 , Y(9,21) = 0 , Y(9,22) = 0 , Y(9,28) = 1 , Y(9,29) = 1 , Y(9,30) = 1 , Y(9,31) = 1
Y10 Y(10,0) = Y(11,0) , Y(10,11) = 0 , Y(10,21) = 1 , Y(10,22) = 1 , Y(10,3) = 0 , Y(10,4) = 0 ,

Y(10,5) = 0 , Y(10,6) = 0 , Y(10,7) = 1
Y11 Y(11,0) = Y(10,0) , Y(11,17) = 0 , Y(11,28) = 0 , Y(11,29) = 0 , Y(11,30) = 0 , Y(11,31) = 0
Y12 Y(12,11) = 0 , Y(12,21) = 0 , Y(12,22) = 0 , Y(12,3) = 0 , Y(12,4) = 0 , Y(12,5) = 0 ,

Y(12,6) = 0 , Y(12,7) = 0
Y13 Y(13,0) = 0 , Y(13,17) = Y(14,17) , Y(13,28) = 0 , Y(13,29) = 0 , Y(13,30) = 0 , Y(13,31) = 1
Y14 Y(14,0) = 1 , Y(14,11) = Y(15,11) , Y(14,17) = Y(13,17) , Y(14,21) = 0 , Y(14,21) = 0 ,

Y(14,22) = 0
Y15 Y(15,11) = Y(14,11)

Y16 Y(16,0) = 0 , Y(16,17) = 0 , Y(16,21) = 0
Y17 Y(17,11) = 0 , Y(17,17) = 1 , Y(17,6) = 0
Y18 Y(18,0) = 0 , Y(18,0) = 0 , Y(18,1) = 0 , Y(18,11) = 1 , Y(18,2) = 0 , Y(18,21) = Y(19,21) ,

Y(18,3) = 0
Y19 Y(19,17) = 0 , Y(19,21) = Y(18,21) , Y(19,6) = 0
Y20 Y(20,0) = 0 , Y(20,1) = 0 , Y(20,11) = 0 , Y(20,2) = 0 , Y(20,3) = 0
Y21 Y(21,17) = 0 , Y(21,21) = 0 , Y(21,6) = Y(22,6)

Y22 Y(22,0) = Y(23,0) , Y(22,1) = Y(23,1) , Y(22,10) = 0 , Y(22,11) = 0 , Y(22,2) = Y(23,2) ,
Y(22,21) = 1 , Y(22,3) = Y(23,3) , Y(22,6) = Y(21,6)

Y23 Y(23,0) = Y(22,0) , Y(23,1) = Y(22,1) , Y(23,2) = Y(22,2) , Y(23,3) = Y(22,3)

Y24 Y(24,10) = 0 , Y(24,21) = 0 , Y(24,6) = 0
Y25 Y(25,0) = 0 , Y(25,1) = 0 , Y(25,2) = 0 , Y(25,3) = 0 , Y(25,6) = 1
Y26 Y(26,0) = 1 , Y(26,1) = 1 , Y(26,10) = 0 , Y(26,2) = 1 , Y(26,21) = 0 , Y(26,3) = 1
Y27 Y(27,10) = 0 , Y(27,21) = 0 , Y(27,6) = 0
Y28 Y(28,0) = 0 , Y(28,1) = 0 , Y(28,2) = 0 , Y(28,21) = 1 , Y(28,3) = 0
Y29 Y(29,10) = 0 , Y(29,21) = 1 , Y(29,6) = 0
Y30 Y(30,0) = 0 , Y(30,1) = 0 , Y(30,10) = 0 , Y(30,2) = 1 , Y(30,21) = 0 , Y(30,3) = 0
Y31 Y(31,10) = 1 , Y(31,21) = 0
Y32 Y(32,10) != Y(33,10)

Y33 Y(33,10) != Y(32,10) , Y(33,21) = 1
Y34 Y(34,21) = 0
Y35 Y(35,21) = Y(36,21)

Y36 Y(36,21) = Y(35,21)

Y37 Y(37,21) = 0
Y82 Y(82,10) = 0
Y83 Y(83,10) = 1
Y84 Y(84,10) = 0
Y86 Y(86,10) = 1
Y87 Y(87,10) = 0
Y88 Y(88,10) = 0

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 147

Table 11: A set of sufficient conditions for differential characteristics of Haval–128 when i=10

Y0 Y(0,2) = 1 , Y(0,3) = 0 , Y(0,4) = 0 , Y(0,5) = 0 , Y(0,6) = 0
Y1 Y(1,9) = 0 , Y(1,27) = 1 , Y(1,28) = 1 , Y(1,29) = 0 , Y(1,30) = 0
Y2 Y(2,9) = 1 , Y(2,20) = 0 , Y(2,21) = 0 , Y(2,2) = 0 , Y(2,3) = 0 , Y(2,4) = 0 , Y(2,5) = 1

, Y(2,6) = 0
Y3 Y(3,27) = 0 , Y(3,28) = 0 , Y(3,29) = 0 , Y(3,30) = 0
Y4 Y(4,9) = 1 , Y(4,20) = 1 , Y(4,21) = 0 , Y(4,2) = Y(5,2) , Y(4,3) = Y(5,3) , Y(4,4) = Y(5,4)

, Y(4,5) = Y(5,5) , Y(4,6) = Y(5,6)

Y5 Y(5,27) = Y(6,27) , Y(5,28) = Y(6,28) , Y(5,2) = Y(4,2) , Y(5,29) = Y(6,29) , Y(5,30) = Y(6,29)

, Y(5,3) = Y(4,3) , Y(5,4) = Y(4,4) , Y(5,5) = Y(4,5) , Y(5,6) = Y(4,6)

Y6 Y(6,31) = 0 , Y(6,9) = 0 , Y(6,20) = Y(7,20) , Y(6,21) = Y(7,21) , Y(6,27) = Y(5,27) ,
Y(6,28) = Y(5,28) , Y(6,29) = Y(5,29) , Y(6,30) = Y(5,29)

Y7 Y(7,20) = Y(6,20) , Y(7,21) = Y(6,21) , Y(7,2) = 0 , Y(7,3) = 0 , Y(7,4) = 0 , Y(7,5) = 0 ,
Y(7,6) = 0

Y8 Y(8,31) = 0 , Y(8,27) = 0 , Y(8,28) = 0 , Y(8,2) = 1 , Y(8,29) = 0 , Y(8,30) = 0 , Y(8,3) = 1
, Y(8,4) = 1 , Y(8,5) = 0 , Y(8,6) = 1

Y9 Y(9,16) = 1 , Y(9,20) = 0 , Y(9,21) = 0 , Y(9,27) = 1 , Y(9,28) = 1 , Y(9,29) = 1 , Y(9,30) = 1
Y10 Y(10,31) = Y(11,31) , Y(10,10) = 0, Y(10,11) = 0 , Y(10,20) = 1 , Y(10,21) = 1 , Y(10,2) = 0

, Y(10,3) = 0 , Y(10,4) = 0 , Y(10,5) = 0 , Y(10,6) = 1
Y11 Y(11,31) = Y(10,31) , Y(11,16) = 0 , Y(11,27) = 0 , Y(11,28) = 0 , Y(11,29) = 0 , Y(11,30) = 0
Y12 Y(12,10) = 0 , Y(12,11) = 0 , Y(12,20) = 0 , Y(12,21) = 0 , Y(12,2) = 0 , Y(12,3) = 0 ,

Y(12,4) = 0 , Y(12,5) = 0 , Y(12,6) = 0
Y13 Y(13,31) = 0 , Y(13,16) = Y(14,16) , Y(13,27) = 0 , Y(13,28) = 0 , Y(13,29) = 0 , Y(13,30) = 1
Y14 Y(14,31) = 1 , Y(14,10) = Y(15,10) , Y(14,11) = Y(15,11) , Y(14,16) = Y(13,16) , Y(14,20) = 0

, Y(14,20) = 0 , Y(14,21) = 0
Y15 Y(15,10) = Y(14,10) , Y(15,11) = Y(14,11)

Y16 Y(16,31) = 0 , Y(16,16) = 0 , Y(16,20) = 0
Y17 Y(17,10) = 0 , Y(17,11) = 0 , Y(17,16) = 1 , Y(17,5) = 0
Y18 Y(18,31) = 0 , Y(18,0) = 0 , Y(18,10) = 1, Y(18,11) = 1 , Y(18,1) = 0 , Y(18,20) = Y(19,20)

, Y(18,2) = 0
Y19 Y(19,16) = 0 , Y(19,20) = Y(18,20) , Y(19,5) = 0
Y20 Y(20,31) = 0 , Y(20,0) = 0 , Y(20,10) = 0, Y(20,11) = 0 , Y(20,1) = 0 , Y(20,2) = 0
Y21 Y(21,16) = 0 , Y(21,20) = 0 , Y(21,5) = Y(22,5)

Y22 Y(22,31) = Y(23,31) , Y(22,0) = Y(23,0) , Y(22,9) = 0 , Y(22,10) = 0, Y(22,11) = 0 ,
Y(22,1) = Y(23,1) , Y(22,20) = 1 , Y(22,2) = Y(23,2) , Y(22,5) = Y(21,5)

Y23 Y(23,31) = Y(22,31) , Y(23,0) = Y(22,0) , Y(23,1) = Y(22,1) , Y(23,2) = Y(22,2)

Y24 Y(24,9) = 0 , Y(24,20) = 0 , Y(24,5) = 0
Y25 Y(25,31) = 0 , Y(25,0) = 0 , Y(25,1) = 0 , Y(25,2) = 0 , Y(25,5) = 1
Y26 Y(26,31) = 1 , Y(26,0) = 1 , Y(26,9) = 0 , Y(26,1) = 1 , Y(26,20) = 0 , Y(26,2) = 1
Y27 Y(27,9) = 0 , Y(27,20) = 0 , Y(27,5) = 0
Y28 Y(28,31) = 0 , Y(28,0) = 0 , Y(28,1) = 0 , Y(28,20) = 1 , Y(28,2) = 0
Y29 Y(29,9) = 0 , Y(29,20) = 1 , Y(29,5) = 0
Y30 Y(30,31) = 0 , Y(30,0) = 0 , Y(30,9) = 0 , Y(30,1) = 1 , Y(30,20) = 0 , Y(30,2) = 0
Y31 Y(31,9) = 1 , Y(31,20) = 0
Y32 Y(32,9) != Y(33,9)

Y33 Y(33,9) != Y(32,9) , Y(33,20) = 1
Y34 Y(34,20) = 0
Y35 Y(35,20) = Y(36,20)

Y36 Y(36,20) = Y(35,20)

Y37 Y(37,20) = 0
Y82 Y(82,9) = 0
Y83 Y(83,9) = 1
Y84 Y(84,9) = 0
Y86 Y(86,9) = 1
Y87 Y(87,9) = 0
Y88 Y(88,9) = 0

International Journal of Network Security, Vol.4, No.2, PP.138-148, Mar. 2007 148

main methods to define the condition in each related step.

6 Conclusion

The experiment showed how to utilize the backward anal-
ysis to construct the differential condition for finding a
collision in Haval-128 Pass 3. We will show in a conse-
quent paper that our method can be applied to most hash
functions. The key of this analysis is that the differential
characteristic of BDO and BDI must not affect the 2nd
and 3rd Passes. Moreover, from the experiment result, we
found that the nonlinear function affects significantly to
the compression function. The highly-nonlinear function
does not mean that the compression function is also com-
plex and secure. Our future study will be concentrated
on the XOR and additional modulus that are clearly the
weak points of the most of hash functions.

Tables given in Appendix A shows a set of sufficient
conditions for the success of searching collisions and dif-
ferential characteristics of Haval when i = 11 and i = 10.
The method used in [4] for Haval is:

M ′ = M + 4C,4C = (2i−1, 2i−12, 2i−8)

at word position 0, 11, 18 and i = 0, 1, 2, ..., 31.

References

[1] P. Hawkes, M. Paddon, and G. G. Rose, Musings
on the Wang et al. MD5 Collision, IACR Eprint
Archive, Report 2004/264, Oct. 2004.

[2] V. Klima, Finding MD5 Collisions a Toy For a Note-
book, IACR Eprint Archive, Report 2005/075, Mar.
2005.

[3] V. Klima, Finding MD5 Collisions on a Notebook
PC Using Multi-message Modifications, IACR Eprint
Archive, Report 2005/102, Apr. 2005.

[4] X. Y. Wang, D. G. Feng, X. J. Lai, and H. B. Yu,
Collisions for Hash Functions MD4, MD5, HAVAL-
128 and RIPEMD, Rump session of CRYPTO’04 and
IACR Eprint Archive, Report 2004/199, Aug. 2004.

[5] X. Y. Wang, D. G. Feng, X. J. Lai, and H. B.
Yu, “Cryptanalysis of the hash functions MD4 and
RIPEMD,” Advances in Cryptology-Eurocrypt’05,
LNCS 3494, pp. 1-18, R. Cramer, Ed., Springer-
Verlag, May 2005.

[6] X. Y. Wang, and H. B. Yu, “How to break MD5
and other hash functions,” Advances in Cryptology-
Eurocrypt’05, LNCS 3494, pp. 19-35, R. Cramer, Ed.,
Springer-Verlag, May 2005.

[7] X. Y. Wang, Y. L. Yin, and H. B. Yu, “Effi-
cient collision search attacks on SHA-0,” Advances
in Cryptology-Crypto’05, LNCS 3621, pp. 1-16, V.
Shoup, Ed., Springer-Verlag, Aug. 2005.

[8] X. Y. Wang, Y. L. Yin, and H. B. Yu, “Finding col-
lisions in the full SHA-1,” Advances in Cryptology-
Crypto’05, LNCS 3621, pp.17-36, V. Shoup, Ed.,
Springer-Verlag, Aug. 2005.

[9] Y. L. Zheng, J. Pieprzyk, and J. Seberry, “HAVAL
A one-way hashing algorithm with variable length of
output,” Advances in Cryptology-Auscrypt’92, LNCS
718, pp. 83-104, J. Seberry and Y. Zheng, Eds.,
Springer-Verlag, 1993.

Appendix A

The differential characteristics and collision tables ob-
tained in our experiment are listed in Tables 8 – 11.

Pairat Thorncharoensri is doing a
Master degree in computer science by
research at Wollongong University. He
received a master of computer science
by coursework and a master of internet
technology by coursework from Wol-
longong University in 2004 and 2003
respectively. He received a bachelor of

electrical engineering from King Mongkut’s Institute of
Technology North Bangkok, Thailand. His current re-
search interests include network security, computer secu-
rity, and cryptography.

Tianbing Xia received his PhD from
the University of Wollongong in 2001.
He currently is a senior lecturer in the
School of Information Technology and
Computer Science, University of Wol-
longong. His research interests include
Boolean functions, Hadamard matrix
and orthogonal designs, and computer

security. He is a member of ACM.

Yi Mu received his PhD from
the Australian National University in
1994. He was a lecturer in the School
of Computing and IT at the University
of Western Sydney and a senior lec-
turer in the Department of Computing
at Macquarie University. He currently
is an associate professor in the Infor-

mation Technology and Computer Science, University of
Wollongong. His current research interests include net-
work security, computer security, and cryptography. Yi
Mu has published more than 100 research papers in In-
ternational conferences and journals. He has served as a
program committee member in a number of international
conferences and is a member of the Editorial Boards of
several international journals. He is a senior member of
the IEEE, and a member of the IACR.

	How to Find the Sufficient Collision Conditions for Haval-128 Pass 3 by Backward Analysis
	Recommended Citation

	How to Find the Sufficient Collision Conditions for Haval-128 Pass 3 by Backward Analysis
	Abstract
	Disciplines
	Publication Details

	ijns-2007-v4-n2-p138-148.dvi

