
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2006

InPCM: a network caching technique for improving the performance of TCP InPCM: a network caching technique for improving the performance of TCP

in wireless ad-hoc networks in wireless ad-hoc networks

Andrew Adinegara

W. H. O. Lau

Kwan-Wu Chin
University of Wollongong, kwanwu@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Adinegara, Andrew; Lau, W. H. O.; and Chin, Kwan-Wu: InPCM: a network caching technique for improving
the performance of TCP in wireless ad-hoc networks 2006.
https://ro.uow.edu.au/infopapers/2956

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages

InPCM: a network caching technique for improving the performance of TCP in InPCM: a network caching technique for improving the performance of TCP in
wireless ad-hoc networks wireless ad-hoc networks

Abstract Abstract
We propose a novel mechanism called In-Network Packet Caching Mechanism (inPCM) to address TCP's
poor performance in IEEE 802.11 based multi-hop wireless networks. In particular, we address TCP's
inappropriate response to bursty and location dependent errors. The key concept is the use of
intermediate nodes to perform packet recovery on behalf of TCP senders, similar to the well-known Snoop
TCP but adapted to work over multi-hop wireless networks. We have conducted ns-2 simulation studies
over a variety of network conditions and topologies. Our results confirm InPCM's benefits to TCP in terms
of delay and throughput. Moreover, it is immediately deployable without modifications to current
protocols.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Adinegara, A., Lau, W. & Chin, K. (2006). InPCM: a network caching technique for improving the
performance of TCP in wireless ad-hoc networks. IEEE Wireless Telecommunications Symposium 2006
USA: IEEE.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/2956

https://ro.uow.edu.au/infopapers/2956

InPCM: A Network Cache Technique for Improving the Performance of TCP in
Wireless Ad-Hoc Networks

Andrew Adinegara and W.H.O Lau
Curtin University of Technology

GPO Box U 1987
Perth, Western Australia

{12380189, lauhow}@cs.curtin.edu.au

Kwan-Wu Chin
University of Wollongong

Northfields Ave
Wollongong, NSW, Australia 2522

kwanwu@uow.edu.au

Abstract

We propose a novel mechanism called In-Network Packet
Caching Mechanism (InPCM) to address TCP’s poor per-
formance in IEEE 802.11 based multi-hop wireless net-
works. In particular, we address TCP’s inappropriate re-
sponse to bursty and location dependent errors. The key
concept is the use of intermediate nodes to perform packet
recovery on behalf of TCP senders, similar to the well-
known Snoop TCP but adapted to work over multi-hop wire-
less networks. We have conducted ns-2 simulation studies
over a variety of network conditions and topologies. Our re-
sults confirm InPCM’s benefits to TCP in terms of delay and
throughput. Moreover, it is immediately deployable without
modifications to current protocols.

1 Introduction

Wireless Ad-hoc Networks (WANETs) operate without
a fixed infrastructure and can be set up in different environ-
ments and terrains quickly. To date, WANETs have appli-
cations in areas such as battle-field communications, res-
cue operations [7], and sensor networks [20]. Moreover,
it has gained commercial prominence, as demonstrated by
Motorola’s Mobile Mesh Network [9], which allows one to
deploy low cost, high performance and scalable networks.

The Transport Control Protocol (TCP) [22] is the most
dominant protocol in use today and likely to remain so in
the future. Unfortunately, TCP’s behavior and in particular
its performance in WANETs leaves a lot to be desired when
compared to its performance in wired networks. The rea-
son is because TCP assumes that the network is congested
whenever it detects packet loss; rightly so given that link er-
rors in wired networks are relatively rare. In contrast, packet
loss in WANETs can be due to factors such as bad channels
[23], medium access control (MAC) contention [6] and link

breakages [7]. As a result, TCP experiences timeouts and
enters the slow-start phase frequently.

TCP’s performance issues over wireless networks have
spurred many research efforts [20][16][28][27][25][24][13]
[11][17] with the common goal of equalizing TCP’s perfor-
mance in both wired and wireless networks. Early works
[2, 8] have addressed the high packet loss rate problem by
performing packet recovery at base stations. Recent efforts
have focused on modifying TCP’s behaviors, for example,
adjusting its congestion window size [6][13] and employ-
ing an end-to-end feedback mechanism [28][19][5]. Other
approaches include modifications to the IEEE 802.11 MAC
protocol [3][26], and enhancing ad-hoc routing protocols
[16][14][15]. However, there has been little research on per-
forming packet recovery in the presence of high packet error
rate, specifically in multi-hop wireless networks.

In an early work, [2] propose Snoop TCP, a caching
mechanism that is deployed at base stations. The caching
mechanism is able to hide losses from TCP senders by
having an agent residing at the base station retransmit lost
packets. They show that Snoop TCP is transparent to both
sender and receiver, and does not interfere with TCP’s op-
eration. In light of its 1-hop performance, we ask the fol-
lowing key question: Can Snoop TCP be extended to work
in WANETs? Clearly, the main challenge is the absence of
base station which to locate Snoop TCP like caching mech-
anism since all nodes in a WANET can be hosts and routers.

In this paper, we show that indeed Snoop TCP can be
extended to work in WANETs. Our solution, called In-
Network Packet Caching Mechanism (InPCM), employs
caching at intermediate nodes to mitigate packet losses by
performing “local” retransmissions. Other features of In-
PCM include cache optimization, fine-grained retransmis-
sion timeout, and ability to operate in conjunction with
other technologies such as Link-RED [11, 10] to reduce
contention. In addition, InPCM has the following advan-
tages over the underlying MAC’s retransmission mecha-

1-4244-0046-5/06/$20.00 (c)2006 IEEE

nism:

• IEEE 802.11 MAC’s retransmission is only for 1-hop,
whereas InPCM is capable of working across multiple
hops.

• InPCM uses a longer timeout value compared to MAC.
Thereby, it can avoid persistent congestion.

• InPCM has access to routing information. Thus, allow-
ing it to send packets on alternative routes and bypass
neighbors experiencing severe fade.

• InPCM can incorporate different policies for handling
failed packets. For example, a policy that intelligently
drops packets to reduce contention; see Section 3.9.

We have conducted ns-2 simulations over various network
topologies (e.g., linear, grid and random), and our results
confirm the effectiveness of InPCM in improving TCP’s
performance in WANETs.

This paper has the following structure. Section 2 dis-
cusses the background and related works. We start by giv-
ing an overview of InPCM in Section 3 followed by a dis-
cussion of various design criteria in Section 3.1. After that
we present InPCM’s eviction policies and retransmission
timeout calculation. Section 4 presents our simulation pa-
rameters and the network topologies used to verify InPCM.
We present our results in Section 5, and Section 6 concludes
this paper.

2 Background

2.1 TCP over WANETs

The error prone nature of wireless networks has spurred
much research into improving TCP’s poor performance in
such networks. Representative works include TCP-F [5],
TCP-ELFN [19], ATCP [17], and EPLN [28]. Most of these
solutions, however, require modifications to TCP so that it
becomes aware of its operating environment; error prone
wireless channel and MAC behaviors.

TCP-F [5]’s objective is to distinguish between losses
due to congestion and route failures. To do this, TCP-F
requires two notification packets, Route Failure Notification
(RFN) and Route Reestablishment Notification (RRN). The
basic idea is to freeze TCP’s timer and any ongoing packet
transmissions when the TCP sender receives a RFN. Once a
RRN packet is received, the sender restores its TCP’s timer.

ATCP [17] puts TCP into different states according to
feedback it receives from intermediate hops. When the net-
work is partitioned, TCP is put into a persist state where
TCP will not retransmit or transmit any packets during this
period. TCP is also shielded from non-congestion related
losses so that its congestion control/avoidance mechanisms

will not be invoked. However, when true congestion occurs,
normal TCP’s congestion control/avoidance is used.

EPLN [28] relies on notification messages to indicate
link failure and packet loss. For example, when a node de-
tects a link failure, the node will send a notification mes-
sage, which includes information about lost packets. Upon
receiving a notification, the TCP sender records the infor-
mation, disables its retransmission timer and retransmits the
lost packet with the lowest sequence number. The TCP
sender resumes its timer when the corresponding ACK is
received. The handling of ACK packets follows a similar
process. The only difference is that the TCP sender will
retransmit the highest ACK received so far. Besides that,
EPLN does not use route discovery. The key idea here is to
reduce the occurrences of route failures rather than to dis-
tinguish between congestion and wireless errors.

In sum, the aforementioned works have the following
limitations. First, notifications or feedback from interme-
diate nodes may be lost, thus preventing the TCP sender
from taking any actions. Secondly, they assume link fail-
ures are primarily caused by mobility. This is unrealistic
since wireless links fade frequently due to interference and
small scale fading [23]. Given that fades last for hundreds
of milliseconds only, we argue that sending feedback to the
sender unnecessarily degrade TCP’s performance.

2.2 Wired-Wireless Networks

Besides WANETs, there have also been numerous works
looking into improving TCP’s performance over 1-hop
wireless link. For completeness, we will review some rele-
vant works before describing how we extended Snoop TCP
to work in WANETs.

Balakrishnan et al. [2] propose the idea, called Snoop
TCP, of caching packets and performing local recovery at
the base station. The objective of Snoop TCP is to allow lost
packets to be retransmitted without causing the TCP sender
to invoke its congestion control or avoidance mechanisms
unnecessarily.

In a different work, Arya et al. [1] describe an explicit
mechanism that differentiates between wireless and conges-
tion related losses. Their approach is based on a simple
window framework where the window is used for storing
information of a lost segment due to congestion or wireless
errors. If a congestion or wireless loss is detected, the re-
ceiver notifies the sender, after which the sender adjust its
sending rate.

Biaz et al. [4] propose using packets’ inter-arrival times
as the loss discriminator. Basically, when persistent con-
gestion occurs, the congestion window is halved. In the
case of wireless loss, TCP does not unnecessarily invoke
its congestion control mechanism. However, their scheme
assumes that the last link on a path is wireless and it’s the

bottleneck link.
TCP Santa-Cruz [21] tries to differentiate congestion

from random losses by monitoring the queue over a bot-
tleneck link. TCP Santa-Cruz maintains a minimum queue
size by adjusting the TCP’s window size. From their re-
search, they claim that congestion related losses can be
identified when the queue length exceeds a certain thresh-
old and wireless loss is not preceded by a queue build up
event. When TCP Santa-Cruz detects wireless losses, no
rate-halving is performed. However, when persistent con-
gestion occurs, normal congestion ensues.

Finally, Garcia et al. [12] propose a novel approach
that differentiates loss based on packet checksums. Their
observation is that checksum errors are usually caused by
wireless errors, thereby, a checksum error signifies wireless
losses rather than congestion.

Table 1 summarizes the aboforementioned schemes. As
mentioned, Snoop TCP has the nice feature of being trans-
parent to both TCP sender and receiver. The main draw-
back, however, is that Snoop TCP has been designed to re-
cover packets from a base station; i.e., it assumes a cen-
tral node where packets can be recovered from. In contrast,
WANETs consist of distributed nodes and packets are likely
to traverse through multiple wireless links before reaching
their destination. To this end, we propose InPCM (an ex-
tension of Snoop TCP) to facilitate the recovery of packets
in multi-hop wireless networks.

3 In-Network Packet Caching Mechanism
(InPCM)

InPCM’s key idea is to have intermediate nodes use
an in-network packet level caching mechanism to recover
packets; similar in principle to Snoop TCP [2] but over
WANETs.

Figure 1 gives an overview of InPCM which shows
nodes B and C running InPCM, as illustrated by them
caching packets destined to node E. Assume that a packet is
lost on the link from node D to E, due to bad channel con-
dition. Upon a timeout, node C retransmits the lost packet,
thereby, preventing a timeout event at the sender. From the
example above, we can draw a few observations. First, In-
PCM does not require every hop to perform caching. Sec-
ond, InPCM recovers both data and ACK packets. Thirdly,
InPCM can incorporate different caching and retransmis-
sion strategies that promote spatial reuse or avoid congested
nodes. Finally, if node B or C moves away, one of them can
take over.

3.1 Design and Implementation of InPCM

Conceptually, InPCM is similar to Snoop TCP, but the
multi-hop nature of WANETs brings forth the following is-

ACK
A B C D E

Data

Pkt−1

Pkt−2

Pkt−3

Pkt−4

Pkt−1

Pkt−2

Pkt−3

Pkt−4

Sender Receiver

Resend Resend

Figure 1. InPCM in operation.

sues:

• Fine-grained timeout control. We need to have a bet-
ter control of the recovery process as injecting more
packets unnecessarily into the network adds to the con-
tention level.

• Tracking incoming data and ACK packets. Packet of
different types belonging to different flows needs to
be identified properly; otherwise, unnecessary packets
will be cached.

• Symmetric and asymmetric paths. A link break causes
the routing protocol to use an alternate route. As a re-
sult, it is conceivable that the new route may not con-
tain intermediate nodes with previously cached pack-
ets.

• Caching policies and cache size. The policy used and
number of hops to either the sender or receiver will
dictate the required cache size.

• Handling persistent congestion. Naively retransmit-
ting cached packets will exacerbate the network’s con-
gestion level, especially if all intermediate nodes re-
transmit the same packet.

• Fairness among flows. Given that different flows will
experience different packet loss due to the wireless
medium having location dependent error loss, we need
to ensure a flow’s poor link quality does not affect
other flows’ packet recovery.

An important issue highlighted above is when, how and
what to cache. The size of the caches needs to be studied
carefully and investigated so that a large number of flows
can be accommodated. In the case where there are no con-
straints on cache sizes, the data cache will increase in pro-
portional to an intermediate node’s round trip time to the
receiver and the number of flows. Furthermore, the loca-
tion of a node affects the minimum required cache size,
where a node closer to the destination will require less
cache resources due to ACK packets taking less time to ar-
rive. In this paper, we focus on computing the fine-grained

Table 1. Summary of TCP Enhancement Works.
Scheme Type Approach

TCP-F [5] WANET Alters TCP’s state based on the received feedback.
ATCP [17] WANET Disables TCP’s retransmission timer when a link is down and

restores the timer after receiving the corresponding ACK for a data packet.
EPLN [28] WANET Disables TCP’s retransmission timer when a link is down and restores

the timer after receiving the corresponding ACK for a data packet.
Snoop-TCP [2] WANET Caches data and ACK packets, and using a fine grained timer to

recover lost packets.
Arya et al. loss [1] Wired-Wireless Uses a simple window framework to differentiate packet loss

and store loss segment information.
Biaz and Vaidya [4] Wired-Wireless Differentiate losses using inter-arrival times.
TCP Santa Cruz [21] Wired-Wireless Differentiate losses by monitoring queue over a bottleneck link.
Garcia and Brunstrom [12] Wired-Wireless Differentiate losses using checksum errors.

timeout, tracking of incoming data and ACK packets, and
caching policies. Issues such as asymmetric paths, cache
size and handling persistent congestion are our immediate
future works.

3.2 System Overview

Figure 2 shows a system overview and key components
necessary to realize InPCM. We design InPCM to sit be-
tween the MAC and network layer, thus giving it access to
routing tables and close integration with the MAC. The role
of each component shown in Figure 2 is discussed next.

InPCM Modules

Timer
Fine−Grain Eviction

Policy

DATA ACK
Eviction

Policy

ACK
Snoop

Module
Link−REDELDD Snoop

DATA

Module

Cache
DATA

Cache
ACK

InPCM Components

InPCM

ACK Packet

Data Packet

Figure 2. InPCM system overview.

3.3 Caching Algorithm

Figures 1 and 2 show how InPCM process data and ACK
packets respectively. First, the processing of data packets
is as follows. InPCM accesses the data packet’s sequence
number to validate whether the data packet is new, old, in-
order or out-of-order. If the data packet is new (line-4), it is
cached and forwarded to the next hop regardless of whether
the data packet is in-order or out-of-order. Line 8 indicates

that the receiver or some other nodes have not received the
corresponding data packet, thus a retransmission of the last
ACK packet is required. Line 9 is executed when either a
data packet is lost or a new one arrives. For both cases,
InPCM will cache the data packet and forward it onwards.

P ← Incoming Packet;1

seqno ← GetSeqNo(P);2

if P is Data-Packet then3

if seqno == in sync then4

DataCache(P);5

Forward(P);6

end7

else if seqno not in sync then8

if seqno ≤ Last ACK.seqno then9

Retransmit(Last ACK);10

Remove(P);11

end12

if seqno > Last ACK.seqno then13

DataCache(P);14

Forward(P);15

end16

end17

end18

Algorithm 1: InPCM’s Caching Algorithm: Data
packet processing

ACK packets are processed in a similar manner. The
ACK packet is first compared against the last ACK packet.
Line 4 indicates the ACK packet is new. A node removes the
corresponding data packet and update the last ACK seen.
Line 11 handles the case where the sender timeouts or when
nodes think that the sender has not received an ACK be-
cause of the delay in receiving a new data or ACK packet.
InPCM does nothing in the former case but it will discard
the packet in the latter. Further, when a duplicate ACK is
received (line 14), it will check whether the corresponding
data packet is in its data cache. If the data packet exists, the
duplicate ACK is dropped.

Finally, InPCM maintains a counter that tracks the num-
ber of duplicate ACKs for each data packet. After receiv-
ing three duplicate ACKs, the corresponding cached data
packet is retransmitted and the counter is reset. When an
ACK packet arrives, InPCM evicts all data packets up to
and including the acknowledged packet from its cache.

P ← Incoming Packet;1

seqno ← GetSeqNo(P);2

if P is ACK-Packet then3

if seqno > Last ACK.seqno then4

RemoveCorrespondingDataPacket(P);5

Remove(Last ACK);6

ACKCache(P);7

Update(Last ACK, P);8

Update(Round Trip Time);9

end10

if seqno < Last ACK.seqno then11

Remove(P);12

end13

if seqno == Last ACK.seqno then14

if Data-Cache-Exist(P) then15

Remove(P);16

Increment(counter);17

if counter==3 then18

RetransmitDataPacket(P);19

counter=0;20

end21

else22

Forward(P);23

end24

end25

end26

end27

Algorithm 2: InPCM’s Caching Algorithm: ACK
processing.

3.4 InPCM’s Eviction Policy

The main objective of evicting packets from the data and
ACK cache is to purge outdated packets and make room
for new packets. This is important considering that mobile
nodes have limited resources; therefore, cache utilization
must be kept at a minimum. A data packet will be discarded
once its corresponding ACK arrives. In the case where TCP
uses delayed acknowledgements, InPCM removes all data
packets that have sequence numbers up to and including
the acknowledged packet. Finally, an ACK packet will be
removed from its ACK cache once a node receives a data
packet with a higher sequence number.

3.5 Early Loss Detection and Discard
(ELDD)

A data packet can be evicted early if a downstream node
can guarantee that the data packet has been cached. The
idea here is to eavesdrop on a neighboring node’s transmis-
sion. Once the neighbor node transmits, a node can safely
evict the transmitted packet from its cache. Note that this
optimization means that a node is unable to enter power
save mode until a neighbor transmits a cached data or ACK
packet.

3.6 In-Network Recovery Timer

For each sender and receiver, an InPCM-enabled node
maintains a fine-grained retransmission timeout (RTO) that
is calculated based on its position relative to the sender and
receiver. The reason for using a timer instead of waiting for
three duplicate acknowledgements is because acknowledge-
ment packets are susceptible to wireless related problems
(e.g., high contention), thus ACKs cannot be relied on as a
loss predictor. We now present how each node calculates its
RTO value.

3.6.1 Standard Deviation-based Timer Mechanism

Initially, the InPCM’s timer mechanism is based on how
TCP calculates its RTO, referred subsequently as TCP-like.
To see why the standard TCP mechanism cannot be used,
consider the following analysis.

We set up a linear topology with varying number of hops
and have intermediate nodes calculate RTO in a standard
manner to the receiver. Here, we assume the packet’s round
trip time is constant. Constant round trip time means that
the per-hop delay (phd) for the data and ACK packets is the
same across multi-hop linear topology, although this might
not be the case in the real world or simulation. However,
this analysis is only to show that given a constant RTT, how
different timer schemes are different in terms of the max-
imum retransmission. Further on, we analyze the number
of retransmissions that can be attempted using the TCP-
like timer mechanism and compare it against the maximum
number of retransmission (MAX) in the ideal case. Here,
we define the ideal case as one that provides the maximum
retransmission attempts before the sender’s RTO expires.
MAX is calculated through ((4 X RTT) / RTT). The RTT
of a node is calculated using (numberofhops X phd). The
number of hops refers to the hops needed from a node to
reach the sender including its way back.

Figure 4 shows that intermediate nodes using TCP-like
lack retransmission opportunities when compared with the
ideal case. This is undesirable if most of the packets are lost
in the vicinity of downstream nodes and it is no different to
having the TCP sender retransmit all packets.

Due to the above reasons, we propose another fine-
grained timer based on RTT’s standard deviation; its ability
to grant more retransmission opportunities is clearly shown
in Figure 4. To calculate a packet’s timeout, InPCM uses
the following equation.

ESRTO = SRTT + β × (a + b × hops) (1)

where ESRTO is the estimated RTO, SRTT is the
smooth RTT, β, a and b are constants, and hops is number
of hops to the receiver.

In words, the β value determines the aggressiveness of
the retransmission process. Note, a more aggressive packet
retransmission strategy does not necessarily lead to a bet-
ter overall throughput performance, since more retransmis-
sions will degrade performance due to increased contention
level. Therefore, the β value must be chosen carefully so
that all the nodes closer or farther away from the sender
have a chance to perform retransmission and avoid over-
loading the network.

To select an appropriate β value, we conducted simu-
lations using a static linear topology and vary the number
of hops from 3 to 15. The simulation uses the parameters
shown in Table 2. From the set of simulations performed,
we found that a β value of 1.5 to be appropriate and achieves
a stable performance over multi-hop simulations. We are in
the process of investigating whether a suitable β value can
be derived from the current contention level, the ACK’s ar-
rival time, and TCP’s sender timeout, thereby, provides a
generic scheme to determine β.

In our simulations, we found that the sampled RTT’s
standard deviation vary widely and does not increase lin-
early with hop count, see Figure 3. To “normalize” the stan-
dard deviation, we used a line fitting equation, Equ. 2, over
the collected standard deviation values.

y = a + bx (2)

where a and b are regression coefficients, y is the esti-
mated standard deviation, x is number of hops to the re-
ceiver, and n is number of samples being used. The regres-
sion coefficients of a and b are then obtained using Equ. 3
and 4. Finally, the resulting a and b values are inserted into
Equ 1.

a =
y

(∑n
i=1 x2

i

) − x (
∑n

i=1 xiyi)∑n
i=1 x2

i − nx2 (3)

b =
(
∑n

i=1 xiyi) − nxy
∑n

i=1 x2
i − nx2 (4)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2 4 6 8 10 12 14 16

S
ta

nd
ar

d
D

ev
ia

tio
n

V
al

ue
s

Hops to receiver

STDDEV of RTT

STDDEV

Figure 3. Standard Deviation of RTT.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

M
A

X
 R

et
ra

ns
m

is
si

on

Node Position

Retransmission Comparison

Ideal
TCP-Like
STDDEV

Figure 4. Comparison of maximum transmis-
sion under different timer mechanisms. The
receiver is located after node-10.

3.7 Expired Data Packets Retransmission
Policy

When an InPCM node experiences timeout, a naive way
is to retransmit all expired data packets. However, having
consecutive InPCM nodes retransmit the same packet un-
necessarily increases the network’s load.

The solution to this issue is to retransmit only the first
unacknowledged data packet. To achieve this, we require
the node whose retransmission fires first notifies upstream
nodes to cancel all unnecessary retransmissions by sending
a notification packet back to the TCP sender. The notifi-
cation packet is only generated and processed by InPCM
nodes. The InPCM node that generates this packet attaches
information of the latest retransmitted packet types along
with its sequence number.

An InPCM node that receives this packet scan through

its data packet and halts the corresponding packet’s retrans-
mission timer and evicts the packet from its cache. As an
optimization, nodes may double their RTO value instead of
evicting the data packet from its cache. This will help re-
cover packets when nodes are mobile since this optimiza-
tion increases the number of nodes which a receiver can
rely on to recover packets.

3.8 Expired ACK Packets Retransmission
Policy

Upon receiving new ACKs, an InPCM node will evict
old ACK packets from its ACK cache. When an InPCM
node does not receive any new data packets after some time,
it will resend the latest acknowledgement packet. Bare in
mind that not receiving any data packet could be due to the
TCP sender not having any more data to send. To cater for
this case, InPCM retransmits an ACK packet a maximum of
three times before giving up, at which point the ACK packet
is discarded.

3.9 Reducing Contention Level

TCP has been shown to increase contention in WANETs,
see [11]. A problem with InPCM is that due to its retrans-
mission mechanism, it too will add to the contention level.
As a result, we need to carefully control the contention level
in WANETs.

We address this problem by incorporating the Link-RED
[11, 10] mechanism into InPCM. The idea here is to re-
duce TCP’s aggressiveness so that additional bandwidth are
available to perform retransmissions, thus keeping the con-
tention level equal or less than not running Link-RED, but
with the added performance gains provided by InPCM.

4 Simulation

We verify the performance of InPCM using ns-2 (v2.28)
[18]. Unless specified otherwise, all the simulations use the
parameters shown in Table 2.

Our experiments consist of three network topologies:
random, linear and grid. Figures 5 and 6 show an example
of linear and grid topology respectively. The reason for us-
ing a linear topology is that it provides a controlled environ-
ment that simplifies the analysis of InPCM. The grid topol-
ogy provides a more challenging scenario where we tested
InPCM against frequent route changes, contention among
flows and asymmetric paths. Finally, the random topology
serves as a more realistic topology for testing InPCM where
nodes experience frequent route changes due to mobility or
contention among flows.

In our experiments, we collected the following metrics:

Table 2. Simulation Configurations.
Type Used

MAC Protocol IEEE 802.11
TCP Flavor TCP Reno
Radio Propagation 2-ray Ground
Routing Protocol DSR
Simulation Duration 1000s
Queue CMUPriqueue
Packet Error Rate (PER) 2% and 5%
Node transmission range 200 meters
Simulation Runs 10
Topology Size 1000x1000 meters
Mobility Model Random Way Point
Node speed 20 m/s

21S n R

Figure 5. Linear topology.

• MAX ACK. The largest ACK sequence number re-
ceived by the sender. This metric measures the per-
formance improvement without taking into account re-
transmitted packets (e.g., throughput). As a result,
the measurement is more accurate as compared with
throughput measurement.

• Data transfer time.

• Ratio of amount of time spent in the slow-start and
congestion avoidance phases.

For the grid topology, see Figure 6, there are four TCP
connections with flows emanating from node 1, 2, 3 and
4 to nodes 13, 14, 15 and 16 respectively. Furthermore,
all the nodes are static and we used a PER of 5%. In
the randomized topology, there are 20 nodes scattered in
a 1000x1000m grid size.

5 Results

Figures 7 and 8 show the simulation results for the lin-
ear topology. In Figure 7, the objective is to show InPCM’s
performance gain compared to TCP without PER. We in-
corporated the Link-RED [11, 10] mechanism, as discussed
in Section 3.9. In our simulations, we observe that the Link-
RED mechanism is capable of lowering the contention level
where a flow experiences fewer packet drops. We found that
the combination of InPCM and LinkRED improves TCP’s
performance especially when contention level increases.

Figure 9 compares how TCP reacts to different PERs and
how effective InPCM is in performing recovery for a given
PER. We see that TCP treats the PER as though the network
is congested. At a PER of 5%, TCP performs badly, regis-
tering little throughput. However, InPCM is able to perform
recovery and hides most of the wireless losses from the TCP

200m

2 31 4

65 7

9 1110 12

161513 14

8

200m

Figure 6. Grid topology.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 2 3 4 5 6 7 8 9 10

M
A

X
-A

C
K

Hops

TCP-InPCM-Optimisation-Pacing-LRED Vs TCP-Only

TCP-Only
TCP-InPCM-Optimisation-Pacing-LRED

Figure 7. Performance of TCP vs InPCM
(ELDD + Link-RED) during simulations with-
out PER.

sender. As a result, due to InPCM, the sender continues to
send without invoking congestion control.

To better illustrate the effectiveness of InPCM, we con-
sider the time spent in the congestion avoidance and slow-
start phases. Again, we use a linear topology but with a PER
of 5%. In Figure 9, we see that InPCM spends more time in
the congestion avoidance rather than the slow-start phase.
This is in contrast to not using InPCM which sees TCP
spending the majority of its time in the slow-start phase.

The increase in TCP’s performance leads to a reduced
latency perceived by the end user. To verify this claim, we
perform a simulation using a six hops linear topology with
5% PER, and a flow transferring 1 Mb of data. As shown in
Figure 10, InPCM needs shorter amount of time than TCP
to complete the data transfer.

Next, we conducted a set of simulation using a 4x4 grid

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 3 4 5 6 7 8 9 10

M
A

X
_A

C
K

Hops

TCP Vs TCP-InPCM (MAX_ACK)

TCP-2%-PER
TCP-InPCM-2%-PER

TCP-5%-PER
TCP-InPCM-5%-PER

Figure 8. Performance of TCP vs InPCM with
2% and 5% of PER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 5.5 6 6.5 7

R
at

io

Hops

Ratio between slow-start (SS) and congestion avoidance (CA) duration

TCP’s Ratio (CA/SS)
TCP-InPCM’s Ratio (CA/SS)

Figure 9. Ratio between slow-start and con-
gestion avoidance (TCP vs InPCM)

topology. In this topology, InPCM is tested against frequent
route changes due to contention and PER. Figure 11 shows
that InPCM is able to improve TCP’s performance (e.g.,
MAX ACK) by 53% in aggregate even in the presence of
frequent route changes and varying PERs. The reason is
because InPCM sustains TCP flows in the congestion avoid-
ance phase longer. Without InPCM, these flows timeout and
enter slow-start frequently.

The last simulation uses the randomized topology with
nodes placed in a grid of 1000 x 1000m with links having
a PER of 5%. As shown in Figure 12, InPCM is able to
improve the performance of TCP by 17% in the presence
of mobility, frequent route changes and high PER. Notice
that the second flow does not show any improvement. We
believe if the fairness issue, discussed in Section 3.1, is ad-
dressed, then all InPCM flows will consistently outperform

 200

 400

 600

 800

 1000

 1200

 1400

TCP-InPCMTCP-Only

Duration (seconds)

Transfer Time Comparison

TCP-Only-5%-PER
TCP-InPCM-5%-PER

Figure 10. Perceived latency by TCP’s sender
in a data transfer.

other TCP flows.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

InPCM-4TCP-4InPCM-3TCP-3InPCM-2TCP-2InPCM-1TCP-1

M
A

X
-A

C
K

Flow

Grid 4X4 Topology

TCP-Flows
InPCM-Flows

Figure 11. Grid (4x4) Simulation (TCP vs In-
PCM)

6 Conclusion

In this paper, we have proposed a novel caching mecha-
nism called InPCM to address TCP’s poor performance in
WANETs. InPCM is an extension of the well-known Snoop
TCP to multi-hop wireless networks. InPCM effectively
augments the underlying MAC retransmission mechanism
and is also able to incorporate mechanism such as Link-
RED to reduce contention level. We have evaluated InPCM
through simulation studies in various scenarios and our re-
sults indicate that InPCM is able to improve TCP’s perfor-
mance significantly. Some important areas requiring further
work include fairness among flows, cache optimization and

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

InPCM-AllTCP-AllInPCM-4TCP-4InPCM-3TCP-3InPCM-2TCP-2InPCM-1TCP-1

M
A

X
-A

C
K

Flow

Dynamic Topology

TCP-Flows
InPCM-Flows

Figure 12. Dynamic topology simulation re-
sults.

avoiding true congestion.

References

[1] V. Arya and T. Turletti. Accurate and Explicit Dif-
ferentiation of Wireless and Congestion Losses. In
Proceedings of 23rd International Conference on Dis-
tributed Computing Systems Workshops, pages 877–
882. IEEE, 2003.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.
Improving TCP/IP Performance over Wireless Net-
works. In Proceedings of the 1st Annual International
Conference on Mobile Computing and Networking,
pages 2–11, New York, NY, USA, 1995.

[3] D. Berger, Z. Ye, P. Sinha, S. Krishnamurthy,
M. Faloutsos, and S. K. Tripathi. TCP Friendly
Medium Access Control for Ad hoc Wireless Net-
works: Alleviating Self Contention. In 1st IEEE In-
ternational Conference on Mobile Ad hoc and Sensor
Systems, pages 214–223, Lauderdale, FL, 2004.

[4] S. Biaz and N. Vaidya. Discriminating Conges-
tion Losses from Wireless Losses using Inter-Arrival
Times at the Receiver. In Proceedings of Application
Specific Systems and Software Engineering and Tech-
nology, pages 10–17, Richardson, TX, 1999. IEEE.

[5] K. Chandran, S. Raghunathan, S. Venkatesan, and
R. Prakash. A Feedback-based Scheme for Improv-
ing TCP Performance in Ad hoc Wireless Networks.
Personal Communications, IEEE, 8(1):34–39, 2001.

[6] K. Chen, Y. Xue, and K. Nahrstedt. On Setting TCP’s
Congestion Window Limit in Mobile Ad hoc Net-

works. In IEEE International Conference on Com-
munications, pages 1080–1084, 2003.

[7] X. Chen, H. Zhai, J. Wang, and Y. Fang. TCP
Performance over Mobile Ad hoc Networks. Cana-
dian Journal of Electrical and Computer Engineering,
29(1):129–134, 2004.

[8] J. Cho, S. Oh, J. Kim, H. H. Lee, and J. Lee. Neigh-
bor Caching in Multi-hop Wireless Ad hoc Networks.
Communications Letters, IEEE, 7(11):525–527, 2003.

[9] M. Corp. Mobile Mesh Networks Technology. Tech-
nical Report. http://www.motorola.com/.

[10] Z. Fu, P. Zerfos, H. Luo, L. Zhang, and M. Gerla. The
Impact of Multihop Wireless Channel on TCP Per-
formance. IEEE Transactions on Mobile Computing,
4(2):209–221, 2005.

[11] Z. Fu, P. Zerfos, H. Luo, L. Zhang, S. Lu, and
M. Gerla. The Impact of Multihop Wireless Channel
on TCP Throughput and Loss. In 22nd Annual Joint
Conference on the IEEE Computer and Communica-
tions Societies, pages 1744–1753, 2003.

[12] J. Garcia and A. Brunstrom. Transport Layer Loss
Differentiation and Loss Notification. First Swedish
National Computer Networking Workshop.

[13] M. Gunes and D. Vlahovic. The Performance of the
TCP/RCWE Enhancement for Ad hoc Networks. In
Proceedings of 7th International Symposium on Com-
puters and Communications, pages 43–48, 2002.

[14] Y. He, C. S. Raghavendra, S. Berson, and R. Braden.
TCP Performance with Active Dynamic Source Rout-
ing for Ad hoc Networks. In Proceedings of Interna-
tional Workshop on Active Network Technologies and
Applications, pages 24–35, Osaka, Japan, 2003.

[15] X. Hou and D. Tipper. Impact of Failures on Routing
in Mobile Ad hoc Networks using DSR. In Proceed-
ings of Communication Networks and Distributed Sys-
tems Modeling and Simulation Conference, Orlando,
FL, 2003.

[16] H. Lim, K. Xu, and M. Gerla. TCP Performance over
Multipath Routing in Mobile Ad hoc Networks. In
IEEE International Conference on Communications,
pages 1064–1068, 2003.

[17] J. Liu and S. Singh. ATCP: TCP for Mobile Ad hoc
Networks. IEEE Journal on Selected Areas in Com-
munications, 19(7):1300–1315, 2001.

[18] S. McCanne and S. Floyd. ns Network Simulator-2.
http://www.isi.edu/nsname/ns/.

[19] J. P. Monks, P. Sinha, and V. Bharghavan. Limitations
of TCP-ELFN for Ad hoc Networks. In Proceedings
of the 7th International Workshop on Mobile Multime-
dia Communications, Marina del Rey, CA, 2000.

[20] K. Nahm, A. Helmy, and C. C. J. Kuo. TCP over Mul-
tihop 802.11 Networks: Issues and Performance En-
hancement. In Proceedings of the 6th ACM Interna-
tional Symposium on Mobile Ad hoc Networking and
Computing, pages 277–287, Urbana-Champaign, IL,
USA, 2000.

[21] C. Parsa and J. J. G. L. Aceves. Differentiating Con-
gestion vs Random Loss: A Method for Improving
TCP Performance over Wireless Links. In Wireless
Communications and Networking Conference, pages
90–93, Chicago, IL, 2000. IEEE.

[22] J. Postel. RFC 793 - Transmission Control Protocol,
1981.

[23] T. S. Rappaport. Wireless Communications: Princi-
ples and Practice. Prentice-Hall, 1996.

[24] M. Stangel and V. Bharghavan. Improving TCP Per-
formance in Mobile Computing Environments. In
IEEE International Conference on Communications,
pages 584–589, Atlanta, GA, 1998.

[25] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and
R. Sivakumar. ATP: A Reliable Transport Protocol for
Ad hoc Networks. In Proceedings of the 4th ACM In-
ternational Symposium on Mobile Ad hoc Networking
and Computing, pages 64–75, Annapolis, Maryland,
USA, 2003.

[26] K. Tang and M. Gerla. MAC Reliable Broadcast in
Ad hoc Networks. In Military Communications Con-
ference, pages 1008–1013, 2001.

[27] K. Xu, S. Bae, S. Lee, and M. Gerla. TCP Behaviour
across Multihop Wireless Networks and the Wired In-
ternet. In Proceedings of the 5th ACM International
Workshop on Wireless Mobile Multimedia, pages 41–
48, Atlanta, Georgia, USA, 2002.

[28] X. Yu. Improving TCP Performance over Mobile
Ad hoc Networks by Exploiting Cross-Layer Informa-
tion Awareness. In Proceedings of the 10th Annual
International Conference on Mobile Computing and
Networking, pages 231–244, Philadelphia, PA, USA,
2004.

	InPCM: a network caching technique for improving the performance of TCP in wireless ad-hoc networks
	Recommended Citation

	InPCM: a network caching technique for improving the performance of TCP in wireless ad-hoc networks
	Abstract
	Disciplines
	Publication Details

	paper.dvi

