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Abstract. Meetings, common to many business environments, generally 
involve stationary participants. Thus, participant location information can be 
used to segment meeting speech recordings into each speaker’s ‘turn’. The 
authors’ previous work proposed the use of spatial audio cues to represent the 
speaker locations. This paper studies the validity of using spatial audio cues for 
meeting speech segmentation by investigating the effect of varying microphone 
pattern on the spatial cues. Experiments conducted on recordings of a real 
acoustic environment indicate that the relationship between speaker location 
and spatial audio cues strongly depends on the microphone pattern.  

Keywords: spatial audio cues, meeting audio analysis, microphone arrays. 

1   Introduction 

Meetings recordings are currently difficult to access offline as users potentially have 
to search through hours of audio/video data to find segments of interest. Efficient 
‘browsing’ of meeting recordings is thus of great interest to many business 
environments. Research groups currently focus on meeting analysis to facilitate 
effective meeting browsing [1]. Browsing requires the meeting to be segmented and 
annotated with semantically meaningful information such as speaker identification, 
speaker location, speech summary, transcript or level of participant interaction e.g. 
monologue, group discussion or presentation. 

Many of the annotations can be derived from the meeting audio recordings alone. 
A fundamental way to segment meeting audio is by each speaker’s period of 
participation, or ‘turn’. For such segmentation, Lathoud et al. represented speaker 
location information as Time Delay Estimations (TDE) derived from omnidrectional 
recordings, using Generalized Cross Correlation (GCC) based techniques such as 
GCC-PHAT and SRP-PHAT [2]. 

The authors’ previous work extended the concept of using speaker location 
information for meeting speech segmentation by representing speaker location 
information with spatial audio cues [3]. The cues are derived from the spatial cues in 
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Spatial Audio Coding (SAC) [4, 5]. When applied to meeting speech segmentation, 
previous work found that the spatial cues detected multiple concurrent speakers, 
whereas GCC-based approaches tended to only detect the strongest speaker in a given 
speech frame [3]. 

This paper further investigates the validity of using spatial audio cues for meeting 
speech segmentation. Simulated meetings recorded with different microphone 
patterns are analyzed to explore the how microphone pattern affects the relationship 
between the spatial cues and speaker location. SAC techniques have not been 
previously investigated with microphone array recordings. Rather, research has 
focused on resynthesising spatialised recordings e.g. 5.1 surround [6]. 

In the remainder of this paper, Section 2 outlines the spatial cues extraction from 
the recorded speech. Section 3 describes the meeting recording setup, while Section 4 
presents the results obtained from these recordings. Section 5 concludes the paper. 

2   Spatial Audio Coding 

SAC aims to compactly represent multichannel audio for storage and transmission 
over mediums such as the Internet. In the encoder, spatial cues are extracted from the 
C-channel input audio (where C > 1) and the audio is downmixed into D channels 
(where D < C). The D-channel downmix and associated ‘side information’ (spatial 
cues) are sent to the decoder for resynthesis into C-channels which aim to recreate the 
original perceptual ‘spatial image’ for the user. 

This paper explores the use of spatial audio cues for the purposes of meeting 
speech segmentation by speaker turn. The spatial audio cues, derived from SAC, 
represent the perceptual speaker location information contained in the speech 
recordings. Psychoacoustic studies have shown that humans localize sound sources 
with two main cues: Interaural Level Difference (ILD) and Interaural Time Difference 
(ITD) [7]. These psychoacoustic concepts are adopted by SAC approaches to derive 
level and time or phase-based spatial cues from multichannel audio. This paper 
employs spatial cues originally introduced by the following SAC schemes: Binaural 
Cue Coding (BCC) [4] and Parametric Stereo Coding (PSC) [5]. 

2.1   Spatial Audio Coding Cues 

BCC and PSC encoders accept C-channel input, where C = 2 for PSC. Each time-
domain channel, c, is split into M frames using 50% overlapped windows. The 
frequency-domain spectrum, ][, kX mc , is obtained by an N-point Discrete Fourier 

Transform (DFT) for each channel, c, and frame, m [7][8]. The human hearing system 
uses non-uniform frequency subbands known as ‘critical bands’ [7]. Thus,  ][, kX mc  

is decomposed into non-overlapping subbands of bandwidths that match these critical 
bands. The DFT coefficients in each subband are denoted by 

}1,,1,{ 11 −+∈ −− bbb AAAk K , where bA are the subband boundaries and 00 =A . 



BCC calculates the following spatial cues between each input channel c 
( Cc ≤≤2 ) and a reference channel (taken to be channel one i.e. C = 1), for each 
frame, m, and each subband, b [4]: 

• Inter-Channel Level Difference (ICLD) 
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• Inter-Channel Time Difference (ICTD), which estimates the average phase delay 
for subbands below 1.5kHz. Subbands above 1.5kHz estimate the group delay. 

 
The PSC encoder extracts the following spatial cues between the two input channels 
for each frame, m, and each subband, b [5]: 

• Inter-channel Intensity Difference (IID) 
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• Inter-channel Phase Difference (IPD), limited to the range ππ ≤≤− ][bIPD  , 
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The human auditory system is less sensitive to interaural phase differences at 
frequencies greater than approximately 2kHz [7]. Thus, BCC splits the ICTD 
calculation at 1.5kHz and PSC only estimates the IPD cue for subbands below 2kHz. 

Previous research showed that the ICTD from BCC did not exhibit a strong nor 
consistent relationship with speaker location [3]. Thus, this paper implements a 
combined BCC and PSC encoder where only the ICLD (which is effectively the same 
calculation as the IID) and IPD cues are estimated. 

3   Meeting Recordings 

To simulate a real meeting environment, recordings were made in an immersive 
spatial audio playback system. Fig. 1 illustrates the recording setup. The Configurable 
Hemisphere Environment for Spatialised Sound (CHESS) [8] was used to simulate a 
meeting with five participants equally spaced (i.e. 72° apart) in a circle approximately 
3m in diameter. Each participant was represented by a loudspeaker which played 
clean speech sourced from one person. 



Clean speech was obtained from the Australian National Database of Spoken 
Languages (ANDOSL). Five native Australian speakers, two female and three male, 
were chosen as the meeting ‘participants’. The ANDOSL speech files were 
upsampled to 44.1kHz from 20kHz, and normalized with silence removed. Previous 
work showed that silence segments produced ambiguous spatial cues, since no 
speaker location information exists in such segments [3].  

To simulate a meeting, each of the five loudspeakers was played in turn (from 
Spkr1 to Spkr5 in Fig. 1). Each participant’s turn ranged from 1-1.5 minutes in 
duration. This resulted in a 6.5 minute long ‘meeting’ of non-overlapped speech. 

To record the speech, two AKG C414 B-XL II multi-pattern microphones were 
placed in the centre of the ‘meeting environment’, spaced 20cm apart. All 
experiments utilized the two microphones in the Mic 1 and Mic 2 positions, as shown 
in Fig. 1. Microphones recorded the speech which was then sampled at 44.1kHz and 
stored at 24 bits/sample. 

4   Results 

The simulated ‘meetings’ were recorded in CHESS [8] using the two microphones 
configured as a pair of omnidirectional, cardioid, hypercardioid, or figure-8 pattern 
microphones. For each of the four microphone patterns under study, spatial cues were 
estimated from the pair of recordings using the combined BCC/PSC spatial audio 
encoder. At a sampling rate of 44.1kHz, this resulted in a decomposition of 21 
subbands and a DFT of length 2048 was used. 

Fig. 2 plots the ICLD and IPD spatial cues as a function of time. The mean of each 
speaker’s ‘turn’ is shown as the solid line. The mean was calculated based upon the 
ground truth segmentation from the original speech. The shown ICLD is taken from 
the subband centered at 2.5kHz, which is a frequency region that exhibits strong 
speech activity. In contrast, the displayed IPD is taken from the subband centered at 
382Hz, since pitch information dominates at low frequencies. Fig. 2 shows that the 
spatial cues vary significantly depending on the microphone pattern used. 

 

Fig. 1. Recording setup 



4.1 ICLD 

Fig. 3 illustrates the mean and the 95% confidence interval (CI) of the ICLD cue in 
each subband for each speaker. The mean was calculated across all the frames from 
each speaker’s ‘turn’ for each subband. 

The cardioid (Fig. 3b) and hypercardioid (Fig. 3c) patterns clearly show three 
groups of ICLD trends across the subbands. Ideally, the five different speakers should 
exhibit five distinct ICLD trends. However, this is not possible with one microphone 
pair: in that case, sound localization is limited to sources that are not equidistant 
between the two microphones. Thus, the three trends seen in Figs. 3b and 3c 
correspond to Speaker 1, and the equidistant pairs of Speakers 2 and 5, and Speakers 
3 and 4 (see Fig. 2). In contrast, the omnidirectional (Fig. 3a) and figure-8 (Fig. 3d) 
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Fig. 2. ICLD and IPD as a function of time: (a) omnidirectional, (b) cardioid,  
(c) hypercardioid, and (d) figure-8 microphones 



recordings cannot clearly distinguish between the five spatially separated speakers 
based on the ICLD cue. 

The authors’ previous work showed that the ICLD represented spatial information, 
independent of the speaker characteristics [3]. These findings are confirmed by the 
cardioid and hypercardioid results in Figs. 3b and 3c. These microphone patterns are 
better suited to the level-based spatial cue because the single lobe directionality limits 
the influence of background noise that can corrupt ICLD estimation. 

In Fig. 3, the ICLD cue does not show inter-speaker trends for very low or very 
high frequencies. For the first (centered at 27Hz) and last three subbands (centered at 
12kHz, 15kHz, 19kHz), all five speakers exhibit similar means for all microphone 
patterns. At high frequencies, although the recordings were sampled at 44.1kHz, the 
original speech was sampled at 20kHz and hence no frequency information exists 
above 10kHz. In the low frequency subband, however, there is little speech activity in 
this frequency region and thus minimal spatial information exists. 

In Fig. 3, the mean ICLD value per speaker varies across the subbands. This is due 
to the prominence of speech activity around certain frequency regions. In addition, the 
ICLD calculation already combines the contribution from a range of DFT frequency 
bins (see Equation 1). 
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Fig. 3. Mean ICLD values: (a) omnidirectional, (b) cardioid, (c) hypercardioid, and (d) figure-8 



4.2 IPD 

Fig. 4 illustrates the mean and 95% CI of the IPD cue in each subband for each 
speaker’s ‘turn’. The opposite trends to Fig. 3 are shown in Fig. 4. In Fig. 4, the IPD 
cue from the cardioid (Fig. 4b) and hypercardioid (Fig. 4c) pattern recordings do not 
show significant differences between the five speakers. Similarly to the ICLD cue, 
Speakers 2 and 5, and Speakers 3 and 4 should exhibit similar IPD cues due to the 
microphone placement. The pattern that best shows this trend is the omnidirectional 
microphone (Fig. 4a). For the figure-8 recordings (Fig. 4d), the cues from Speakers 3 
and 4 match more clearly than those from Speakers 2 and 5. 

The superior performance of the omnidirectional microphones for IPD cue 
estimation is consistent with previous work, which found that omnidirectional pat-
terns are best suited to TDE [2]. The TDE calculation, like the IPD cue (see Equation 
3), involves cross-correlation estimation. Such calculations require spatially 
distributed microphones that record the same signal but vary according to degradation 
from the acoustic environment. The omnidirectional pattern fits this requirement, 
while the directional patterns record signals that vary depending on the source 
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Fig. 4. Mean IPD values: (a) omnidirectional, (b) cardioid, (c) hypercardioid, and (d) figure-8  

 



direction relative to the main pickup lobe/s. Thus, the figure-8 pattern performs better 
than the cardioid and hypercardioid patterns for the IPD cue in Fig. 4. By having two 
main pickup lobes, figure-8 patterns can capture signals which do not differ as much 
between spatially distributed microphones compared to single main lobe patterns. 

Similarly to the ICLD cue, the means of the IPD vary across the subbands. In 
addition, the means of the IPD from the different speakers converge to similar values 
in the first subband (centered at 27Hz). The lack of spatial information in the first 
subband is because of little pitch or speech activity in these frequency regions. Due to 
the psychoacoustically motivated subband decomposition, low frequency subbands 
also contain fewer DFT bins. Hence, frequency bins that do not contain information 
are more likely to corrupt the spatial cue estimation in these smaller subbands. 

5. Conclusion 

Experiments in this paper have shown that spatial audio cues, derived from spatial 
audio coding, do strongly correspond to changing speaker location. Thus, spatial cues 
are valid for segmenting meeting recordings into speaker ‘turns’. Recordings made in 
a real acoustic environment simulating a meeting showed that the microphone pattern 
significantly affected the spatial cue trends. Experiments showed that directional 
microphone patterns such as cardioid and hypercardioid were best suited to level-
based cues. In contrast, the omnidirectional pattern exhibited the most consistent 
trends for phase-based cues. Thus, appropriate microphone pattern choice can help to 
reduce spatial cue degradation from room reverberation and background noise, 
without requiring post-processing of the recordings, spatial cues, or modification of 
spatial cue estimation techniques. The experimental results in this paper also suggest 
that spatial audio coding techniques are suitable for coding microphone array signals. 
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