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A BSTRACT 

This paper introduces a knowledge-based semantic image seg
mentation which extracts the "object(s)-of-interest" from the 
image. Image templates are the high-level knowledge in the 
system. The major contribution of this work is the use of the 
"Global Precedence Effect" (forest before trees) of the human 
visual system (HVS) in image analysis and understanding. The 
"object-of-interest" is searched for hierarchically through an ir
regular pyramid by an affine invariant comparison between the 
different region combinations and the template starting from 
lowest to the highest resolutions. The global/large size objects 
are found at lower resolutions with significantly lower compu
tational complexity. 

1. INTRODUCTION 

Visual information processing is becoming increasingly im
portant with the advance of broadband networks, high power 
workstations, and advanced imaging tools such as digital cam
eras and scanners. Effective visual information management 
including saving, retrieval, distribution and presentation need 
an efficient processing method such as object-based process
ing. Therefore object-based processing has been used in many 
image and video processing applications such as image/video 
database and retrieval, coding, editing, interactivity, etc. The 
main challenge in implementing these processes is semantic 
segmentation and object extraction. Semantic segmentation 
and "object-of-interest" extraction in a general scene is not a 
trivial task and have received great attention in recent years 
[1-4). 

The aim of segmentation is partitioning the image into 
semantic object(s)/region(s) for further processing. To date, 
perfect and Well implementation of this goal at this stage is 
far from reality [5)' and the existing algorithms suffer from 
many limitations such as only coping with scenes with includ
ing special and limited objects [1,6,7). Therefore "object-of
interest" extraction has been attracted great attention in recent 
years [2-4,8). 

There arc many works on object extraction and recognition 
however, except the works which are designed for specific ap
plications; very few consider a real segmentation and extraction 
stage. Some of the works in object recognition assume that the 
objects' shape are already extracted [9, 10], while others use a 

simple segmentation algorithm by considering the object(s) in 
a very simple scene rather than a real image [11,12]. These 
algorithms are more about recognizing and classifying the de
tected shapes rather than segmenting the object in a cluttered 
scene. This limitation originates from the gap between low 
level features and semantic concepts. However a generic com
prehensive solution should include both object extraction and 
recognition. 

Considering the gap between low-level features and seman
tic concepts, in any generic comprehensive semantic segmen
tation, high level knowledge is necessary. Therefore many 
semantic segmentation algorithms use some kind of template 
or high level features as knowledge base. The template is 
searched for through the segmented image. However, exhaus
tive search through the image has high computational complex
ity and there are not many effective search algorithms. There
fore effective search in the image for the "object-of-interest" is 
a topic in need of more research. In this work a comprehensive 
knowledge-based solution is presented which includes both 
low level segmentation and high level object extraction stages. 
The proposed algorithm facilitates the search in the image 
through defining a hierarchy of the examined objects/regions. 
This hierarchy originates from a feature in human visual sys
tem (HVS) called "global precedence effect" (GPE) [13]. The 
global and large size objects are examinedlextracted before the 
local/small size objects. Therefore the analysis starts with the 
global information and local information are subsequently used 
to refine the decision making process. Multiresolution search 
through a pyramid is an effective solution for GPE implementa
tion resulting in less complex search algorithm. In this paper a 
hierarchical search algorithm through a defined irregular pyra
mid is proposed. 

For low level segmentation, an scalable pyramid segmenta
tion is proposed which produces the same pattern at different 
resolutions [14]. The similarity of patterns increases the reli
ability of low resolution segmentation and search. However, 
due to insufficient infonnation at very low resolution, an irreg
ular pyramid is introduced which allows search through very 
low resolution and reduces the computational complexity sig
nificantly. 

This paper is organized as follows. Section 2 presents a 
short review of the related works. In Section 3, the scalable 
pyramis segmentation is briefly explained. The single resolu
tion search for the "object-of-interest" is described in Section 
4. The computational complexity is also discussed in this Sec
tion. The Hierarchical search through irregular pyramid is pro-
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posed in Section 5. Some experimental result and discussion 
are presented in Section 6, and finally conclusions are drawn in 
Section 7. 

2. RELATED WORKS 

We separate the works in semantic segmentation literature into 
two categories. In the first group, the "object-of-interest" is 
searched for by considering the low level information in the 
segmented image. Moreover, some high level knowledge about 
the objects' characteristics such as object's model and qualita
tive and quantitative relationships are often employed. 

In [2} the image is segmented into different regions and the 
curve of the "object-of-interest" is transformed into the affine 
invariant and is searched for through the image for the best 
match. The transform parameters are changed until the best 
match in the image is found. The algorithm requires exhaustive 
search in the parameters and image spaces resulting in high 
computational complexity. 

Xu et al. [4J segment the image into homogenous regions 
and all possible combinations of various regions are affine in
variant matched with the template. A group of regions with 
Hausdorff distance less than a threshold represent a possible 
"object-of-interest". Due to a great number of possibilities for 
combined regions, the search is computationally very complex. 
To lighten the computational burden a stack of different seg
mentation maps is proposed. The two most similar regions are 
merged to create the next segmentation map in the stack. The 
merging continues until a segmentation map with two regions 
is reached. The search starts from the segmentation map with 
two regions and continues through other segmentation maps 
until the "object-of-interest" is found. The deficiency of this 
algorithm is that the number of segmentation maps depends on 
the number of regions and can be very large and two consecu
tive segmentations maps in the stack are very similar. Finally 
the merged regions are based on the statistical similarity crite
rion while better criteria such as semantic criterion can be used. 

In the second group of algorithms, using the low level fea
tures of the image such as colour, texture, edges, etc the image 
regions are extracted, refined and combined to establish their 
correspondence to a higher level image descriptions. For ex
ample, regions belonging to same class such as grass or sky 
are mixed together. These algorithms don't guarantee that the 
final regions are all semantic regions representing meaningful 
objects or regions. In many works the detected objects are of
ten rigid and simple such as sky, water, etc., belonging to a 
homogenous region. Therefore many of these algorithms are 
about natural image segmentation [1, 7]. An example of the 
application of these algorithms is remote sensing [8]. These al
gorithms often cannot extract a complex object such as human, 
car, etc., in a real image. 

3. SCALABLE PYRAMID SEGMENTATION 

The proposed spatial segmentation fits multiresolution Markov 
random field (MMRF) image segmentation with the spatial 
scalability [14]. Images at different resolutions are segmented 
with spatial scalability as a constraint which keeps the 4 : 1 

pixels down sampling relation between different resolution seg
mentations. Therefore the produced segmentation maps are 
similar at different resolutions. 

To extend the single level Markov random field (MRF) 
based segmentation [15] to a multiresolution scalable segmen
tation (SSeg) algorithm, it should be noted that the correspond
ing pixels at different resolutions have the same segmenta
tion classification. Therefore the classification of these pixels 
changes together and they are processed together in a multidi
mensional space. Consequently, objective function of regular 
single level Bayesian segmentation [15] is extended to a multi
dimensional space by the following equation: 

E(X) = L {IIY({s}) - ftX({s})({s})112+ 
{S} 

L �({s}, {r})} (I) 
{r}E8{.} 

In this expression, s is a pixel of the pyramid decomposition 
and {s} is the set including s and its corresponding pixels I 
in other resolutions. Y, X and f1 are intensity, intensity seg
mentation and intensity average functions respectively. � is 
the clique function defined on two neighbouring sets of corre
sponding pixels. In regular single level segmentation, cliques 
are defined over two adjacent pixels sand l' by the following 
formula: 

{ -(3 Vc(s, r) = +(3 if X(s) = X(1') 
if X(s) =f. X(1') (2) 

In the proposed scalable multiresolution segmentation algo
rithm, all the corresponding pixels of {s} at different resolu
tions are examined with their neighbouring pixels through the 
following equation: 

M+N-l 
Vc({s},{r})=(� ) E (_1)L'/3, 

k=M 

& Sk E {s}, Tk E {r} 

(3) 
In (3), M is the lowest resolution in the pixels of {s} and N is 
the number of different resolutions of pixels in {s}. The first 
summation in (I) is over all pixel set of corresponding pixels at 
different resolutions and the second one is over all the cliques 
including the set {s}. 

For the optimization of MMRF modelling, the Iterated 
Condition Mode (rCM) algorithm matched to the scalable mul
tiresolution segmentation is used. The energy function of equa
tion (1) is optimized iteratively from lower resolution to higher 
resolutions. More explanation about this spatial segmentation 
algorithm can be found in [14]. 

lCorresponding pixels are related to each other by downsampeling pixels 
of higher to lower resolutions. Therefore each pixel has corresponding pixels 
at higher resolutions, but not necessarily at lower resolution. 
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4. OBJECT OF INTEREST EXTRACTION AT SINGLE 

RESOLUTION 

"Object-of-interest" extraction is often based on the minimiza
tion of a suitable distance between a reference such as a tem
plate and a grouping of regions in the test image. Template 
matching is an approach to recognize the "object-of-interest" 
in the digital images. In a real scenario, the "object -of-interest" 
are searched in a segmented image2• Each possible region 
combination is examined by the region matching algorithm. 
Therefore, due to the huge number of possible region combina
tions, a simple shape matching algorithm is preferred. In this 
work a region-based shape matching is proposed which is a 
combination and modification of the two approaches presented 
in [16.17]. 

The comparison should be scale, rotational and translation 
invariant therefore the first stage of comparison is variation 
compensation. At first the shape rotation is compensated. The 
idea is to find the major axes of the two shapes. The major axis 
is a straight line which connects the two farthest pixels on the 
shape's border. The angle between the two axes determines the 
rotational angel factor. The template is rotated so that its major 
axes lie in the same direction as the candidate region's major 
axes. The ratio between the two major axes' lengths determines 
the scale normalization factor. The shape's size is normalized 
by the scale factor. Using similar scaling approach, the shape 
in a major and minor directions is scaled so that both shapes 
have the same bounding box which is the smallest rectangle 
containing the shape. Then the bounding box areas of the two 
shapes are translated to the origin. Finally, Hausdorff distance 
measures the distance between two sets of binary images' pix
els [17]. The similarity value is computed and based on a user 
defined threshold, is accepted or rejected. 

Generally, if it be supposed that the image is segmented to 
N fully connected regions, the maximum number of possible 
region combinations is: 

t (N) = 2N_l 
k=l k 

(4) 

This is a very big number for normal values of segmentation 
regions such as N = 50. Of course this is the worse case 
which assumes that all regions are connected together and all 
combinations are examined. Practically neighbouring is a local 
feature and the number of possible combinations is much less 
than 2N - 1. However, the experimental results in Section 6 
show that computational complexity is so high that it practi

cally renders the algorithm useless for real applications. 

5. HIERARCHICAL SEARCH OF OBJECT OF 

INTEREST 

Inspired by a well known feature in the human visual system 
called "global precedence effect" (forest before trees) where 
the processing pathway for outline (low frequency) is faster 
than detail (high frequency) [13,18], a hierarchical search is 

2 Any segmentation algorithm can be used. but segmentation with less re
gion with the successful separation of interested objects/regions from back
ground is more desired. 

proposed. In a simple way, low resolution image where the 
outline of the "object-of-interest" is defined is given higher pri
ority in the search process and if the search fails higher reso
lutions are searched until the search process is exhausted. For 
template search we need to perform segmentation at different 
levels. This is done by the multiresolution scalable segmenta
tion algorithm proposed in [14]. The scalability of the proposed 
segmentation is a valuable feature at this stage because it main
tains the similar segmentation patterns at different resolutions. 
This increases the accuracy and reliability of the search at the 
lower resolutions. Furthermore, the perfect relation of parent 
and children between regions at different resolutions will de
tect the extracted object at other resolutions. However, due to 
insufficient information. the search at low or very low resolu
tion such as 4 x 4 pixels is not accurate or useful. To remove this 
problem a stack is proposed which keeps the image size and 
gives different priorities to different regions groupings. The 
defined stack is a combination of full size image segmentation 
maps which correspond to the segmentation at different resolu
tions of the pyramid. This stack is called an irregular pyramid. 
The elements of the stack or irregular pyramid are built hierar
chically from fine to lowest resolution. At each resolution, the 
hierarchical segmentation (HSeg) is obtained by considering 
three other segmentations; 1) the corresponding regular pyra
mid segmentation at the same resolution 2) Regular pyramid 
segmentation of the neighboring finer resolution and 3) Irreg
ular pyramid segmentation of the neighboring finer resolution. 
Figure I shows this relationship. 

The base of the stack (irregular pyramid) is identical to the 
finest resolution at the top of the regular scalable pyramid seg
mentation. On going down through pyramid toward lower res
olutions, small objects/regions are deleted, and the number of 
existing regions decreases. Similarly, these regions should be 
deleted from the corresponding irregular pyramid (hierarchi
cal) segmentation. The size reduction during the pyramid de
composition deletes small regions physically. However, in the 
irregular pyramid segmentation, the size is kept the same and 
the physical deletion of regions doesn't occur. Therefore the re
gions are deleted logically: the deleted regions are merged with 
the neighbouring regions by a criterion such as similarity and 
the existence of salient edges between regions. Practically, the 
regular pyramid guides the hierarchical segmentation to delete 
m regions hierarchically in n steps, where n is the number of 
levels in the pyramid-based decomposition and m > > n. As 
we proceed towards the lower resolutions of the regular pyra
mid, the corresponding smaller regions in the irregular pyramid 
are (logically) deleted and global regions related to low spatial 
frequency with larger size objects remain. Finally, at the lowest 
level of the pyramid there is the hierarchical full size segmen
tation with only two regions at the top of the stack. 

The search starts through the hierarchical segmentation pat
terns at the top of the stack. If the "object-of-interest" is 
not found at the current resolution, the hierarchical segmen
tation patterns corresponding to the next higher scale will be 
popped from the stack and it will be searched for the "object
of-interest". The search will continue through higher scale hi
erarchical segmentation image until the "object-of-interest" is 
found. The lower resolution region combinations have COf
responding regions at the hierarchical segmentation of higher 
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resolutions. Therefore they need not to be tested at the higher 
resolutions. Only newly emerging region combinations at the 
higher resolutions are tested. 

It is clear lhallhe proposed hierarchal object search detects 
global and large size objects much faster than the regular sin
gle resolution search. However, the computational savings for 
the detection of the local and small size objects is minimal. 
Nevertheless this priority search for the detection of "object-of
interest" is more efficient and is consistent with the human vi
sual system. In many applications such as object-based image 
retrieval, the "object-of-interest" is the global and main subject 
of the image. If the initial scrutiny of the global information in 
the image, does not detect the "object-of-interest", the process
ing can proceed to the next step which include the analysis of 
local or finer resolutions until the search is exhausted. In these 
cases the proposed search significantly reduces the computa
tional complexity and facilitates a more effective "object-of
interest" extraction. 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

To show the full benefit of the use of the "global precedence 
effect" and the advantages of the hierarchical o�iect extraction, 
this section presents the simulation results on some real im
ages including "head and shoulder", car, etc. The shape match
ing algorithm described in section 4 is utilized to measure the 
similarity between the shape template and the candidate re
gions. Because each example has many images at different 
resolutions, they are shown by equal small size figures. The 
results are discussed and the advantageous/disadvantageous 
of the proposed multiresolution segmentation and hierarchical 
search are illustrated. 

As an example, a relatively simple image of the first frame 
of elF size sequence of foreman image sequence is chosen. 
The image is CIF size with YUV color format where Y is in full 
resolution and U and V are in half resolution. In many of the 
video object tracking algorithms, a semi automatic processes 

such as user intervention and fine tuning is used to, detect the 
"object(s)-of-interest" at the first frame. [19-21]. The proposed 
object detection algorithm, however, can be used for automatic 
extraction of the "object(s)-of-interest" from the first frame of 
image sequences. The original image is shown in image 2 (a). 
The decomposed pyramid images are segmented by the pro
posed scalable segmentation. The scalable segmentation and 
hierarchical segmentation are also shown in Figures 2(b) to 
(r). The 9 x 11 is the lowest resolution that the "object-of
interest" is effectively separated from the image background 
area. Therefore the "object-of-interest" is searched from low 
to high resolutions in 2 x 2, 3 X 3, 5 X 6, and 9 X 11 resolutions 
respectively. The maximum number of candidate regions will 
be: 

The number of regions and the region combinations are 
shown in Table I. The real number of region combinations 
in the four lowest resolution include 2 x 2, 3 x 3, 5 x 6 and 

9 x 11 is equal to 3298 + 732 + 43 + 7 = 4090. There
fore the real number of search is less than 4090 regions and 
is greatly less than 1114244 regions. As the Table I indi
cates, from the resolution 18 x 22 toward higher resolutions the 
number of region combinations increases so much that practi
cally it is impossible to search for the "object-of-interest" over 
these resolutions. In particular, at the highest resolution the 
number of region combinations is so high that the search is 
practically impossible. The efficiency of the pyramidal tem
plate search compared Lo single resolution template search is 
(1 - 4090/(1.37 x 108)) :::::; %99.99 which is very close to 
%100. Regular single resolution produces more regions than 
regular multiresolution segmentation and the proposed scalable 
pyramid segmentation algorithms (14]. This increase in the 
number of regions increases the computational complexity of 
the search algorithm. 

The extracted "object-of-interest", its template and the re
gions matching with the template are shown in Figures 3 (a) to 
(e). The Hausdorff distance between the object's template and 
the extracted object is 7.4. An example of a rejected region, a 
region and its match with the template model is also shown in 
Figures 3 (t) to (h). The Hausdorff distance of this tested ob
ject and template is 30.65. A threshold that pass 7.4 and reject 
the other regions Hausdorff distance such as 30.65 should be 
entered into the algorithm. 

In the next example the detection of a small size object is 
considered. The original image is seen in Figure 4 (a). The 
grey level image is in SIF size and the "object-of-interest" is 
the ball, which is a small size object. The image is decom
posed to 10 different scales by the wavelet decomposition. The 
image pyramid is then segmented by the scalable segmentation. 
The scalable and its corresponding hierarchical image segmen
tation at the different resolutions can be seen in Figure 4 (b) to 
(p). Due to the small size of the "object-of-interest", il is not 
detected before the 5th level of pyramid decomposition. There
fore the resolutions 1 x 2, 2 x 3,4 x 6, 8 x 11 are searched, and 
finally the "object-of-interest" is found at the 15 x 22 resolu
lion. This hierarchal search, from global to local information, 
is quite consistent with the "global precedence effect". The 
template, the found region and their match are shown in Fig

ure 5 (a) to Cd). The Hausdorff distance of the match is 4.62. 
Table 2 shows the number of regions and their combinations. 
3 + 15 + 78 = 96 region combinations are searched at the three 
resolutions lower than 15 x 22 and the 1058 combinations at 
this resolution which the object is found. Therefore in total 
96 + 1058 = 1152 region candidates are searched to find the 
"object-of-interest". From this number 96/1152 * 100 = 8.3% 
of regions are searched at lower resolutions. 

This example shows that the detection of small size objects 
is done at higher resolutions of the pyramid with more com
plexity than the large size objects at lower resolutions. But 
this is an acceptable property consistent with the "global prece
dence effect" of the human visual system. 

7. CONCLUSION 

In this paper a hierarchical region-based image object extrac
tion and recognition/classification algorithm is proposed. Sim
ulating the "global precedence effect" of human visual system 

240 



Hierarchical Segmentalion 
Top of Stack 

A 

Highest Resolution 
Irregular Pyramid 
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Regular Pyramid 

Figure I: The hierarchical stack or irregular pyramid segmentation corresponding to the pyramid segmentation. Only two regions 
are on segmentationthe top of the stack. 

Table I: Number of regions and combinations at resolutions offoreman segmentation. 
Resolution 288 x 144 x 72x88 36x44 18x22 9 x 5 x 3 x  2x 

352 176 11 6 3 2 

Number of Re
gions 
Combinations 
number 

S9 

8.37 X 
107 

85 

2.01 X 
107 

81 

9.5 X 
106 

69 

5.94 X 
105 

61 

174749 

21 16 

329S 732 

7 3 

43 7 

Table 2: Number of regions and combinations in the Table Tennis segmentation. 
Resolution 240 x 120 x 60 x 30 x 15 x 8 x 4 x 2 x 

352 176 88 44 22 11 6 3 

Number of Re- 79 62 45 27 IS 11 4 2 

gions 

Combinations 8.93x 

108 

2.12x 

105 
7019 1058 77 16 3 

results in a hierarchy of objects and significantly decreases the 
number of tested candidate regions and computational com
plexity. The proposed hierarchical segmentation patterns orga
nized in an irregular pyramid allows detecting the main global 
object at the lower resolutions with less computational com
plexity while small objects are detected at higher resolutions 
with higher computational complexity. T he proposed recog
nition needs the template of the "object-of-interest" which is 
a high level knowledge about the "object-of-interest". Tem
plate design, especially deformable templates, and reducing the 
complexity of matching algorithms needs more research. The 
suitable threshold for decision about accepting or rejecting a 
region as the "object-of-interest" is tuned by the user and its au
tomatic setting needs further research. The proposed algorithm 
is a significant step towards object extraction in real images. 
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Figure 3: (a) The extracted Foreman head and shoulder's shape; (b) The extracted Foreman head and shoulder's texture;(c) 
Template; Cd) match between the template and the region, where the candidate region is drawn over the template; (e) template 
is over candidate region; (f) a (rejected) candidate region (g) match between the template and the candidate region, where the 
candidate region is drawn over the template; (h) template is over the regions; 
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Figure 4: Table Tennis original image with its scalable segmentation (SSeg) and hierarchical segmentation (HSeg) at different 
resolutions. The HSeg images are just after the SSeg at each resolution: (a) the original image at 240 x 352 resolution: (b) 
240 x 352 SSeg; (c) 120 x 176 SSeg; (d) HSeg corresponding to 120 x 176; (e) 60 x 88 SSeg; (I) HSeg corresponding to 60 x 88 
SSeg; (g) 30 X 44 SSeg; (h) HSeg corresponding to 30 x 44; (i) 15 x 22 SSeg; (j) HSeg corresponding to 15 x 22; (k) 8 x 11 SSeg; 
(I) HSeg corresponding to 8 x 11; (m) 4 x 6 SSeg; (n) HSeg corresponding to 4 x 6; (0) 2 x 3 SSeg; (p) HSeg corresponding to 
2 x 3. 
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Figure 5: (a) The ball template; (b) The extracted ball shape at 15 x 22 resolution; (d) match between the template and the 
extracted ball, where the candidate region is drawn over the template; (e) template is over candidate region. 
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