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immunoassay approaches, and intratechnique agreement among all available chromatography-based 
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lying within 1 SD of their consensus mean. However, ELISA showed more within-technique variation than 
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plots revealed good agreement between MS and EC methods but concentration-dependent deviation for 
ELISA. All methods ranked urine samples according to concentration similarly. Creatinine levels are 
routinely used as a correction factor for urine concentration, and therefore we also conducted an 
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The FASEB Journal • Research Communication

Toward consensus in the analysis of urinary
8-oxo-7,8-dihydro-2�-deoxyguanosine as a noninvasive
biomarker of oxidative stress

ESCULA [European Standards Committee on Urinary (DNA) Lesion Analysis],
Mark D. Evans,* Ryszard Olinski,‡ Steffen Loft,§ and Marcus S. Cooke*,†,1

*Department of Cancer Studies and Molecular Medicine and †Department of Genetics, University of
Leicester, Leicester, UK; ‡Department of Clinical Biochemistry, Nicolaus Copernicus University,
Collegium Medicum, Bydgoszcz, Poland; and §Department of Public Health, Section of
Environmental Health, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark

ABSTRACT Of the DNA-derived biomarkers of
oxidative stress, urinary 8-oxo-7,8-dihydro-2�-deoxy-
guanosine (8-oxodG) is the most frequently mea-
sured. However, there is significant discrepancy be-
tween chromatographic and immunoassay ap-
proaches, and intratechnique agreement among all
available chromatography-based assays and ELISAs is
yet to be established. This is a significant obstacle to
their use in large molecular epidemiological studies.
To evaluate the accuracy of intra/intertechnique and
interlaboratory measurements, samples of phosphate
buffered saline and urine, spiked with different
concentrations of 8-oxoG, together with a series of
urine samples from healthy individuals were distrib-
uted to ESCULA members. All laboratories received
identical samples, including 2 negative controls that
contained no added 8-oxodG. Data were returned
from 17 laboratories, representing 20 methods,
broadly classified as mass spectrometric (MS), elec-
trochemical detection (EC), or enzyme-linked immu-
nosorbant assay (ELISA). Overall, there was good
within-technique agreement, with the majority of
laboratories’ results lying within 1 SD of their consen-
sus mean. However, ELISA showed more within-
technique variation than did the chromatographic
techniques and, for the urine samples, reported
higher values. Bland-Altman plots revealed good
agreement between MS and EC methods but concen-
tration-dependent deviation for ELISA. All methods
ranked urine samples according to concentration
similarly. Creatinine levels are routinely used as a
correction factor for urine concentration, and there-
fore we also conducted an interlaboratory compari-
son of methods for urinary creatinine determination,
in which the vast majority of values lay within 1 SD of
the consensus value, irrespective of the analysis
procedure. This study reveals greater consensus than
previously expected, although concern remains over
ELISA.—ESCULA [European Standards Committee
on Urinary (DNA) Lesion Analysis], Evans, M. D.,
Olinski, R., Loft, S., Cooke, M. S. Toward consensus in
the analysis of urinary 8-oxo-7,8-dihydro-2� -

deoxyguanosine as a noninvasive biomarker of oxidative
stress. FASEB J. 24, 1249–1260 (2010). www.fasebj.org

Key Words: DNA damage � DNA repair � immunoassay
� mass spectrometry � electrochemical detection � disease

A significant component of endogenously and exog-
enously generated genotoxic insult involves oxidative
processes, leading to the generation of nucleic acid
oxidation products (1, 2). Furthermore, oxidative
stress, including oxidatively generated modification of
nucleic acids, is reported to be an important factor in
many globally significant pathogenic conditions, in-
cluding cancer, neurodegenerative diseases, diabetes,
cardiovascular disease, chronic inflammatory diseases,
and aging (3, 4). Noninvasive markers of oxidative
stress-induced damage to the genome, such as those
measurable in urine, have significant scope in terms of
application to wide-scale, population-based studies, e.g.,
molecular epidemiological investigations (5). The sam-
ple throughput capacity of such studies would be
significantly enhanced if multiple laboratories could be
engaged in analysis of samples and the data combined.
However, a prerequisite to such coordinated analysis is
the establishment of robustly validated analytical pro-
cedures, where data can be reliably compared and
amalgamated among laboratories. In addition, if such
studies span multiple populations, reference ranges
need to be established, in order to have application in
a clinical context.

Measurement of urinary 8-oxo-7,8-dihydro-2�-
deoxyguanosine (8-oxodG) has received consider-
able attention as a biomarker of oxidatively gener-
ated damage to the genome (6). Not only is
measurement of this lesion feasible via a noninvasive
route, but it is also remarkably stable in this matrix

1 Correspondence: Department of Cancer Studies and De-
partment Genetics, Robert Kilpatrick Clinical Sciences Bldg.,
University of Leicester, Leicester, UK. E-mail: msc5@le.ac.uk

doi: 10.1096/fj.09-147124
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(7), and multiple methodologies exist for its mea-
surement (8). Although there have been some data
to suggest that diet may contribute to urinary levels
of thymine glycol and 8-oxo-7,8-dihydro-guanine (8-
oxoGua) (9 –11), there has been no evidence to
suggest that this applies to urinary levels of oxida-
tively modified 2�-deoxyribonucleosides (9, 12). In-
deed, more recent data suggest that both urinary
8-oxodG and 8-oxoGua levels are unaffected by diet
(13, 14), removing this issue as a possible con-
founder. This matter is considered in more detail
elsewhere (15).

However, discrepancies in the basal levels of
urinary 8-oxodG have been noted when compar-
ing chromatographic techniques [e.g., gas chroma-
tography-mass spectrometry (GC-MS) following
prior HPLC prepurification, or high-performance
liquid chromatography-tandem mass spectrometry
(HPLC-MS/MS), or HPLC-electrochemical detection
(HPLC-EC)] with ELISA, although all techniques
have been shown to discriminate between healthy
and nonhealthy subjects and possess good within-
technique agreement [reviewed in Cooke et al. (6)].
Although ELISA has received widespread use, and
is clearly accessible to the greatest number of labo-
ratories, the discrepancy with chromatographic tech-
niques continues to raise questions regarding its
utility. Understanding the basis of this discrepancy
will therefore aid our ability to address this, with a
view to improving ELISA measurements. Further-
more, there is also growing clinical interest in the
measurement of urinary 8-oxodG as a means to
determine the role of oxidative stress in disease
and evaluate intervention strategies (16 –18); there-
fore the need for robust analytical procedures
is paramount. In this context it is important to
emphasize that the magnitude of change in urinary
excretion may be rather small. For example, the
effect of smoking is an increase of �15–50%, and
the effect of cruciferous vegetable is a reduction of
�30% (19 –21). Therefore, the demand for specific-
ity and agreement between laboratories and methods
is high.

Discrepancies between different laboratories and
techniques in assessment of the levels of 8-oxodG
measured in intracellular DNA led to the formation
of the European Standards Committee on Oxidative
DNA Damage (ESCODD). Via large-scale interlabo-
ratory validation exercises, ESCODD was able to
identify and address several of the problems associ-
ated with the analysis of 8-oxodG in DNA (22, 23). To
date, comparison of methods for the analysis of
urinary 8-oxodG has been performed only in a
limited number of small-scale intra- and interlabora-
tory studies, involving a few methods and laboratories
(24 –30). Following the precedent of ESCODD, and
with financial support from Environmental Can-
cer Risk, Nutrition and Individual Susceptibility
(ECNIS), a Network of Excellence operating within
the European Union 6th Framework Program, the

European Standards Committee for Urinary (DNA)
Lesion Analysis (ESCULA; http://www.escula.org)
was established to address issues associated with the
analysis of urinary DNA biomarkers of oxidative
stress. Because of its relatively widespread use,
8-oxodG was chosen as the first analytical target.
Extension to a broader spectrum of nucleic acid
derived-lesions, including nonoxidized lesions and
other biomarkers derived from lipids and proteins, is
planned. As a summary, the immediate and longer-
term objectives of ESCULA include determining
reference ranges, addressing intra- and interindi-
vidual variability, assessing sample collection proce-
dures and correction factor issues, achieving a better
understanding of the sources of DNA lesions in
urine, and examining how levels of other urinary
lesions compare to urinary 8-oxodG levels. Initially
consisting of just 3 laboratories (30), ESCULA has
expanded to include more than 26 participants, the
majority based in Europe but also with participants
from the United States and Asia. Most of the ESCULA
laboratories contributed to the data in this article,
which describes the first large-scale, multiassay, inter-
laboratory validation exercise examining the measure-
ment of urinary 8-oxodG.

MATERIALS AND METHODS

Test materials

Samples were distributed to the participating laboratories
by courier on dry ice from the University of Leicester, and
acknowledgment of receipt was given. A concentrated stock
of 8-oxodG (Sigma Chemical Co., Poole, UK) was prepared
by dissolving the entire 5-mg content, as received, in 5 ml
ultrapure water. Sequential 1:10 dilutions of this stock were
used to make solutions to prepare the test materials
described below. The test samples consisted of the follow-
ing: 1) PBS samples, to simulate a physiological matrix,
with 8-oxodG spiked to a final concentration of 0 (negative
control), 0.5, 2, 8, 20, 80, and 200 ng/ml, labeled A to G;
2) urine samples (spot urine derived from one healthy
individual) with 8-oxodG spiked to an added concentration
of 0 (negative control), 0.5, 2, 8, 20, 80, and 200 ng/ml in
addition to the baseline 8-oxodG level, labeled H to N; and
3) aliquots of 1 ml spot urine (first void, midstream) from
9 healthy adults, labeled O to W.

It was evident to the participating laboratories which
samples were urine and which were PBS, but no indication
was given as to the 8-oxodG concentration for those spiked
with standard. The code for the samples was unknown to
the participants until the analysis was complete; this in-
cluded the sample distribution laboratory, in which sample
preparation and analysis was performed by different peo-
ple.

Analytical procedures for 8-oxodG measurement

Each laboratory used its own method for urinary 8-oxodG
determinations, including sample preparation, even if the
ultimate detection and/or separation technique was super-
ficially similar. The salient features of the methodology
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used by each laboratory are presented in Tables 1–3, along
with references for additional information.

Creatinine determination

Many laboratories involved in the measurement of urinary
8-oxodG, including most of those involved in ESCULA,
determine urinary creatinine concentration as a correction
factor for urine concentration (28, 31). Of these, the
majority use the Jaffe alkaline picrate method (32) or some
variant thereof, either using an autoanalyzer or performing
manual absorbance readings of the creatinine-picrate com-
plex on a spectrophotometer. Three other approaches
were used: direct detection of creatinine using HPLC-UV;
Benedict/Behre chemistry (reaction of creatinine with
3,5-dinitrobenzene) on an autoanalyzer; and multistep
enzymatic degradation of creatinine, liberating hydrogen
peroxide, subsequently detected via a colored complex
measured on an autoanalyzer (the exact identity of the
detection reagent is dependent on the nature of the assay
used).

Statistical analysis

All data were plotted and analyzed using Prism v5.0
(GraphPad Software Inc., La Jolla, CA, USA). Statistical
comparisons were made using 1- and 2-way ANOVA with a
Tukey post hoc test and a significance level of 0.05. Bland-
Altman plots were also prepared to compare agreement
between the technique groups for each sample type.

RESULTS

For this interlaboratory analytical exercise, 20 of the
25 ESCULA participating laboratories agreed to re-
ceive samples, and 17 laboratories returned results,
consisting of 20 sets of data (3 laboratories providing
data sets derived from 2 techniques).

Analysis of 8-oxodG standard added to PBS

Figure 1 (MS, HPLC-EC, and ELISA) shows the data
for 8-oxodG standards dissolved in PBS (samples
A–G) or urine (samples H–N), expressed as ng/ml
8-oxodG. Samples A and H contain no exogenously
added 8-oxodG. Also shown on each plot, for samples
B–G, are “target values” (known concentration of
8-oxodG in the sample). For samples A–N, we present
an indication of the central tendency of the data,
or “consensus value” (mean value for the level of
8-oxodG derived from individual laboratory measure-
ments), which is included for completeness and used
in statistical comparisons; the accompanying error
bars indicate sd (where these values are �0).

Each technique group detected successive in-
creases in 8-oxodG, albeit with a signal also detect-
able in PBS alone for some of the MS and ELISA
methods (Fig. 1A, C). For the majority of the stan-
dards in PBS, most of the laboratories underesti-
mated the level of 8-oxodG, compared to the calcu-
lated target value (Fig. 1). Statistically, the consensus
mean values for the 80 ng/ml standard in PBS for the

MS and EC methods (P�0.05) and 200 ng/ml in PBS
for all 3 techniques (P�0.01) were significantly lower
than the target value. Laboratory 7, however, very
poorly differentiated the level of 8-oxodG between
samples, and values from this laboratory were not
included in calculating the consensus values shown
in Fig. 1B.

Analysis of 8-oxodG standard added to urine

For the urine spiked with increasing concentrations
of 8-oxodG standard (samples H–N) there was no
significant difference among the techniques in terms
of the consensus value obtained for each sample.
However, it was noted that the dose-dependence
trend was markedly suppressed for each technique,
compared to standards in PBS. Here, 8 ng/ml 8-oxodG
(sample K) and higher was reached for the chromato-
graphic techniques. For ELISA, however, the dose
response was not evident until 20 ng/ml 8-oxodG. The
consensus value should be considered cautiously, par-
ticularly if reviewing the relative proximity of each
laboratory’s determination to this value in the absence
of a known target value. It is possible that a value from
one center, considered an outlier relative to the con-
sensus value, is actually closer to the real level of
8-oxodG in that sample than the consensus mean.
However, it does illustrate the central tendency of the
data. On the whole, the individual determinations of
8-oxodG, either in PBS or in spiked urine, for most of
the laboratories were within 1 sd of the consensus
mean, although the majority of values for laboratory 18
(samples H–N) tend to be toward to lower limit of, or
below, 1 sd from the consensus mean.

Determination of urinary 8-oxodG

Figure 2 (MS, EC, and ELISA) shows the individual
laboratory values and consensus mean values for
8-oxodG measured in each of the 9 urine samples
from healthy subjects supplied to each laboratory.
The data are all ranked in order of the mean
consensus values for each technique. However, labo-
ratory 14 (GC-MS) generated values above the upper
limit of 1 sd above the consensus mean for 8 of 9
urine samples. Also of note is laboratory 10 (ELISA),
which generated values outside the upper limit of 1
sd of the consensus mean for 5 of 9 urine samples.
Values for laboratory 7 were included in this part of
the analysis, as the problems evident in Fig. 1B no
longer seemed to be apparent.

The consensus values for each urine sample were
generally not statistically different among the tech-
niques; however, this was not always the case. When
excluding laboratory 14 (GC-MS) from the analysis,
the ELISA consensus value was significantly higher
(P�0.05) than the MS value for samples O, Q, R, and
V. For sample U, the ELISA consensus value was
significantly higher (P�0.01) than either EC or MS,
irrespective of the inclusion of the data for laboratory
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14. Despite there being little difference in the con-
sensus values between each technique, apart from
those samples noted above, the sd values for the
ELISA methods were, on the whole, notably greater
than those for either of the chromatographic tech-
niques. This was reiterated by the significant differ-
ence (P�0.05) between the mean coefficient of
variation for ELISA methods (62%), for the com-
bined analysis of the 9 urine samples, compared to
those for MS methods (minus GC-MS data; 29%), but
not significantly different from that of EC methods
(47%). Similarly, the residual variation was signifi-
cantly lower for the EC methods than for ELISA
methods, and significantly lower for the MS methods
(excluding laboratory 14) than EC methods, when
comparing results of ANOVA normalized values for
each method, with inclusion of both sample alone
and sample and laboratory as explanatory factors.

Agreement of measurements between each technique

The greatest agreement in terms of rank order was
between MS and EC (Fig. 2A, B), with 5 of 9 samples

agreeing. However, this was only when the GC-MS
data were excluded (Fig. 2A). The rank of 3 samples
agreed perfectly between EC and ELISA (Fig. 2B, C),
but 5 agreed perfectly between MS and ELISA,
although only when the GC-MS data were excluded
(Fig. 2A, C). However, for all 3 methods, the consensus
concentration ranks were within 1 or 2 rank places, except
for sample V, for which the MS rank was 3 places from the
EC and ELISA methods. This is attributed to the results
from the GC-MS, as this problem is removed on exclusion
of this laboratory’s data (Fig. 2A).

Bland-Altman plots are shown in Fig. 3 (compari-
sons between MS, EC, and ELISA for 8-oxodG stan-
dards in PBS), Fig. 4 (comparisons between MS, EC,
and ELISA for 8-oxodG spiked into urine), and Fig. 5
(comparisons between MS, EC, and ELISA for
healthy adult urine samples). Each figure consists of
3 panels related to the techniques being compared:
A) MS vs. EC, B) MS vs. ELISA, and C) EC vs. ELISA.

The plots represent the difference between paired
measurements (consensus mean for each technique)
plotted against the corresponding mean of the indi-
vidual consensus means for each technique. The

TABLE 1. Methodology details for mass-spectrometry-based analysis

Laboratory Sample vol. Sample enrichment

2 (HPLC-MS/MS) 500 �l (0.5 �l injected) SPE with Isolute® Env� SPE (Kinesis, St. Neots, UK); eluate evaporated
under vacuum and reconstituted in 50 �l mobile phase

4 (HPLC-MS/MS) 50 �l (5 �l injected) None

4 (LC-GC/MS) 750 �l (500 �l injected) LC-prepurification followed by freeze-drying of collected fractions,
hydrolysis in 60% formic acid, and derivatization with BSTFA

9 (UPLC-MS/MS) 40 �l Sample diluted with 0.1 M LiAc, pH 6.4 (40:60, v/v)

11 (HPLC-MS/MS) 120 �l (20 �l injected) Online SPE with ODS-3 column, 5 �m, 4.6 � 33 mm (Inertsil; GL
Sciences Inc., Tokyo, Japan)

14 (GC-MS) 800 �l Sample diluted 1:10 with formic acid buffer (10% pH 2.75), SPE Oasis
HLB columns (Waters); freeze-dried extract derivatized with
BSTFA�1% TMCS

15 (HPLC-MS/MS) 20 �l Online SPE with ODS-3 C18 column, 5 �m, 4.6 � 50 mm (Inertsil)

16 (HPLC-MS/MS) 100 �l (10 �l injected) None

18 (HPLC-MS/MS) 50 �l (10 �l injected) SPE (Oasis HLB)

All techniques LC-MS/MS, unless indicated otherwise. Literature references for methodology are provided, where available. NH4Ac,
ammonium acetate; SPE, solid phase extraction.
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comparisons between MS and EC show good agree-
ment (with a narrow range for the 2 sd) for all
standards, irrespective of whether added to PBS or
urine (Figs. 3A and 4A). There is also reasonable
agreement between MS and EC, when compared to
ELISA, for standards spiked into PBS (Fig. 3B, C).
However, this level of agreement worsens further for
the standards spiked into urine, resulting in a wide
range for the 2 sd (Fig. 4B, C), derived from the
tendency for ELISA to report higher levels than
chromatographic methods. This is demonstrated
clearly in Fig. 4B, C, where the difference is close to
or higher than the mean value for most samples. At
the highest concentration of 8-oxodG spiked into
urine, notable disagreement between the levels was
detected by the MS/EC and ELISA methods (Fig. 4B, C).

Although based on a limited sample number of 9
urine samples, the agreement between the chromato-
graphic and ELISA techniques becomes poorer as the
mean level of urinary 8-oxodG becomes higher (Fig.
5B, C), again with the trend toward higher levels
measured by ELISA.

Creatinine analysis

Agreement between the ranked urinary creatinine
determinations for each of those laboratories that
measure this parameter is shown in Fig. 6. The
majority of the values lie within 1 sd of the consensus
mean, with no consistent exceptions, other than
laboratory 4, with 5 of 9 samples outside 1 sd, but not
consistently above or below.

DISCUSSION

This is the first report of a major interlaboratory
validation exercise aimed at assessing agreement be-
tween multiple different laboratories measuring uri-
nary 8-oxodG using individual methods. In addition to
assessing agreement between individual laboratories, it
was hoped that some indication of possible reasons for
any observed significant differences between laborato-
ries and assay formats might be found. By using this
information, it is hoped that steps toward harmoniza-
tion between different laboratories, as well as between

Analytical conditions

Ref.Calibration Mobile phase/flow rate Column Ions/transitions monitored

Internal standard;
�15n5	-8-oxodG

Gradient: A) NH4Ac, pH 4.3;
B) 100% methanol; 10
�l/min

Sb C18 Zorbax capillary column,
0.5 � 150 mm, 5 mm (Agilent
Technologies, Santa Clara, CA,
USA)

8-Oxodg (m/z 284–168);
�15n5	-8-oxodG (m/z
289–173)

39

Internal standard;
�15N5	-8-oxodG

Gradient: A) 0.1% formate;
B) 20% acetonitrile; 200
�l/min

Synergy Hydro-RP, 2.5 �m, 2 �
20 mm (Phenomenex,
Macclesfield, UK)

8-oxodG (m/z 284–168);
�15N5	-8-oxodG (m/z
289–173)

Internal standard;
�15N5	-8-oxodG

He, 0.8 ml/min; gradient
150–280°C at 25°C/min

HP-Ultra 2, 12.5 m � 0.2 mm,
film 0.33 �m (J&W)

8-oxoGua (m/z 440, 455);
�15N5	-8-oxoGua (m/z 445,
460)

40

Internal standard;
�15N5	-8-oxodG

Gradient: A) 2.5 mM NH4Ac,
pH 5; B) methanol; 200
�l/min

Acquity UPLC BEH C8 , 1.7 �m,
2.1 � 50 mm, 5°C (Waters,
Milford, MA, USA)

8-oxodG (m/z 284–168);
�15N5	-8-oxodG (m/z
289–173)

37

Internal standard;
�15N5	-8-oxodG

Gradient: A) 10% methanol
� 10 mM NH4Ac; B) 95%
methanol � 0.1% formic
acid

RP-18, 4.6 mm � 50 mm, 3 �m
(Waters)

8-oxodG (m/z 284–168);
�15N5	-8-oxodG (m/z
289–173)

Internal standard;
�15N5	-8-oxodG

He, 1 ml/min; gradient
190–290°C at 20°C/min

HP-5 MS, 12 m, 0.2 mm, 0.33
�m

8-oxodG (m/z 383 target, 643
qualifier); �15N5	-8-oxodG
(m/z 388 target, 688
qualifier)

Internal standard;
�15N5	-8-oxodG

Isocratic: 0.1% formic acid in
85% (v/v) methanol; 1
ml/min

YMC-Pack polyamine II, 5 �m,
4.6 � 150 mm

8-oxodG (m/z 284–168 target,
284–140 qualifier);
�15N5	-8-oxodG (m/z
289–173 target, 289–145
qualifier)

17

Internal standard;
�18O2	-8-oxodG

Gradient: A) 10 mM NH4Ac;
B) methanol; 200 �l/min

YMC-ODS-AQ, 2.0 � 50 mm, 3
�m

8-oxodG (m/z 284–168;
�18O2	-8-oxodG (m/z
286–170)

Internal standard;
�15N5	-8-oxodG

Isocratic: 0.1% acetic acid:
methanol (85:15, v/v)

Synergi Fusion-RP 80 C18 , 4 �m,
250 � 2.0 mm (Phenomenex)

8-oxodG (m/z 284–168);
�15N5	-8-oxodG (m/z
289–173)

28
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techniques, may be achieved. Furthermore, it may be
possible to make recommendations to some laborato-
ries, and the research field, to address issues that are
perceived as in need of modification. It should be
noted that this is an initial step toward validation, with
sample origin restricted to normal, healthy volunteers,
and that further testing and comparison of situations
with diseases and interventions will follow.

In terms of the mass spectrometric techniques, it is
worth noting that, for most of the urine samples,
GC-MS gave relatively high levels of 8-oxodG, distinct
from LC-GC-MS. The GC-MS technique has been the
subject of much discussion in ESCODD, with the con-
clusions that GC-MS alone, without prior sample
cleanup, was not as favorable for the analysis of
8-oxodG in DNA. The issues may originate from the
derivatization, at high temperature, of DNA hydroly-
sates, leading to artifactual oxidation of guanine. How-
ever, experiments performed by laboratory 14 exclude
the possibility of artifactual formation of 8-oxodG dur-
ing derivatization of urine samples (note added in
proof; ref. 33 and unpublished results). It seems that
isolation of 8-oxodG from urine by HPLC prior to
derivatization (13) as carried out by laboratory 4 elim-
inated the oxidation of 2�-deoxyguanosine (dG); there-
fore, the results generated by GC/MS are comparable
to the results of LC-MS/MS. In general, LC-MS/MS
methods generate consistent results among the labora-
tories. However, laboratory 18 generated 8-oxodG val-
ues at the lower end of the range of values for LC-
MS/MS analysis, for both the spiked urine samples and

the 9 urine samples. The reasons for this are not clear,
particularly as this technique uses solid-phase clean-up
prior to the chromatography, which, with the use of an
internal standard, should compensate for sample
losses.

The much lower variation between different versions
of the 2 types of chromatographic techniques, irrespec-
tive of whether MS or EC is used for detection, com-
pared to ELISA, most likely arises from the use of
1) robust internal standardization in the MS proce-
dures using mass labeled standards with negligible
differences in chemical and physical properties com-
pared to the target compound and 2) chromatographic
separation and greater assurance of the identity of the
compound being analyzed. The ELISA procedures
would appear inherently more subject to variability in
sample composition and thus potential interference,
with an added component of interlaboratory variation
possibly arising from the use of different primary
antibodies, although only one laboratory used an anti-
body other than N45.1 (Table 3). Another significant
limitation is the lack of linear response in the ELISA
calibration curves with increasing concentration of
8-oxodG. Furthermore, internal standardization is not
possible for ELISA. Interlaboratory within-technique
agreement may be improved with the use of standards
obtained from a common supplier, prepared in an
identical manner (e.g., preparation and distribution
from one center), and robustly quantified, for example,
using a molar absorption coefficient.

There have been several reports in the litera-

TABLE 2. Methodology details for electrochemical-detector-based analysis

Laboratory Sample vol. Sample enrichment

3 50–100 �l 1) Bondelut CH column; 2) HPLC system 1; fraction containing 8-oxodG collected

5 50 �l Urine sample diluted 1:1 with 2� MP1; HPLC system 1: fraction containing 8-oxodG
collected (C1, MP1); HPLC system 2; fraction containing 8-oxodG collected (C2,
MP2 and MP3)

7 500 �l (50 �l injected) SPE: bond elute C18(OH) (3 ml), bond elute strong cation exchange column (3 ml)

13 50 �l (10 �l injected) SPE: anion exchange column

Literature references for methodology are provided, where available. MP, mobile phase; C1, column 1; C2, column 2; C3, column 3.
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ture highlighting the differences between chromatog-
raphic and immunochemical determinations of urinary
8-oxodG, with the latter yielding values 4–10 times the
level measured by chromatographic procedures (25,
26). The reasons for this discrepancy have largely been
attributed to a lack of specificity of the primary anti-
body (6). In this study, the Bland-Altman plots, along
with ranked data, suggest good agreement between MS
and EC, based on consensus mean values. The agree-
ment between these assays and ELISA is notably weaker.
At the highest level of exogenous 8-oxodG added to
urine, the methods disagree significantly with each

other. However, this level of urinary 8-oxodG is not
biologically relevant and may be related to variability at
the high end of the ELISA standard curve.

For the unadulterated urine samples, ELISA and the
chromatographic techniques show less agreement
when the mean level of 8-oxodG in urine is relatively
high (�15 ng/ml). The apparent agreement between
the chromatographic and ELISA methods is offset by
the greater variability of the latter, which would also
increase the number of persons recruited to a study, as
a result of how sd is involved in power calculations. This
could have implications for the sensitivity of ELISA and

Analytical conditions

Ref.Calibration MP/flow rate Column EC mode, voltage

External standard; 8-oxodG
(1–100 ng/ml); no
correction for loss of
material during sample
preparation

2 systems, both isocratic, 1 ml/min: 1) acetic
acid/citric acid (pH 5.1), containing 5 mM
heptanesulfonic acid, 2% methanol; 2)
acetic acid/citric acid (pH 5.1), 6%
methanol; 1 ml/min

YMC AQ-303; 250 �
4.6 mm (Waters,
Milford, MA, USA)

Analytical: 700
mV

41

External standard; 8-oxodG
(1–40 ng/ml); good
correlation up to 200
ng/ml

All isocratic: MP1, 0.1 M lithium acetate, 4%
MeOH, flow 0.9 ml/min; MP2, 0.1 M
lithium acetate, 4.5% acetonitrile, 2.0%
glacial acetic acid, 50 ml/L of 2 g/L
m-nitrobenzoic acid, variable flow; MP3,
50:50 methylene chloride:MeOH, 0.3 M
perchloric acid, variable flow; MP4, 0.1 M
lithium acetate in 4.5% acetonitrile, 2.0%
glacial acetic acid, 50 ml/L of 2 g/L
m-nitrobenzoic acid, 1.5 g/L adenosine; 0.9
ml/min

C1: YMC Basic, 3
�m, 3 � 150 mm
(Waters), MP1; C2:
Carbon X (ESA
Inc. , Chelmsford,
MA, USA), MP2
and MP3; C3:
TSKgel ODS-80T,
4.6 � 250 mm, 5
�m, MP4; 34°C
oven

Guard: 120 mV;
analytical: 180
mV

External standard: 0.5–8
ng/ml, 4-point calibration
curve; 2 ng/ml, 1-point
calibration

Isocratic: 5% acetonitrile in 50 mM
phosphate buffer (pH 5.1), 1 ml/min

5-�m Spherisorb
ODS2 column,
4.6 � 250 mm

Guard: 200 mV;
analytical: 400
mV

42

5 ng/ml, 1-point calibration Isocratic: 5% MeOH in 10 mM phosphate
buffer (pH 6.7), 1 ml/minIsocratic: 5%
MeOH in 10 mM phosphate buffer (pH
6.7), 1 ml/min

Inertsil ODS-3, 3
�m, 4.6 � 150 mm
(GL Sciences Inc.,
Tokyo, Japan)

Guard: 180 mV;
analytical: 300
mV

43

TABLE 3. Methodology details for immunoassay-based analysis

Laboratory
Sample

vol.

Immunoassay conditions

Ref.Calibration (range)
Primary Ab
and origin

Primary Ab
incubation conditions Assay source

3 95 �l 0.1–10 ng/ml Clone N45.1
(JaICA)

Overnight, 4°C In house, sample enrichment
included

44

8 50 �l 1.25–40 ng/ml Clone N45.1 1.5 h, room temperature In house 45
10 25 �l 2.5–80 ng/ml Clone 1F7 1.5 h, 37°C In house
12 (ELISA 1) 50 �l 0.5–200 ng/ml Clone N45.1 1 h, 37°C New 8-OHdG Check ELISA

(JaICA)
12 (ELISA 2) 50 �l 0.125–10 ng/ml Clone N45.1 Overnight, 4°C Highly sensitive 8-OHdG

Check ELISA (JaICA)
19 50 �l 0.5–200 ng/ml Clone N45.1 1 h, 37°C Bioxytech 8-OHdG-EIA kit

(Oxis Health Products Inc.,
Portland, OR, USA)

46, 47

Literature references for methodology are provided, where available. JaICA, Japan Institute for the Control of Aging (Shizuoka, Japan).
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affect the ability to discriminate between two groups of
individuals (33). It is reasonable to suggest that because
of variable urine composition, immunoassays could be
more adversely affected, simply because these tech-
niques do not fractionate and uniquely identify the
species being analyzed. Furthermore, the present inves-

tigations are restricted to urine from healthy volun-
teers. It is possible that when analyzing urine from
individuals with pathological conditions, the issue of
antibody specificity in the ELISA could be more prob-
lematic. Indeed, agreement between HPLC-EC and
ELISA has been demonstrated to improve greatly fol-

Figure 1. Analysis of PBS and urine with added
exogenous 8-oxodG by mass spectrometric, electro-
chemical, and immunoassay procedures. A) MS
detection. B) HPLC-EC detection. C) ELISA immu-
noassay. Symbols correspond to laboratory and tech-
nique as indicated. ELISA 1, New 8-OHdG Check
ELISA [Japan Institute for the Control of Aging
(JaICA), Shizuoka, Japan); ELISA 2, Highly Sensi-
tive 8-OHdG Check ELISA (JaICA). Samples A–G
are 8-oxodG standards (0, 0.5, 2, 8, 20, 80, and 200
ng/ml in PBS); samples H–N are 8-oxodG standards
(final concentrations of 0, 0.5, 2, 8, 20, 80, and 200
ng/ml in a single urine sample derived from a
healthy subject). For samples A–H, solid purple

squares indicate target values (known amounts of exogenously added 8-oxodG). Solid red stars and error bars
indicate consensus means 
 sd.

Figure 2. Ranked mean level of urinary 8-oxodG in
samples from 9 healthy individuals. A) MS detection.
B) HPLC-EC detection. C) ELISA immunoassay. Symbols
correspond to laboratory and technique as indicated.
Solid red stars and error bars indicate consensus
means 
 sd.
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lowing HPLC or SPE prepurification of samples prior
to immunoassay (25, 34), although HPLC prepurifica-
tion, at least, detracts from two of the major benefits of
ELISA: speed and simplicity.

Large sd values indicated that certain urine samples
presented a greater problem for analysis than others (e.g.,
samples V and R for MS; S and W for EC; and P, R, and U
for ELISA). Interestingly, this issue appears to be detec-

tion method specific. Contaminants have been reported
to affect some mass spectrometric techniques, making it
impossible to quantify 8-oxodG in 10–20% of samples
(35), and endogenous constituents of urine, such as urea,
have been reported to markedly influence quantification
by ELISA (36). In many cases, the precise basis for these
problems is not clear and warrants further investigation.

The creatinine determinations reported by returning

Figure 3. Bland-Altman plots comparing mass spectrometric,
electrochemical, and immunoassay analysis of 8-oxodG
spiked into PBS. A) MS/EC. B) MS/ELISA. C) EC/ELISA.
The 95% limits of agreement are shown (mean bias
2 sd).

Figure 4. Bland-Altman plots comparing mass spectrometric,
electrochemical, and immunoassay analysis of 8-oxodG
spiked into urine A) MS/EC. B) MS/ELISA. C) EC/ELISA.
The 95% limits of agreement are shown (mean bias
2 sd).
Note the different scale used for B and C, where ELISA
values are included.
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laboratories generally agreed well, which is reassuring
to those laboratories that perform this assay in their
research laboratory, rather than via an accredited
chemical pathology service.

This is the first interlaboratory study of urinary 8-oxodG
determination conducted on a significant scale involving
the comparison of multiple methods and analysis of
identical samples. As a consequence, we have been able to

make robust conclusions concerning the detection meth-
ods used (mass spectrometric, electrochemical, and im-
munochemical). These findings will have far-reaching
implications, not least because noninvasive biomark-
ers of oxidative stress are increasingly being called
for in large-scale molecular epidemiology studies of
human disease, and therefore robust, accurate, re-
producible, and high-throughput (37) assays are
essential (38). To address this need, future studies
from ESCULA will investigate further inter- and
intra-assay variability, and aim to establish an exter-
nal quality assurance scheme for participating
laboratories.

Some of the authors of this paper are partners in, and
this work was partly supported by, ECNIS (Environmental
Cancer Risk, Nutrition and Individual Susceptibility), a
Network of Excellence operating within the European
Union 6th Framework Program, Priority 5: Food Quality
and Safety (contract 513943) More information about
ESCULA is available online (http://escula.org). The au-
thors thank the following members of the ESCULA steer-
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Figure 5. Bland-Altman plots comparing mass spectromet-
ric, electrochemical, and immunoassay analysis of 8-oxodG
in 9 healthy adult urine samples. A) MS/EC. B) MS/ELISA.
C) EC/ELISA. The 95% limits of agreement are shown
(mean bias
2 sd). Note the different scale used for B and
C, where ELISA values are included.

Figure 6. Urinary creatinine determinations for 9 healthy
individuals, by rank. Symbols correspond to laboratory and
technique as indicated. Jaffe-Auto, Jaffe method using an
autoanalyzer; Jaffe-Spec, Jaffe method using a laboratory
spectrophotometer; BB-Auto, Benedict/Behr test using an
autoanalyzer; HPLC-UV, HPLC-UV detection; Enz-AutoR,
Roche Creatinine Plus enzymatic method (Roche Diagnos-
tics, Tokyo, Japan) using an autoanalyzer; Enz-AutoS, Stanbio
LiquiColor Procedure (Stanbio Laboratory, Boerne, TX,
USA) using an autoanalyzer. Solid red stars and error bars
indicate consensus means 
 sd.
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