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[1] The lateral distributions of depth-averaged apparent shear stress, depth mean velocity,
and diffusion coefficients are essential in certain quantitative analysis for sediment
transport and environmental studies. An analytical method for the computation of
these parameters is presented. A mathematical relationship between these parameters,
based on the concept of surplus energy transport through a minimum relative distance
developed by Yang and Lim [1997], is established, the depth-averaged apparent shear
stress is determined from the boundary shear stress, depth mean velocity is obtained by
considering the influence of nonuniform shear velocity and the free surface in 3-D
channels, and the diffusion coefficients are linked to the depth-averaged apparent shear and
velocity. The theoretical formulations for the distributions of depth-averaged apparent shear
stresses, depth mean velocity and diffusion coefficients in trapezoidal and compound
channels are presented. Comparisons between the theoretical and the measured lateral
distributions of the depth-averaged apparent shear stresses and the depth mean velocities
are also presented, and a reasonable agreement is achieved. INDEX TERMS: 1860 Hydrology:

Runoff and streamflow; 1871 Hydrology: Surface water quality; 3379 Meteorology and Atmospheric

Dynamics: Turbulence; 4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes;

KEYWORDS: open channel flows, boundary shear stress, depth-averaged apparent shear stress, depth-averaged

velocity, diffusion coefficient

Citation: Yang, S.-Q., J.-X. Yu, and Y.-Z. Wang (2004), Estimation of diffusion coefficients, lateral shear stress, and velocity in

open channels with complex geometry, Water Resour. Res., 40, W05202, doi:10.1029/2003WR002818.

1. Introduction

[2] The depth-averaged velocity and shear stress distri-
butions are two important parameters required to study
the lateral distribution of cooling water, wastewater or
sediment concentration in rivers. The lateral distribution is
characterized by the transverse mixing coefficient that
plays an important role in both mathematical and physical
modeling of pollutant dispersal in rivers. At present, there
is no a general method that allows these transverse
parameters to be determined from the basic river param-
eters, such as the channel geometry, energy slope, bound-
ary roughness and its distributions. Even for such
idealized situations such as the flow in straight rectangu-
lar or compound channel flows, the mechanism that
addresses the influence of geometrical, kinematic and
dynamical properties on the lateral distributions of
depth-averaged velocity and shear stress is not well
understood. Therefore a systematical study has to be
carried out to investigate the issues at least for straight
open channel flows.
[3] Fully developed turbulent flows in a straight uni-

form channel are particularly important on account of the

three-dimensional nature of both the mean flow and the
turbulent structure. The lateral distributions of momentum
and energy have attracted a certain amount of attentions
from those who wish to understand the mechanism of
3-D flows. Keulegan [1938] may be the first one who
introduced the idea of flow region division using bisec-
tors of base angles in a 3-D channel. Einstein [1942] also
found that the concept of flow region division is also
applicable to alluvial channels, however he did not
indicate how to determine the division lines. Adachi
[1962] suggested that the division lines be determined
by equating the velocity from the bottom and side walls
at the division lines where the log law is presumed to
describe the 3-D velocity. Chien and Wan [1999] inves-
tigated the physical mechanism of dividable flow regions
and inferred that the mechanic energy in a 3-D flow may
be transferred toward the near boundary, indicating that
3-D flows are dividable. Lundgren and Jonsson [1964]
recognized that the concept ‘‘vertical depth’’ is a poor
means for determining the boundary shear stress, velocity
profile and diffusion coefficient, they alternatively used
the ‘‘normal depth method’’ to divide the shallow, sym-
metric channel with a gentle varying bottom curvature.
Chiu and Lin [1983] divided the flow field using a
special curvilinear coordinate system composed of isovel
curves and their normals.

Copyright 2004 by the American Geophysical Union.
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[4] Yang and Lim [1997, 1998, 2002] proposed the
concept of ‘‘energy transportation through a minimum
relative distance toward the nearest boundary’’. Essentially,
the concept states the following.
[5] 1. For unit length in the streamwise direction, the

surplus energy contained in any arbitrary flow volume will
be transferred and dissipated over a unit area on the
boundary. The direction of energy transportation is along
the shortest geometrical distance, Y, between the location of
the energy source concerned and the boundary.
[6] 2. The turbulent energy dissipation capacity of the

boundary, D, has an indirect influence on the amount of
surplus energy that will be transported from the flow field,
and it depends on the characteristics of the boundary
roughness.
[7] 3. Arising from points 1 and 2, it is hypothesized that

the energy transportation is through a minimum relative
distance, F, such that

F ¼ Y=D ! minimum ð1Þ

[8] 4. For a smooth boundary, D is scaled using the
viscous length scale, n/u

*

D ¼ n=u* ð2Þ

where n = kinematic viscosity of fluid, and u* = shear
velocity. For a rough boundary, D is scaled using the
boundary roughness height, D,

D ¼ D ð3Þ

[9] Thus the flow field can be divided into various
subflow regions in accordance with the cross-sectional
shape of the channel. Graf [1971] and Raudkivi [1976]
expressed the boundary shear stress by multiplying the
weight of the water in each subdivide area with energy
slope, S.

ta0b0 ¼ lim
Dp!0

rgS
DA

Dp
ð4Þ

where ta0b0 = local shear stress on the elemental wetted
perimeter Dp from point a0 to b0, DA = area, r = density of
water and g = gravitational acceleration.
[10] The above mentioned concept states that the surplus

energy is transported along the minimum normal line of
boundary. However, in hydraulic engineering, the vertical
distribution other than perpendicular direction of boundary
plays a very important role in some cases, such as, diffusion
equations of suspension or waste waters. The existing
approaches are not sufficient to express this vertical char-
acteristic of open channels with complex geometry. The
objectives of this paper are to extend the concept proposed
by Yang and Lim [1997], to express the vertical averaged
shear stress and velocity in 3-D channels, and also to
provide a simple model for estimating the important diffu-
sion coefficients.

2. General Description of Determining
Depth-Averaged Reynolds Shear Stress

[11] For a steady, uniform and fully developed channel
flow, the mechanical energy in the shaded region of Figure 1
will be transferred toward the nearest boundary and dissi-
pated along the wetted perimeter a0b0, according to Yang and

Lim [1997]. Hence the local boundary shear stress may be
assessed by equation (4) after the flow region is divided into
many elements. Then, if only the isolated element ‘‘Oc’c’’ in
Figure 1 is discussed, and the gravitational component in the
streamwise direction has to be balanced by the friction force
on the boundary and the interface cc0, then the depth-
averaged Reynolds shear stress txy can be determined using
the following force balance equation:

rgAOcc0S ¼
Z c0

o

t pð Þdpþ hctxy ð5Þ

or

txy ¼ rgSAOcc0=hc �
Xn
i¼1

tipi=hc ð6Þ

where AOcc0 = area of flow region Occ0; hc is the water depth
at point c; txy = depth-averaged apparent shear stress at the
vertical interface cc0, p = wetted perimeter, n = total element
no.; ti and pi are boundary shear stress and wetted perimeter
in element i. Equation (6) may be useful in a numerical
model.
[12] The depth-averaged apparent shear stress on a verti-

cal interface, txy is expressed as

txy ¼
1

h

Z h

0

�ru0v0 � ruv
� �

dz ð7Þ

where �ru0v0 = Reynolds shear stress; �ruv = the lateral
transport rate of momentum due to secondary currents that
exhibits obvious influence on txy in meandering and
nonstraight channels, u0 and u are turbulent and time-
averaged velocities in the streamwise direction and v0 and v
in the lateral direction, respectively. In straight channels
[Parker, 1978], Shiono and Knight [1988] assumed that this
term of secondary flow was negligible.
[13] Equation (7) indicates that the apparent shear stress

has two quite distinct components, one arising from sec-
ondary flows and the other from turbulence. Normally, these
are lumped together into a single value of txy as done by
Shiono and Knight [1991], Knight and Demetriou [1983],
and Myers [1978].
[14] The prediction of diffusion in rivers generally

requires an accurate treatment of lateral spreading that is
characterized by the transverse turbulent diffusion coeffi-
cient, this coefficient is generally assumed to be identical
with the eddy diffusivity Ey [Shiono and Knight, 1991].
Thus one can link the lateral diffusion coefficient with the

Figure 1. Hydraulic division line for channels with curved
boundary.
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depth-averaged apparent shear stress and lateral depth mean
velocity as follows

txy ¼ rEy

du

dy
ð8Þ

the theoretical eddy viscosity Ey in rivers can be obtained if
the boundary shear stress and velocity distribution are
known. It is apparent that the authors’ method allows
estimation of transverse diffusion coefficients by means of
the assignment of boundary stress given in equations (5)
and (6), this is because the depth-averaged apparent shear
stress txy in equation (8) can be determined from the
boundary shear stress using equation (5), and du/dy can be
determined from the depth-averaged velocity distribution.

3. Lateral Depth-Averaged Apparent Shear
Stress and Velocity in 3-D Flows

3.1. Rectangular and Trapezoidal Channels

[15] For a straight river as shown in Figure 2, the
following governing equation can be obtained by adding
the continuity equation to the x direction momentum
equation:

@ uv� txy=r
� �

@y0
þ @ uw� txz=rð Þ

@z0
¼ gS ð9Þ

where x is defined as the streamwise direction; z0 is the
direction normal to the boundary; y0 is the direction

parallel to the boundary; u, v and w are mean velocity in
x, y0 and z0 directions, respectively; u0, v0, z0 are turbulent
fluctuating components, and txy = m@u/@y0 � ru0v0 and
txz = m@u/@z0 � r u0w0, m is dynamic viscosity, r is fluid
density.
[16] Yang and Lim [1997] showed that the boundary shear

stress distribution can be determined using equation (4)
because the surplus energy in the shaded element shown in
Figure 2 will be transferred toward the nearest boundary,
i.e.;

tb ¼ rgLS ð10Þ

where tb = local boundary shear stress; L is the height of
shaded element shown in Figure 2, generally speaking L is
the normal distance from the boundary to the free surface or
to the dotted division line that the relative distance to the
side wall is equal to the distance to the bed [Yang, 1996].
For a channel with uniform roughness distribution, the
division line shown in Figure 2 is consistent to the bisector
of the base angle, and the boundary shear stress distribu-
tions measured by Ghosh and Roy [1970] are shown in
Figure 3 with q = 63.4�, 45� to 30�. In Figure 3 the
measured boundary shear stress is expressed using open
cycles and the calculated shear stresses using equation (10)
are represented by the solid lines. It can be seen that the
proposed model provides a good agreement with the
measured boundary shear stress in open channels.
The depth-averaged apparent shear stress in the trapezoidal
channel can be determined by substituting equation (10)
into equation (5).
[17] As the energy is transported along the normal line of

the boundary, the second term of equation (9) is negligible
relative to the first term, hence equation (9) can be simpli-
fied as follows

@ uw� txz=rð Þ
@z0

¼ gS ð11Þ

[18] As first approximation, we can ignore the influence
of secondary currents. Then equation (11) becomes a quasi-
2-D momentum equation, next by introducing the mixing
length theorem into equation (11), the velocity distribution

Figure 2. An open channel with a linear slope sidewall.

Figure 3. Comparison of measured boundary shear stress in trapezoidal channels with equation (10).
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in the shaded stripe shown in Figure 2 can be expressed in
the following form [Yang, 1996],

u z0;y0ð Þ

u
*

¼ 2:5 ln f
z0

zo

� �
ð12Þ

in which coefficient u
*

is the overall mean shear
velocity = (gRS)0.5; f = u*(y)/u*2d; u*(y) is the local
shear velocity determined from the local boundary shear
stress, u*2d is the shear velocity at the channel center =
(gHS)0.5; for smooth boundary zo = n/(9u*2d); for rough
boundary zo = D/30. Equation (12) indicates that the
velocity is proportional to the logarithmic distance from
the boundary, i.e., ln(z0), the wall normal distance z0 can
be expressed as (h � z)cosq in the vertical and horizontal
coordinate using the geometrical relationship provided in
Figure 2.
[19] On the other hand, it is well known that in open

channel flows, the maximum velocity often appears below
the free surface (also termed as ‘‘dip phenomenon’’) due to
the influence of secondary currents. Yang et al. [2004]
examined well the measured velocity profiles in the litera-
ture and concluded that the difference between the measured
velocity and the predicted value of log law can be repre-

sented by the logarithmic distance from the free surface, i.e.,
ln(z). Thus the local point velocity u(y, z) can be determined
in the following form:

u z;yð Þ

u
*

¼ 2:5 ln f
h� z

zo
cos q

� �
þ 2:5a ln

z

h

� �
ð13Þ

the second term of RHS in equation (13) is introduced to
express the so called dip phenomenon. The coefficient a is
empirically expressed as follows:

a ¼ 1:3

sin q
exp � y

H

� �
ð14Þ

Equations (13) and (14) include the influence of boundary
and free surface.
[20] Figure 4a shows the experimental results of velocity

contour measured by Shiono and Feng [2003] in a rectan-
gular channel (sinq = 1), the calculated velocity contours
using equations (13) and (14) are shown in Figure 4b. The
comparison in Figures 4a and 4b shows that the proposed
model gives a reasonable agreement with the experimental
data.

Figure 4. (a) Velocity contours (u/uo) measured by Shiono and Feng [2003]. (b) Calculated velocity
contours (u/uo) using equation (13).
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[21] The depth-averaged velocity u(y) in the sidewall
region of trapezoidal channel flows can be obtained by
integrating equation (13) with respect to z,

u yð Þ

u
*

¼ 2:5

h

Z h

0

ln f
h� z

zo
cos q

� �
dz� 2:5a ð15Þ

However, the theoretical integration of equation (15) in a
trapezoidal channel is implicit because u*(y) in f is a
variable. To simplify the expression, it is assumed that the
shear velocity u

*(y)
in f can be replaced by the mean side

wall or mean bed shear velocity, i.e., u*w and u*b in the
region z < H/tan q and z � H/tan q, respectively. Thus the
depth-averaged velocity is expressed as

u yð Þ

u
*

¼ 2:5 ln f
h

zo
cos q

� �
� 2:5 1þ að Þ ð16Þ

Figure 5 compares the lateral distribution of depth-averaged
velocity in a trapezoidal channel measured by Knight et al.
[1993] with equation (16), and it shows that a good
agreement is achieved.

3.2. Compound Channels

[22] Most natural rivers have floodplains that extend
laterally away from the main river channel at a gentle
gradient or in a series of terraces. There is always some
discharge in the main channel all of the time, but the
floodplains are dry most of the time except during times
of flood when they perform a vital function. A number of
experimental and numerical studies have been performed
and a comprehensive review can be found in Shiono and
Knight’s [1991] work.
[23] The above mentioned concept states that the surplus

energy is transported along the minimum normal line of
boundary. Thus the local boundary shear stress can be
determined using equation (10), Khodashenas and Paquier
[1999] ascertained that the boundary shear stress distribu-

tion in compound channel flows can be determined by the
concept presented except any sharp convex change in the
lateral slope, at which the boundary shear stress should be
infinite according to equation (4), because at these sharp
points, DA bounded by two wall normal lines of boundary
should be finite but corresponding wetted perimeter Dp
should be zero. This location of sharp convex change is
identified as point ‘‘e’’ in Figure 6.
[24] To smooth the boundary shear stress distribution at

point ‘‘e,’’ Khodashenas and Paquier [1999] suggested that
the number of segments be subjectively limited to 20 to 50.
Yang and Lim [2002] pointed out that it is unreasonable if
the boundary shear stress at the interface depends on
number of segments. Alternatively, Prasad [2002] sug-
gested that the bisector of angle ‘‘e’’ can be used as the
division line like the division lines at ‘‘a’’ and ‘‘c,’’ but he
agreed that the local boundary shear stress near ‘‘e’’ cannot
be calculated.
[25] The writers proposed an alternative method to

calculate the boundary shear stress at the edge of flood
plain shown in Figure 6, in which a circle with an
empirical radius of 10h1 is tangential to ‘‘ae’’ and ‘‘ec,’’
the energy in the element bounded by two radiative lines
from the circular center will be transferred to and dissi-
pated on the point ‘‘e,’’ then the local boundary shear
stress can be determined by equation (4). Thus a contin-
uous distribution of boundary shear stress can be obtained
from ‘‘a’’ to ‘‘e’’ and from ‘‘e’’ to ‘‘c.’’ Figure 7 shows the
comparison of boundary shear stress between Shiono and
Knight’s [1991] experimental data and the simplified
model. Similarly, the depth-averaged apparent shear stress
can be computed in the compound channel when the local
boundary shear stress is known.
[26] The main channel shown in Figure 6 is similar to a

trapezoidal channel that the depth of interface is zero, and
equation (16) can be used to assess the depth-averaged
velocity when the hydraulic radius of the main channel is
used for the calculation of shear velocity u

*
, the distance

Figure 5. Comparison of depth-averaged velocity between equation (16) and measured data (q = 45�).
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from the interface is used to replace the variable z in
equation (14).
[27] Similarly, the floodplain can be treated as another

trapezoidal channel, and equations (14) and (16) can be
used to assess the depth-averaged velocity when the flood-
plain’s hydraulic radius is used for the determination of
shear velocity u

*
, by equating velocities on both sides of the

interface between the main channel and the floodplain, one
can determine the coefficient in equation (14) instead of 1.3.
[28] Shiono and Knight [1991] measured the boundary

shear stress and the depth-averaged velocity in compound
channels, the geometrical parameters were b = 0.75 m; B =
3.15 m; H-h1 = 0.15 m, the slopes of main channel sidewall
and the floodplain sidewall are 1:1. The measured water
depths H were 0.169 m, 0.178m, 0.187m and 0.198m. The
measured bed shear stress is shown in Figure 7.
[29] In Figure 7 the bed shear stress of main channel is

similar to that in the trapezoidal channel shown, i.e., equal
to rgHS in the central portion, then it gradually approaches
to zero in the corner region for the shear is proportional to
the vertical distance from the bed to the division line (see
Figure 6). Thus there is a sharp inflection point in Figure 7
at point c of Figure 6. Along the slope from the main
channel to the floodplain, the local boundary shear stress
can be similarly determined by the normal distance from the
boundary to the division line or the free surface except

region near the singular point ‘‘e’’, i.e., ‘‘c0ea0’’ shown in
Figure 6 where the boundary shear stress can be smooth-
ened using the above mentioned method, thus one avoids
the infinite shear stress at point ‘‘e’’, hence another sharp
point appears in Figure 7. The bed shear in the floodplain
along ‘‘a0a’’ except the corner region can be assessed by
rgh1S, the corner region of floodplain is exactly similar to
the trapezoidal channel and the method of determining shear
shown in Figure 3 can be applied.
[30] As shown in Figure 7, the discrepancy between the

measured and modeled shears is noticeable. For example,
the model shows that the shears at points ‘‘c’’ and ‘‘a’’ are
zero because they are stagnant points, similar to the corner
points of Figure 3, but the measurement is not zero at these
points, this can be probably attributed to the measurement
error. As for the discrepancy in other regions, further studies
are needed to identify the cause. However, it should be
mentioned that Khodashenas and Paquier [1999] compared
the proposed concept with other methods including the
vertical depth method (VDM) and vertical area method
(VAM), and they concluded that the proposed concept
yields the best agreement with measured data, they also
found that the proposed concept gives infinite shear at the
convex points (for example point e in Figure 6), this study
improves Khodashenas and Paquier’s [1999] suggestion
for the determination of shear at the singular points.

Figure 6. Cross section of a compound channel with notations.

Figure 7. Comparison of measured and calculated boundary shear stresses in compound channels.
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[31] Shiono and Knight’s [1991] measurement of depth-
averaged velocity is shown in Figure 8. The calculated
results are presented using solid lines, a good agreement
with the measured data is achieved.
[32] The lateral diffusion coefficient, therefore can be

determined using equation (8) with the knowledge of
depth-averaged apparent shear stress and velocity. It is
obvious that the proposed model avoids the requirement
of coordinate transformation from the normal direction of
boundary to vertical direction based on actual geometry.
The coordinate transformation would be extremely difficult
in some case, thus the proposed model makes this more
tractable. However, it should be stressed that there are some
errors that may occur, as discussed above when the model is
applied to convex singular points. However, on the other
hand, the boundary with sharp inflection points generally do
not exist in the natural rivers or canals, thus the discrepancy
shown in Figure 7 should not seriously impair the model’s
applicability in practice.

4. Conclusions

[33] Depth-averaged apparent shear stress and depth
mean velocity are important parameters for the determina-
tion of diffusion coefficients in fluid dynamics and envi-
ronmental engineering. A simple method for their
predictions has been established. The approach is based
on the concept of energy transportation through minimum
relative distance developed by Yang and Lim [1997]. On the
basis of this concept, the flow cross-sectional area in a
channel can be divided and the boundary shear stress can be
determined. The lateral distributions of the boundary shear
stress in trapezoidal channels, compound channels are
derived by taking the irregularity of channel shape into
account. Thus the lateral depth-averaged apparent shear
stress can be determined using equation (5) which is
developed based on the force balance equation.
[34] The equation of local velocity distribution in open

channels is proposed by taking the influence of the side-
walls and free surface into account, then the depth-averaged
velocity is obtained. By comparing with experimental data
in a trapezoidal channel it is found that the developed
equations express the depth mean velocity well. Good
agreements between the measured and calculated depth-
averaged velocity in compound channel are also achieved.
Thus, with the knowledge of depth-averaged apparent shear

stress and depth-averaged velocity, one is able to assess the
lateral diffusion coefficient using equation (8).

Notation

b width of channel bed.
D characteristic length representing the energy dissipa-

tion capacity of boundary.
Ez transverse diffusion coefficient.
f a correction factor.
g gravitational acceleration.
h1 water depth in floodplain.
H water depth in main channel.
p parameter.
S energy slope.
u mean velocity.
u* shear velocity.

u*2d shear velocity at channel central line.
u depth mean velocity.
z vertical distance from the bed.
zo datum height of velocity profile.
y distance.
r density of water.
n kinematic viscosity of fluid.
t local shear stress.
tb boundary shear stress.
txz depth-averaged apparent shear stress.
F relative distance.
Y geometrical distance.
D boundary roughness of boundary.
q angle.
a coefficient.
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