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REPRESENTATIONS OF CROSSED PRODUCTS 
BY COACTIONS AND PRINCIPAL BUNDLES 

M. B. LANDSTAD, J. PHILLIPS, I. RAEBURN 

AND C. E. SUTHERLAND 

ABSTRACT. The main purpose of this paper is to establish a covariant representation 
theory for coactions of locally compact groups on C*-algebras (including a notion of 
exterior equivalence), to show how these results extend the usual notions for actions 
of groups on C*-algebras, and to apply these ideas to classes of coactions termed 
pointwise unitary and locally unitary to obtain a complete realization of the isomor- 
phism theory of locally trivial principal G-bundles in this context. We are also able 
to obtain all (Cartan) principal G-bundles in this context, but their isomorphism 
theory remains elusive. 

Introduction. The main purpose of this paper is to establish a covariant represen- 
tation theory for coactions of locally compact groups on C *-algebras (including a 
notion of exterior equivalence), to show how these results extend the usual notions 
for actions of groups on C *-algebras, and to apply these ideas to classes of coactions 
termed pointwise unitary and locally unitary to obtain a complete realization of the 
isomorphism theory of locally trivial principal G-bundles in this context. We are also 
able to obtain all (Cartan) principal G-bundles in this context, but their isomor- 
phism theory remains elusive. 

The notion of an action a of a group G on a C *-algebra A is well known and 
widely discussed in the literature, and the analysis of the crossed product A Xa G 
and its representations has been a focal point in recent research. The dual notion of 
coaction is much less well known, and has been used principally to formulate and 
prove duality theorems in the context of nonabelian groups; see [10, 12, 13, 19] for 
C*-algebraic aspects and [14] for what is known of coactions on von Neumann 
algebras. 

A coaction 8 of G on A may be thought of in many ways. The (rather technical) 
definition is given in the preliminary section, but if A is a unital C *-algebra and G 
is finite, it is a unital injective *-homomorphism 8: A -* A 0 C(G) (where C(G) is 
the complex group algebra of G) which satisfies 

(1) (S o i) ? 8 = (i 0 SG) ? 8 

where 8G* C(G) -> C(G) 0 C(G) is the map determined by SG(X(s)) = X(s) 0 X(s) 
for s E G (where X(s) is the element in C(G) corresponding to s E G). Note that SG 
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748 M. LANDSTAD, J. PHILLIPS, I. RAEBURN AND C. SUTHERLAND 

is itself a coaction of G on C(G). If we write 

8(a)=E a(s)? X(s) fora eA, 
sEG 

the identity (1) tells us that 

E 8(a(s)) ? X(s) = , a(s) ? X(s) ? X(s) 
seG seG 

so that a(s) e A, = {a e AI8(a) = a ?X (s)}. Furthermore since 

8(a) = E a(s) ? X(s) = E 8(a(s)) = 8( E a(s)) 
seG seG sEG 

and 8 is injective we obtain a = EsY3Ga(s) and A = ED sEGAs. In addition, it is 
clear that A* = AS-1 and A At c Ast for s, t E G. Conversely, if we are given a 
C*-algebra A and closed subspaces {AS}SEG with A* = A-1, AsAt c Ast and 
A = EDs E GAs (in which case we say A is G-*-graded by (As }), we may define a 
coaction 8 of G on A by the condition 8(a) = a ? X(s) for a E As. Thus, for unital 
A and finite G, coactions of G on A and G- *-gradings of A are the same (this was 
known to Fell). 

Further insight into the nature of a general coaction may be derived from 
consideration of abelian groups. If G is a locally compact abelian group with dual 
group G and a is an action of G on A, then a defines a map a- from A to Cb(G, A) 
via (&(a))(y) = ay(a), a E A, -y E G. The fact that aY1 0 aY2 = a(Y12 for 71I 72 E G 
says that 

(2) (a Xi)o a =(i G) o, 

where aG Cb(G) -* Cb(G 
X G) is given by (aGf)(Y1, Y2) = f(Y1Yfl. If we recall that 

the Fourier transform maps Cb(G) to the multiplier algebra M(Cr*(G)) of the 
(reduced) group C*-algebra C,*(G) of G, and that the Fourier transform of aG is 
(the nondiscrete analogue of) 3G, then we see that equation (1) is just the Fourier 
transform of equation (2). Thus for locally compact abelian G, a coaction of G on A 
is effectively the same as an action of the dual group G on A. This correspondence 
often allows one to translate notions dealing with actions to notions dealing with 
coactions. 

In this second example, we see that integrating the action of G gives a representa- 
tion of L1(G) as operators on A and if we take the Fourier transform we get a 
representation of A(G), the Fourier algebra, as operators on A. In the case of a 
general coaction, one can still show by using slice maps that we get a representation 
of A(G) as operators on A: it would be esthetically pleasing and probably very 
useful to have some sort of intrinsic characterization of representations of A(G) on 
A which give rise to coactions of G on A. We are unaware of any such condition, 
however. 

This line of thought does hold some promise however. For, if 8 is a coaction of G 
on A, e: A(G) -> g(A) is the corresponding representation of A(G), and ('r, p) is a 
pair of representations of (A, A(G)) on a Hilbert space H, then from [14, Theorem 
A.1(b)] one can obtain by using slice maps a representation eEp of A(G) as bounded 
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operators on A(H), i.e., a homomorphism cp: A(G) -- M6(M6(H)). The condition 
we obtain in ?3 for the pair (7T, p) to be covariant can easily be translated into the 
equation: 

(3) T(-(f )(a)) = cp(f )(X(a)), a E A, f E A(G). 
In the case of abelian G this is exactly (the Fourier transform of) the integrated 
version of the usual covariance condition! Unfortunately, until someone obtains an 
analogue of the Banach *-algebra L1(G, A, a) in the coaction setting, these will 
remain as merely tantalizing observations. The lack of such a Banach *-algebra 
whose representations correspond bijectively to covariant pairs of representations 
created serious difficulties for us and necessitated the development of techniques 
quite different from those commonly used in the study of actions. 

In the preliminary section we assemble certain technical tools which will have 
repeated use in the paper. These results concern factorization, multiplier algebras, 
tensor products, slice maps, and the regular representations of a locally compact 
group. 

In ?2 we define coactions and the technical nondegeneracy condition. We provide 
numerous examples, of which the "dual" coactions and the " unitary" coactions play 
the most important role in later sections. We then define the crossed product 
A X , G of the C *-algebra A by the coaction 8 of the locally compact group G. This 
is done in a "space-free" fashion, in that we do not use any concrete representation 
of A on a Hilbert space. We proceed to the definition of exterior equivalence of 
coactions and prove the expected (but not trivial) result that exterior equivalent 
coactions give rise to isomorphic crossed products. As an immediate corollary, we 
deduce Quigg's result [19] that if 8 is a unitary coaction, then A X ; G _ A ? Co(G). 

In ?3 we turn to representation theory. The main result of this section gives a 
natural bijection between (nondegenerate) representations of the crossed product 
A X,8 G on a Hilbert space H and covariant pairs of (nondegenerate) representations 
on H of the algebras, A, A(G). This is a key result allowing one to analyze 
representations of A X 6 G: although the result is completely analogous to the action 
case, the proof is completely different and considerably more difficult. We use this 
result to show how covariant pairs transform under an exterior equivalence isomor- 
phism. 

In ?4 we present the rather technical definition that an ideal I in A be invariant 
under a coaction 6. For amenable G, at least, this turns out to be the same as 
requiring I to be invariant under the corresponding representation E of A(G) on A. 
In general, we show that if I is an ideal in A invariant under 8 then we can identify 
I x,61, G as an ideal in A X 6 G. In case G is amenable we show that 8 induces a 
coaction 8' of G on A/I and that the natural surjection of A X6, G onto (A/II) Xpa G 
induces the expected isomorphism A X 6 G/I X 6 G (A/I) Xy G. In the remarks 
in ?4 we point out the technical difficulties which necessitated the assumption that G 
be amenable for the general theorems. This is important in ??5 and 6 where we are 
dealing with special types of coactions and can show that the difficulties disappear 
in these cases. Thus, the hypothesis that G be amenable is not necessary in ??5 and 
6. 
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750 M. LANDSTAD, J. PHILLIPS, I. RAEBURN AND C. SUTHERLAND 

We define the notions of pointwise unitary and locally unitary coactions in ?5 and 
show that for such coactions the spectrum of A X 6 G is fibered over A by the dual 
action of G. If the coaction is locally unitary this fibration is a locally trivial 
principal G-bundle. In the locally unitary case we show that two such coactions are 
exterior equivalent if and only if the corresponding G-bundles are isomorphic. 
Finally in ?5 we use duality theory to show how to construct examples of the two 
types of coactions. 

In ?6 we show how to construct coactions so that p: (A x . G)A A is isomor- 
phic to any given (Cartan) principal G-bundle. In fact, if A is a stable C*-algebra 
with paracompact, Hausdorff spectrum T and q: E -> T is any (Cartan) principal 
G-bundle over T we construct a pointwise unitary coaction 8 of G on A so that p: 
(A xs G) ̂ -- A = T is isomorphic to q: E -- T. If q: E -- T is locally trivial we 
can choose 8 to be locally unitary and then 8 is unique up to exterior equivalence. 

This work was begun in January 1982, while the last three-named authors were 
visiting the Australian National University; thanks are due to Professor D. W. 
Robinson for his hospitality and financial support during this period. The first-named 
author would like to thank U. N. S. W. for its hospitality and financial support 
during his visit to U. N. S. W. in November 1983, at which time substantial progress 
was made and a preliminary draft of some of these results was written up. The 
second-named author would like to thank U. N. S. W., N. S. E. R. C. of Canada, 
and the University of Victoria for financial support at various times during work on 
this paper. All four authors are indebted to the A. R. G. S. for financial support 
during the preparation of this paper. 

1. Preliminaries. On many occasions it will be important, in a calculation, to 
factor elements in a Banach space with elements from certain C*-algebras. In most 
cases, an approximate factorization will suffice, provided we mumble politely about 
continuity. However, to avoid excessive mumbling and to make many arguments 
cleaner, we will often use the Cohen Factorization Theorem stated below. 

THEOREM. Let A be a Banach algebra with an approximate identity bounded by 1 
and let X be a left Banach A-module. That is, X is a Banach space and a left 
A-module, where llaxll < Ilall lixil for all a E A, x E X. Suppose the set of products 
AX= {axIa e A, x e X} is dense in X. Then, given x e Xand c > 0 we can find 
a E Xandy E Xwith x = ay, where Ilall < l and lix -yll < e. 

PROOF. See [9, p. 268]. E 
The flip side of factorization is multiplication. Since many of the algebras we deal 

with have no unit, we are forced to consider multiplier algebras. We shall denote the 
multiplier algebra of a C*-algebra, A, by M(A). It is a standard result that a 
faithful, nondegenerate representation, 7T, of A on a Hilbert space, H, extends to an 
isomorphism, 7r, of M(A) onto 

{T E A@(H) I T7(a) and r(a)T E T(A) for all a E A) 

(see, for example, [16, 3.12.3]). We shall often use this fact without comment. We 
shall often consider the strict topology on M(A), that is the topology induced by the 
seminorms m - llmall and m - iliamll for a E A, m E M(A). In general, 4 will 
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denote the strictly continuous extension to M(A) of a homomorphism 4 defined on 
A; this extension exists for 4 a nondegenerate representation, or a surjection, and in 
the following important situation. This lemma is well known: we include a proof 
only because we lack a reference. 

1.1. LEMMA. Let 4): B -* M(D) be a homomorphism of C*-algebras and suppose 
there is an approximate identity { ei } for B such that 4)(ei) 1-* strictly in M(D). Then 
there is a unique strictly continuous extension 4: M1(B) -- M(D) defined by 

?(m) * d = 0(mbJ)c, when d = 0(bJcl, 
d * f(m) = c2,o(b2m) when d = c24)(b2). 

PROOF. By the hypotheses, D is a Banach B-module in which products are dense, 
and so every d E D factors as indicated. One easily checks that it is well defined and 
that 114(m)ll < m. It is also easily seen to be strictly continuous so that it is unique 
since D is strictly dense in M(D). O 

Now, if A and B are C *-algebras, then A 0 B will denote their spatial tensor 
product, which is characterized by the property that A 0 B is represented faithfully 
on H 0 K whenever A c 4(H) and B c g(K). We shall frequently use the 
following subalgebra of M(A 0 B): 

M(A 0 B) = { m e M(A 0 B)|m(1 0 b), (1 0 b)m E A 0 B for all b E B}. 

Some intuition for this strange-looking object can be obtained from the special cases 
where B has an identity, when M(A 0 B) = A 0 B; and where B is commutative, 
when M(A 0 CO(X)) = Cb(X, A). Roughly speaking, M(A 0 B) is somewhat 
larger than A 0 M(B). One of the most important properties of M(A 0 B) is that 
when you slice it by a function in B*, you always end up in A (see below for an 
explanation of this). When we come to defining unitary coactions, the following 
lemma concerning M(A 0 B) will be useful. 

1.2. LEMMA. Let W be a unitary in M(A 0 B). Then the following are equivalent: 
(1)AdW: A 0 1 --M(A 0 B); 
(2) W(a 0 1) E M(A 0 B) for all a E A; 
(3)(1 0 b)W(aO 1)eA OBforallaeA, beB. 

PROOF. Statements (2) and (3) are clearly equivalent. So, suppose (1) holds. Then 
for all a e A, b e B: 

(1 0 b) W(a 0 1) = (1 0 b) [Ad W(a 09 1)] W 

E (10 b)M(A 0 B)Wc A 0 B. 

So, (3) holds. Now, suppose (2) holds. Then factoring a = ala* in A we get 

W(a O l)W*(l b)= [W(al 1)] [W(a2 o 1)]*(I C) b) E A B. 

But,trivially(10B)W(a01)W*e-A0 -Bandso(1)holds. r0 

REMARK. Although, at first sight, it might seem conceivable that condition (3) 
always holds for unitaries W in M(A 0 B), this is not the case. For example, 
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consider A = B = K(H), so that 

A ? B-K(H ? H) and M(A ? B)_- (H H). 

Define a unitary operator W in V(H ? H) by W(t ? r) = rq ? (. Then one easily 
calculates (1 ? b)W(a ? 1) = 1 ? ba which is not compact (for H infinite-dimen- 
sional) and so is not in A ? B K(H ? H). 

On the other hand, we have the following proposition. 

1.3. PROPOSITION. If B is a commutative C*-algebra and W is a unitary in 
M(A ? B), then the equivalent conditions of Lemma 1.2 hold. 

PROOF. Let B = C0(X) for X locally compact. Then, by [1, Corollary 3.4], 
M(A ? B) = Csb(X, M(A)) where Csb denotes strictly continuous, bounded func- 
tions. Let W be a unitary in M(A ? B) and let a, b be in A, B respectively. Then 
a ? 1 is a (constant) norm-continuous function into A and so W(a ? 1) is a 
norm-continuous bounded function into A. Since the function b vanishes at x, 
(1 ? b)W(a ? 1) is a norm-continuous function from X into A which vanishes at 
oo. That is (1 ? b)W(a ? 1) E A ? B as required. O 

In ?4 we will be considering ideals, I, in a C *-algebra, A. Then, any multiplier m 
of A restricts to a multiplier r(m) of I; note that the homomorphism r is, in general, 
neither injective nor surjective. However, if B is another C*-algebra and we regard 
I ? B as an ideal in A ? B, then we can view M(I ? B) as a subalgebra of 
M(A ?9 B): 

1.4. LEMMA. The restriction homomorphism r: M(A ? B) -> M(I ? B) is an 
isomorphism of D= {meM(A ?B)Ixm, mxeI?B for all xeA ?B} onto 
M(I ?9 B). 

PROOF. If we let 1I, 1A denote the identities in I**, A** respectively, then it is 

easy to see that for each b E B, r(lA ? b) = 1 ? b. Thus, for any m E D, 

r(m)(1, ? b) = r(m)r(IA ? b) = r(m(1A ? b)). 

Now, m(lA ? b) E A ? B and so m(lA ? b) = liml k m(e1 ? bfk) E I ? B by the 
definition of D, where {ej} and {fk} are approximate identities for A and B, 
respectively. Thus, 

r(m)(11 ? b) = r(m(1A ?9 b)) = m(1A ? b) E I ? B, 

and so r(m) e M(I ? B). 
If r(m) = 0, then m(lA ? b) = 0 for all b E B and so m = 0. On the other hand, 

if y e M(I ? B), then we can define a multiplier i(y) E M(A ? B) via i(y) x = 
yr(x) and x i(y) = r(x)y for x E A ? B. To see that this makes sense and, in 
fact, i(y) E D, we observe that for a E A and b E B 

i(y)(a ? b) = yr(a ? b) = yr(1A ?9 b)r(a ? 1B) 

= [y(1I ?9 b)]r(a ? 1B) E (I ? B)M(I ? B) = I ? B. 

Thus, i(y) e D and we easily check that r(i(y)) = y. C1 
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Slice maps. If A and B are C *-algebras and f E B *, then the linear map 

S 
n n 

f L ai (? bi = E aif(bi) 
i=l i=l 

extends to a bounded linear map of A ? B into A of norm II111. Such maps are 
called slice maps [25]. The existence and the norm equality ISIfII = II1II are obtained 
by viewing A and B on Hilbert spaces H, K where f becomes a vector functional 
on t(K). Then A ?9 B is contained in the von Neumann algebra A" ? B" and Sf 
is just the restriction of the corresponding weak-operator continuous slice maps 
A" ?9 B" -* A". The proof of the equality ISf II = I1III now follows from standard 
von Neumann algebra techniques. 

1.5. LEMMA. The restriction of Sf to M(A ? B) c A" ? B" maps M(A ? B) to 
M(A) and M(A ? B) to A. Moreover, Sf is strictly continuous and if we factor 

f = g- 1b = b g2 forbi e B, gi e B*, then 

Sf (m) a = Sg1(m(a ? b,)) and a - Sf(m) = Sg2((a ? b2)m) 

for all a E A. 

PROOF. Using the Cauchy-Schwartz Theorem for positive functionals and the 
polar decomposition for arbitrary (continuous) functionals, one shows that B - B * 

and B * - B are each dense in B * and so every element f E B * factors as above. As 
f is weak-operator continuous on B" these factorizations hold when we consider f 
as a functional on B". Using weak continuity, the equations 

Sf(x) - a = Sg1(x(a ? b,)) and a - Sf(x) = Sg2((a C) b2)x) 

are easy to verify for all x E A" ? B". Thus, for m E M(A ? B) we see that 

Sf(m) E M(A). Moreover, if m E M(A ? B), then the equation Sf(m) = 

Sgl(m(l ? b1)) shows that Sf(m) E A as claimed. Now, if ma -> m strictly, then 

Sf (ma) - a = Sgl(ma(a C) bl)) - Sg1(m(a C) b,)) = Sf (m) a. 

Combining this with a similar argument on the other side shows the strict continuity 
of Sf. O 

The regular representation of a locally compact group. If G is a locally compact 
group, we shall write T (respectively, a) for the action of G on Co(G) by left 
(respectively, right) multiplication; and X (respectively, p) for the left (respectively, 
right) regular representation of G on L2(G). We shall identify the range of X: 
C*(G) -> 4(L2(G)) with the reduced group C*-algebra, Cr*(G), and denote the 
von Neumann algebras X(G)", p(G)" by L(G), R(G) respectively. There is a 
natural pairing between C,*(G) and the algebra, Br(G), of continuous coefficient 
functions (for the representations of Cr*(G)) defined by (X(g), f ) = IG g(t)f (t) dt 
for g E L1(G) and f E Br(G); this identifies the Fourier algebra, A(G), with the 
predual of L(G) [4]. Now, if f is in A(G), then f is a coefficient function of the left 
regular representation: that is, there are A, E L2(G) so that 

(() = c+(X(g)) = (X(g)41k). 
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In this case, one easily computes that f= f * A , where 4 (x) = A(X-1): since we 
work on the left, we use Takesaki's original definition of b [23], rather than that of 
[14]. In general, we shall use , >) to denote dual (bilinear) pairings and ( I) for 
the inner product on Hilbert spaces (conjugate-linear in the second variable). 

Now, let Aut A be the group of automorphisms of the C *-algebra, A, and 
suppose a: G -> Aut A is an action of G on A (always assumed to be strongly 
continuous). If ST is a representation of A on a Hilbert space H, there is a natural 
representation Ind of the crossed product A x a G on L2(G, H); in fact, 

(Ind 7(o) )(s) = f 7(a '(0(t))) (t1-s) dt 

for O E CJ(G, A) and t E L2(G, H). Of course, when S is faithful, Ind is a 
faithful representation of the reduced crossed product A x a,r G [16, 7.7.5]. 

We shall move freely through the isomorphisms H ? L2(G) _ L2(G, H) and 
L2(G x G) _ L2(G) ? L2(G). If W E q(L2(G x G)), then W' will denote W with 
the variables swapped: more precisely, W" = ZWE* where (EZ)(s, t) = ((t, s) for 
( E L2(G x G), s, t E G. Finally, as a point of notation, i will denote an identity 
mapping and 1 will denote the unit of a C *-algebra. 

Principal bundles. Let E be a locally compact Hausdorff space on which G acts 
freely (on the left). We will call p: E -> E/G a (Cartan) principal G-bundle if the 

map G x E -> E x E: (s, x) - 3 (sx, x) is a proper map, in the sense that the 
preimage of each compact set is compact. By [15, Theorem 1.2.9] this implies that 
E/G is a locally compact Hausdorff space and that p: E -* E/G is a principal 
bundle in the sense of Cartan. If G is a Lie group, then by [15, p. 315] this notion is 
equivalent to local triviality. In general, however, local triviality is a stronger 
condition and so we will take care to keep the notions distinct. 

2. Coactions, crossed products, and exterior equivalence. For a locally compact 
group G, we denote by WG the unitary operator on L2(G x G) defined by 

(WGN)(S,t) = ((s,s-1t) fore E L2(G x G); s, t E G. 

Routine calculations show that for X(g) E Cr*(G), the operator SG(X(g)) = 

WG(X(g) ? 1)WG* belongs to the algebra M(Cr*(G) C) Cr*(G)). For example, if 

f, g E L1(G), then 3G(X(g))(1 ? X(f)) = p * t for t E L2(G x G), where p G 

L1(G x G) is given by p(s, t) = g(s)f(s 1t). Similarly, if {X(ei)} is an approximate 
identity for Cr*(G), then SG(X(ei)) -* 1 strictly in M(Cr*(G) C) Cr*(G)). The neces- 
sary formulas are given in [13, p. 255]: take A = C, p = id, and note that our WG is 
W * in the notation of [13]. 

2.1. DEFINITION. A coaction of a locally compact group G on a C *-algebra A is 

an injection 8 of A into M(A ? Cr*(G)) satisfying: 
(a) there is an approximate identity { ei} for A such that S(ei) -> 1 strictly in 

M(A C) Cr*(G)), 
(b) (5 ? i)-(8 (a)) = (i S 6G)(6(a)) for all a E A. 
We say the coaction 8 is nondegenerate if, in addition, 
(c) for every nonzero 4 E A* there exists 4 E Cr*(G)* such that (4 ? A)- o 8 # 0. 
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2.2. REMARKS. (1) If { ei } is the approximate identity for A described in (a), and 

{ fk} is an approximate identity for Cr*(G), then (6 ? i)(ei f,k) -->1 strictly 
in M(A ? Cr*(G) ? Cr*(G)) and so 8 ? i extends uniquely to a mapping of 
M(A ? Cr*(G)) into M(A ? Cr*(G) ? Cr*(G)) by Lemma 1.1. Another application 
of Lemma 1.1 shows that i ? SG also extends, so condition (a) ensures that the 
coaction identity (b) makes sense. 

(2) There are several equivalent formulations of condition (c), the definition of 
nondegeneracy [12, Theorem 5]. We shall find particularly useful the fact that 8 is 
nondegenerate if and only if A ? Cr*(G) is the closed linear span of the set 
6(A)(1 ? Cr*(G)). 

(3) It is not known whether every coaction is automatically nondegenerate, but 
this is the case when G is amenable (see [13; 12, Proposition 6]). The proofs for 
discrete groups given in [12, 13] are unfortunately incorrect. One suspects that 
automatic nondegeneracy may be an amenable phenomenon. 

(4) When the group G is abelian, a coaction of G is given by an action of the dual 
group G. To see this, let Y: L2(G) -> L2(G) denote the usual Fourier transform, so 
that YCr*(G)F* = Co(G). Let V E U(L2(G x G)) be defined by 

VO(y, X) = ~(yX, X) for t E L2(G x G), y, G. 

Now, actions of G on A can be viewed as injections ST of A into Cb(G, A) = 

M(A X Co(G)) as follows: given an action a, define ST by 7T(a)(y) = a$(a); the 
multiplicativity of a translates into the identity 

( ? i) (X(a)) = (1 ? V)(7T(a) ? 1)(1 ? V*) 

in M(A ? Co(G) ? Co(G)). It is then a matter of routine calculation to check that 
6(a) = (1 X Y*)T(a)(1 ? Y) is a coaction of G on A and that the correspondence 
a *-x 8 gives a bijection between coactions of G on A and (strongly continuous) 
actions of G on A. We observe that conditions (a) and (c) are automatic in this case: 
(a) by a compactness argument and (c) since abelian groups are amenable. 

2.3. EXAMPLES. (1) The dual coaction. If a: G -> Aut A is an action, and ST: 

A -* R(H) is faithful, then there is a faithful representation Ind 7T of the reduced 
crossed product A x G on H ? L2(G). In this case, 

((Ind'ST) C) i)(a(x)) = (1 C) WG)(Ind7T(x) ? 1)(1 ? WG*) 

for x e A X ,r G defines a nondegenerate coaction, a^, of G on A x a r G, called the 
dual coaction. This follows from the calculations in [13, pp. 255-257]. This is a 
special case of (6) below. 

(2) SG' the canonical coaction of G on Cr*(G). If we realize Cr*(G) as the reduced 
crossed product of G acting (trivially) on C, then this is a special case of (1) above. 

(3) Unitary coactions. Suppose we have a unitary W E M(A ? Cr*(G)) which 
satisfies: 
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(b) W(a ? 1) e M(A Cr*(G)) for all a E A. 
Then condition (b) and Lemma 1.2 show that 8(a) = W(a ? 1)W* is an injection 
of A into M(A C) Cr*(G)), and condition (a) shows that 8 is a coaction. The 
coaction 8 will be nondegenerate if and only if condition (c) holds: 

(c) (1 ? Cr*(G))W(A ? 1) spans a dense subspace of A ? Cr*(G). 
If conditions (a)-(c) hold we shall say that 8 is a unitary coaction of G on A, and 

that W implements 3. We do not know if condition (c) is necessary or if it is a 
consequence of the other conditions. Of course, when G is abelian and 8 corre- 
sponds to the action a: G -- Aut A, then 8 is unitary if and only if a is implemented 
by a strictly continuous homomorphism of G into U(M(A)). The next example is 
also a unitary coaction. 

(4) The canonical (unitary) coaction of G on K(L2(G)). For any locally compact 
group G, WG belongs to M(K(L2(G)) ? Cr*(G)) and satisfies conditions (a)-(c) of 
(3). To see this recall that the crossed product Co(G) x G can be identified with 
K(L2(G)) via the representation M x X on L2(G). In this case, M x X is given by 

(M x X)(4)t(t) = f 4(t, r)t(r-1t) dr for 4 E CJ(G X G), t E L2(G). 

To see that WG is a multiplier as indicated, one computes that 

WG((M x X)(0) ? X(g)) = [(M x X) ? X](4 ) 

for 4 E- CJG x G), g E CC.(G), where E1 E CJ(G x G x G) is defined by 

4'I(s, r, q) = 4 (s, r)g(s-1q). Similarly, one shows that ((M x X)(+) ?X (g))WG = 

[(M x X) ? X](42), where 42 is defined by 42(s, r, q) = 4(s, r)A(rs-1)g(qrs-1) 
and A is the modular function of G. Another calculation yields 

(1 ? X(g))WG((M X X)(4) ? 1) = [(M X X) ? X](43), 

where 43(s, r, q) = p(s, r)A(s -1)g(qs- 1). It is easy to see that such A 3'S span a 
dense subspace of K(L2(G)) ? Cr*(G) and so conditions (b) and (c) of (3) are 
satisfied. Condition (a) is a routine computation, so that 3(T) = WG(T ? 1)WG* 
defines a nondegenerate unitary coaction of G on K(L2(G)). This example will be 
particularly important later. Of course, this example is another special case of 
example (1). 

One should note that WG is not in M(Cr*(G) ? Cr*(G)) (unless G is the trivial 
group) and so 3G is not a unitary coaction of G on Cr*(G). 

(5) Dual coaction on a reduced twisted crossed product. Let G be a locally compact 
group with a closed normal subgroup, N. Let a: G -- Aut A be an action of G on A 
and let JY: N -- U(M(A)) be a strictly continuous representation of N. As in [8], 
we define the triple (G, A, Y) to be a twisted covariant system if the following 
conditions are satisfied: 

(a) an = Ad(Y(n)) for n E N; and 
(b) 7T(sns1) = ?(YT(n)) for n E N, s E G. 

We say a representation 7T x U of A X, G preserves 5Y if 7T(JY(n)) = Un for all 
n E N and we define C*(G, A, Y) to be A x a G/IL, where If is the intersection 
of the kernels of all the representations which preserve ST. 
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Now, let 7T: A -- tR(H) be a faithful representation and let Cr*(G, A, Y) be the 
range of the representation Ind G T of C*(G, A, Y): it can be shown using [8, 
Proposition 9, (iii)] that this is independent of the representation, 7T. In fact, if G/N 
is amenable, then Cr*(G, A, Y) is isomorphic to C*(G, A, Y) by [8, Proposition 13]. 
Now the representation Ind5N ST is given by ST x IndG(-0 o Y) acting on A X G: 
this latter representation preserves JY and so indeed defines a representation of 
C*(G, A, 3Y). The representation space of 7T x Ind5X(q o 7Y) is 

H = { G - H,J is Borel; (sn) = r(JY(n 1)( (s) for s E G, n c N; 

and f |(sN) 12d(sN) < +X). 
C/N 

For 4 E CJ(G, A) c A X a G and t c H the action is defined by 

xT X IndG(q o ))(p)]s(s) = I q(a1(f(t)))((t1s))dt. 

If we view H ?9 L2(G/N) as functions from G X G/N to H, which satisfy the 
appropriate condition on the first variable, then we can define a unitary operator W 
on H ? L2(G/N) via 

(W()(s, tN) = ((s, s-tN). 

It is routine to check that W satisfies the corepresentation condition: 

(W X 1)(W X 1) = (1 ? WGIIN)(W ? 1)(1 ? WG*/N) 

on H ? L2(G/N) ? L2(G/N). Moreover, a calculation shows that for g G 

C,(G/N) c CQ*(G/N) and 4 E C,(G, A) _ A X a G we have 

W((7T x IndN (qT [ )()@1W( () = [7J x IndC N T o7 )) wl(+ 

where 4 E CC(G x G/N, A) is defined by 4(r, sN) = 4(r)g(r-1sN). Thus, we can 
define a coaction of G/N on C,*(G, A, Y) by 

8(Ind G -(b)) = W(IndG 7T(b) X 1)W* for b E C*(G, A, Y). 

The corepresentation condition for W shows that 8 satisfies the coaction condition 
and the above calculation (together with a similar calculation on the left) shows that 
8 maps into M(Cr*(G, A, Y) ? Cr*(G/N)). If we let 'GI 'A denote the natural maps 
of G, A into M(Cr*(G, A, Y)), then we have 

(iA(a)) = iA(a) ? 1, 8(iG(s)) = iG(s) ? X(sN). 

It easily follows, using the original definition [13], that 8 is nondegenerate. 
This example is in fact a special case of the following example, although the 

translation is a nontrivial exercise. 
(6) C *-algebraic bundles. Let -7: B -> G be a C *-algebraic bundle over the locally 

compact group G as defined by J. M. G. Fell in [5]. Let ds denote left Haar measure 
on G and let A be the C*-completion of the section algebra L1( R, ds), where 
9 = (B, 7T, G). As each element b of B defines a multiplier of A, we see that the 
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map 3: B -* M(A ? C,*(G)) given by 6(b) = b ? X(T(b)) is a well-defined *- 

representation of B and so extends to a map 8: A -> M(A X C,*(G)). In fact, if 
a: G -> B is a continuous, compactly supported section, then 

8(a) = 3 (a(s)) ? X(s) ds, 

where the integral is taken in the sense of strict convergence. As in [13, p. 255] one 
shows that 3(A) c M(A ? C,*(G)). If {f i} is an approximate unit for L1(q, ds), 
then one can check that 3(f) -> 1 strictly as in [5, Theorem 13.1]. It is also easy to 
check that 8 is nondegenerate. 

One should be aware that if G is nondiscrete, then most coactions do not arise in 
this fashion. For example, if G is abelian, a coaction corresponds to an action of the 
dual group G, and in the case of a C *-algebraic bundle this action is given by 

a,y(b) = y(vr(b))b for b E B and y E G. This action extends to an action a of G on 
A = C*(Ll(Pq, ds)). Now, if A is abelian, then it follows from [22, Theorems 1, 2] 
that A is a so-called "characteristic" principal G-bundle and the action of G on A is 
just the transpose of the action of G on A. Of course, it is trivial to find actions of 
abelian groups on spaces which are not principal bundle actions: for example Z 
acting on S1 by an irrational rotation. Thus, the corresponding coaction of T on 
C(S') does not arise from a C *-algebraic bundle over T. 

Note that [22] and this article have a trivial intersection: groups acting on abelian 
algebras in a trivial way. 

We now turn to the definition of the crossed product by a coaction. First we 
observe that if B is a nondegenerate subalgebra of ~V(H), then there is a natural 
embedding of M(A ? B) in M(A ? K(H)). To see this, suppose A acts faithfully 
and nondegenerately on HI, so that we can view A ? B, M(A ? B), and 
M(A X K(H)) as subalgebras of g(H1 X H). If { ei } is an approximate identity for 
B, then ei -* 1 strongly on H, so eik -- k in norm for every k E K(H). Thus for 
m E M(A ? B) we have 

m(a ? k) = lim m(a ? eik) = lim m(a X ei)(I ? k) 
i i 

which clearly belongs to A ? K. Thus, in particular, we can regard M(A ? C,*(G)) 
as a subalgebra of M(A ? K(L2(G))). 

2.4. DEFINITION. Let 8 be a coaction of a locally compact group G on a 
C *-algebra A. The crossed product A x 8 G of A by 8 is the C *-subalgebra of 
M(A ? K(L2(G))) generated by the set {8(a)(1 ?9 Mf )Ia E A, f E Co(G)} 

We observe that for f E A(G), Mf = Sf (WG)-an important fact! 

2.5. LEMMA. Let 8 be a coaction of G on A. Then a 83(a) and f 1- Mf embed 
A and Co(G) in M(A x>( G). Moreover, A X>( G = 8(A)(A X>( G) and A X6 G = 

(1 X MC,(G))(A x f6 G). 

PROOF. Let 8(b )(1 0 Mfl) and (1 0 Mf2)8(b2) be typical generators of A X, G. 
Then 

8(a)[3(bl)(1 ? Mf1)] = 8(abl)(I 0 Mf1) E A Xf G 
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and 

8(a) [(l Mf2 ) (b2)] = [S(a)(1 ? Mg)] [(i ? Mg2 S(b2)] A X>( G, 

where we have factored f2 = g1g2. Thus, 8(a) E M(A X>& G) and similarly, 1 ? Mf 
E M(A x, G). 

To see the factorization statements, we show that any element (1 ? Mf)S(a) can 
be approximated by a finite sum Li8 (bi)(I Mg,) and so any element of A X 6 G 
can be approximated by a finite sum E 8(aj)(1 ? Mf1)xj, where Xj E A X>6 G. 
Letting { ek } be an approximate identity for A we see that any element of A X 6 G is 
approximately S(ek) *y for some k and some y E A X & G. An application of 
Cohen's theorem will then complete the proof. A similar argument works for the 
second factorization statement. Now 

(1 ? Mf)S(a) = Sf(I ? WG)S(a) = Sf((I X WG)(S(a) ? 1)) 

= Sf((I X WG)(S(a) ? 1)(i 29 WG*)(I ?9 WG)) 

= Sf?((i 'SG) -( (a))(I 2 WG)) 

= Sf?((S ( i) ( (a))(I 1 WG)) 

= Sx.g ((S ? i) (6(a))(I X WG)) 

= Sg((Q ? i)((l ? x)S(a))(I ?9 WG)) 

which is approximately 

Sg((s X i)? bi 2) xi)(1 2) WG)) 

= ZS(bi)Sg((1 ? xi)(I ? WG)) = L(b)Sx, .g(1 ? WG) 
i i 

= E(bi)(1 ? Mgi), where gi = xi g [1 
i 

2.6. REMARKS. (1) Of course, by taking adjoints we get similar factorizations of 
A x 8 G on the right. These factorizations will be very important in ??3 and 4. 

(2) When G is abelian and 8 corresponds to the automorphism group 
a: G Aut A, then conjugating by 1 ? F carries 8(a) into the function y --* aY(a) 
in Cb(G, A) and 1 ? Mf into 1 ? X(f ). These operators in M(A ? K(L2(G))) 
generate the crossed product A X G, so our definition agrees with the usual one in 
this case. 

(3) If 0: A -* B is an isomorphism such that 0 ? i intertwines two coactions 8, E 

of G on A, B respectively, then it is not too hard to see that 0 ? i also gives an 
isomorphism of A x6 G onto B X? G. In particular, when v: A -- 4(H) is a 
faithful nondegenerate representation, the crossed product A X & G is isomorphic to 
the C*-subalgebra of -4(H ? L2(G)) generated by 

{ (i ? i) <((a))(I (1 Mf) a G A, f E Co(G)) 

Thus, our definition of crossed product coincides with the spatial definition of 
Katayama [12]. Of course, it also follows that the spatially defined crossed product is 
independent of the chosen representation of A. 
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We will now discuss exterior equivalence of coactions and show that exterior 
equivalent coactions give rise to isomorphic crossed products. As an immediate 
special case we deduce Quigg's result [19] on crossed products by unitary coactions. 
In ?3 we will show how this isomorphism behaves with respect to representations of 
the crossed products. In ?5 we will use these results to show that exterior equivalence 
of locally unitary coactions corresponds to isomorphism of the associated principal 
bundles. 

2.7. DEFINITION. Let 8 be a coaction of G on A and let u be a unitary in 
M(A ? Cr*(G)) satisfying: 

(1) (i ? SG)-(u) = (u ?& 1)[(8 ?9 i)-(u)], and 
(2) u8(a)u* E M(A (? C,*(G)) for all a E A. 

Then, -y = Ad u o 8 is a coaction of G on A, u is called a 8-one cocycle, and we say 
that 8 and -y are exterior equivalent. One easily sees that if u is a 8-one cocycle, then 
u * is a -y-one cocycle for -y = Ad u o 8, so that the definition is indeed symmetric. If 
u also satisfies condition (3): 

(3) (1 ? Cr*(G))u8(A) is dense in A 09 Cr*(G), 
then -y is a nondegenerate coaction by an application of [12, Theorem 5]. We do not 
know whether a coaction which is exterior equivalent to a nondegenerate coaction is 
necessarily nondegenerate, but we suspect that this is true. 

2.8. REMARKS. If -y = Ad u o 8 is exterior equivalent to the trivial coaction 
8(a) = a ? 1, then (8 0 i)-(u) = (u 0 1)0 and so condition (1) becomes 

(1 8 WG)(u 8 1)(1 8 WG*) = (U X 1)(U X 1) 

This is precisely condition (a) in the definition of a unitary coaction. By Lemma 1.2, 
condition (2) above then becomes condition (b) in the definition of a unitary 
coaction. In this setting, condition (3) above is identical to condition (c) of the 
previous definition. Thus, a coaction -y is a unitary coaction if and only if it is 
nondegenerate and exterior equivalent to the trivial coaction. 

2.9. THEOREM. Let 8 be a coaction of G on A (not necessarily nondegenerate) and 
let u be a 8-one cocycle so that y = Ad u o 8 is a coaction of G on A. Considering u as 
an element of M(A 0 K(L2(G))) we have that Adu: A Xf& G -A X G is an 
isomorphism. 

PROOF. By symmetry, it suffices to see that Ad u(8(a)(1 X Mf )) E A X ,6 G for 
a E A and f E A(G). To this end, we compute: 

Adu(8(a)(1 0 Mf)) = u8(a)u*u(1 0 Mf)u* = -y(a)uSf(I X WG)u* 

= -y(a)Sf((u X 1)(1 8) WG)(U* 8 1)) 

= y(a)Sf((u o 1)(1 X WG)(U* 8 1)(1 8 WG*)(I o WG)) 

= y(a)Sf((u 8) 1)(i 8) SG) (U* X 1)(1 X WG)) 

= y(a)Sf((u X 1)(u* 89 i)(-y ? i) (u*)(1 o WG)) 

= Sf((y 0 i) ((a o) 1)u*)(1 o WG)). 
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Now, we factor f = g - x, where g e A(G) and x E CQ*(G), so that we get 

Sg((1 X x)(y i) i((a X 1)u*)(1 0 WG)) = Sg((y 0 i)((a (9 x)u*)(1 09 WG)). 

As (a 0 x)u* e A 0 C,*(G), this can be approximated by a finite sum Xbi 0 xi 
with bi E A and xi E Cr*(G). So, Ad u(3(a)(1 0 Mf)) is approximately equal to 

Sg((y 0 i)(L bi 0 xi)(1 0 WG)) = , y(bi)r[ 0 Sg((1 0 xi) WG)] 

= Z y(bi)[1 0 Sxi.g(WG) 

= E y(bi)(1 
0 

Mxi9g) 

whichisin A X,Y G. OI 

2.10. COROLLARY. Let y(a) = W(a 0 1)W* be a (not necessarily nondegenerate) 
unitary coaction of G on A. Then, Ad W*: A x 

7 G -> A 0 Co(G) is an isomorphism. 

3. Representations of crossed products. Let 8 be a coaction of a locally compact 
group G on a C *-algebra A. Given a nondegenerate representation v of the crossed 
product A x & G on H, we can define representations 7r of A and jt of Co(G) by 
composing at with the embeddings 8 and 1 0 M of A and Co(G) as subalgebras of 
M(A x 8 G). We want to find conditions on a pair of representations (v, [s) which 
are satisfied when they come frotn a representation v of A x 6 G, and, conversely, 
which will ensure that the map 

8(a)(1 0 Mf) (a)p(f) 

is well defined and extends to a representation of A x 8 G. This will give an 
analogue for coactions of the usual notion of a covariant pair of representations of a 
C *-dynamical system (A, G, a). We shall depend heavily, now and in later sections, 
on the following result of Nakagami and Takesaki [14, Theorem A.1(b)] on the 
representation theory of the Fourier algebra A(G). 

3.1. THEOREM. Let G be a locally compact group. There is a bijection between the 
nondegenerate representations ,s of A(G) on a Hilbert space H and unitaries W E 
A@(H) ? L(G) satisfying 

(*) (W 1)(Wo 1)0 = (1 0 WG)(W X 1)(1 0 WG*); 

this bijection is determined by the relation uf) = Sf (W) for f E A(G). 

3.2. REMARKS. (1) If W satisfies (*), then by an easy calculation 

(w X 1)(W E 1) 
= 

(WX 1) (W X 1). 

Using this and taking adjoints of the equation (*) we see that W* also satisfies this 
equation. 

(2) We shall refer to a unitary W E R(H) X L(G) satisfying (*) as a corepresenta- 
tion of G on H. When G is abelian, of course, these are the Fourier transforms of 
the unitary representations of G. We observe that the condition (*) is formally the 
same as that which occurred in the definition of unitary coaction: in fact, if 
W E M(A X Cr*(G)) satisfies (a) of Example 2.3(3) and z is a nondegenerate 
representation of A on H, then (v 0 i) -(W) is a corepresentation of G on H. 
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(3) It is easy to check that W = WG commutes with each 1 0 p(s) and hence 
belongs to I(L2(G)) X L(G). Since WG satisfies (*) and Mf = Sf (WG), we have that 
M is the nondegenerate representation of A(G) on L2(G) corresponding to WG. 

Returning to our problem of what is a covariant pair of representations for a 
coaction 8, it seems that the appropriate conditions are more easily expressible in 
terms of the operator W than in terms of the representation j of A(G). It turns out 
that if v is a representation of A x6 G and we let It = v o(I 0 M), then the 
corresponding W is given by (v 0 i) -(1 0 WG): our next lemma shows that this 
makes sense and will also be crucial later on. 

3.3. LEMMA. Suppose that A acts nondegenerately and faithfully on H, so that 
A X 6 G acts faithfully and nondegenerately on H 0 L2(G). Then 

1 0 WG E M((A xa G) 0 Cr*(G)) C 0(H L2(G) 0 L2(G)). 

PROOF. Let x 0 X(g) E (A x6 G) (0 Cr*(G) and let x = (1 0 Mf)y for f E 

Co(G), y E A X6 G by Lemma 2.5. Then, 

(1 0) WG)(X 0 X(g)) = (1 0 WG)(1 0 Mf0 X(g))(y 0 1) 

= 1 X [WG(Mf 0 X(g))](y (0 1). 

Now, for g E L1(G) we see that WG(Mf 0 X(g)) is multiplication by the operator- 
valued function s F-> f(s)X(s - g), where s g(r) = g(s -r). This belongs to 

Co(G, Cr*(G)) = Co(G) 09 Cr*(G) and so 

(1 09 WG)(x /2 X(g)) E (1 0 Co(G) X Cr*(G))((A X; G) 0 1) 

C (A X,8 G) X Cr*(G) 

as required. A similar calculation shows that 1 0 WG is also a right multiplier. EJ 

3.4. PROPOSITION. Let 8 be a coaction and let v be a nondegenerate representation 
of A Xa G on H. Define 7r = To8, It = io(1 0 M), and W= (v 0 i)-(1 0 WG). 
Then rr and It are nondegenerate representations of A and A(G) on H. Moreover, W is 
the unitary in AR(H) X L(G) which corresponds to It and we have the covariance 
condition 

( 0(9 i) (8(a)) = W(7r(a) 0 1)W* fora E A. 

PROOF. By the factorization results of Lemma 2.5 we see that s7 and 1s are 
nondegenerate whenever v is nondegenerate. We have already observed in Remark 
3.2(3) that WG satisfies condition (*) of Theorem 3.1 and hence W also satisfies that 
condition. To see that Wcorresponds to ji, let f E A(G); then 

AM f)= v(1 0 Mf) = T(S( (1 0 WG)) = Sf ((V 0 i)(1 0 WG)) = Sf (W) 

as required. 
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Finally, to see the covariance condition, let a E A; then 

W(X(a) 0 1)W* = (v (? i)(1 ? WG)(T(S(a)) ? 1)(v ? i) (1 0 WG*) 

= (v X i)((1 X WG)(S(a) 0 1)(1 8) WG*)) 

= (v ? i)>(i SG) 3 (8(a))) 

= (v X i)((8 C i) (8(a))) 

= (vo3 ? i)o (8(a)) = (7r 0 i) (8(a)). L 
3.5. DEFINITION. A pair ('n, W) consisting of a nondegenerate representation ST of 

A on H, and a unitary W E q(H) 0 L(G) which corresponds under Theorem 3.1 
to a nondegenerate representation y of A(G) on H will be called a covariant pair of 
representations of the system (A, G, 8) if for all a E A 

( (0 i) (8(a)) = W(7r(a) 0 1)W*. 

3.6. LEMMA. Let W E zI(H) X L(G) be a corepresentation of G on H. Then, for 
f E A(G), the operator W*(1 0 Mf)W is multiplication by the norm-continuous 
operator-valued function s U t(s-1 f ), where ji is the corresponding representation of 
A(G) and s-1 - f(t) = f(st) for s, t E G. 

PROOF. First we calculate: 

W*(1 0 Mf)W= W*Sf(1 (0 WG)W= Sf((W* 0 1)(1 0 WG)(WO( 1)) 

= Sf((W* 0 1)(1 0 WG)(WO$ 1)(1 0 WG*)(1 X W0 

= Sf ((W* ? 1)(W 0 1)(W 0 1)0(1 0 WG)) = Sf ((W (& 1) (1 o WG)). 

Now, (W X 1) is just multiplication by the constant p6(H) X L(G)-valued function 
s + W (for s in the third variable), and so (W 0 1)' is just multiplication by the 
constant .q(H) X L(G)-valued function s -* W (for s in the second variable). On 
the other hand, (1 0 WG) is just multiplication by the M(H) X L(G)-valued func- 
tion s - (1 X X(s)) for s in the second variable. Thus (W 0 1)0(1 0 WG) is 
multiplication by the ?R(H) X L(G)-valued function s |-* W(1 0 X(s)) for s in the 
second variable. As Sf indicates the slice map in the third variable, we have that 

Sf ((W 0 1)0(1 0 WG)) is just multiplication by the -((H)-valued function 

s 5 Sf(W(i o X (s))) = Ss- .f(W) = (s- .f ). 

The norm-continuity of translation in A(G) implies s F t (s 1 f) is norm-continu- 
ous from G to (H). El 

3.7. THEOREM. Let 8 be a coaction of a locally compact group G on a C *-algebra A. 
The map v -* (i' o 8, (v 0 i)-(1 0 WG)) is a bijection between the nondegenerate 
representations of A x 6 G on H and the covariant pairs of representations of (A, G, 8) 
on H. 

PROOF. In view of Proposition 3.4, it will be enough to show that for each 
covariant pair (ST, W) there is a nondegenerate representation v of A X & G with 
7r = vo 8 and W = (as 0 i)(1 0 WG). So, let (7T, W) be a covariant pair of repre- 
sentations on H and let fi be the corresponding nondegenerate representation of 
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A(G) on H. Consider the representation 

1T = AdW*o(Qr ? i) 

of M(A (0 K(L2(G))) on H 0 L2(G). Restricting this representation to A x & G, we 
have 

T((a)(l /0 Mf)) = W*(7 0 i)>(8(a))WW*(1 0 Mf)W 

= (7(a) ? I)W*(1 ? Mf)W. 
By Lemma 3.6 this is just multiplication by the norm-continuous function s 

7r(a)yI(s -1)f. Thus, T maps A X 6 G into Cb(G, B)), where B is the C *-algebra 
on H generated by elements of the form 7r(a),i(f). Thus, if we follow T by 
evaluation at e E G we get a representation v of A X 6 G on H, where 

v(3(a)(1 ? Mf)) = 7r(a)li(f). 
Since 7T and ,i are nondegenerate, so is v. Clearly, vj o 8 = X and v o (1 ? M) = 

By Proposition 3.4, (v ? i)-(1 0 WG) is the corepresentation corresponding to ,i 
and so W = (v ? i)-(1 ? WG) by Theorem 3.1. E 

3.8. Notation. We will write 7r x W for the representation of A X 6 G correspond- 
ing to the covariant pair (7r, W) for the system (A, G, 8). We take time to record the 
equation: 

,g x W= EvaleoAdW*o(7T ? i 

where Eval e is self-explanatory. 

3.9. PROPOSITION. Let 8 be a coaction of G on A and let u be a 8-one cocycle so that 
y = Aduo3 isalsoacoactionof GonA. Let (D =Adu: A XaG -A Xy Gbe the 
isomorphism of Theorem 2.9. If 7r x W is a representation of A X Y G, then 

0*(7T X W) = 
(7T 

X W)o ID = 7X ?(( i) (u*)W) 

is the corresponding representation of A X 6 G. 

PROOF. By Theorem 3.7, ID*(7T x W) - p x V for some 8-covariant pair (p, V). 
But, for a E A 

p(a) = (p X V) (3(a)) = (7r X W) (u3(a)u*) = ('7 X W) (y(a)) = '7(a), 

so we have 1D *(7r x W) = g x V. Now, Theorem 3.7 also gives us the equation 

V =((7T XV) () 1 (& WG) 

So, we compute 

V= ((7T x V) ? i) (1 ? WG) = ([(7T X W)oAdu] ? i) (1 0 WG) 

= (('7 X W) ? i)((U ? 1)(1 ? WG)(U* ? 1)) 

= ((q7 X W) ? i)((u ? 1)(i ? 3G)(u*)(1 ? WG)) 

= ((7T X W) ? i) ((y ? i) (U*)(1 ? WG)) 

= [(7T ? i) (U*)] [((77 X W) ? i) (1 ? WA)I 

= [(7T 0 i)?(U*)] W. 

Here we have used ('7 x W)- o y = 7r since (7r, W) is a y-covariant pair. Hence 
V= ('70 i)-(u*)Wandwearedone. E 
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4. Invariant ideals. It is a basic observation in the theory of crossed products by 
actions that if I is an ideal in A which is invariant under an automorphism group 
a: G -* Aut A, then the inclusion of CJ(G, I) in CJ(G, A) embeds I x a G as an 
ideal in A X a G, and the quotient map A -> A/I induces an isomorphism of 
(A x a G)/(I X a G) onto (A/I) X a G (for example, see [8, Proposition 121). In this 
section we describe corresponding results for coactions. We have run into a few 
technical problems here-it is not even clear which ideals we should describe as 
invariant (see Remarks 4.2)-but at least everything seems to work when G is 
amenable. We also make use of the nondegeneracy condition for coactions-some- 
thing which was not necessary in ??2 and 3. When we come to apply these general 
results in ??5 and 6, the special nature of the coactions involved there will allow us 
to circumvent the amenability hypothesis. 

We recall that if I is an ideal in A, then by Lemma 1.4, restriction is an 
isomorphism of {m E M(A X C,*(G))lxm, mx E I ? Cr*(G) for x E A ? Cr*(G)} 
onto M(I ? C,*(G)), so that we can view M(I X C/*(G)) as a subalgebra of 
M(A ? C,*(G)). 

4.1. DEFINITION. Let 8 be a coaction of G on A, and let I be an ideal in A. We 
shall say I is invariant under 8 if 

(a) 3(I) C M(I ? Cr*(G)) and 
(b) S l, is a coaction. 
4.2. REMARKS. (1) If 8 is nondegenerate and I is invariant under 8, then SI is also 

nondegenerate. For, if x E I 0 Cr*(G), then the nondegeneracy of 8 allows us to 
approximate x by an element of the form y = -S(a)(1 0 X(g1)) by [12, Theorem 
5]. Letting { fk} be an approximate identity for I, we see that by condition (b), x is 
approximately 8(fk)x which in turn is approximately S(fk)y which equals 

Ei S(fka )(l X (g1)). Thus, 8II is nondegenerate by [12, Theorem 51. 
(2) We do not know whether SI is always a coaction when (a) is satisfied; 

however, Proposition 4.3 shows that this is the case if G is amenable. The proof of 
that proposition shows that, in general, all we need to check is the condition on 
approximate identities. 

(3) Katayama [11, p. 252] has described an ideal I as 8-invariant if Sf(3(a)) E I 
for all a E I and f E Br(G). It is not hard to see that the slice maps on M(I 0 B) 
are just restrictions of the slice maps on M(A 0 B), so that if I is invariant as in 
Definition 4.1, it is also 8-invariant in Katayama's sense. 

Now suppose I is 8-invariant in Katayama's sense and let b E I. Then 8(b) E 

M(I 0 Cr*(G)) if and only if 3(b)x, x8(b) E I 09 Cr*(G) for all x E A X Cr*(G). 
If a E A and X(g) E Cr*(G), then 

Sf (3(b)(a ? X(g))) = Sf.x(g)(3(b))a E I. 

Thus (a) will be satisfied if 

(*) Sf (y) E I for all f e Br(G) implies y E I X Cr*(G). 

But this is the slice map property for (Cr*(G), A, I) which is known to be false in 
general. It does hold if Cr*(G) is nuclear, and even more generally [2]. In particular, 
if G is amenable, (*) is valid so that 3(b) E M(I 0 Cr*(G)) and so that I is 
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invariant in our sense by Proposition 4.3. There are nonamenable groups for which 
(*) holds (for example G = SL2(C), for which C,*(G) is type I and hence nuclear), 
and then the invariance of I depends on condition (b)-see the preceding remark. 
Of course, if G is abelian and 8 corresponds to the action a of G, then I is invariant 
for 8 if and only if it is invariant under a in the usual sense. 

4.3. PROPOSITION. Suppose 8 is a (nondegenerate) coaction of a locally compact 
amenable group G on a C*-algebra A. If I is an ideal in A such that 8(I) is contained 
in M(I ? Cr*(G)), then SI I is a (nondegenerate) coaction. 

Our proof of this result depends (in part) on the following lemma, which is a 
consequence of the definitions of the various extensions in Lemma 1.1. 

4.4. LEMMA. Let J, K be ideals in C*-algebras B, D respectively, let r denote the 
restriction maps on multipliers, and suppose p: B -* M(D) is a homomorphism such 
that there are approximate identities 

(1) { ej} for B with 4(ej) -- 1 strictly in M(D); 
(2) { fk} for J with r(4(fk)) -1 I strictly in M(K). 

Then, the following diagram commutes: 

M(B) M(D) 

M(J) M(K) 

PROOF OF PROPOSITION 4.3. We have to prove that if { fj } is an approximate 
identity for I, then 8(fj) --*1 strictly in M(I ?9 Cr*(G)); this will be easy once we 
have shown that I ? Cr*(G) is the closed span of 3(I)(1 X Cr*(G)). First of all it is 
established in the proof of [13, Lemma 3.8] that S1(3(a)) = a for all a E A, where 1 
is the constant function in B(G) = Br(G) since G is amenable. Now choose 
g E Cj(G) with (X(g), 1) = 1 = JG g(t) dt. Then we have 1 A X(g) = 1 in Br(G). 

Thus, if {hi} is a net in A(G) nl CJ(G) converging weak-* to 1, then we get for any 
a E A: 

Sh,.X(g)(3(a}) = Sh,(8(a)(1 ? X(g))) -* SJ(3(a)(l ? X(g))) = S1(8(a)) = a. 

In particular, it follows that we can approximate any a e I by elements of the form 

SU ? S(Sh o 3(a)), for u, h E A(G) n CJ(G). Now, for such u, h and a E A, X(g) E 

Cr*(G), Katayama has shown that if iu(s) = u(s-1), then 

SU ? o(Sh o 8(a)) ?X(g) 

= lim ii(s)3(Sv .x(s) ? 8(Sh o 3(a)))(1 X (s)X(g)) ds, 
~ G 

where v also belongs to A(G) n CJG), and the limit is taken as the measure v(s) ds 
converges to the point mass at the identity of G [12, Proof of Lemma 3]. If a E I, 
then these integrands belong to 8(I)(1 ? Cr*(G)) so we have established that the 
span of 8(I)(l ? Cr*(G)) is dense in I ? Cr*(G) as claimed. It is now clear that 
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(3S(fj)) converges strictly to 1 in M(I C C/*(G)). This enables us to make sense of 
the coaction identity for SI l using Lemma 1.1, and a few applications of Lemma 4.4 
show that it is satisfied. Thus, SII satisfies (a) and (b), and I is invariant. O 

Suppose I is an ideal in A which is invariant under a coaction 8 of G. Then we 
can form the crossed product I X 8 G, and we would like to embed it as an ideal in 
A x 6 G. The generators for I X 6 G lie in the algebra M(I X K(L2(G))), which by 
Lemma 1.4 we can view as a subalgebra of M(A 0 K). When we do this, we can 
regard I x 6 G as the C*-subalgebra of A X 6 G generated by elements of the form 
3(a)(1 0 Mf) for a E I, f E Co(G). We shall now show that this subalgebra is, in 
fact, an ideal. 

4.5. PROPOSITION. Let 8 be a coaction of G on A and suppose I<iA is invariant 
under 3. Then I X86 G is an ideal in A X i G. 

PROOF. Since SII is a coaction (by definition) we have that by Lemma 2.5 any 
x E I xs G can be factored: x = 8(a)y where a E I and y e I X, G. Now, if 
(1 0 Mf )8(b) is a generator of A X 6 G, then clearly 

(1 ? Mf)3(b)x = (I X M1)3(ba)y E I X6 G. 

Another application of Lemma 2.5 shows that generators of the form 3(b)(1 X Mf) 
are also left multipliers of I x 6 G so that I X6 G is a left ideal in A x 8 G, and 
hence an ideal since it is a *-subalgebra. 0 

We would now like to construct a canonical coaction of G on A/I, where I is an 
invariant ideal, and prove that the crossed product (A/I) X 6 G is isomorphic to 
(A X 8 G)/(I x 6 G). Notice that we have again run into a technical problem in the 
nonamenable case. 

4.6. LEMMA. Let 8 be a coaction of G on A, and suppose I is an ideal invariant under 
3. Let 9: A A/I be the quotient map. Then, defining 

3 (9(a)) = (9 ? i) (8(a)) fora e A 

yields a homomorphism 83 of A/I into M((A/I) 0 Cr*(G)) which satisfies all the 
requirements for a coaction, except possibly injectivity. If G is amenable, then 83 is a 
(nondegenerate) coaction. 

PROOF. We first observe that, by an application of Lemma 1.4, the kernel of 
(9 0 i)- contains M(I 0 Cr*(G)) so that 83 is well defined. It is straightforward to 
verify that 3'(9(a)) belongs to M((A/I) 0) Cr*(G)), that 3I(9(ei)) converges to 1 
strictly for every approximate identity {e1 } of A, and that 83 satisfies the coaction 
condition (a cubical diagram chase). Now, if G is amenable, then the kernel of 
(9 0 i)- restricted to M(A ? Cr*(G)) is just M(I 0 Cr*(G)) since Cr*(G) is C*- 
exact in the sense that ker(9 0 i) = ker4 0 Cr*(G) for all 4: B --> (B). Now, if 
81(0(a)) = 0, then 3(a) is in M(I 0 Cr*(G)) and so a = SJ(3(a)) E I. Thus, 
9(a) = 0 and 83 is injective. O 

4.7. REMARKS. (1) If 8 is nondegenerate and 83 is injective, then 83 is also a 
nondegenerate coaction. This follows from [12, Theorem 5], since condition (ii) of 
that theorem passes to the. quotient under 9 0 i. 
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(2) The proof of the lemma shows that 3' will be injective whenever the kernel of 
(0 ? i)- is M(I 0 C,*(G)) and 8(a) e M(I ? CQ*(G)) implies a e I. 

4.8. PROPOSITION. Let 8 be a nondegenerate coaction of G on A and suppose I is an 
invariant ideal such that 81: A/I -- M((A/I) 0 Cr*(G)) is also a nondegenerate 
coaction. Then, the quotient map 0 ? i of A 0 K(L2(G)) onto (A/I) 0 K(L2(G)) 
induces an isomorphism of (A X8 G)/(I X86 G) on (A/I) Xai G. The transpose of 
this map gives the homeomorphism qr x W -* (7Tr o 0) X W of ((A/I) X,61 G) A onto 
the closed set F = { s7 X WjI == O} in (A X 8 G)^. 

Our proof of this will use a slightly more precise version of the duality theorem of 
Katayama [12], which we now discuss. As in ?1 we let p denote the right regular 
representation of G on L2(G): i.e., (p(s)g)(t) = A1/2(s)g(ts) for s, t E G and 

E e L2(G). Now, each operator of the form 1 0 p(s) commutes with A 0 Cr*(G), 
and hence with 3(A). Moreover, p(s)Mfp(s)* is multiplication by the function 
t ~->f (ts), so that 3, = Ad(1 0 p(s)) gives an automorphism group 

8: G -* Aut(A x a G), 
called the dual action. If we define VG E U(L2(G x G)) by 

(VGK)(S, t) = A1/2(t)(St-v, t) 
and define a faithful representation ,T of A x 8 G on L2(G, L2(G, H)) by 

(*(b)t)(s) = y'(b)(((s)) for b c A X8 G 

(where A is concretely represented on H), then a routine calculation on the 
generators of A X 8 G shows that 

TT(b) = (I C) VG)(b 0 1)(1 0 VG*) 

on H 0 L2(G) 0 L2(G). Since n x (1 0 1 0 X) is a faithful representation of the 
reduced crossed product (A x 8 G) X 8 r G [16, Theorem 7.7.51, we can identify it 
with the C *-algebra generated by 

T(A X8 G)(1 o9 1 o Cr*(G)) C i(H 09 L2(G) 0 L2(G)). 
Katayama just calls this the "crossed product." 

Let S be the unitary operator on L2(G X G, H) defined by (St)(s, t) = 

A- 12(t)g(s, t -1). The version of Katayama's theorem which we need says that 

q = Ad[S(1 o WGy)] o(3 09 i) 

is an isomorphism of A 0 K(L2(G)) onto (A X 6 G) X 8 r G. 
In fact, because 8 is nondegenerate, A 0 K is generated by products of the form 

8(a)(1 (0 Mf)(i 0 p(g)). 

Katayama proves that (D is an isomorphism of A 0 K onto (A X86 G) X r G by 
showing that 

(1(8(a)) = Ad[S(1 o WG*)](8 0 i(3(a))) 

) = S(S(a) 0 1)S* = 8(a) 0 1 = Fr(S(a)), 

(t ?(1( ( Mf ) = Ad [S(I 0 WG* )] (I C 1 0 Mf ) = i (l 0 Mf ), 

0 4(1 0 p(g)) = Ad[S(1 o WG*)](1 0 1 0 p(g)) = 1 0 1 0 X(g). 

(Warning: Katayama's W is our WG*-sorry!) 
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PROOF OF PROPOSITION 4.8. Let 9 x , G be the surjection of A X 6 G onto 
(A/I) Xp1 G induced by (9 ? i)- on M(A ? K); we shall use duality theory to 
identify its kernel. As 9 x 6 G intertwines the group actions 8 and (3!) A it induces 
a homomorphism (9 Xa G) Xa r G of (A Xa G) X r G:- ((A/I) Xa G) X(I)A, r 
G. Let (7T') - be a realization of (A/I) Xp1 G on H1 ? L2(G) ? L2(G) (where A/I 
is concretely represented on H1) and let IV be Katayama's duality isomorphism for 
8'. Then on generators, (9 X6 G) x ~r G = (9 x G) x G is given by 

((9 x G) x G('iT(3(a))) = (?iT') (9 xa G(3(a))) = (7T) (3 (9(a))), 

tt) i(9 x G) x G( (1 ( Mf)) = ('TT) (9 X8 G(1 ? Mf)) 
= (7r') (I ? f 

(O x G) x G(1 ? 1 ?X (g)) = 1 1 X (g). 

A straightforward computation using (t) and (tt) shows that we have a commutative 
diagram: 

o?i 
A 0 K (AII) 0K 

(A xa G) X ,r G - ((A/I) xai G) x(W)A ,r G 

Thus, 1 maps ker(9 ? i) = I ? K onto ker[(9 x G) x G]. By observing where 4 
carries generators, we see that ker[(9 x G) x G] = (I x 6 G) x8r G. Now, if we had 
I x 6 G properly contained in J = ker(O x , G), then since J is invariant for ', we 
would have (I x6 G) X 

,r 
G cJ Xr G. But J X9,r G is contained in 

ker[(O x G) x G] = (I Xa G) X r G 

so this is impossible, and we must have ker(9 X , g) = I X 6 G. 
To see the last statement of the proposition, note first that the representations in 

F are precisely those which vanish on I x 6 G, so that composition with the quotient 
map is a homeomorphism of F onto ((A x , G)/(I X 6 G)) A. It is straightforward to 
check that ('r x W)o(9 x6 G) = ('T o09) x W, and the result follows. fO 

Our main source of invariant ideals will be the kernels of covariant pairs. Suppose 
(,r, W) is a cova-riant pair for (A, G, 8), and let I = ker r. The covariance condition 
('i ? i)-(8(a)) = W('7(a) ? 1)W* shows that 

a E I 8(a) E ker('7 ? i) 8(a)x, x3(a) E ker(7T ? i) 
for all x E A ? Cr*(G). Hence 8 will map I into M(I ? Cr*(G)) if ker(7T ? i) = 

I ? Cr*(G). This will happen if either A or Cr*(G) is nuclear, in particular if G is 
amenable. There is no reason to suspect that Cr*(G) is always C *-exact [26]. 

We have proved 

4.9. PROPOSITION. Let 8 be a (nondegenerate) coaction of an amenable locally 
compact group G on a C *-algebra A, and suppose that ('r, W) is a covariant pair of 
representations of (A, G, 8). Then ker r is invariant under 8, 8 induces a coaction 
of G on A/ker r, and (7r, W) defines a covariant pair of representations of 
(A/ker 7T, G, 8ker7r) 
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4.10. REMARK. If G is nonamenable but A is nuclear, then as above, 8: I 
M(I ? Cr*(G)). If Sl, satisfies the requirements on approximate identities, then 8jl 
is a nondegenerate coaction by Remarks 4.2(1), (2); furthermore, 8S is then injective 
by Remark 4.7(2), and hence a nondegenerate coaction of G on A/I by Remark 
4.7(1). 

5. Pointwise and locally unitary coactions. We shall now show how our results on 
crossed products by coactions can be used to extend the results of [18, ?2] to 
nonabelian groups. We introduce first the notion of a pointwise unitary coaction, 
and show how, for such a coaction 8 of G on A, the spectrum of A x,6 G is 
naturally fibered over A. In the case where the coaction is locally unitary, this 
fibration is a locally trivial principal G-bundle with respect to the dual action of G. 
We also show how to construct examples of the two types of coactions using duality 
theory. 

The main results of [18] concern C*-algebras with Hausdorff spectrum, and we 
shall assume from now on that our C *-algebras have this property. 

5.1. DEFINITION. Let 8 be a nondegenerate coaction of a locally compact group G 
on a C*-algebra A. If r is a representation of A, and W in M(7T(A) ? C;*(G)) is a 
corepresentation of G such that (T, W) is a covariant pair for (A, G, 8), then we 
shall say W implements 8 in the representation r. If for each 'r E A there is such a 
W, we call 8 pointwise unitary. 

5.2. REMARK. We should check that when G is abelian and A is Hausdorff, this 
definition agrees with that of a pointwise unitary action of G as in [18, p. 217]. 
Suppose the coaction 8 corresponds to the action a: G -- Aut A, and let VG E 

A A 

U(L2(G x G)) be given by VG((y, X) = ((yX, X). Then W is a corepresentation of 
G on H, = H if and only if the unitary V = Ad(I X Y)(W) in M(7T(A) 0 Co(G)) 
satisfies 

(V ? 1)(V C)1 = (1 / VG)(V X 1)(1 X VG*) 

By [1], we can realize V as a strictly continuous function from G to UM('T(A)) and 
then this condition says precisely that y -* Vy is a strictly continuous unitary 
representation of G in M(r(A)). It is routine to check that W implements 8 in the 
representation r if and only if V implements a in the representation 7T. When A is 
Hausdorff, 7T(A) = K(H) and so -y -- Vy is a strongly continuous unitary represen- 
tation of G in ( (H); so, the two definitions coincide in this case. 

5.3. PROPOSITION. Let 8 be a pointwise unitary coaction of G on a C *-algebra A 
with Hausdorff spectrum. 

(1) For f E Cb(A) we have 8(f) =f 1 e M(A x ; G) so that 8 embeds Cb(A) 
= ZM(A) into ZM(A x 8 G). 

(2) If N is a closed subset of A, and I = f{kerxjs E N}, then I is invariant under 
8, and 81 is a nondegenerate coaction of G on A/I. 

(3) If ET E A, then ker 7r is invariant under 8 and ' = 8ker?T is a unitary coaction of 
G on rT(A). 
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PROOF. Suppose W, implements 8 in the representation v' E7 A. Then, for 
f Cb(A) we have 

[(77T 
0 i) f o 8(f (7 ) 

0(a)] 
= (70 i)- o 8(fa) 

= W, (,((fa) 0 l)W,q* 

=fQ(7)W,(,Q7(a) 0 1)W,r* 

f (IT)(T 0 i) o 8(a). 
Hence (ST 0 i) o 8(f) = f(XT) 1H, 0 1 for each 7 E A. Letting p = ED , which 
is a faithful representation of A, we get (p 0 i) o (f) = f 0 1, where on the 
right-hand side we have identified f with p(f ). This implies (1) by the independence 
of A x 8 G on the (faithful) representation of A. 

To establish (2), note that I= ker ED 1I and that (?eaN'T IgENWJ') is a 
covariant pair. Hence, by Remark 4.10, it will be enough to find an approximate 
identity {gk} for I such that 8(gJ) -* 1 strictly on I 0 Cr*(G). Now, let {ei}, {fj) 
be approximate identifies for A, CO(A \ N) respectively. Then fj 0 1 and r(3(e1)) 
both converge to 1 strictly in M(I 0 Cr*(G)) and therefore so does 

(fj 0 1)r(3(ei)) = r(3(fjej)) = 8(fje1). 
Since fjei e I we can take gj = fjee. 

Part (3) follows easily from part (2). U1 
We now want to see that the spectrum of the crossed product A x 6 G by a 

pointwise unitary coaction is fibered over A by the dual action 8 of G. Our proof is 
rather similar to that of the abelian version [18, Proposition 2.1]. In the next lemma 
8 is not assumed to be nondegenerate and A is not assumed to be Hausdorff. 

5.4. LEMMA. If (ST, W) is a covariant pair for (A, G, 8), then so is (I, W(1 09 X(s))) 
fors E Gand (rr X W)o s = 7T X W(1 OX (s)). 

PROOF. As (X X W) 0 8s is a representation of A X,6 G and as 8 (extended to 
M(A x 6 G)) leaves A pointwise fixed we see that ('T X W)o Ss = v x V for some 
corepresentation V of G, where (,r, V) is covariant. Now, for f E A(G) 

Sf(V) = (77 X V)(1 0 Mf) = (IT X W)o8(1 0 Mf) 

= (S7 x W)(1 0 Mfis) = Sf.j(W) = S (W(1 0 X(s))). 

One easily checks that W(1 0 X(s)) is a corepresentation of G and so by [14], 
V= W(1 O X(s)). U 

5.5. THEOREM. Let 8 be a pointwise unitary coaction of a locally compact group G on 
a C *-algebra A with Hausdorff spectrum. 

(1) If ?T x W is an irreducible representation of A X 8 G, then 7 is an irreducible 
representation of A. 

(2) If r E A and (v, Wj) are covariant for i = 1, 2, then there exists an s E G such 
that W1 = W2(1 0 X(s)). Furthermore, (r X W)o SS is not equivalent to - X W 
unless s = e. 

(3) A X>K G is a CCR (or liminal) C*-algebra and the map p: ?T X W -v 'r is a 
continuous surjection of (A X 8 G) A onto A. We call p the restriction map (of course, 
(A X 6 G)A need not be Hausdorff ). 
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PROOF. Let v = 7 x W e (A x B G) A. Then by Proposition 5.3 we have for 
fe Co(A) 

?7r(f ) = V(f )) E v(ZM(A xa G)) c v(A x G) C - 1. 

A A A 

So, there exists r e A such that iF(f) =J(7T1) for all f e Co(A). Since A is 
Hausdorff, ideals in A are bijectively determined by ideals in C0(A) and are of the 
form AI where I is an ideal in Co(A). Thus, ker 7 = ker -r and so T is a multiple of 

?T,: we therefore assume that r = 1 0 7T on H 0 K. 
Let W1 be a corepresentation of G on K which implements 3 in qr. Then, for 

a E A we have 

W(I ? 7r,(a) ? 1)W* = W(Q,"(a) ? 1)W* = (, ? i)(6(a)) 

= ((1 ? r) ? i)3 ((a)) = (1 ? WjV)(I ?9 7T,(a) ? 1)(I 9 WI*) 

Since rl is irreducible, we see that 

(1 ? W1*) W = E xi ? 1K ?) yi (approximately, weak operator), 

where U = F2xi 0 yi is unitary in R(H) ? L(G). To see that U defines a corepre- 
sentation of G on H, we first show that (W 0 1) commutes with (1 0 W1* ? 1)': 

(1 W1* ? 1)0 (W ? 1) = (1 ? W1 * 1)0 (1 ) W1 W 1)( E Xi ? 'K Yi ? 1) 

= (1 ? Wi1 ? 1)(i ? W1* ) 1)g(? Xi 1K ? Yi ? 1) 

=(1 ( W1 W? 1)(? xi 2 1K ) Yi 0 1)(1 F W1* 0 1)? 

= (W 1)(i ? W1* 0 1) 

where the first commutation is due to the fact that (1 0 W1*) is a corepresentation 
of G and so (1 0 W1* 0 1)? commutes with (1 0 W1* 0 1) and therefore with 
(1 ? Wi1 ? 1). The second commutation is clear. Now, let T denote the flip isomor- 
phism of !F(K) ?9 (H) with 2(H) 0 (K) and compute: 

{1K O [(U ? 1)(U ?& 1)1]) }= [(1K ?& U ? 1)(1K U? 1)01 

- (1K? U ? 1) [(1K ? U? 1) 1] 

= ( ?1K?x o jXYi o1)[( ?1Koxijyio1)7]0 

=(?xl?1K?)Yl?1)(?xJ?1K?Yj?1< 

I I~~~~ 

= (1 o W1* 1)(wo 1)(i o W1I*X 1)0(wo 1)0 

= (1 ? W1* ?) i)(1 ? W1* I) 0(w? I)(w? 1)? 

=1i ? G(1 ? Wl*)i 3 SG(W) = i?3G((1 ? W1*)W) = O NG((1K U) ) 

= {1K G SG(U)} . 

Thus, U is a corepresentation of G on H. 
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Now, 
v(3(a)(1 ? Mf)) = 7T(a)Sf(W) = (1H X 7Tl(a))Sf((1H 0 W1)(1K X U)T) 

and (except for an interchange in order) we see that f -* Sf(W) is just Nakagami 
and Takesaki's *-product of the representations f Sf (W1) and f * Sf(U) [14]. 
By formula A.13 of [14, Theorem A.3], we see that Sf(U) commutes with Sg(W) for 
all f and g. As Sf(U) clearly commutes with 'r(a) = 1H X r, (a), we see that H 
must be one-dimensional since v = r x W is irreducible. Thus, X = Irl and we have 
part (1). 

Now, if (,r, W1) and (r, W2) are both covariant pairs for the irreducible represen- 
tation r, then as above, W2*W1 = 1 0 U where U is a unitary in L(G). By the 
previous computations U defines a corepresentation of G on a one-dimensional 
space. Since A(G) = G, there is an s E G so that Sf(U) = f(s) for all f e A(G). 
As X(s) is a corepresentation of G yielding the representation f > f(s), we must 
have U = X(s) and the first part of (2) follows. It is easy to see that 7 X W1 / 

T x W2 implies W1 = W2 and so (2) follows from Lemma 5.4. 
Now, let T x W e (A X8 G) A, and let ,s be the representation of A(G) corre- 

sponding to W. Then ('i x W)(3(a)(1 X Mf)) = 7T(a)M(f) is compact since '7(a) is 
compact. Hence A is CCR. Part (1) shows that p takes values in A; it is surjective 
since 8 is pointwise unitary; and it is continuous by a straightforward argument (see, 
for example, the last part of [18, Proposition 2.1]). 0 

5.6. DEFINITION. Let 3 be a nondegenerate coaction of G on A where A is 
Hausdorff. We shall say 8 is locally unitary if each V E A has a neighborhood N 
such that I = n. E N ker 'i is invariant and 3I is a unitary coaction of G on A/I. 

5.7. REMARKS. (1) A locally unitary coaction is automatically pointwise unitary. 
To see this let 'r, N, I be as in the definition and suppose W implements 8'. Then 'J 

defines a representation gii of A/I, and ('t, ('i' 0 i)-(W)) is a covariant pair for 

(A,G,8). 
(2) Suppose G is abelian and 8 corresponds to the action a of G on A. The 

argument of Remark 5.2 shows that 8 is unitary if and only if a is implemented by a 
strictly continuous homomorphism u of G into UM(A). To see that 8 is locally 
unitary if and only if a is locally unitary as in [18, p. 217], we realize A as the section 
algebra Fo(E) of a continuous field of elementary C *-algebras over A. By shrinking 
neighborhoods we can see that a is locally unitary as in [18] if and only if each 
X E A has a compact neighborhood N such that the induced action of G on F(EIN) 
is implemented by u: G -- UM(F(EIN)). Since the quotient of A by nf= N ker7T is 
canonically isomorphic to F(EIN), this is equivalent, by our earlier observation, to 
saying 8 is locally unitary. 

(3) If G is a compact Lie group, then a pointwise unitary coaction of G is locally 
unitary if and only if (A X 6 G) A is Hausdorff. One direction follows easily from 
Theorem 5.9. On the other hand, if (A x,6 G) A is Hausdorff, then by a result of 
Gleason [6], the map (A X8 G) A 

> A is a locally trivial G-bundle which implies by 
Proposition 5.14 that the dual coaction of G on (A x 8 G) x a G is locally unitary. 
But (A X8 G) Xa G _ A 0 K(L2(G)) by Katayama's duality theorem [12] and the 

dual coaction on A 0 K(L2(G)) restricted to A 0 1 is just 8 0 i which implies that 
8 is locally unitary. 
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We could have defined locally unitary coactions in a manner which was more 
obviously an extension of the abelian case, but our present definition seems slightly 
more natural and convenient. Of course, if we were working with a more general 
class of C *-algebras we would have to be more careful, even in the abelian case. 

5.8. DEFINITION. We recall the definition of pull-back C *-algebras from [21]. Let 
p: X -+ A be continuous so that both CO(X) and A are Cb(A)-modules in a natural 
way. Then p*A, the pull-back of A along p, is the "balanced" tensor product 
CO(X) ?Ch(/i) A, which is just the quotient of CO(X) ? A by the ideal generated by 
{ fb ? a-b f falf E Cb(A), b E CO(X), a E A}. We refer the reader to [21] for 
motivation and further properties of this notion. 

5.9. THEOREM. Let 8 be a locally unitary coaction of a locally compact group G on a 
C*-algebra A with Hausdorff spectrum. Then the restriction map p: (A X8 G) A - A 
and the dual action of G on A x 6 G make (A x 6 G) A into a locally trivial principal 
G-bundle over A. In fact, if N is a compact subset of A, I = n{ker7TJ7I e N}, and 3 
is implemented by W E M((A/I) ? Cr*(G)), then 

:( X, s ) [ x (7 X I i) ( W)] o a 

is a G-homeomorphism of N x G onto p - l(N). Furthermore, the map 

C: Co((A X8 G)) OA -4 M(A X8 G) 

given by 4(f ? a) = f8(a) induces an isomorphism ofp*A onto A X 8 G. 

PROOF. Let y be the trivial coaction of G on A/I, so that y = Ad W* o S. Now, 
(A/I) xY G = A/I ? Co(G) and so ((A/I) xy G) A= N x G, where the pair ('T, s) 
corresponds to the representation TTI x (1 ? X(s)) of (A/I) x G. By Proposition 
3.9 the isomorphism AdW*: (A/I) X,81 G -- (A/I) x G carries zTI x (1 X(s)) 
to 'r x [(Xi ? i)-(W)(1 ? X(s))]. Now, 

qzr x [(yr' ? i) (W)(1 ? X(s))](8I(a)(1 ? Mf)) 

= 'z (a)Sf [(X1 ? i) (W)(1 X (s))] 

= 'Tr(a)Sf.s((QT' ? i) (W)) 

= (7Tr' X('7T ? i) (W))(S'(a)(I 1 Mf? J) 

- [(TI x (7TI ? i) (w)) o As] (8S(a)(I ? Mf)). 

Thus, ('T, s) -* (Xzi X ('r I? i)-(W))o 3s is a G-homeomorphism of N X G onto 
((A/I) Xp1 G) ^. An application of Proposition 4.8 completes the proof of the first 
part of the theorem. 

For the second part of the theorem, we first have to establish that the range of (F 
is contained in A x 6 G. By a partition of unity argument, it will be enough to show 
that F(Df ? a) e A x 6 G when the support of f is contained in the interior of 
p 

- 
1(N) with N as above. But ': N x G p- 1(N) c (A X 6 G) A and any func- 

tion f o * on N x G is approximately a finite sum of tensors g ? h, where 
g E CO(N), h E CO(G), so we can assume f = (g ? h)o '-I'. In this case 

4(f ? a) =f3(a) = 8(ga)(I ? Mh) E A X6 G 

as required. 
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Now, for X X W e (A x6 G)A we have (T X W)(D(f ? a)) = (,r x W)(f6(a)) 
= f r X W)r r(a) so that the transpose map 4D on spectra is just I(7 X W) = 

(7T X W, T) e [Co((A x a G) A) ? A] A. Hence, the kernel of 1D is the ideal 
in Co((A x 6 G) A) ? A determined by the closed set {(x X W, 7)17 x W e 
(A X6 G)A}. That is, ker = nf{ker(e,x w? 7)17 x We (A X6 G)^}. This is 
easily seen to be the "balancing" ideal for the actions of Co(A) on Co((A X 6 G) A) 

and A, and so 4' defines an injection of p*A into A x,6 G. It is easy to see that 
4( p*A) vanishes at no point in (A x 6 G) A and, in fact, is irreducible at each such 
point: thus by [3, 11.1.4] D(p*A) = A x, G. E 

5.10. COROLLARY. Let 8 be a locally unitary coaction of G on a continuous trace 
C *-algebra A, and let p: (A x 8 G) __ A be the restriction map. Then A X 6 G also 
has continuous trace, and its Dixmier-Douady class is given by 6(A X 6 G) = p*(S(A)). 
(Here 6 (A) denotes the Dixmier-Douady class.) 

PROOF. This follows immediately from the theorem and [21, Proposition 1.4]. El 

5.11. THEOREM. Let 8 and y be locally unitary coactions of G on the C *-algebra A, 
and suppose A is Hausdorff. Then 8 and y are exterior equivalent if and only if the 
G-bundles, (A X) G) A_^ A and (A x y G) A A, are isomorphic as G-bundles over 
A. 

PROOF. Let u be a 8-cocycle so that by Theorem 2.9 Ad u: A x 8 G - A XY G is 
an isomorphism. Of course, Ad u also defines an isomorphism of M(A x 6 G) onto 
M(A x, G) such that Adu(6(a)) = y(a) for each a E A. Let 4: (A xy G)^A 
(A X,6 G) A denote the induced homeomorphism; i.e. 40([v]) = [v oAd u]. Now, 
p: (A x G) A^ A is the map [v] [v o y] and q: (A X 8 G) ^ A^ is the map 
[p] -* [p- o 8]. Since Ad u o 8 = y, the diagram 

AA 
(A xy G) -->(A X,6 G) 

P q 
A A 

commutes. 
Thus, it suffices to see that 4 is G-equivariant. But, the dual action of G on either 

algebra is given for s e G by 6, = Ad(1 ? p(s)). Now, 1 ? p(s) commutes with 
A ?9 Cr*(G) and hence with u e M(A ? Cr*(G)). Therefore, 

O(s _ [v]) = O[v? i] = [V _1] = [ = [v oAdu o0 A] 

= s .[VoAd u] = s * '[v] 

as required. 
To see the converse, we suppose that 4: (A x G) A__ (A X8 G) A is a G-bundle 

isomorphism over A. Since 8 and y are locally unitary, we can find an open cover 
{Ni of A and elements ii, Di in M(A/Ii Cr*(G)), where Ii = nf{ker 71T E Ni so 
that 

6",(a + Ii) = iii((a.+ i) ? 1)iiu* and y",(a + i) = Qi((a + Ii) ? 1)i*. 
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If we let qi: A -* A/Ii be the natural projection, and let ui, vi be elements of 
M(A ? Cr*(G)) with (mqi ? i)-(ui)= ui and (mqi ? i)-(vi) = Di, then these equa- 
tions become 

(mi ?Y' i) (8(a)) = (m ? i)(ui(a ? 1)u*) 

and 

(71i X i) (y(a)) = (m ? i (vi(a ? 1)vi*) 

for all a E A. In fact, if a is supported on N,, then since Ii is invariant for 8 and y 
the equations become 8(a) = ui(a ? 1)u0' and y(a) = vi(a X I)v*. 

Now, we concentrate on 8 for the moment and use Theorem 5.9 to get two 
trivializations of p - 1(Ni n Nj) = p - I(Ni) 

Nlj X G p-1(N1j) -Nj x G 

Nij 

where the two maps Nj X G - p-1(Nij) are given by 

( ,s) -4 [s x(X (& ui7u )] o8- and (1,t) [ [7 x( ? i) (u& )] ? -t, 

Since these maps are G-equivariant, the composition of one with the inverse of the 
other is of the form (7, s)-* (, yij(7)s): Nij x G Nij x G, where Yij: Nij -* G 
is continuous. That is, for X E N8j 

I1r X ('r ? i) ()] ?oas = ['77 x (' i) (ui)] 0 

Equivalently, we get for X E Nij 

[7 X(7 X i) (uj)] = [ 0 X( ? i) (ui)] 0(). 

If we apply these representations to the generators of A X 6 G and use the fact that 
X is irreducible we get that Sf.Yij (T((, X if-(ui)) = Sf((7 ? i)-(uj)) for X E Ni. 
By a straightforward calculation the left-hand side equals 

S, [(7r X i) (ui)?( (Yij(7))) 

Since this holds for all f E A(G), we get the equation 

('7 ? i) (ui)?( X (Yij(T))) = (7 ? i) (uj) for all X E Nij. 

Similar considerations show that we have transition functions { Xi} for the bundle 
q:(A x G) .. *Asothat 

('7 ? i) (vi)( ? X (Xij('7))) = (' ? i) (vj) 

for all X E Ni. 
Since the two bundles are G-isomorphic, we can assume (by shrinking the Ni's if 

necessary) that there are continuous functions P3i: Ni-* G so that x i = Pi- 1yij,1j 
on N11. Now, X - (, X3i(7)) is a strictly continuous bounded function from Ni into 
M(Cr*(G)) and hence defines a multiplier of CO(Ni, Cr*(G)). Since Ni = (A/Ii) A, 
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the usual factorization trick shows that the multipliers of CO(Ni) ? Cr*(G) are 
naturally embedded in M(A/Ii ? Cr*(G)). Thus, 7 -* X(/3i(7)) is an element of 
M(A/II ? Cr*(G)) which in the representation (7 ? i)- is given by 1 ? X(fij(7)). 
Now, if we replace ui in M(A/Ii ? Cr*(G)) by uii(l ? X o /i), then we can assume 
that the u 's transform as follows: 

(77 ? i) (u)(i ? (xij (7))) = (7 i) (uj). 

Moreover, these new u 's still implement 8 locally. Now, let Wi = vju0'. Then, for 
v7 G Nij we see that (s ? i)-(Wi) = (,r ? i)-(Wj). Since A is Hausdorff, any 
element of A ? Cr*(G) can be approximated by a finite sum of the form Lai ? xi, 
where ai is supported on Ni. Hence, we can define a multiplier, W, of A ? Cr*(G) 
by 

W, (E aiX xi) =EWi(aiX xi) and ( ai xi) * W= (ai ? xi)Wi. 

This is well defined since (r ? i)-(Wi) = (r ? i)-(Wj) for all X E Nij. 
The element W is clearly unitary and satisfies Ad W o 8 = y. Since y is nondegen- 

erate, (1 ? Cr*(G))y(A) is dense in A ? Cr*(G) by [12, Theorem 5] and so 

(I X Cr* (G))y (A) W = (I X Cr* (G)) WS(A) 

is dense in A ? Cr*(G). Hence, W satisfies (2) and (3) of the definition of a 8-one 
cocycle. Now, a straightforward calculation shows that for any X E A 

(7 ? i ? i) (i ? 8G) (w) = (7 ? i ? i) [(W ? 1)(8 ? i)(W)] 

and so W also satisfies condition (1). Therefore, y and 8 are exterior equivalent, and 
the theorem is proved. [ 

5.12. REMARK. It is easy to see that if two nondegenerate coactions are exterior 
equivalent and one of them is locally unitary, then so is the other. As we shall see in 
?6 this will show that for a stable C *-algebra with paracompact Hausdorff spec- 
trum, T, and a separable locally compact group, G, the exterior equivalence classes 
of locally unitary coactions of G are in bijective correspondence with the isomor- 
phism classes of locally trivial principal G-bundles over T. 

Our main examples of pointwise and locally unitary coactions will be dual 
coactions ( on reduced crossed products A X ar G. Roughly speaking, i will be 
pointwise unitary on A X a r G if A is a (Cartan) principal G-bundle, and locally 
unitary if A is a locally trivial G-bundle. The abelian version of these results is in 

[20, Lemma 2.4]. 

5.13. PROPOSITION. Suppose A is a C*-algebra with Hausdorff spectrum and 
a: G -* AutA is an automorphism group such that A is a (Cartan) principal 
G-bundle. Then A X a G = A Xa ,r G has Hausdorff spectrum A/G and the dual 
coaction of G on A X a G is pointwise unitary. 

PROOF. First we observe that Green's version of the Mackey machine [7, 8] shows 
that -* Ind X induces a homeomorphism of A/G onto (A X a G) A [20, Theorem 
1.1(1)], and since ED Ind = Ind( E r) is therefore faithful, the reduced crossed 
product is all of A X a G [16, Theorem 7.7.5]. Now, recall from Example 2.3(1) that 
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if v: A -A M(H) is faithful, then the dual coaction 8 is defined for x E A xa G by 

(*) ((Indv) ? i)(S(x)) = (1 ? WG)(Ind (x) ? 1)(I ? WG*). 

Let 'A, 1 ? X denote the embeddings of A, Cr*(G) in M(A X a G). Then it is easy to 
check that 

8-(iA(a)) = iA(a) ? 1 and 8-(1 ? X(g)) = 1 ? 8S(X(g)) 

in M((A x a G) ? C,*(G)). The same calculations then show that (*) holds for any 
representation v of A. Thus, it will be enough to prove 1 ? WG belongs to 
M(Ind ?T(A X a G) ? Cr*(G)) for every S E A. However, A X a G has Hausdorff 
spectrum, so 

Ind7T(A Xa G) = K(HI.d-,) = K(H,7 ? L2(G)) = K(H,f) ? K(L2(G)). 

We already know that WG E M(K(L2(G)) ? Cr*(G)) by Example 2.3(4), so that 
1 ? WG implements 8 in the representation Ind ST and we are done. El 

5.14. PROPOSITION. Let A be a C*-algebra with Hausdorff spectrum and suppose 
a: G -* Aut A is a locally compact automorphism group such that A with the action of 
G is a locally trivial principal G-bundle over a Hausdorff space X. Then, the dual 
coaction of G on A X a G = A X a, r G is locally unitary. 

The idea of the proof is to use the ideal theory of ?4 to reduce to the case where 
A = X X G, and calculate the crossed product explicitly in that case. To do this, we 
want to use some simple properties of continuous fields of C*-algebras [3, Chapter 
10]. Let E be a continuous field of elementary C*-algebras over a locally compact 
Hausdorff space X, and let H be a fixed Hilbert space. Then, there is a continuous 
field E ? K(H) whose fiber at x is E. ? K(H) and whose section algebra is 
FO(E) ? K(H) (take, as continuous sections, those which are locally uniformly 
approximable by Yi f1 ? ki for f1 e PO(E), ki e K(H)). We pause to prove 

5.15. LEMMA. Let A be a C*-algebra with Hausdorff spectrum X X G, and suppose 
a: G -* Aut A induces the left action of G on X X G (i.e., g(x, h) = (x, gh)). 
Realizing A as the section algebra 1O(E) of a continuous field E of elementary 
C*-algebras over X X G, let 7T(x, t) denote the representation a -* a(x, t) of A. Then 
the map 4D defined by 

D (b)(x ) = Indr (x, e)(b) 

is an isomorphism of A Xa G onto I0(EIxx{e} 0 K(L2(G))). 

PROOF. By Proposition 5.13 and its proof, Ind 7T(x, e) is irreducible on A X a G = 

A Xar G and its range is the compact operators on H(xe) ?L2(G), that is, 
E(x,e) X K(L2(G)). The map D preserves the natural actions of Cb(X) (and so 
CO( X)): hence the result will follow if we can show that 4(Db) is a continuous section 
of Elx{e) X K(L2(G)). To this end let b = iA(a)(l 0 X(g)), where a EC F(E) c A 
and g E CC(G). Then, we can view Ind 7(x, e)(iA(a)) as the continuous function 
s -T(x, e)(aS (a)) in Cb(G, E(xe)). Since r(x, e)o a-1 is equivalent to rT(x, s) by 
our hypothesis on a, and since a has compact support, this map has compact 
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support in G. In fact, we may assume that there are compact sets C c X and L c G 
with Tr(x, e)(ay '(a)) = 0 if (x, s) 0 C x L. Thus, we can approximate s --+c a -'(a) 
uniformly by an element of the form Ea i ? fi, where ai e A and f, E CC(G). Then, 
Ind zr(x, e)(b) is uniformly approximated on C x L by 

E v(x, e)(ai) ? MfiX(g) E E(X ?) K(L2(G)). 
Thus, x -* Ind v(x,e)(b) is a continuous section of EIXx{e} ?) K(L2(G)) and the 
result follows. 

PROOF OF PROPOSITION 5.14. We first consider the case where A is trivial. So, 
suppose A = X x G, and a induces the canonical left action of G on A (we will use 
the notation of the lemma). Recall from the proof of Proposition 5.13 that, if 8 is the 
dual coaction, then for any nondegenerate representation v of A we have for 
be A xa G, 

((Indv) ? i) (8(b)) = (1 ? WG)(Indv(b) ? 1)(I ? WG*) 
If we take v = ( x yXr(x, e), then Ind - m= ExInd r(x,e) is faithful and acts in 
(E x H(X,e)) ? L2(G). Moreover, the following diagram commutes: 

A xa G I ((x(XH(x,e)) ? L2(G)) 

1 T(@ ?(x e)) X i e 
22 

F0(EIx{e} X K(L (G))) r P0(EIXX{e}) ? K(L (G)) 

where e(x,e) denotes evaluation at (x, e). Now, the unitary 1 ? WG on 

(D XH(X,e)) ? L2(G) ? L2(G) is the image of 

1 ? WG E M(JO(E I xx{e}) ? K(L2(G)) ? Cr* (G)) 

under the map ( ( E X ?(x,e)) ? i ? i. Thus, pulling I ? WG back to 

M((A Xa G) 0 C*(G)) 

along the lower route shows that 8 is unitary. 
Now, suppose A is a locally trivial G-bundle and write p: A -^ X for the orbit 

map. By Proposition 5.13 (A xa G)A is homeomorphic to X, and 8 is pointwise 
unitary. Given xo E X, choose a compact neighborhood N of xo such that p -(N) 

N x G and let I = flker 7Ip(,r) e N}. Then I is invariant under a and 

I x a G = nf ker(Ind v)lp (,r) E N } 

so that J = I x a G is invariant under 8 and SJ is a nondegenerate coaction by 
Proposition 5.3(2). It will be enough for us to prove that 3! is unitary. However, a 
routine check shows that if a' is the induced action of G on A/I and 0 is the 
canonical isomorphism of (A Xa G)/(I Xa G) onto (A/I) XaI G, then we have a 
commutative diagram: 

(A Xa G)/(I Xa G) _ M((A Xa G)/(I Xa G) ?) Cr*(G)) 

# 1 1 '# X~~~~~~~O i) 
I()A 1? MG 

(A/I) X,J G ((A/II) ><a G) ? Cr* (G)) 
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where (a') A denotes the coaction dual to a'. Because (A/I) A = p -1(N) is a trivial 
G-bundle for the action a' induced by a, we have already seen that (a1) A is unitary. 
Therefore, 3! is also unitary and so 8 is locally unitary. El 

6. The construction of crossed products with given spectrum. We have seen that the 
spectrum of the crossed product A X 8 G by a locally unitary coaction is in a natural 
way a locally trivial G-bundle over A. We shall now show how to construct coactions 
8 so that p: (A x & G) A ^ A is a given (Cartan) principal G-bundle. 

The idea of our construction is simple. Given a (Cartan) principal G-bundle 
q: E -* T = E/G, let 8 be the dual coaction of G on the transformation group 
C*-algebra C*(G, E) = Co(E) Xa G. By 5.13 and 5.14, this algebra has spectrum 
T, and 8 is pointwise unitary; locally unitary if q: E -* T is locally trivial. By the 
duality theory of [10], C*(G, E) X 6 G is isomorphic to Co(E) ? K(L2(G)) and 
hence has spectrum E. Theorem 5.5 then gives a map p: E -* T which (up to the 
suppressed identifications) is just q: E -4 T. On the other hand, a theorem of Green 
[7] asserts that if q: E -* T is locally trivial, then C*(G, E) - CO(T, K(L2(G))) and 
so we will have constructed a coaction of G on CO(T, K) = A so that p: (A X 8 G) A 

A = T is isomorphic to q: F -- T. 
In making this argument precise we need properties of the duality isomorphism 

which are not made explicit in [10]. In particular, we need the explicit realization of 
the dual action of G on B X K(L2(G)) _ (B Xa,r G) x 8 G which was not given in 
[10]. 

To this end, let a: G -* Aut B be an automorphism group and let 8 be the dual 
coaction of G on B xa,r G. Let T denote the left regular representation of G on 
Co(G). Let S be a faithful representation of B on H so that Ind is a faithful 
representation of B Xa,r G on H ? L2(G). Thus, by 2.3(1) we have a faithful 
representation of (B Xa,r G) x 6 G on (H ? L2(G)) ? L2(G) given by 

8(x)(I 
X 
Mf) -+(I 

X 
WG)(Indvr(x) 0 1)(1 

X 
WC*)(I 

X 
1 

X 
Mf). 

Moreover, Ind(Q' X M) is a faithful representation of (B ? C0(G)) X 10 r,r G on 
(H X L2(G)) X L2(G). With these concrete realizations we have the following result 
[10, Proposition 3.1]. 

6.1. LEMMA. Let (B, G, a) be as above and let 
(B Xa r G) X6 G, (B E Co0(G)) XaT,r G 

be realized on (H X L2(G)) ? L2(G) as above. If Y denotes the unitary on this space 
which switches the last two variables, then Ad(E(l ? WG*)) is an isomorphism of 
(B Xar G) x ; G onto (B ? Co(G)) X a1rr G which takes the dual action 8s = 

Ad(I X 1 ? p(s)) to Ad(l X p(s) ? 1), which is the canonical extension of the right 
translation, 1 X as on B X Co(G), to the crossed product, (B X Co(G)) X ar ,r G. 

PROOF. By a straightforward calculation, we see that FD = Ad(E(I X WG*)) satis- 
fies: 

(8(1 (? X(g))) = 1 X 1 ? X(g), X(g) E Cr*(G); 

(8(iT-(b))) = (7 T? M) (b X 1), b E B; 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 02:34:06 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REPRESENTATIONS OF CROSSED PRODUCTS BY COACTIONS 781 

where Indv = * x (1 ? X) and Ind(Q ? M) = (7 ? M)- X(1 ? 1 ? X). As prod- 
ucts of elements on the left-hand side generate (B Xa,r G) x 6 G and products of 
elements on the right-hand side generate (B ? Co(G)) X,a,r,rr G, (D is an isomor- 
phism as claimed. Another calculation yields 1(1 X 1 ? p(s)) = 1 ? p(s) ? 1 so 
that the last statement of the lemma is clear. El 

6.2. LEMMA. Let ' Ee Aut(B ? Co(G)) be defined by ' (f )(s) = x-i (f (s)), where 
(B, G, a) is as above. Then, 

?o(a,(X TJ)o -1 = I 9 T, and o(I () q 1 = a, X a, fors E G. 
Thus, I induces an isomorphism: 

T: (B 0 CO(G)) X a?rT G (B ? Co(G)) X IOTrGrG 

= B ?(CO(G) XT,rG) 

= B ? K(L2(G)) 

which carries the canonical extension of 1 ? a, to the canonical extension of a, 0 as. 

PROOF. The two equations are straightforward calculations and they immediately 
imply the second statement. O 

So the refined version of [10, Theorem 3.6] that we need is the following 

6.3. THEOREM. Let a: G -* Aut B be an automorphism group and let 8 be the dual 
coaction of G on B x ar G. Then there is an isomorphism k: (B X ar G) X8& G B ? 
K(L2(G)) which carries the dual action 8 to a ? a. That is, A = aSS s as for 
alls E G. 

PROOF. 1 o 4D is the desired isomorphism. O 

6.4. COROLLARY. The canonical homeomorphism B -* (B ? K) A intertwines the 
induced actions (as)* and (?o so4S l)*. 

PROOF. (4)0 ? A? )* - (as aS) = (as)* X i. EO 

6.5. THEOREM. Let q: E -* T = E/G be a (Cartan) principal G-bundle and let a: 
G -- Aut(CO(E)) be the induced action. Let A = C*(G, E) = Co(E) Xa r G and let 
8 be the dual coaction of G on A. Let 4: A X8 G -- Co(E) ? K(L2(G)) be the 
isomorphism of Theorem 6.3. Then the following diagram commutes and is an isomor- 
phism of G-bundles: 

E (AX8G)G 

q. p 

E/G (A X, G)^/G-A 

PROOF. By the corollary, 0* is equivariant and so induces the isomorphism of 
principal G-bundles given by the left-hand square. That the right-hand triangle 
commutes follows from 5.5(2), (3). So it suffices to see that the continuous bijection 
(A X8 G) /G A is a homeomorphism. However, the composition E/G 
(A X 6 G) I/G A is just the homeomorphism defined in [18, Lemma 3.3]. Thus, 
(A X 6 G) I/G A is a homeomorphism and we are done. O 
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6.6. COROLLARY. Let K denote the compact operators on a separable Hilbert space. 
Let G be a separable locally compact group and let q: E -* T be a (Cartan) principal 
G-bundle over the locally compact, paracompact space T. Then there is a pointwise 
unitary coaction 8 of G on CO(T, K) = A so that p: (A x86 G) ̂  -- A = T is isomor- 
phic to q: E -* T. Moreover, if q: E T is locally trivial, then 8 can be chosen to be 
locally unitary. 

PROOF. By Green's result [7, Theorem 14], B = C *(G, E) is a continuous trace 
C *-algebra with spectrum T and Dixmier-Douady invariant 0. Thus, by Dixmier's 
result [17, Corollary 1.5], K ? B - CO(T, K) and so if 8, is the pointwise unitary 
coaction of G on B so that p: (B x81 G)^_* B _ T is isomorphic to q: E -T, 
then 8 = i ? 8 is clearly a pointwise unitary coaction of K ? B and the following 
diagram is an isomorphism of G-bundles: 

E (B X GA1 G ) [K (B X1 G)] [(KC ?B) xil G]I 

q.J p,Jp 
T B -> (K? B)^ 

Since K ? B - CO(T, K) we are finished except for observing that 8, and hence 
i 

X 
81 = 8 may be taken to be locally unitary if q: E -- T is locally trivial by 

Proposition 5.14 and Theorem 6.5. O 

6.7. THEOREM. Let A be a stable C*-algebra with paracompact, Hausdorff spec- 
trum, T. Let q: E -* T be a (Cartan) principal G-bundle over T where G is a 
separable locally compact group. Then there is a pointwise unitary coaction 8 of G on A 
so that p: (A xa G)^__4 A = T is isomorphic to q: E -- T. If q: E -- T is locally 
trivial, then 8 may be chosen to be locally unitary. 

PROOF. By 4.3 and 3.9 of [18] there is an isomorphism 4: A -- A ?co(T) CO(T, K) 
so that on spectra, 4: T = A(T x T) -* A = T is the identity mapping. Here, 
A ?CO(T) C0(T, K) is the quotient of A ? C0(T, K) by the ideal I generated by 
af X b - a X fb, where a E A, f E Co(T), and b E C0(T, K), and A(T x T) = 
{(x, x)Ix E T }. Let 8 be a pointwise unitary coaction (locally unitary if q: E -* T 
is locally trivial) of CO(T, K) so that p: (CO(T, K) x8 G) ^ A = T is isomorphic 
to q: E -* T. Then i ? 8 defines a coaction of A ? C0(T, K) which preserves the 
CO(T)-module structure and hence satisfies the condition on approximate identities 
with regard to the ideal I. By Remark 4.10, (i ? 8)' is a nondegenerate coaction of 
A ?Co(T) CO(T, K). We will be sloppy and denote this coaction by i ? 3. It is easy to 
see that i ? 8 is pointwise unitary (or locally unitary if 8 is) and that there is a 
natural isomorphism (A ?cO(T) C0(T, K)) x,je G A ?CO(T) (CO(T, K) X8 G) 
yielding the commutative diagram: 

[(A ?C0(T) Co(T, K)) x E8G] [ 
A 

A ?Co(T) (Co(T, K) X8 G )] 

p c )(Ax(iTXP) 

|A (JC(,(T) Co (T, K) 

A 

A(A- x Co(T9 K) 
A 
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But, A(A x C0(T, K)A) = A(T x T) = T and [A ?Co(T) C0(T, K) X8 G]^- 

(CO(T, K) X86 G) A, and the diagram 

?A Co(T) (Co(T K) x a G) A (Co(T K) x6 G) A E 

I ~~~ ~~~~I p .jq 
A(AXCo(T,K))A T= C0(T,K)A =T 

commutes. As the isomorphism 4: A -* A ?co(T) C0(T, K) respects the identifica- 
tion of spectra we get that 

(A xY G) E 

Pt q 
A = T 

is an isomorphism of G-bundles, where y is the coaction of A corresponding to i ? 8 

under the isomorphism. O 
6.8. REMARK. Combining Theorems 6.7 and 5.11 and Remark 5.12 we see that if A 

is stable, A is paracompact, and G is separable, then the exterior equivalence classes 
of locally unitary coactions of G on A are in bijective correspondence with the 
isomorphism classes of locally trivial principal G-bundle over A. 

It would be nice to have a similar result relating (Cartan) principal G-bundles and 
(a suitably restricted class of) pointwise unitary coactions. Some restriction would be 
needed as one can show that (A X& G) A need not be Hausdorff, in general. We 
leave this problem open. 
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