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EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 

M. W BUNDER 

Abstract. A bracket abstraction algorithm is a means of translating A-terms into combinators. Broda 

and Damas, in [1], introduce a new, rather natural set of combinators and a new form of bracket abstraction 
which introduces at most one combinator for each A-abstraction. This leads to particularly compact 

combinatory terms. A disadvantage of their abstraction process is that it includes the whole Schbnfinkel [4] 
algorithm plus two mappings which convert the Schbnfinkel abstract into the new abstract. This paper 
shows how the new abstraction can be done more directly, in fact, using only 2n - 1 algorithm steps if 
there are n occurrences of the variable to be abstracted in the term. Some properties of the Broda-Damas 
combinators are also considered. 

?1. The Broda-Damas combinators. The class of Broda-Damas combinators A 
and the class of combinatory terms 0J are defined below. 

DEFINITION 1. The set of combinator indices A 

(i) The empty word 0 C A 

(ii) at,,fE A => C o,b a,(a,l) E A. 
Thus b, c, b . c, c . b b, (b . c, (c, b) . b) etc are combinator indices. 

If ae E A we let #a be the number of b's and c's in a. 
The indices b and c are related to the standard combinators B and C. 

DEFINITION 2. The class of Broda-Damas (or B-D) combinators A 

(i) K e C 
(ii) ae Q % A Ik, e A. 

'tb.b, (Db.c, etc will often be written as Dbb, (Dbc etc. 

In the following we assume that we have a class of variables V. 

DEFINITION 3. The class of combinatory terms 0J 

(i) x e V X x C l 
(ii) A C v 

(iii) X, Y C1 V X (XY) C V1. 

As usual we assume association to the left for combinatory terms. 

Weak reduction is defined by the following axioms as well as the usual rules: 

DEFINITION 4. Weak reduction >1w is given by: 
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EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 1851 

K KXY >I, X 

(1)0 (I)X >1w X 
(I)c a (1) c.aXXi ... X#a+l >1w (ceXi ... X#ac+X 

(Db a (Ib eXX1 ... X#e+ >1w X('tceXl ... X#a+l) 

D(a'/1) (D(ce*f)x ...* X#ce Y, ... Y#flZ DI lW@e X1 . .. X#ce Z ((Df Yj . .. Y# /IZ) . 

DW is the reflexive, transitive closure of >Dw and = the symmetric closure of Dw,. 

?2. The Broda-Damas bracket abstraction algorithm. Lambda terms are defined 
by: 

DEFINITION 5. The class of A-terms A 

(i) VCA 
(ii) M,N eA (MN) eA 

(iii) x e V&M e A = (Ax.M) e A. 

These can be transformed into combinators by the transformation ( )H defined in 
terms of a bracket abstraction A*x: 

DEFINITION 6. (H 

oH :A >A 

where (X)H-X, 

(MN)H MHNH, 

and (AX.M)H A*X-MH- 

Definition 6 applies for most translations from A-terms into combinators, in [1] 
the bracket abstraction A~x is defined using the Schonfinkel [4] algorithm and two 
mappings. 

DEFINITION 7. [x] (Schonfinkel bracket abstraction) 

(i) [x]x _ I 

(k) [x]U=KU ifx 0 U 
(q) [X]Ux U ifx 0 U 
(b) [X]UV BU([x]V) ifx 0 U 
(c) [x] UV C([x] U) V ifx 0 V 
(s) [x] UV S([x] U) ([x] V) 

[XI, X]X [XI, Xn-] X]X) 

Here I, K, B, C and S are the standard Schonfinkel or Curry (see Curry and 
Feys [3]) combinators, with weak reduction given by: 

(I) Ix > x 
(K) KXY > X 
(B) BXYZ > X(YZ) 
(C) CXYZ > xzY 

(S) SXYZ > xz(YZ) 

i, which maps Schonfinkel combinatory terms into Q, is given by: 
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1852 M. W BUNDER 

DEFINITION 8. i 

i(I) - 0 

i (CXY) c i (X) 

i(BXY) b . i(Y) 

i (SXY) (i (X), i (Y)) 

iX b otherwise. 

Another function r maps these terms into a sequence of Vl terms. 

DEFINITION 9. r 

r(I) 0 

where 0 representstheempty sequence 

r (CXY) Y r (X) 

r(BXY) X, r(Y) 
r (SXY) r (X), r ( Y) 

r(X) X otherwise. 

We can now define A*x.X. 

DEFINITION 10. )*x.X 

(i) If [x]X e Vl (i.e. it doesn't contain I, B, C or S) then 

A*.X_ [x]X. 

(ii) If [x]X V el, a = i([x]X) and X1,,... , X, _ r([x]X) then 

A x.X=- )cDX, ... X, 

Most abstracts are simpler in terms of B-D combinators, a few are not. 

EXAMPLE I 1. 

[x].xyz C(CIy)z 

i([x].xyz) c c 

r ([x].xyz) Z, Y 

so by Definition 10(ii): Aix.xyz-4Dcczy 

by Definition 10(i): A) zyx.xyz , 
while [z, y, x].xyz C(BC(CI)) 

EXAMPLE 12. 

[z]y(xz) Byx 

i([z]y(xz)) b * b 

r([z]y(xz)) y, x 

so A *Y(XZ) (DbbYX 

[y]Az.y (XZ ) -C(b X 

i([y]Alz.yZ1(xz) = - *b 
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i y7.y(X-) Z)-1 DcbXDhh 

Similarly i* xyz.y(xz) - cbbb (Dcb 

while [x, y, z]y (xz) CB 

?3. An expedited algorithm. Definition 7 is simple and convenient because it 
defines [x]X in terms of bracket abstractions of simpler terms. We can do the same 
for A*x.X. 

THEoREM 13. If x E U, x E V, x X T, i* x. U _ IDXI ... X#, and i* x.V _ 

(D# Yi ... Y#q then: 

(i) A*x.TU _ Fb ,TXI ... X#,, 
(ii) A* x. UT _DCC. TXl I IX#,, 

(iii) A* x.UV--4D(,,f) XI ... X#aYI . Y## 
IfA* x. U is not of the aboveform we have (i), (ii) and (iii) with a _ b and XI _ A* x. U. 
If A*x. V is not of the above form we have (iii) with ,8 b and Yi _ A*x. V. 

PROOF. (i) [x]TU _ BT([x]U). 
If A* x. U has the above form then 

i ([x]TU) _b i ([x] U) =b . ae 
and r([x]TU) T, r([x]U) T, X , , X#e 

If A*x. U is not of that form 

i([x]TU) _b b 

and r ([x] TU) _T, [x] U 

So in the former case A*x.TU is as in (i) and in the latter case as in (i) but with 
ea=band Xi A*x. U. 

(ii) and (iii) are similar. - 

In bracket abstraction, as defined in Theorem 7, the first clause used determines 
the leftmost combinator of the abstract (if any) and later uses of clauses determine 
other combinators. In the abstraction given by Theorem 13, where only one combi- 
nator is formed, this combinator is being enhanced with further subscripts at each 
use of a clause after the first. 

EXAMPLE 14. By Theorem 13(i) and (ii): 

X. Z (XyZ )--b.aZX1 ... 
X#a 

where A)*x.xyz _ ,,XI ... X#,, 

A *x.Xyz --)'C.pZ Yi ... 
Y## 

where A*x.xyA:(p Yi... Y## 
AF x.xy _4),; Yzj . Z#;' 

where A*x.x _IZi ... Z#Y. 

Then y 0, #y 0, O. c, Yi _ y, #f, 1, ce = c c and X, z, X2 y. 

So 

A*X-Z(XYZ) _ 4 b-c-ZZYv 
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1854 M. W BUNDER 

This process can be carried out more simply in reverse, by noting that the simplest 
directly abstractable forms are, for x X Y: 

A*yx.x Y D Y 

and A*X.YX Y 

Example 14 now becomes: 

AL*x.xy -D.y 

then by Theorem 13 (ii), A)x.xyz _ ,..czy 
and by Theorem 13 (i), A*x.z(xyz) -Fb.C.CZZY. 

This example makes it clear that Theorem 13 can be used as part of an algorithm, 
provided we abstract from the inside of a term outwards. Such an algorithm is 
described below. 

The first expedited Broda-Damas algorithm (EBDAl) 

AIM. To evaluate the B-D abstract A*x.X. 

METHOD. STEP 1. (i) If x 0 Y and X _ Yx then i*x.X- Y 
(ii) x X X then A*x.X -KX 

(iii) if X _ x then A*x.X _ (D. 

STEP 2. For any parts UT, TU or UV of X where x E U. x E V and x 0 T, if 

A* x. U -DXI . .. X4, 

and A*Vx.FV-DY. Y4# 
then (i) A*x.TU F(b.aTX1 . X#, 

(ii) A* x. UT _D Sc TX, . .. Xc,, 

(iii) A*x. UV=- '(,a/)Xl ... X# Y... Y4/ 

If A*x.U is not of the above form ce _ b and X, _ A*x.U in (i), (ii) and (iii). If 
A* x. V is not of the above form ,B _ b and Yi _ A*x. V in (iii). 

Step 2 is repeated till it applies to X. 

It is clear from Theorem 13 and the definition of A*x.X that: 
THEOREM 15. EBDA1 evaluates A*x.X. 

The new algorithm has the advantage that if x appears in disjoint subterms of X, 
the abstractions with respect to x of these subterms can be done in parallel. 

EXAMPLE 16. Evaluate A x.x(xy)(zxy). 

In parallel: A)x.xy _ 1Cy, A~x.x _ (D and A)x.zx _ z. 
Then in parallel: A* x.zxy- bYZ 
and A~x.x(xy) _ (O , )y 
Then A*x.x(xy)(zxy)-(D((0,c),c.b)YYZ. 

The algorithm can be made to work faster still if we combine several uses of Step 2 
in EBDAL. For example if x 0 X, ... Xn, we have: 

(1) I s swr e n c's in th sX i 

where (Dc,7 stands for (Dc c..,c where there are n c's in the subscript. 
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EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 1855 

Similarly if x 0 Y, ... Yn, we have: 

A*x Yl (Y2 .. Y y- ( YnX) . ).y. )-b'7 Yl * Yn 

The second expedited Broda-Damas algorithm (EBDA2) 

AIM. To evaluate the B-D abstract A*x.X. 

METHOD. STEP 1. If x 0 X then )* x.X _ KX, otherwise consider all parts Z 
of X which have only one occurrence of x. Such a Z takes the form: 

Z_ Yk (-.*. ( Y2 ( Yl (XXI ... Xn ) Yl I ... Y 1/}11 ) Y21 ... Y2M2 ) ... Yknak 

then 

) X-Z =Dc '-k .b...c'"'2 .b c'"1 b c'7 Ykmk ... YkI Yk ... Y2tn2 ... Y21 Y2 YIn1 ... YlI YlXn . .. XI 

unless n = 0, k = 1 and ml = 0, in which case A*x.Z _ Y1. 

STEP 2. For parts Z of X where 

Z- Yk (. .. ( Y2 ( Yl ( UVXl Xn ) Yl I . .. YI m l) Y2 1 .. Y2s172 ) .. YkMk 

where k > 0 each mi > 0, x appears only in UV; 
A* x.U (D, WI ... W#,y, 

and A*x.V-pRl ...R4#, 

have been evaluated by Step 1 or a previous Step 2, 

ALx.Z =- 'cnk b...C .b.c.21l.c"' .(aIp) Ykmk ... Yk1 Yk ... 

Y2m2 ... Y12 YlIn I ... Yil YXn .. . X WI ... W,,R. . .. R4#. 

NOTE. 1. A special case of Step 1 is 

A*x.x _ (Do 

2. Abstractions of disjoint subterms Z of X as in Steps 1 and 2 can be done in 
parallel. 

EXAMPLE 17. 

A X.UV(Uy(XyUV)WV)UVW _ sC3.b.C2.b.c3WVU(UV)VW (Uy)VUy 

A*X.U(XVV)WW _ )C2.b.C2WWUVV. 

So 

* x.uv (uy (xyuv)wv) uvw (u (xvv)ww ) 

-I(c3 b.c2 b.C3,c2 b.c2)WVU (uv)VW (uY)VuYWWuVV. 

The following lemma proves the correctness of Steps 1 and 2 of EBDA2. 

LEMMA 18. If X 0 Yi ... Yk Xl . .. Xn Yl l... Yk l.. Ykmk and 

A*X.W _ JZl...Z#, 

then unless n = 0, k = 1, ml = 0 and W _ x, 
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PROOF. By induction on k. 
By EDBA1, 

* 
X. WX X 

. .X. x, - ss t7 a X11 ... Xi Zi * *Z#C, 

the required result for k = 0. 
For k > 0, unless n = 0 and W _ x, 

i* x. Y, ( WXI ... Xn ) =_ (D1 c,7 (X Y1 XI, . .. Xi Z1 . .. Z#x r 

and, unless n = 0. W _ x and ml 0, 

i* x. YI ( WX . .. Xn ) Yl I . .. Ylea-1(471 (D .h -bCZ (X Ylin1 .. *l *I YY1 XI, .. Xi Z1 . Z#(X - 

For any n, W and ml we have 

A* X. Y2 (Yl ( WXI . .. Xn ) YI I . Y119171) 

-sbh ...7 I -bc' -a Y2 Y11111 . .. YI I YI Xn . .. XI ZI . .. Z#a . 

If we assume the result for k = r > 1, we have by Theorem 13(i): 

i x. Yr+l ( Ye-. .. Y1 (WXI ... xj ... Y1-171, ) 

-= (c'77 b...h c' a Yr+i Yonj1 - - I Yri Yl Xi, ... Xi Zi ... Z#a 

and by Theorem 13(ii) m,.+l times: 

A*x. Y,-+l ( Y.-. .. Yl( WXl I I I Xi] ) ...Y,,1,7 ) Y.- I Yt +Il71,+l 

z 'c 7'7+1 bhc 7' ....b-c7'ae Yr+Iin, .l Yr+II Yr+ I'Yo,. .r Yl Xn ... XI ZI ... Z#a 

So the result holds. - 

EBDA2 requires far fewer algorithm steps for evaluations of A* x.X than EBDAl. 

THEOREM 19. EBDA2 evaluates A*x.X with, if there are n(> 0) occurrences of x 
in X, exactly 2n - 1 uses of Steps 1 and 2. 

PROOF. Lemma 10 confirms that EBDA2 evaluates A*x.X. The rest of the theo- 
rem is proved by induction on n. 

If X is in the form (of Z) given in EBDA2 Step 1, x appears once in X and 
only one Step 1 is required to evaluate A*x.X. The only other case of n = 1 has 
X _ Y1 x (x 0 Y1) and again only one use of Step 1 is required. 

If X is in the form (of Z) given in EBDA2 Step 2, where there are k occurrences 
of x in U and n - k in V (O < k < n), there are, by the induction hypothesis 
altogether 2k - 1 + 2(n - k) - 1 + 1 = 2n - 1 uses of Steps 1 and 2 required. - 

NOTE. The method employed in EBDA2 is not restricted to B-D abstraction. We 
can construct a similar algorithm for Schonfinkel abstraction by using: 

If [x]W-SUV and x 0 Yl ... YkXl ... Xn Y1 I ... Yk .. Ykink then 

[x] Yk (**( Y2 ( Yl ( WXI ... Xn ) Yl I ... Yl in,) Y21 ... Y2in? ) ... 
Ykswnk) 

Cmk(B Yk (Cnk(BYk-1 ...(C'n(B Yi( C(SUV)x. X) )Y1 1 

* * * ln ) . .) Ykl ... Yk`nak 

in Step 2 and something similar but simpler in Step 1. 
This is useful if the speed of abstraction rather than the simplicity of the abstract 

is important. 
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?4. Broda-Damas and standard combinators. As all standard combinators can be 
defined in terms of K and S, it is clear that all (standard or K-S) combinators can 
be defined in terms of K and F(h b). This leads to interrelations between the B-D 
combinators such as 

@(D' b) KK = (D 

and Fhbb40 = Db 

These are a-equalities - all we really have is 

'(Ih.h#)Kfx D Dx 

and FDb.bD0X =t bX. 

Other bases of combinators are often considered (see [2]), here we will just look at 
BCIW (or BCIS) - the combinatory counterpart to the Church lambda calculus. 
This in fact corresponds exactly to the B-D combinators without K. We can define 

B = (b.h 

C = -Dc.b Dc b Dc * 

I = (0 

W o(D.0) 
and S D(b h) 

The BCIW-definable A-terms are exactly terms in which every subterm Ax. Y has x 
appear at least once in Y. 

It is clear from the EBDAI or 2 that all BCIW-definable A-terms can be abstracted 
without the use of K. 
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