
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

2000 

Expedited Broda-Damas bracket abstraction Expedited Broda-Damas bracket abstraction 

Martin W. Bunder 
University of Wollongong, mbunder@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
Bunder, Martin W., "Expedited Broda-Damas bracket abstraction" (2000). Faculty of Engineering and 
Information Sciences - Papers: Part A. 2703. 
https://ro.uow.edu.au/eispapers/2703 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/2703?utm_source=ro.uow.edu.au%2Feispapers%2F2703&utm_medium=PDF&utm_campaign=PDFCoverPages


Expedited Broda-Damas bracket abstraction Expedited Broda-Damas bracket abstraction 

Abstract Abstract 
A bracket abstraction algorithm is a means of translating λ-terms into combinators. Broda and Damas, in 
[1], introduce a new, rather natural set of combinators and a new form of bracket abstraction which 
introduces at most one combinator for each λ-abstraction. This leads to particularly compact 
combinatory terms. A disadvantage of their abstraction process is that it includes the whole Schonfinkel 
[4] algorithm plus two mappings which convert the Schonfinkel abstract into the new abstract. This paper 
shows how the new abstraction can be done more directly, in fact, using only 2n - 1 algorithm steps if 
there are n occurrences of the variable to be abstracted in the term. Some properties of the Broda-Damas 
combinators are also considered. 

Keywords Keywords 
bracket, damas, expedited, abstraction, broda 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
Bunder, M. W. (2000). Expedited Broda-Damas bracket abstraction. The Journal of Symbolic Logic, 65 (4), 
1850-1857. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/2703 

https://ro.uow.edu.au/eispapers/2703


THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65. Number 4. Dec. 2000 

EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 

M. W BUNDER 

Abstract. A bracket abstraction algorithm is a means of translating A-terms into combinators. Broda 

and Damas, in [1], introduce a new, rather natural set of combinators and a new form of bracket abstraction 
which introduces at most one combinator for each A-abstraction. This leads to particularly compact 

combinatory terms. A disadvantage of their abstraction process is that it includes the whole Schbnfinkel [4] 
algorithm plus two mappings which convert the Schbnfinkel abstract into the new abstract. This paper 
shows how the new abstraction can be done more directly, in fact, using only 2n - 1 algorithm steps if 
there are n occurrences of the variable to be abstracted in the term. Some properties of the Broda-Damas 
combinators are also considered. 

?1. The Broda-Damas combinators. The class of Broda-Damas combinators A 
and the class of combinatory terms 0J are defined below. 

DEFINITION 1. The set of combinator indices A 

(i) The empty word 0 C A 

(ii) at,,fE A => C o,b a,(a,l) E A. 
Thus b, c, b . c, c . b b, (b . c, (c, b) . b) etc are combinator indices. 

If ae E A we let #a be the number of b's and c's in a. 
The indices b and c are related to the standard combinators B and C. 

DEFINITION 2. The class of Broda-Damas (or B-D) combinators A 

(i) K e C 
(ii) ae Q % A Ik, e A. 

'tb.b, (Db.c, etc will often be written as Dbb, (Dbc etc. 

In the following we assume that we have a class of variables V. 

DEFINITION 3. The class of combinatory terms 0J 

(i) x e V X x C l 
(ii) A C v 

(iii) X, Y C1 V X (XY) C V1. 

As usual we assume association to the left for combinatory terms. 

Weak reduction is defined by the following axioms as well as the usual rules: 

DEFINITION 4. Weak reduction >1w is given by: 

Received April 22, 1999; accepted July 29, 1999. 

? 2000, Association for Symbolic Logic 
0022-481 2/00/6504-0023/$1.80 

1850 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 1851 

K KXY >I, X 

(1)0 (I)X >1w X 
(I)c a (1) c.aXXi ... X#a+l >1w (ceXi ... X#ac+X 

(Db a (Ib eXX1 ... X#e+ >1w X('tceXl ... X#a+l) 

D(a'/1) (D(ce*f)x ...* X#ce Y, ... Y#flZ DI lW@e X1 . .. X#ce Z ((Df Yj . .. Y# /IZ) . 

DW is the reflexive, transitive closure of >Dw and = the symmetric closure of Dw,. 

?2. The Broda-Damas bracket abstraction algorithm. Lambda terms are defined 
by: 

DEFINITION 5. The class of A-terms A 

(i) VCA 
(ii) M,N eA (MN) eA 

(iii) x e V&M e A = (Ax.M) e A. 

These can be transformed into combinators by the transformation ( )H defined in 
terms of a bracket abstraction A*x: 

DEFINITION 6. (H 

oH :A >A 

where (X)H-X, 

(MN)H MHNH, 

and (AX.M)H A*X-MH- 

Definition 6 applies for most translations from A-terms into combinators, in [1] 
the bracket abstraction A~x is defined using the Schonfinkel [4] algorithm and two 
mappings. 

DEFINITION 7. [x] (Schonfinkel bracket abstraction) 

(i) [x]x _ I 

(k) [x]U=KU ifx 0 U 
(q) [X]Ux U ifx 0 U 
(b) [X]UV BU([x]V) ifx 0 U 
(c) [x] UV C([x] U) V ifx 0 V 
(s) [x] UV S([x] U) ([x] V) 

[XI, X]X [XI, Xn-] X]X) 

Here I, K, B, C and S are the standard Schonfinkel or Curry (see Curry and 
Feys [3]) combinators, with weak reduction given by: 

(I) Ix > x 
(K) KXY > X 
(B) BXYZ > X(YZ) 
(C) CXYZ > xzY 

(S) SXYZ > xz(YZ) 

i, which maps Schonfinkel combinatory terms into Q, is given by: 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1852 M. W BUNDER 

DEFINITION 8. i 

i(I) - 0 

i (CXY) c i (X) 

i(BXY) b . i(Y) 

i (SXY) (i (X), i (Y)) 

iX b otherwise. 

Another function r maps these terms into a sequence of Vl terms. 

DEFINITION 9. r 

r(I) 0 

where 0 representstheempty sequence 

r (CXY) Y r (X) 

r(BXY) X, r(Y) 
r (SXY) r (X), r ( Y) 

r(X) X otherwise. 

We can now define A*x.X. 

DEFINITION 10. )*x.X 

(i) If [x]X e Vl (i.e. it doesn't contain I, B, C or S) then 

A*.X_ [x]X. 

(ii) If [x]X V el, a = i([x]X) and X1,,... , X, _ r([x]X) then 

A x.X=- )cDX, ... X, 

Most abstracts are simpler in terms of B-D combinators, a few are not. 

EXAMPLE I 1. 

[x].xyz C(CIy)z 

i([x].xyz) c c 

r ([x].xyz) Z, Y 

so by Definition 10(ii): Aix.xyz-4Dcczy 

by Definition 10(i): A) zyx.xyz , 
while [z, y, x].xyz C(BC(CI)) 

EXAMPLE 12. 

[z]y(xz) Byx 

i([z]y(xz)) b * b 

r([z]y(xz)) y, x 

so A *Y(XZ) (DbbYX 

[y]Az.y (XZ ) -C(b X 

i([y]Alz.yZ1(xz) = - *b 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 1853 

i y7.y(X-) Z)-1 DcbXDhh 

Similarly i* xyz.y(xz) - cbbb (Dcb 

while [x, y, z]y (xz) CB 

?3. An expedited algorithm. Definition 7 is simple and convenient because it 
defines [x]X in terms of bracket abstractions of simpler terms. We can do the same 
for A*x.X. 

THEoREM 13. If x E U, x E V, x X T, i* x. U _ IDXI ... X#, and i* x.V _ 

(D# Yi ... Y#q then: 

(i) A*x.TU _ Fb ,TXI ... X#,, 
(ii) A* x. UT _DCC. TXl I IX#,, 

(iii) A* x.UV--4D(,,f) XI ... X#aYI . Y## 
IfA* x. U is not of the aboveform we have (i), (ii) and (iii) with a _ b and XI _ A* x. U. 
If A*x. V is not of the above form we have (iii) with ,8 b and Yi _ A*x. V. 

PROOF. (i) [x]TU _ BT([x]U). 
If A* x. U has the above form then 

i ([x]TU) _b i ([x] U) =b . ae 
and r([x]TU) T, r([x]U) T, X , , X#e 

If A*x. U is not of that form 

i([x]TU) _b b 

and r ([x] TU) _T, [x] U 

So in the former case A*x.TU is as in (i) and in the latter case as in (i) but with 
ea=band Xi A*x. U. 

(ii) and (iii) are similar. - 

In bracket abstraction, as defined in Theorem 7, the first clause used determines 
the leftmost combinator of the abstract (if any) and later uses of clauses determine 
other combinators. In the abstraction given by Theorem 13, where only one combi- 
nator is formed, this combinator is being enhanced with further subscripts at each 
use of a clause after the first. 

EXAMPLE 14. By Theorem 13(i) and (ii): 

X. Z (XyZ )--b.aZX1 ... 
X#a 

where A)*x.xyz _ ,,XI ... X#,, 

A *x.Xyz --)'C.pZ Yi ... 
Y## 

where A*x.xyA:(p Yi... Y## 
AF x.xy _4),; Yzj . Z#;' 

where A*x.x _IZi ... Z#Y. 

Then y 0, #y 0, O. c, Yi _ y, #f, 1, ce = c c and X, z, X2 y. 

So 

A*X-Z(XYZ) _ 4 b-c-ZZYv 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1854 M. W BUNDER 

This process can be carried out more simply in reverse, by noting that the simplest 
directly abstractable forms are, for x X Y: 

A*yx.x Y D Y 

and A*X.YX Y 

Example 14 now becomes: 

AL*x.xy -D.y 

then by Theorem 13 (ii), A)x.xyz _ ,..czy 
and by Theorem 13 (i), A*x.z(xyz) -Fb.C.CZZY. 

This example makes it clear that Theorem 13 can be used as part of an algorithm, 
provided we abstract from the inside of a term outwards. Such an algorithm is 
described below. 

The first expedited Broda-Damas algorithm (EBDAl) 

AIM. To evaluate the B-D abstract A*x.X. 

METHOD. STEP 1. (i) If x 0 Y and X _ Yx then i*x.X- Y 
(ii) x X X then A*x.X -KX 

(iii) if X _ x then A*x.X _ (D. 

STEP 2. For any parts UT, TU or UV of X where x E U. x E V and x 0 T, if 

A* x. U -DXI . .. X4, 

and A*Vx.FV-DY. Y4# 
then (i) A*x.TU F(b.aTX1 . X#, 

(ii) A* x. UT _D Sc TX, . .. Xc,, 

(iii) A*x. UV=- '(,a/)Xl ... X# Y... Y4/ 

If A*x.U is not of the above form ce _ b and X, _ A*x.U in (i), (ii) and (iii). If 
A* x. V is not of the above form ,B _ b and Yi _ A*x. V in (iii). 

Step 2 is repeated till it applies to X. 

It is clear from Theorem 13 and the definition of A*x.X that: 
THEOREM 15. EBDA1 evaluates A*x.X. 

The new algorithm has the advantage that if x appears in disjoint subterms of X, 
the abstractions with respect to x of these subterms can be done in parallel. 

EXAMPLE 16. Evaluate A x.x(xy)(zxy). 

In parallel: A)x.xy _ 1Cy, A~x.x _ (D and A)x.zx _ z. 
Then in parallel: A* x.zxy- bYZ 
and A~x.x(xy) _ (O , )y 
Then A*x.x(xy)(zxy)-(D((0,c),c.b)YYZ. 

The algorithm can be made to work faster still if we combine several uses of Step 2 
in EBDAL. For example if x 0 X, ... Xn, we have: 

(1) I s swr e n c's in th sX i 

where (Dc,7 stands for (Dc c..,c where there are n c's in the subscript. 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 1855 

Similarly if x 0 Y, ... Yn, we have: 

A*x Yl (Y2 .. Y y- ( YnX) . ).y. )-b'7 Yl * Yn 

The second expedited Broda-Damas algorithm (EBDA2) 

AIM. To evaluate the B-D abstract A*x.X. 

METHOD. STEP 1. If x 0 X then )* x.X _ KX, otherwise consider all parts Z 
of X which have only one occurrence of x. Such a Z takes the form: 

Z_ Yk (-.*. ( Y2 ( Yl (XXI ... Xn ) Yl I ... Y 1/}11 ) Y21 ... Y2M2 ) ... Yknak 

then 

) X-Z =Dc '-k .b...c'"'2 .b c'"1 b c'7 Ykmk ... YkI Yk ... Y2tn2 ... Y21 Y2 YIn1 ... YlI YlXn . .. XI 

unless n = 0, k = 1 and ml = 0, in which case A*x.Z _ Y1. 

STEP 2. For parts Z of X where 

Z- Yk (. .. ( Y2 ( Yl ( UVXl Xn ) Yl I . .. YI m l) Y2 1 .. Y2s172 ) .. YkMk 

where k > 0 each mi > 0, x appears only in UV; 
A* x.U (D, WI ... W#,y, 

and A*x.V-pRl ...R4#, 

have been evaluated by Step 1 or a previous Step 2, 

ALx.Z =- 'cnk b...C .b.c.21l.c"' .(aIp) Ykmk ... Yk1 Yk ... 

Y2m2 ... Y12 YlIn I ... Yil YXn .. . X WI ... W,,R. . .. R4#. 

NOTE. 1. A special case of Step 1 is 

A*x.x _ (Do 

2. Abstractions of disjoint subterms Z of X as in Steps 1 and 2 can be done in 
parallel. 

EXAMPLE 17. 

A X.UV(Uy(XyUV)WV)UVW _ sC3.b.C2.b.c3WVU(UV)VW (Uy)VUy 

A*X.U(XVV)WW _ )C2.b.C2WWUVV. 

So 

* x.uv (uy (xyuv)wv) uvw (u (xvv)ww ) 

-I(c3 b.c2 b.C3,c2 b.c2)WVU (uv)VW (uY)VuYWWuVV. 

The following lemma proves the correctness of Steps 1 and 2 of EBDA2. 

LEMMA 18. If X 0 Yi ... Yk Xl . .. Xn Yl l... Yk l.. Ykmk and 

A*X.W _ JZl...Z#, 

then unless n = 0, k = 1, ml = 0 and W _ x, 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1856 M. W. BUNDER 

PROOF. By induction on k. 
By EDBA1, 

* 
X. WX X 

. .X. x, - ss t7 a X11 ... Xi Zi * *Z#C, 

the required result for k = 0. 
For k > 0, unless n = 0 and W _ x, 

i* x. Y, ( WXI ... Xn ) =_ (D1 c,7 (X Y1 XI, . .. Xi Z1 . .. Z#x r 

and, unless n = 0. W _ x and ml 0, 

i* x. YI ( WX . .. Xn ) Yl I . .. Ylea-1(471 (D .h -bCZ (X Ylin1 .. *l *I YY1 XI, .. Xi Z1 . Z#(X - 

For any n, W and ml we have 

A* X. Y2 (Yl ( WXI . .. Xn ) YI I . Y119171) 

-sbh ...7 I -bc' -a Y2 Y11111 . .. YI I YI Xn . .. XI ZI . .. Z#a . 

If we assume the result for k = r > 1, we have by Theorem 13(i): 

i x. Yr+l ( Ye-. .. Y1 (WXI ... xj ... Y1-171, ) 

-= (c'77 b...h c' a Yr+i Yonj1 - - I Yri Yl Xi, ... Xi Zi ... Z#a 

and by Theorem 13(ii) m,.+l times: 

A*x. Y,-+l ( Y.-. .. Yl( WXl I I I Xi] ) ...Y,,1,7 ) Y.- I Yt +Il71,+l 

z 'c 7'7+1 bhc 7' ....b-c7'ae Yr+Iin, .l Yr+II Yr+ I'Yo,. .r Yl Xn ... XI ZI ... Z#a 

So the result holds. - 

EBDA2 requires far fewer algorithm steps for evaluations of A* x.X than EBDAl. 

THEOREM 19. EBDA2 evaluates A*x.X with, if there are n(> 0) occurrences of x 
in X, exactly 2n - 1 uses of Steps 1 and 2. 

PROOF. Lemma 10 confirms that EBDA2 evaluates A*x.X. The rest of the theo- 
rem is proved by induction on n. 

If X is in the form (of Z) given in EBDA2 Step 1, x appears once in X and 
only one Step 1 is required to evaluate A*x.X. The only other case of n = 1 has 
X _ Y1 x (x 0 Y1) and again only one use of Step 1 is required. 

If X is in the form (of Z) given in EBDA2 Step 2, where there are k occurrences 
of x in U and n - k in V (O < k < n), there are, by the induction hypothesis 
altogether 2k - 1 + 2(n - k) - 1 + 1 = 2n - 1 uses of Steps 1 and 2 required. - 

NOTE. The method employed in EBDA2 is not restricted to B-D abstraction. We 
can construct a similar algorithm for Schonfinkel abstraction by using: 

If [x]W-SUV and x 0 Yl ... YkXl ... Xn Y1 I ... Yk .. Ykink then 

[x] Yk (**( Y2 ( Yl ( WXI ... Xn ) Yl I ... Yl in,) Y21 ... Y2in? ) ... 
Ykswnk) 

Cmk(B Yk (Cnk(BYk-1 ...(C'n(B Yi( C(SUV)x. X) )Y1 1 

* * * ln ) . .) Ykl ... Yk`nak 

in Step 2 and something similar but simpler in Step 1. 
This is useful if the speed of abstraction rather than the simplicity of the abstract 

is important. 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


EXPEDITED BRODA-DAMAS BRACKET ABSTRACTION 1857 

?4. Broda-Damas and standard combinators. As all standard combinators can be 
defined in terms of K and S, it is clear that all (standard or K-S) combinators can 
be defined in terms of K and F(h b). This leads to interrelations between the B-D 
combinators such as 

@(D' b) KK = (D 

and Fhbb40 = Db 

These are a-equalities - all we really have is 

'(Ih.h#)Kfx D Dx 

and FDb.bD0X =t bX. 

Other bases of combinators are often considered (see [2]), here we will just look at 
BCIW (or BCIS) - the combinatory counterpart to the Church lambda calculus. 
This in fact corresponds exactly to the B-D combinators without K. We can define 

B = (b.h 

C = -Dc.b Dc b Dc * 

I = (0 

W o(D.0) 
and S D(b h) 

The BCIW-definable A-terms are exactly terms in which every subterm Ax. Y has x 
appear at least once in Y. 

It is clear from the EBDAI or 2 that all BCIW-definable A-terms can be abstracted 
without the use of K. 

REFERENCES 

[1] S. BRODA and L. DAMAS, Compact bracket abstraction in combinatory logic, this JOURNAL, vol. 62 

(1997), pp. 729-740. 
[2] M. W BUNDER, Lambda terms definable as combinators, Theoretical Computer Science, vol. 169 

(1996), pp. 3-21. 
[3] HASKELL B. CURRY and ROBERT FEYS, Combinatory logic. Vol. I, North-Holland Publishing Co., 

Amsterdam, 1958. 
[4] M. SCHONFINKEL, zuber die bausteine der mathematischle logik, Mathematische Annalen, (1924), 

pp. 305-316. 

SCHOOL OF MATHEMATICS AND APPLIED STATISTICS 

UNIVERSITY OF WOLLONGONG 

WOLLONGONG, NSW 2522, AUSTRALIA 

E-mail: martin-bunder~uow.edu.au 

This content downloaded from 130.130.37.84 on Thu, 21 Aug 2014 00:59:57 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Expedited Broda-Damas bracket abstraction
	Recommended Citation

	Expedited Broda-Damas bracket abstraction
	Abstract
	Keywords
	Disciplines
	Publication Details


